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ABSTRACT: 

Identification is a powerful technique used to build accurate models of system from noisy data. 
The Frequency Domain System Identification utilizes specialized tools for identifying linear 
dynamic multiple input/single-output (MISO) systems from time responses or measurements of 
the system's frequency response. Frequency domain methods supports continuous-time 
modeling, which can be a powerful and highly accurate complement to the more commonly 
used discrete-time methods. The methods described here can be applied to problems such as 
the modeling of electronic, mechanical, and acoustical systems. A brief intuitive introduction to 
system identification using adaptive filters has been provided. 

Adaptive filtering has been broadly divided into seven broad categories .The first part describes 
linear and non-linear filtering and gives an overview of various kinds of estimation techniques. 
The second part describes Weiner filter and its applications in real world. The third part 
introduces system modeling like stochastic and stationary models. In the fourth part we 
describe the least mean square algorithm and it’s error performance. The fifth part gives an 
overview of variants of LMS like sign LMS, block LMS, normalized LMS. The sixth part introduces 
transform domain adaptive filtering and algorithms used like DCT/DFT LMS. The last part is an 
implementation of system identification in design of a jam resistant receiver. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 

Introduction 

An adaptive filter is a system with a linear filter that has a transfer function controlled by 

variable parameters and a means to adjust those parameters according to an optimization The 

Frequency Domain System Identification Toolbox (FDIDENT) provides specialized tools for 

identifying linear dynamic single-input/single-output (SISO) systems from time responses or 

measurements of the system's frequency response. Frequency domain methods support 

continuous-time modeling, which can be a powerful and highly accurate complement to the 

more commonly used discrete-time methods. The methods in the toolbox can be applied to 

problems such as the modeling of electronic, mechanical, and acoustical systems algorithm. 

Because of the complexity of the optimization algorithms, most adaptive filters are digital 

filters. Adaptive filters are required for some applications because some parameters of the 

desired processing operation (for instance, the locations of reflective surfaces in a reverbing 

space) are not known in advance or are changing. The closed loop adaptive filter uses feedback 

in the form of an error signal to refine its transfer function. 

The term filter is ordinarily used to allude to a framework that is intended to concentrate data 

around a recommended amount of enthusiasm from uproarious data. With such expansive 

point estimation hypothesis discovers provisions in numerous various fields: correspondence, 

radar, route, biomedical engg. 

 

THE THREE BASIC KINDS OF ESTIMATION 

1.FILTERING:It is an operation that involves extraction of information about a quantity of 

interest at time t by using data measured up to and including time t. 

2.SMOOTING:It is an a posteriori form of estimation, in that data measured after the time of 

interest are used in estimation. The smoothed estimate a t time t’ is obtained by using data 

measured over the interval [0,t],where t’<t. A delay of t-t’ is therefore introduced in computing 

the smoothed estimate .The benefit gained is that by waiting for more data to accumulate, a 

more accurate estimate can be found. 

3.PREDICTION: The forecasting side of estimation, with aim to derive information about the 

quantity of interest will be like at future time (t+t1)where t1>0,by using data measured upto 

and including time t. 



LINEAR VS NONLINEAR FILTERING   

In signal processing, a nonlinear (or non-linear) filter is a filter whose yield is not a linear 

function of its input. That is, if the filter outputs signals R and S for two input 

signals rand s separately, yet does not generally yield αR + βS when the input is a linear 

combination  αr + βs. 

Both continuous-domain and discrete-domain filters may be nonlinear. A straightforward case 

of the previous might be an electrical gadget whose yield voltage R(t) at any moment is the 

square of the data voltage r(t); or which is the information cut to an altered extent [a,b], 

specifically R(t) = max(a, min(b, r(t))). An essential sample of the recent is the running-median 

filter , such that each yield test Ri is the average of the last three data tests ri, ri−1, ri−2. An 

important example of the latter is the running-median filter , such that every output 

sample Ri is the median of the last three input samples ri, ri−1, ri−2. Like linear filters, nonlinear 

filters may be shift invariant or not. 

Non-linear filters have numerous requisitions,, especially in the removal of certain types 

of noise that are not additive. For instance, the median filter is widely used to remove spike 

noise — that influences just a little rate of the specimens,, possibly by very large amounts. 

Indeed all radio receivers utilize non-linear filters to convert kilo- to gigahertz signals to 

the audio frequency range; and all digital signal processing depends on non-linear filters 

(analog-to-digital converters) to transform analog signals to binary numbers. 

Then again, nonlinear filters are significantly harder to utilize and outline than linear ones, on 

the grounds that the most compelling numerical devices of sign examination, (for example, the 

motivation reaction and the recurrence reaction) can't be utilized on them. Thus, for example, 

linear filters are often used to remove noise and distortion that was created by nonlinear 

processes, simply because the proper non-linear filter would be too hard to design and construct. 

Linear filters process time-varying input signals to produce output signals, subject to the 

requirements of linearity [2]. This results from systems made exclusively out of components (or 

digital algorithms) classified as having a linear response. Most filters implemented in analog 

electronics, in digital signal processing, or in mechanical systems are classified as causal, time 

invariant, and linear. 

The general concept of linear filtering is also used in statistics, data analysis, and mechanical 

engineering among other fields and technologies [10]. This includes non-causal filters and filters 

in more than one dimension such as would be used in image processing; those filters are 

subject to different constraints leading to different design methods. 
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CHAPTER 2 

 

2.1 WEINER FILTER  

2.2 ERROR ESTIMATION 

2.3 DISCRETE SERIES WEINER FILTER 

2.4 APPLICATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.1 WEINER FILTER  

The outline of a Weiner filter requires from the earlier data about the facts of information to be 

transformed. It produces an estimate of a desired or target random process by linear time-

invariant filtering an observed noisy process, assuming known stationary signal and noise 

spectra, and additive noise [6]. The Wiener filter minimizes the mean square error between the 

estimated random process and the desired process. 

The goal of the Wiener filter is to filter out noise that has corrupted a signal. It is based on 

a statistical approach. Typical filters are designed for a desired frequency response. However, 

the design of the Wiener filter takes a different approach [11]. One is expected to have learning 

of the spectral properties of the original signal and the noise, and one seeks the linear time-

invariant filter whose output might verge to the original signal as possible. Wiener filters are 

characterized by the following:  

1. Assumption: signal and (additive) noise are stationary linear stochastic processes with 

known spectral characteristics or known autocorrelation and cross-correlation 

2. Requirement: the filter must be physically realizable/causal (this requirement can be 

dropped, resulting in a non-causal solution) 

3. Performance criterion: minimum mean-square error (MMSE) 

2.2 ERROR ESTIMATION 

The input to the Wiener filter is assumed to be a signal s(t), corrupted by additive noise, n(t). 

The output, s^(t) is calculated by means of a filter,  g(t) using the following convolution:[1] 

 

where  is the original signal (not exactly known; to be estimated),  is the 

noise,  is the estimated signal (the intention is to equal , and  is the 

Wiener filter's impulse response. 

