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Abstract

The application and demand for composite materials is expanding nowadays.

Composite materials find applications in space antennae, aerospace structures and

ship structures. For high temperature applications, the functionally graded mate-

rial gives good performance compared to the laminated composite materials. The

twisted plates have various applications in the power generation field such as gen-

erator and turbine blades. Due to light weight and high stiffness properties, the

Functionally Graded Materials are economical as they require less power. Many of

these plates are subjected to high temperature environment in these applications;

hence functionally graded material is a good alternative to metal plates.

The present paper will explore the free vibration behavior of thin twisted func-

tionally graded material (FGM) plates. The vibration analysis is done using finite

element method. An 8 noded shell element is used for finite element calculations.

To model the FGM section, continuous variation in the material property along

the thickness is approximated to a laminated composite section consisting of a

number of layers and each layer is considered as isotropic. The material property

in each layer is determined using power law. Material density, Young’s modulus

and Poisson’s ratio change along the thickness based on power law. The first

order shear deformation theory is used in the analysis of pretwisted FGM plate.

Convergence of fundamental frequencies is observed, with an increase in mesh size

and the number of layers in the thickness direction. To validate the finite element

model, for different boundary conditions, the free vibration results are compared

with analytical studies and experimental studies. Having fixed the mesh size and

number of layers required to represent the material property variation along the

depth, the changes in frequencies with variation in angle of twist and material

property index is studied. The effect of geometric variables such as gradient in-

dex, aspect ratio, side to thickness ratio and angle of twist on the free vibration of

cantilever twisted plates is studied. Temperature dependent material properties



are considered as well as nonlinear material property variation along the thick-

ness due to temperature. The influence of thermal gradient along the thickness

direction on the free vibration of cantilever twisted plates is studied.
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Chapter 1

Introduction

1.1 Introduction to FGM

Composite materials are a class of advanced materials made by combining one

or more materials in the solid state with distinct chemical and physical proper-

ties. These composite materials offer superior properties compared to their parent

materials and are also light in weight. FGMs are an advanced class of composite

materials with varying material property over the change in dimension. Due to the

gradual change in material property from one surface to another, it can eliminate

inter laminar stress due to sudden change in material property. The materials and

their composition are selected based on the function the material has to perform.

Metal ceramic FGMs are commonly used as a thermal barrier material, where the

ceramic surface will resist the temperature and the metal matrix will provide the

strength. The idea of FGM originated in Japan in 1984 for a space research, in

the form of a temperature resistant material that can withstand a temperature of

two thousand Kelvin and a thermal gradient of thousand Kelvin with thickness

less than ten millimeter. Functionally graded materials can be used in adverse op-

erating conditions such as high temperature and moisture. These materials have

applications in rocket heat shields, thermal and sound insulation structural walls,

wear-resistant linings, thermoelectric generators, heat exchanger tubes, fusion re-

actor’s thermal lining and electrically insulating metal/ceramic joints. Due to the

rising applications of FGM in materials subjected to periodic loading and dynamic

forces, it is necessary to study the dynamic behavior of these plates subjected to

2



1.3 Outline of the present work

temperature and with various boundary conditions.

The structural unit of an FGM can be represented by the material ingredient. It

indicates rate at which material properties are varying. The chemical composi-

tion, geometric configuration and physical state of FGM depends on the gradient

index. Basic FGM consists of a two material mixture in which material compo-

sition varies from one point to another. The material properties are also varying

stepwise. Change in porosity from one surface to another also create FGM. A

gradual increase in the porosity creates thermal resistance, impact resistance and

low density.

1.2 Importance of the present study

The functionally graded material twisted plates can be used as turbine blades,

and engine blades of jet engines due to their high stiffness and strength to density

ratio. The functionally graded material provides good thermal resistance and sta-

bility in high thermal environments. These turbine blades and engine components

are subjected to dynamic forces so the natural frequency of vibration is a very

important design criteria. In the present study, the effect of geometric variables

on the natural frequency of cantilever pretwisted plates is studied.

1.3 Outline of the present work

The present work studies the free vibration of FGM twisted plates. The influence

of temperature environment on the free vibration behavior is studied. The effect

of different variables like twist angle, width to thickness ratio, gradient index

and aspect ratio are examined. Thermal effects on the material properties are

considered in the analysis.

In the first chapter, introduction about FGM and the necessity of this study is

explained.

3



1.3 Outline of the present work

Chapter 2 consists of a literature review on the previous studies in this field.

The purpose and need of the present study is outlined.

In Chapter 3, theoretical formulations for free vibration analysis using finite

element method is explained in detail. A MATLAB code based on finite element

method is developed to perform necessary computations. The MATLAB code is

used to plot the mode shapes.

Chapter 4 consists of convergence study, validation of the formulation and free

vibration results of twisted cantilever plates. The studies have been done for

functionally graded material twisted plates with different gradient index.

Chapter 5 consists of concluding remarks of the present study and scope of

future work.

4
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Chapter 2

LITERATURE REVIEW

2.1 Literature review

Wetherhold et al. [29] studied the use of functionally graded materials in con-

trolling thermal deformation. By changing the fiber material content within a

laminated composite beam and a gradual change in material property, tempera-

ture deflections were reduced.

Reddy and Chin [19] presented the vibration of graded cylinder and plate.

Finite element formulation developed takes in to account the thermo-mechanical

effects. Thermo-mechanical effects have a more dominant effect on the radial

stress, compared to the hoop stress in the case of cylinder.