The error is defined as 

 

where  is the delay of the Wiener Filter (since it is causal). In other words, the error is 

the difference between the estimated signal and the true signal shifted by . 

The squared error is 
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where  is the desired output of the filter and  is the error. Depending on 

the value of , the problem can be described as follows: 

if  then the problem is that of prediction (error is reduced when  is 

similar to a later value of s), 

if  then the problem is that of filtering (error is reduced when s*(t) is 

similar to , and 

if   then the problem is that of smoothing (error is reduced when   is 

similar to an earlier value of s). 

. 

Taking the expected value of the squared error results in 

 

where  is the observed signal,  is the autocorrelation function 

of ,  is the autocorrelation function of , and  is the cross-correlation 

function of  and . If the signal  and the noise  are uncorrelated (i.e., the 

cross-correlation  is zero), then this means that  and . 

For many applications, the assumption of uncorrelated signal and noise is reasonable. 

The objective is to minimize , the expected value of the squared error, by calculating 

the optimal , the Wiener filter impulse response function. The minimum may be found 

by finding the first order incremental change in the least square resulting from an 

incremental change in  for positive time. This is 

 

For a minimum, this must vanish identically for all  for  which leads to 

the Wiener–Hopf equation: 
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This is the fundamental equation of the Wiener theory. The right-hand side 

resembles a convolution but is only over the semi-infinite range. The equation can 

be solved to find the optimal filter  by a special technique due to Wiener 

and Hopf. 

 

 

 

 

 

2.3Finite impulse response Wiener filter for discrete series 

 

 

The causal finite impulse response (FIR) Wiener filter, instead of using some given data matrix X 

and output vector Y, finds optimal tap weights by making use of the statistics of the input and 

output signals. It populates the data network X with estimates of the auto-correlation of the 

input signal (T) and populates the output vector Y with estimates of the cross-correlation 

between the output and input signals (V). 

In order to derive the coefficients of the Wiener filter, consider the signal w[n] being fed to a 

Wiener filter of order N and with coefficients , . The output of the filter 

is denoted x[n] which is given by the expression 

 

The residual error is denoted e[n] and is defined as e[n] = x[n] − s[n] (see the corresponding 

block diagram). The Wiener channel is outlined in order to minimize the mean square slip 

(MMSE criteria) which might be expressed compactly: 

http://en.wikipedia.org/wiki/Eberhard_Hopf
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where  denotes the expectation operator. In the general case, the 

coefficients  may be complex and may be derived for the case where w[n] and s[n] 

are complex as well. With a complex signal, the matrix to be solved is 

a Hermitian Toeplitz matrix, rather than symmetric Toeplitz matrix[17]. For simplicity, 

the following considers only the case where all these quantities are real. The mean 

square error (MSE) may be rewritten as: 

 

To find the vector  which minimizes the expression above, calculate 

its derivative with respect to  

 

Assuming that w[n] and s[n] are each stationary and jointly stationary, the 

sequences  and  known respectively as the autocorrelation 

of w[n] and the cross-correlation between w[n] and s[n] can be defined as 

follows: 

 

The derivative of the MSE may therefore be rewritten as (notice 

that ) 

 

Letting the derivative be equal to zero results in 

 

which can be rewritten in matrix form 
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These equations are known as the Wiener–Hopf equations. The matrix T appearing in the 

equation is a symmetric Toeplitz matrix. Under suitable conditions on , these matrices are 

known to be positive definite and therefore non-singular yielding a unique solution to the 

determination of the Wiener filter coefficient vector, .  

The realization of the causal Wiener filter looks a lot like the solution to the least 

squares estimate, except in the signal processing domain. The least squares solution, for input 

matrix  and output vector  is 

 

The FIR Wiener filter is related to the least mean squares filter, but minimizing the error 

criterion of the latter does not rely on cross-correlations or auto-correlations. Its solution 

converges to the Wiener filter solution. 

 

2.4APPLICATIONS 

1.IDENTIFICATION:An adaptive filter is used to provide a linear model that represents the best 

fit to an unknown plant.The plant and the adaptive filter are driven by the same input. 
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2.INVERSE  MODELING: the inverse model has a transfer function that is inverse of the plant 

transfer function such that the combination of the two constitutes an ideal transmission 

medium. 

 

 

3.PREDICTION: The present value of a random signal serves purpose of a desired response for 

the filter. Past values supply the input applied to the filter.Targetis to provide best prediction of 

the present value. 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

3.1 STOCKHASTIC PROCESS AND MODELS 

3.2 STATIONARY PROCESS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.1STOCKHASTIC PROCESS AND MODELS 

In likelihood hypothesis, a stochastic procedure or now and then random process (generally 

used) is an accumulation of arbitrary qualities; this is regularly used to speak to the 

advancement of some arbitrary variable, or framework, about whether. This is the probabilistic 

partner to a deterministic methodology (or deterministic framework)[11]. As opposed to 

portraying a methodology which can just develop in restricted (as in the case, for instance, of 

results of a standard differential comparison), in a stochastic or arbitrary process there is some 

indeterminacy: regardless of the fact that the introductory condition (or beginning stage) is 

known, there are a few (regularly endlessly a lot of people) headings in which the procedure 

might evolve. 

Given a probability space  and a measurable space , an S-valued stochastic 

process is a collection of S-valued random variables on , indexed by a totally 

ordered set T ("time"). That is, a stochastic process X is a collection 

 

where each  is an S-valued random variable on . The space S is then called the state 

space of the process. 

Let X be an S-valued stochastic process. For every finite sequence , 

the k-tuple  is a random variable taking values in . The 

distribution  of this random variable is a probability measure on . 

This is called a finite-dimensional distribution of X. 

Under suitable topological restrictions, a suitably "consistent" collection of finite-dimensional 

distributions can be used to define a stochastic process (see Kolmogorov extension in the 

"Construction" section). 

 

In econometrics and signal processing, a stochastic process is said to be ergodic if its statistical 

properties (such as its mean and variance) can be deduced from a single, sufficiently long 

sample (realization) of the process.[14] 

 the ergodicity of various properties of a stochastic process. For example, a wide-sense 

stationary process  has mean  and 

autocovariance  which do not 

change with time. One way to estimate the mean is to perform a time average: 
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If  converges in squared mean to  as , then the process  is said to 

be mean-ergodic[1] or mean-square ergodic in the first moment.  

Likewise, one can estimate the autocovariance  by performing a time average: 

 

If this expression converges in squared mean to the true 

autocovariance , then the 

process is said to be autocovariance-ergodic or mean-square ergodic in the second moment.  

A process which is ergodic in the first and second moments is sometimes called ergodic in the 

wide sense.  

An important example of an ergodic processes is the stationary Gaussian process with 

continuous spectrum. 

 

3.2 STATIONARY PROCESS 

In statistics,a stationary methodology (or strictly) stationary procedure (or determinedly) 

stationary procedure is a stochastic procedure whose joint likelihood distribution(pdf) does not 

change when moved in time. Thusly, parameters, for example, the mean and change, in the 

event that they are available, likewise don't change about whether and don't take after any 

patterns. 

Formally, let  be a stochastic process and let  represent 

the cumulative distribution function of the joint distribution of  at 

times . Then,  is said to be stationary if, for all , for all , and for 

all , 

 

Since  does not affect ,  is not a function of time. 

A weaker form of stationarity commonly employed in signal processing is known as weak-sense 

stationarity, wide-sense stationarity (WSS), covariance stationarity, or second-order 

stationarity. WSS random processes only require that 1st moment and covariance do not vary 

with respect to time. Any strictly stationary process which has amean and a covariance is also 

WSS. 
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So, a continuous-time random process x(t) which is WSS has the following restrictions on its 

mean function 

 

and autocovariance function 

 

The first property implies that the mean function mx(t) must be constant. The second property 

implies that the covariance function depends only on the difference between  and  and 

only needs to be indexed by one variable rather than two variables.  
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CHAPTER 4 

 

4.1LEAST MEAN SQUARE ALGORITHM 

4.2SYMBOL DEFINITION 

4.3PROBLEM FORMULATION AND MATLAB CODE 

4.4ERROR PERFORMANCE SURFACE 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



4.1 LEAST MEAN SQUARE ALGORITHM 
 

The Adaptive Linear Combiner 
  

 
   
  

ek  =  dk  -  X
TW 

ek
2  =  dk

2  +  WTXkXk
TW  -  2dkXk

TW 
E[ek

2]  = E[dk
2]  +  WTE[XkXk

T]W  -  2E[dkXk
T]W 

Let  R  =  E[XkXk
T]   and   P  =  e[dkXk

T] 
MSE  =  E[ek

2]  =  E[dk
2]  +  WTRW  -  2PTW 

  

 

 

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter 

by finding the filter coefficients that relate to producing the least mean squares of the error 

signal (difference between the desired and the actual signal). It is a stochastic gradient 

descent method in that the filter is only adapted based on the error at the current time. It was 

invented in 1960 by Stanford University professor Bernard Widrow and his first Ph.D. 

student, Ted Hoff. 
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The realization of the causal Wiener filter looks a lot like the solution to the least squares 

estimate, except in the signal processing domain. The least squares solution, for input 

matrix  and output vector  is 

 

The FIR least mean squares filter is related to the Wiener filter, but minimizing the error 

criterion of the former does not rely on cross-correlations or auto-correlations. Its solution 

converges to the Wiener filter solution[19]. Most linear adaptive filtering problems can be 

formulated using the block diagram above. That is, an unknown system  is to be identified 

and the adaptive filter attempts to adapt the filter  to make it as close as possible 

to , while using only observable signals ,  and ; but 

,  and  are not directly observable. Its solution is closely related to the Wiener filter. 

 

4.2 Definition of symbols 

 is the number of the current input sample 

 is the filter order 

 (Hermitian transpose or conjugate transpose) 
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 estimated filter; interpret as the estimation of the filter coefficients 

after n samples 

 

 

 

4.3PROBLEM FORMULATION 
 
 

Example:- The One-step Predictor 

 
 
 

R = E [ Xk Xk
T ] 

 
 

P = E [ dk Xk
T ] 

Now: 

 
Using the fact that  
  

sin2 A = 0.5(1 - cos2A)  sinA sinB = 0.5[cos(A - B) - cos(A + B)] 
we can determine that: 

 

 

 

 



Thus we can calculate R: 

 
  

 

Now 

P = E [ dk Xk
T ] 

therefore: 
P = E [ dkxk-1   dkxk-2 ]T    =    [ xkxk-1   xkxk-2 ]T 

  

 

Therefore we have:  
  

 

 

The optimal weight vector, W* is : 

W*  =  R-1 P  =  
  

= [ 1.6197  -1.0 ]T 
 

CHECK THROUGH MATLAB 

clc; 
clear all; 
close all;% This script implements the LMS algorithm for the sine predictor problem. 
  
x = sin((0:1000)*pi/5); 
w = [4;0.05];           % Initial weights 



mu = 0.2;           % Adaptation gain 
  
W1=[]; 
for k = 3:100, 
  Xvec = [x(k-1);x(k-2)]; 
  d(k) = x(k); 
  y(k) = w'*Xvec; 
  e(k) = d(k) - y(k); 
  w = w+ 2*mu*e(k)*Xvec; 
  W1=[W1;w]; 
end 
hold on; 
W1 
e=e(3:100); 
e.^2; 
plot(e.^2); 
 
 
 
 
OUTPUT: 
w = 
 
    1.6233 
   -1.0055 
 
Error curve 
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4.4 ERROR PERFORMANCE SURFACE 

clc 
clear all; 
close all;; 
n = 10; 
m = 0; 
w0 = -3:0.5:3; 
w1 = -4:0.5:0; 
[X,Y]=meshgrid(w0,w1); 
mse = 0.5*(X.^2+Y.^2)+X.*Y*cos(2*pi/5)+2*Y*sin(2*pi/5)+2; 
Z=[mse]; 
surf(X,Y,Z) 
xlabel('Weight 1') 
ylabel('Weight 2') 
zlabel('Mean Square Error') 
view(45+n,10+m); 
 
 
 
OUTPUT: 
 

 

-4
-2

0
2

4 -4
-3

-2
-1

0

0

2

4

6

8

10

12

Weight 2
Weight 1

M
e
a
n
 S

q
u
a
re

 E
rr

o
r



CHAPTER 5 
 
5.1 SIGN LMS 

5.2 NLMS 

5.3 COMPARISON OF LMS, NLMS and SLMS 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



COMPARISON OF LMS, SIGN LMS and NLMS 
 
5.1 SIGN LMS 
Some adaptive filter applications require you to implement adaptive filter algorithms on 
hardware targets, such as digital signal processing (DSP) devices, FPGA targets, and application-
specific integrated circuits (ASICs). These targets require a simplified version of the standard 
LMS algorithm. The sign function, as defined by the following equation, can simplify the 
standard LMS. 
 

algorithm. 

 

Applying the sign function to the standard LMS algorithm returns the following three types of 
sign LMS algorithms. 

 

 Sign-error LMS algorithm—Applies the sign function to the error signal e(n). This algorithm 
updates the coefficients of an adaptive filter using the following 
equation: . Notice that when e(n) is zero, this algorithm 
does not involve multiplication operations. When e(n) is not zero, this algorithm involves 
only one multiplication operation. 

 

 Sign-data LMS algorithm—Applies the sign function to the input signal vector . This 
algorithm updates the coefficients of an adaptive filter using the following 
equation: . Notice that when  is zero, this algorithm does 
not involve multiplication operations. When  is not zero, this algorithm involves only 
one multiplication operation. 

 

 

 Sign-sign LMS algorithm—Applies the sign function to both e(n) and . This algorithm 
updates the coefficients of an adaptive filter using the following 
equation: . Notice that when either e(n) or  is zero, 
this algorithm does not involve multiplication operations. When neither e(n) or  is  

zero, this algorithm involves only one multiplication operation. 

The sign LMS algorithms involve fewer multiplication operations than other algorithms. When 
the step size μ equals a power of 2, the sign LMS algorithms can replace the multiplication 
operations with shift operations[14]. In this situation, these algorithms have only shift and 
addition operations. Compared to the standard LMS algorithm, the sign LMS algorithm has a 
slower convergence speed and a greater steady state error. 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_monitor_behave/#convergence
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_monitor_behave/#steady


5.2 NORMALIZED LEAST MEAN SQUARE 

 

The normalized LMS (NLMS) algorithm is a modified form of the standard LMS algorithm. The 
NLMS algorithm updates the coefficients of an adaptive filter by using the following equation: 

 

You also can rewrite the above equation to the following equation: 

 

where                     .  

In the previous equation, the NLMS algorithm becomes the same as the standard 
LMS algorithm except that the NLMS algorithm has a time-varying step size μ(n). This step size 
can improve the convergence speed of the adaptive filter. 

 

 

5.3 CODE FOR COMPARISON OF CONVERGENCE 
 
clc; 
clear all;  
close all; 
%%%%LMS%%%%%%%% 
for j=1:1000 
x=randn(1000,1); 
u=.05; %input('Enter the value of mu:\n'); 
wopt=[4;5;6]; 
w=[0;0;0]; 
l=length(x); 
A=zeros(3,1); 
for i=1:l 
   A(2:3)= A(1:2); 
    A(1)=x(i); 
    d(i)=wopt'*A+rand(1); 
    y(i)=w'*A; 
    e(j,i)=d(i)-y(i); 
    w=w+u*e(j,i)*A; 
end 
end 
MSE1=sum(e.^2); 
  
  

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_lms_algorithms/#standard
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_lms_algorithms/#standard
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_monitor_behave/#convergence


%%%%NLMS%%%%%%%% 
for j=1:1000 
x=randn(1000,1); 
un=.1; %input('Enter the value of mu:\n'); 
wopt=[4;5;6]; 
w=[0;0;0]; 
l=length(x); 
A=zeros(3,1); 
dn=.0001; 
for i=1:l 
   A(2:3)= A(1:2); 
    A(1)=x(1); 
    xn=A(1)^2+A(2)^2+A(3)^2; 
    d(i)=wopt'*A+rand(1); 
    y(i)=w'*A; 
    e(j,i)=d(i)-y(i); 
    w=w+(un/(dn+xn))*e(j,i)*A; 
end 
end 
MSE2=sum(e.^2); 
  
  
%%%%SLMS%%%%%%%% 
for j=1:1000 
x=randn(1000,1); 
us=.05; %input('Enter the value of mu:\n'); 
wopt=[4;5;6]; 
w=[0;0;0]; 
l=length(x); 
A=zeros(3,1); 
dn=.0001; 
for i=1:l 
   A(2:3)= A(1:2); 
    A(1)=x(1); 
    
    d(i)=wopt'*A+rand(1); 
    y(i)=w'*A; 
    e(j,i)=d(i)-y(i); 
    w=w+(us)*sign(e(j,i))*A; 
end 
end 
MSE3=sum(e.^2); 
plot(MSE1,'-b');hold on; 
plot(MSE2,'--r');hold on; 



plot(MSE3,'.-g'); 
leg=legend('LMS','Nlms','SLMS'); 
  
 
 
OUTPUT: 
     
 

 
 
 
It is shown that the normalized least mean square (NLMS) algorithm is a potentially faster 

converging algorithm compared to the LMS and SLMS algorithm where the design of the 

adaptive filter is based on the usually quite limited knowledge of its input signal statistics.  

In summary, we have described a statistical analysis of the LMS adaptive filter, and through this 
analysis, suggestions for selecting the design parameters for this system have been provided. 
While useful, analytical studies of the LMS adaptive filter are but one part of the system design 
process. As in all design problems, sound engineering judgment, careful analytical studies, 
computer simulations,and extensive real-world evaluations and testing should be combined 
when developing an adaptive filtering solution to any particular task. 
 
 

5.4 BLOCK LMS 
 
The Block LMS Filter block implements an adaptive least mean-square (LMS) filter, where the 
adaptation of filter weights occurs once for every block of samples. The block estimates the 
filter weights, or coefficients, needed to minimize the error, e(n), between the output 
signal, y(n), and the desired signal, d(n).[17] Connect the signal you want to filter to the Input 
port. The input signal can be a scalar or a column vector. Connect the signal you want to model 
to the Desired port. The desired signal must have the same data type, complexity, and 
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dimensions as the input signal. The Output port outputs the filtered input signal. The Error port 
outputs the result of subtracting the output signal from the desired signal. 
The block calculates the filter weights using the Block LMS adaptive filter algorithm. This 
algorithm is defined by the following equations. 

 

The weight update function for the Block LMS adaptive filter algorithm is defined as 

 

The variables are as follows. 

Variable Description 

n The current time index 

i The iteration variable in each block,  

k The block number 

N The block size 

u(n) The vector of buffered input samples at step n 

w(n) The vector of filter-tap estimates at step n 

y(n) The filtered output at step n 

e(n) The estimation error at time n 

d(n) The desired response at time n 

μ The adaptation step size 

 
Use the Filter length parameter to specify the length of the filter weights vector. 
The Block size parameter determines how many samples of the input signal are acquired before 
the filter weights are updated. The number of rows in the input must be an integer multiple of 
the Block size parameter. 
The adaptation Step-size (mu) parameter corresponds to µ in the equations. You can either 
specify a step-size using the input port, Step-size, or enter a value in the Block Parameters: 
Block LMS Filter dialog box. 



Use the Leakage factor (0 to 1) parameter to specify the leakage factor, , in the 
leaky LMS algorithm shown below. 

 

Enter the initial filter weights as a vector or a scalar in the Initial value of filter weights text 
box. When you enter a scalar, the block uses the scalar value to create a vector of filter weights. 
This vector has length equal to the filter length and all of its values are equal to the scalar value 
When you select the Adapt port check box, an Adapt port appears on the block. When the 
input to this port is greater than zero, the block continuously updates the filter weights. When 
the input to this port is zero, the filter weights remain at their current values. 
When you want to reset the value of the filter weights to their initial values, use the Reset 
input parameter. The block resets the filter weights whenever a reset event is detected at the 
Reset port. The reset signal rate must be the same rate as the data signal input. 
From the Reset input list, select None to disable the Reset port. To enable the Reset port, select 
one of the following from the Reset input list: 

 Rising edge — Triggers a reset operation when the Reset input does one of the following: 
o Rises from a negative value to a positive value or zero 

o Rises from zero to a positive value, where the rise is not a continuation of a rise from a negative 
value to zero (see the following figure). 

 

 Falling edge — Triggers a reset operation when the Reset input does one of the following: 
o Falls from a positive value to a negative value or zero 

o Falls from zero to a negative value, where the fall is not a continuation of a fall from a positive 
value to zero (see the following figure) 

 



 Either edge — Triggers a reset operation when the Reset input is a Rising edge or Falling 
edge (as described above) 

 Non-zero sample — Triggers a reset operation at each sample time that the Reset input is not 
zero 
Select the Output filter weights check box to create a weights port on the block. For each 
iteration, the block outputs the current updated filter weights from this port. 
 
MATLAB CODE 
 
clc; 
clear all; 
close all; 
clf; 
size1=1000; 
iter=200; 
blk_size=8; 
muu=0.05; 
w_sys=[8 4 6 5]';l=length(w_sys); 
w1=zeros(l,iter); 
for it=1:iter 
    x=randn(1,size1); 
    %n=randn(1,size1);%noise 
    w=zeros(l,1); 
    u=zeros(1,l);%regressor vector 
    temp=zeros(1,l); 
    for i=1:(size1/blk_size)-1%block number is i 
        temp=zeros(1,l); 
        for r=0:blk_size-1 
            u(1,l-2:l)=u(1,1:l-1);%2:4=1:3 
            u(1,1)=x(i*blk_size+r); 
            desired(i*blk_size+r)=u*w_sys+randn(1,1); 
%noise added 
            estimate(i*blk_size+r)=u*w; 
            err(it,i*blk_size+r)=desired(i*blk_size+r)-estimate(i*blk_size+r); 
            temp=temp+err(it,i*blk_size+r).*u; 
        end 
        w=w+muu.*temp';%(muu'/blk_size)=muu 
    end 
    w1(:,it)=w; 
    clc; 
    fprintf('current iteration is %d ',it); 
end 
w=mean(w1,2); 
err_sqr=err.^2; 



err_mean=mean(err_sqr,1); 
err_max=err_mean./max(err_mean); 
err_dB=10*log10(err_max); 
plot(err_dB); 
title('BLOCK LMS Algorithm'); 
ylabel('Mean Square Error'); 
xlabel('No of Iterations'); 
w_sys 
w 
 

 

OUTPUT: 
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CHAPTER 6 

6.1TRANSFORM DOMAIN ADAPTIVE FILTERS 

6.2UNITARY TRANSFORMATIONS 

6.3DFT LMS 

6.4DCT LMS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.1TRANSFORM DOMAIN ADAPTIVE FILTERS  

 
T h e convergence performance of LMS-type filters is highly dependent on the correlation of the 
input data and, in particular, on the eigenvalue spread of the covariance matrix of the 
regression data. In addition, the computational complexity of this class of filters is proportional 
to the filter length and, therefore, it can become prohibitive for long tapped delay lines. The 
purpose of this part is to describe three other classes of adaptive filters that address the two 
concerns of complexity and convergence, namely, transform-domain adaptive filters, block 
adaptive filters, and sub-band adaptive filters. 
Transform-domain filters exploit the de-correlation properties of some well-known signal 
transforms, such as the discrete Fourier transform (DFT) and the discrete cosine transform 
(DCT), in order to pre-whiten the input data and speed up filter convergence. The resulting 
improvement in performance is usually a function of the data correlation and, therefore, the 
degree of success in achieving the desired objective varies from one signal correlation to 
another. The computational cost continues to be O ( M ) operations per sample for a filter of 
length M .[17] 
Block adaptive filters, on the other hand, reduce the computational cost by a factor a > 1, while 
at the same time improving the convergence speed. This is achieved by processing the data on 
a block-by-block basis, as opposed to a sample-by-sample basis, and by exploiting the fact that 
many signal transforms admit efficient implementations. However, the reduction in cost and 
the improvement in convergence speed come at a cost. Block implementations tend to suffer 
from a delay problem in the signal path, and this delay results from the need to collect blocks of 
data before processing. 
  

PRE WHITENING FILTERS 

To pre-whiten the data when the second-order statistics of the input sequence is 
known,assume that  is zero-mean and wide-sense stationary, with known auto-
correlation function 
 
r ( k ) = Eu(i)u"(i - k) , for k =  0,1,2,3…………………. 
 
In  order to determine the pre-whitening filter from knowledge of { r ( k ) } , we need to 

understand the useful notions of power spectrum and spectral factorization. 

 

Spectral Spectral Factorization 

The z-spectrum of a wide-sense stationary random process {u(i)} is denoted by S,(z) and is 
defined as the z-transform  
                                                          
                                                    Su(z)= ∑ r(k) z-k 

 
Of course, this definition makes sense only for those values of z for which the series converges. 
For our purposes, it suffices to assume that { r ( k ) }is exponentially bounded, i.e., 
                       Ir(k)l < βαk  



for some ,β> 0 and 0 < α < 1. In this case the series is absolutely convergent for all values of z in 
the annulus a < IzI < a-1, i.e., it satisfies 
            ∑ |r(k)| |z-k   

                       for all a < I Z I< l / a 

 
We then say that the interval a <  < a-1 defines the region of convergence (ROC) of Su(z). 

Since this ROC includes the unit circle, we establish that S,(z) cannot have poles on the unit 
circle. Evaluating Su(z) on the unit circle then leads to what is called the power spectrum (or the 
power-spectral-density function) of the random process. 
The power spectrum has two important properties: 
 
1.Hermitian symmetry, i.e., S,(ejω) = [S,(eω)]* and S,(eω) is therefore real. 

 
2. Nonnegativity on the unit circle, i.e., Su(ejω) > 0  for 0 <ω <2π 
The first property is easily checked from the definition of Su(ejω) since r(k) = r*(-k) 
 
Actually, and more generally, the z-spectrum satisfies the para-Hermitian symmetry property 
Su(z) = Su (1/z*) 
That is, if we replace z by l/z* and conjugate the result, then we recover Su(z) again. The second 
claim regarding the nonnegativity of Su (ejω) on the unit circle is more demanding to establish  
To continue, we shall assume that S,(z) is a proper rational function and that it does not have 
zeros on the unit-circle so that 
S,(ejω)>O                
Then using the para-Hermitian symmetry property, it is easy to see that for every pole (or zero) 
at a point <, there must exist a pole (respectively a zero) at 1/<z*. In addition, it follows from 
the fact that Su(z) does not have poles and zeros on the unit circle that any such rational 
function Su ( z ) can be factored as 
 
 
for some positive scalar Ω, and for poles and zeros satisfying Izl < 1 and Ω I < 1. The spectral 
factorization of Su(z) is now defined as a factorization of the form Su(z) = aiA(z) [A(l/z*)] 
where {u:, A ( z ) } satisfy the following conditions: 
1. Ω is a positive scalar. 
2. A(z) is normalized to unity at infinity, i.e., A(ω) = 1. 
3. A(ω) is a rational minimum-phase function (i.e., its poles and zeros are inside the unit circle). 
The normalization A(m) = 1 makes the choice of A ( z ) unique since otherwise infinitely many 
choices for {Ω, A ( z ) } would exist.  
 
 

LMS Adaptation 
Consider now an LMS filter that is adapted by using {ii(i)}as regression data, instead of { ~ ( i )as} 
sho wn in Fig.  with the reference sequence d ( i )a lso filtered by l/(a,A(z)),  
w(i) = w(i-1)+µ*e* (x(i)) 



e(i) =  d(i)- u(i)*w(i-1) 

where u(i)=[u(i),u(i-1),…………………u(i-M+1)] 

denotes the regression data and iiri denotes the resulting weight vector. In Fig. 26.3, it is 
assumed that the data { d ( i ) ,u i} satisfy the linear regression model d ( i ) = uiwo + v(i), for 
some unknown w0. The covariance matrix of the transformed regressor is seen to be R, = E U T 
= I, with an eigenvalue spread of unity. In this way, the convergence performance of the filter 
will be improved relative to an LMS implementation that relies solely on { d ( i )u, (i)}W. e 
illustrate this fact later in Fig.  As an example, consider a random process {u( i )w}i th an 
exponential auto-correlation sequence of the form 
  
                                               r(k)=A|k|                                                      k=-1,0,1,. . . . . . . . .  
 

 
6.2 UNITARY TRANSFORMATIONS 

In mathematics, a unitary transformation may be informally defined as a transformation that preserves 

the inner product: the inner product of two vectors before the transformation is equal to their inner product 

after the transformation. 

More precisely, a unitary transformation is an isomorphism between two Hilbert spaces. In other words, 

a unitary transformation is a bijective function 

 

where  and  are Hilbert spaces, such that 

 

for all  and  in . A unitary transformation is an isometry, as one can see by setting  in this 

formula. 

In the case when  and  are the same space, a unitary transformation is an automorphism of that 

Hilbert space, and then it is also called a unitary operator. 

A closely related notion is that of antiunitary transformation, which is a bijective function 

 

between two complex Hilbert spaces such that 

 

for all  and  in , where the horizontal bar represents the complex conjugate. 

 

http://en.wikipedia.org/wiki/Transformation_(mathematics)
http://en.wikipedia.org/wiki/Inner_product
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Hilbert_space
http://en.wikipedia.org/wiki/Bijective_function
http://en.wikipedia.org/wiki/Isometry
http://en.wikipedia.org/wiki/Automorphism
http://en.wikipedia.org/wiki/Unitary_operator
http://en.wikipedia.org/wiki/Antiunitary
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Complex_conjugate


Since the statistics of the input data are rarely known in advance, and since the data itself may 
not even be stationary, the design of a pre-whitening filter l / A ( t) is usually not possible in the 
manner explained above. Still, there are ways to approximately pre-whiten the data, with 
varied degrees of success depending on the nature of the data. One such way is to transform 
the regressors prior to adaptation by some pre-selected unitary transformation, such as the 
DFT or the DCT, as we now explain. 
 

6.3 DFT  LMS 
Consider the standard LMS implementation 

 
W(i)=w(i-1)+µ*u(i)*[d(i)-u(i)w(i-1)]…………………(1) 
 
with regressor ui and associated covariance matrix R = Eu*ui. Let T denote an arbitrary unitary 
matrix of size M x M , i.e., TT' = T*T = I. For example, T could be chosen in terms of the discrete 
Fourier transform matrix (DFT), 
 
(1/√M )*(e^-j2πmk/M)                 
     K,m=0,1,2,………………………………M-1 

 

The appropriate choice of scaling to achieve unitarity is , so that the energy in the 

physical domain will be the same as the energy in the Fourier domain, i.e., to satisfy Parseval's 

theorem. (Other, non-unitary, scalings, are also commonly used for computational 

convenience; e.g., the convolution theorem takes on a slightly simpler form with the scaling 

shown in the discrete Fourier transform article.) 

 

6.3 DCT LMS 

The DCT can be written as 

α(k) * cos(k(2m+1)π/2*M)                             k,m=0,1,2,……………..M-1 

where               α(0)=1/√M 

and  α(k)=√2/M 

 

A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum 

of cosine functions oscillating at different frequencies. DCTs are important to numerous 

applications in science and engineering, from lossy compression of audio (e.g. MP3) 

and images (e.g. JPEG) (where small high-frequency components can be discarded), to spectral 

methods for the numerical solution of partial differential equations.[3] The use of cosine rather 

http://en.wikipedia.org/wiki/Parseval%27s_theorem
http://en.wikipedia.org/wiki/Parseval%27s_theorem
http://en.wikipedia.org/wiki/Convolution_theorem
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Data_points
http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Cosine


than sine functions is critical in these applications: for compression, it turns out that cosine 

functions are much more efficient (as described below, fewer functions are needed to 

approximate a typical signal), whereas for differential equations the cosines express a particular 

choice of boundary conditions. 

In particular, a DCT is a Fourier-related transform similar to the discrete Fourier 

transform (DFT), but using only real numbers. DCTs are equivalent to DFTs of roughly twice the 

length, operating on real data with even symmetry (since the Fourier transform of a real and 

even function is real and even), where in some variants the input and/or output data are 

shifted by half a sample. 

 

ALGORITHM (DFT   domain   LMS)  
 
1.The weight vector wo can be approximated iteratively via wi = Fmi, where F is the unitary DFT    
matrix and W(i) is updated as follows. Define the M x M diagonal matrix. 
 
S=diag{1,e^-j2π/M,e^-j4π/M,………………………e^-j2π(m-1)/M} 
 
 
2.Then start with Xk(-l) = 6 (a small positive number), 2sr-1 = 0, E-1 = 0, 
and repeat for i >=0: 
 
3.u(i)=u(i-1)*S + 1/√M {u(i)-u(i-M} [111…………….1] 
 
4.u(k)=kth entry of u(i) 
 
5.λ(k) = β*λ(i-1) + (1-β) * |u(k)|^2 
 
6. Di = diag{λ(i)} 
 
7.e(i) = d ( i ) – u(i)*W(i-1) 
 
8.w(i)=w(i-1)+µ*(D^-1)*(e*(i))*u(i) 
where µ is a positive step-size (usually small) and 0 << p < 1. The computational cost of this 
algorithm is O(M) operations per iteration. 

 

MATLAB CODE 

clc; 
close all; 
clear all; 

http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Boundary_condition
http://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Even_and_odd_functions


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
M=3; 
for k=1:M 
    for m=1:M 
        F(k,m)=(1/sqrt(M))*exp((-2*j*pi*(m-1)*(k-1))/M); 
    end 
end 
for m=1:M 
    a(m)=exp((-2*j*pi*(m-1))/M); 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%signal generation 
yslide=zeros(1,3); 
mu=0.2; 
n=200; 
u=randn(1,n); 
h=[0.26 0.93 0.26] 
for i=1:n 
    yslide(2:3)=yslide(1:2); 
    yslide(1)=u(i); 
    d(i)=yslide*h'; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xslide=zeros(1,3); 
S=diag(a); 
lamda=0.01*ones(1,M); 
wbar=zeros(M,1); 
ubar=zeros(1,M); 
beta=0.8; 
ubar=zeros(1,3); 
for i=1:n 
    p=xslide; 
    xslide(2:3)=xslide(1:2); 
    xslide(1)=u(i); 
%       ubar=xslide*F 
      ubar=ubar*S+(1/sqrt(M))*(xslide(1)-p(3))*ones(1,M); 
%       pause 
    lamda=beta*lamda+(1-beta)*(abs(ubar.^2)); 
    D=diag(lamda); 
    ubar*wbar; 
    e(i)=d(i)-ubar*wbar; 
    wbar=wbar+mu*inv(D)*ubar'*e(i); 



    sqerror(i)=e(i)^2; 
end 
v=F*wbar 
hold on 
plot(v) 
% subplot(1,1,1) 
plot(d,'r'); 
title('System output') ; 
xlabel('Samples') 
ylabel('True and estimated output') 
figure 
%subplot(1,2,1); 
semilogy((abs(e))) ; 
title('Error curve') ; 
xlabel('Samples') 
ylabel('Error value') 
figure 
%subplot(1,2,2); 
plot(h, 'k+') 
hold on 
  
axis([0 6 0.05 0.35]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



OUTPUT: 

 
 
h = 
 
    0.2600    0.9300    0.2600 
 
 
v = 
 
   0.2600 - 0.0000i 
   0.9300 + 0.0000i 
   0.2600 - 0.0000i 
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Algorithm of DCT DOMAIN LMS 

The weight vector wo can be approximated iteratively via wi = CT w(i) where C is the unitary 
DCT matrIx and w(i) is updated as follows. Define the M x M diagonal matrix: 
 
             S = diag(2cos (kπ/M),                                             k = (0 , 1 , . . . . . . . . . .  . . , M - 1) 
 
Then start with λk(-1) = € (a small positive number), w(-1) = 0, u(-1) = 0, 
and repeat for i >= 0: 
 
1.a(k) = (u[i]-u[i-1])*cos (k*π/2M)                                 k = (0 , 1 , . . . . . . . . . .  . . , M - 1) 
 
2.b(k) =(-1)^k * [u(i-M)-u(i-M-1] *cos(k*π/2M) 
 
3.Ω(k) =[a(k)-b(k)]*α(k) 
 
4.U(i)=u(i-1)*S – u(i-2) + [Ω(0)  Ω(1)  Ω(2). . . . . . . . . . . .  . Ω(M-1)] 
 
5.Ui(k) =kth entry of u(i) 
 
6.λ k ( i ) =βλ k(i-1) + (1-β)* |u (k)|^2 
 
7.Di =diag(λk(i)) 
 
8.e ( i ) =d(i)-u(i)*w(i-1) 
 
9.w(i)=w(i-1)+ µ* D^(-1)* u(i)**e(i) 
 
where µ is a positive step-size (usually small) and 0 << β < 1. The computational 
cost of this algorithm is O ( M ) operations per iteration. 
 
Figure compares the performance of three LMS implementations for a first-order auto-
regressive process u(i) with a in  chosen as 0.8. The filter order is set to M = 8 and the ensemble 
average learning curves are generated by averaging over 300 experiments. The step-size is set 
to 0.01 and the noise variance at -40 dB. It is seen from the figure that DCT-LMS and DFTLMS 
exhibit faster convergence. 

 

 

 

 

 

 

 

 



clc 
clear all 
close all 
M=3; 
for k=1:M 
    s(k)=2*cos(k*3.14/M); 
    r(k)=cos(k*3.14/(2*M)); 
end 
s 
n=200; 
a=randn(1,n); 
u=zeros(1,3); 
h=[0.1 0.2 0.3]; 
for i=1:n 
    u(2:3)=u(1:2); 
    u(1)=a(i); 
    d(i)=u*h'; 
end 
e=diag(s); 
e 
xslide=zeros(1,3); 
ubar=zeros(1,M); 
wbar=zeros(M,1); 
beta=0.4 
lamda=0.01*ones(1,M); 
mu=0.4; 
for i=1:n 
    for k=1:M 
    p=xslide; 
    xslide(2:3)=xslide(1:2); 
    xslide(1)=a(i); 
    v(k)=(xslide(k)-p(k))*cos(r(k)); 
    b(k)=((-1)^k)*(xslide(1)-p(3))*cos(r(k)); 
    c(k)=((2/M)^0.5)*(v(k)-b(k)); 
    ubar=ubar*e-ubar+c(k); 
    lamda=beta*lamda+(1-beta)*(abs(ubar.^2)); 
    D=diag(lamda); 
    f(i)=d(i)-ubar*wbar; 
    wbar=wbar+mu*inv(D)*ubar'*f(i); 
    sqerror(i)=f(i)^2; 
    end 
end 
wbar 
D 



hold on 
plot(d) 
plot(c,'r'); 
title('System output') ; 
xlabel('Samples') 
ylabel('True and estimated output') 
figure 
semilogy((abs(sqerror(i)))) ; 
title('Error curve') ; 
xlabel('Samples') 
ylabel('Error value') 
figure 
plot(h, 'k+') 
hold on 
  
%axis([0 6 0.05 0.35]) 
 
 
for j=1:1000 
x=randn(1000,1); 
u=.05; %input('Enter the value of mu:\n'); 
wopt=[4;5;6]; 
w=[0;0;0]; 
l=length(x); 
A=zeros(3,1); 
for i=1:l 
   A(2:3)= A(1:2); 
    A(1)=x(i); 
    d(i)=wopt'*A+rand(1); 
    y(i)=w'*A; 
    e(j,i)=d(i)-y(i); 
    w=w+u*e(j,i)*A; 
end 
end 
MSE1=sum(e.^2); 
semilogy((abs(MSE1)),'--r') ; 
%%plot(MSE1,'-b'); 
hold on; 
semilogy((abs(e)),'-g') ; 
%hold on 
  
leg=legend('LMS','DCTLMS'); 
 

 



 

OUTPUT: 

 
 

 

 

 

 

CONCLUSION:  From the given simulations it can be found that DCT LMS converges faster than 
the normal LMS algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
10

-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

Samples

E
rr

o
r 

v
a
lu

e

 

 

LMS

DCTLMS



 

CHAPTER 7  

IMPLEMENTATION OF FREQUENCY DOMAIN SYSTEM IDENTIFICATION IN 
JAMMING 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

FREQUENCY DOMAIN NLMS ALGORITHM FOR ENHANCED JAM RESISTANT GPS                   
RECEIVER 

 
 

An optimal beamformer attempts to increase SNR at the array output by adapting its pattern to 
minimize some cost function.This is to say that, the cost function is inversely associated with 
the quality of the signal.[1] Therefore by minimizing the cost function we can maximize signal at 
the array output. The primary optimal beamforming technique discussed in this paper will be 
MMSE, LMS, Frequency Domain LMS for GPS multipath reduction. In case of a GPS satellite, the 
DOA of the desired signal is mathematically known because the position of a satellite in an orbit 
is fixed at a particular time instant. So in some particular adaptive antenna algorithm the 
DOA of the desired signal is directly given as input. 
 
 

 
 
                               ADAPTIVE ARRAY PROCESSOR 

  

e(t) = u(t) − whx(t) 

                       e(t)2 = (u(t) − whx(t))2 

                                E[e2(t)] = E[u2(t)] – 2whz+ whRw 

Where 

z = E[x(t)u∗(t)] is cross correlation between the reference signal and the array signal vector x(t)   

R = e[x(t)xH(t)] is the correlation matrix of the array output signal 

E[.] is the ensemble mean, 



The need for an adaptive beamforming algorithm solution is obvious, once we put a GPS 

receiver in a jamming environment is seldom constant in either terms of time or space, so the 

MMSE technique is not desirable to solve the normal equation directly. Since the DOA of the 

GPS signal & interferer signal both are time variable, the solution for weight vector must be 

updated.[12] Furthermore, since the data required estimating the optimal solution is noisy, it is 

desirable to use an update equation, which uses previous solutions  for the weight vector to 

smooth the estimate of the optimal response, reducing the effect of interference. 

 
MODIFIED LMS ALGORITHM USED 
 

The step size parameter μ governs the stability, convergence time and fluctuations of LMS 
adaptation process. One effective approach to overcome this dependence is to normalize the 
update step size with an estimate of the input signal variance σ^2u(t).  
 
Hence the weight update formula modified as 
 
w(t + 1 )= w(t) +( μ/N*(σ^2))*x(t)*e∗(t)  
 
where N is the tap length of the spatial filter . This modification leads to the asymptotic 
performance of the number of taps N. hence convergence is strongly dependent on number of 
taps N. For large number of taps results is poorer i.e., poorer convergence rate. The use 

of active tap algorithm consistently improves the convergence rate of NLMS algorithm. 

 

In frequency domain the above equation reduces to 
 
W(k + 1 )= W(k) + μ*X(k)e∗(k)/N 
 
N----Number of taps 
 
 

 

 

 

 

 

 

 



SIMULATIONS  AND  RESULTS 

 

POLAR PLOT OF FDNLMS BEAM PATTERN FOR ARRAY ANTENNA 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

System output

Samples

T
ru

e
 a

n
d
 e

s
ti
m

a
te

d
 o

u
tp

u
t



 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
System output

Samples

T
ru

e
 a

n
d
 e

s
ti
m

a
te

d
 o

u
tp

u
t



CONCLUSION: 

System identification can be implemented using various algorithms like LMS,NLMS,SLMS(in 
time domain)and DFT LMS,DCT LMS(in frequency domain).All these algorithms were simulated in 
MATLAB and results of their convergence behavior was studied briefly. It was found that NLMS 
showed the fastest convergence behavior followed by LMS and then by SLMS. The error 
performance for a one step predictor was calculated both mathematically and also simulated in 
MATLAB. It was found that results from both of the methods were same and the error 
performance surface was then implemented in MATLAB. Implementing a jam resistant GPS 
receiver using FDNLMS was also done and simulation results showed that the proposed method 
is a viable solution to increase the SNR in the presence of a short delay multipath environment. 
The combined characteristic of this study prevails over those of other techniques available 
presently.  
In addition, the prerequisite of short delay multipath causes the influences of hardware 
complexity in the FDNLMS adaptive filter to be insignificant. Therefore, the proposed method is 
a well-suited and well-balanced application in multipath mitigation. This method of enhancing 
signals using JAM resistant GPS receiver is being widely used nowadays in various defence 
applications by many developing countries of the world. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



REFERENCES AND BIBILIOGRAPHY  

[1]A. Kundu and A. Chakrabarty , “FREQUENCY DOMAIN NLMS ALGORITHM FOR ENHANCED 

JAM RESISTANT GPS RECEIVER”, Progress In Electromagnetics Research Letters, Vol. 3, 69–78, 

2008. 

[2].Gu, Y.-J., Z.-G. Shi, K. S. Chen, and Y. Li, “Robust adaptive beamforming for steering vector 

uncertainties based on equivalent DOAs method,” Progress In Electromagnetics Research, Vol. 

79,2010 

[3]Priyanka Yadav and Prof. Smita Patil ,”A COMPARATIVE BEAMFORMING ANALYSIS OF LMS & 

NLMS ALGORITHMS FOR SMART ANTENNA “,International Journal of Advanced Research in 

Computer Engineering & Technology (IJARCET) Volume 2 Issue 8, August 2013. 

[4] G.C. Goodwin and M. Salgado. Frequency domain sensitivity functions for continuous time 
systems under sampled data control. Automatica, Vol. 30,100-110,August 1994. 
 
[5]M.Grattan-Guinness. Convolutions in French mathematics, 1800-1840, Vol. 2. Birkh¨auser 
Verlag,120-124,1990. 
 
[6] W.M. Haddad, H.H. Huang, and D.S. Berstein. Sampled-data observers with generalized 
holds for unstable plants. IEEE Trans. on Automatic Control, Vol. 39(1): 229–234, January 2000. 
 
[7] S. Lee and Y. Lee, “Adaptive frequency hopping for bluetooth robust to WLAN interference,” 
IEEE Communications Letters, vol. 13, pp. 628–630, September 2009 
 
[8] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory,Vol. 52, pp. 2551–
2567, June 2006.100 
 
[9] B. Peeters and G. De Roeck. Reference-based stochastic subspace identification for output 
only modal analysis. Mechanical Systems and Signal Processing, Vol. 13(6),pp. 855–878, 1999. 
 
[10] R. Pintelon, P. Guillaume, G. Vandersteen, and Y. Rolain. Analysis, development and 
applications of tls algorithms in frequency domain system identification. Proceedings of the 
Second International Workshop on Total Least Squares and Errors-in-Variables Modeling,Vol 12 
pages 341–358, 1996. 
 
[11] Jr. S. Lawrence Marple. Digital Spectral Analysis. Prentice-Hall,Vol.34,1987. 
 
[12] B. Peeters and G. De Roeck. Stochastic system identification for operational modal analysis: 
A review. Journal of Dynamic Systems, Measurements, and Control, 2002. 
 
 



 [13] R. Pintelon. Frequency-domain subspace system identification using non-parametric noise 
models. Automatica, Vol 38,pp 295–311, 2002. 
 
[14] R. Starc and J. Schoukens. Identification of continuous-time systems using arbitrary signals. 
Automatical,Vol 33(5):pp 91–94, 1997. 
 
[15] R. Pintelon and K. Smith Time series analysis in the frequency domain. IEEE Transactions on 
Signal Processing,Vol 47, No. 1, 1999. 
 
[16]R. Ruotolo. A multiple-input multiple-output smoothing technique: Theory and application 
to aircraft data. Journal of Sound and Vibration, Vol 247(3):453–469, 2001. 
 
[17]J. Schoukens, Y. Rolain, J. Swevers, and J. De Cuyper. Simple methods and insight to deal 
with nonlinear distortions in frf measurements. Radar Systems and Signal  Processing,Vol 
14(4):657–666, 2000. 
 
[18] P. Van Overschee and B. De Moor. Subspace algorithms for the stochastic identification 
problem. Automatica, 29(3):649–660, 1993 
 
[19]P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: Theory 
Implemantation-Applications. Kluwer Academic Publishers,Vol. 67,pp 67-69,1996.. 
 
[20] P. Verboven, E. Parloo, P. Guillaume, and M. Van Overmeire. Autonomous structural health 
monitoring - part i: Modal parameter estimation and tracking. Electrical Systems and Signal 
Processing, Vol 56,pp 67-69, 2003. 

 
 
 

 

 

 

 

 

 

 

 

 

 