Nabi and Ganesan [14] studied vibration properties of initially twisted compos-

ite plates considering plate and beam theory. For the analysis of twisted composite

beams, torsion flexure, shear flexure and flexure are considered. Triangular plate

element was used to represent the beam to an equivalent plate element. Paramet-

ric studies are conducted using plate and beam theories. The parameters consid-

ered in the analysis were layer sequence, twisting angle, orientations of the fibers

and tapering ratio.

Noda [15] studied temperature induced stresses in FGMs. He observed that

when functionally graded materials were exposed to extreme temperature loads,

6



2.1 Literature review

the cracks initiated in the ceramic face and propagated in the functionally graded

material. The temperature stress concentration in the fgms with varying type

of cracks was examined by using analytical and numerical methods. The crack

propagation path due to thermal shock was studied.

Aboudi et al. [1] presented the complete generalized HSDT for FGMs based

on Cartesian coordinate system. The theory was based on volumetric averaging

of various quantities and bypassed the micromechanical approach based on the

concept of volume element representation used in the analysis of fgm composites

by specially joining the element and total responses.

Reddy [17] studied theoretical formulation and FEM model based on TSDT for

FGM plate. The formulation accounted for thermo mechanical effects combining

change with time and geometric nonlinearity. In this higher order theory, trans-

verse shear stress was expressed as a quadratic function along the depth. Hence

this theory requires no shear correction factor. The plate was considered as ho-

mogenous and material composition was varied along the thickness. The Young’s

modulus was assumed to vary as per rule of mixture in terms of the volume frac-

tions of the material constituents.

Reddy and Cheng [18] presented thermomechanical deformation of simply sup-

ported FGM plate. The deflection along the thickness direction in the function-

ally graded plate was not constant when it was subjected to thermal loads. The

material properties along the depth were calculated by Mori-Thanka method. The

deformation due to temperature and stress of plate were calculated for the change

in gradient index of ceramic material. The in plane compressive stress due to

temperature load was high on the upper layer of the plate.

Biner [5] studied the thermo-elastic properties of a bi-material and an FGM

by advanced finite element method. The method divides the complete model into

7



2.1 Literature review

small elements using Voronoi elements. For non-homogenous sections, Voronoi el-

ement takes into account the influence of the thermal displacement. The method

was checked by matching the results with the basic finite element method. The

method was effective in understanding the micro-mechanical properties of FGMs.

Cho and Ha [7] presented three material property evaluation techniques. The

basic rule of mixture, advanced rule of mixture and Wakashima - Tsukamoto

estimating method were compared with the finite element dividing method using

rectangular elements. The new rule of mixture produced a gradually varying stress

change. The stress prediction by discretized model was located between linear rule

and Wakashima method.

Schmauder and Weber [22] presented modeling of FGMs using numerical ho-

mogenization. The mechanical behavior of different ceramic/metal compositions

was analyzed and compared with experimental studies. The microwave sintered

material was possessing higher ceramic content for medium gradient index. The

temperature expansion coefficient was not same as that by rule of mixture. The

Young’s modulus and the stress - strain behavior were simulated numerically and

the influence of initial stress appeared to be less.

Shen [23] presented Nonlinear bending studies of simply supported FGM rect-

angular plates loaded by out of plane load and exposed to temperature environ-

ment. The constituent properties were assumed to depend on the thermal load

and material properties were assumed to change along the depth as per power

law. The material property was distributed according to volume components of

the materials. Reddys TSDT was considered for the theoretical calculations.

Kee and Kim [11] presented the vibration analysis of a revolving compos-

ite plate. Theoretical calculation methods were obtained for pre twisted revolv-

ing shells considering the influence of centrifugal force and Coriolis acceleration.

8



2.1 Literature review

Slightly thick cylinder shells with opening was considered with shear stress and

deflection in thickness direction. FEM was used to solve the differential equation.

Huang and Shen [10] studied the dynamic reactions and free vibration includ-

ing nonlinearity of FGM plate subjected to temperature. Thermal influence in the

plate constituent property and heat conduction along the depth was considered.

The theoretical calculations considered higher order shear deformation theory and

von Karman property variation.

Dong [8] studied vibration analysis of circular plate with central hole for dif-

ferent edge conditions using Chebyshev Ritz method. Exponential changes in ma-

terial properties along the depth of the plate was studied. Change in frequency

between isotropic plate and FGM plate was studied.

Zhao et al. [31] studied free vibration analysis of bi-material FGM plate using

elements free kp-Ritz method. The material properties were assumed to vary along

the depth in accordance with a power-law change in material constituent fraction.

FSDT was used for the formulation. In plane displacements were calculated by

mesh free kernel particle function.

Bafererani et al. [3] presented an accurate solution for free vibration analysis

of FGM thin circular plate with hole. The edge conditions of the plate were such

that the edges were simply supported and in the inner edge the boundary condi-

tion changes. Results were given for different sector angles, inner radius to outer

radius ratio and different grades of FGM.

Malekzadeh et al. [13] studied the free vibration of thick circular plate with

hole exposed to temperature loads based on three dimensional elastic theory. The

temperature environment effects are considered. Using Hamilton’s theory, the

equations of motion were obtained. The influence of material, thermal load, and

9



2.1 Literature review

structural parameters on the fundamental frequency components were studied.

Bafererani et al [4] presented an accurate solution for free vibration problems

of thin FGM plates with different edge conditions. Classical plate theory was used

to create equations of motion. The Levy method was used to calculate frequencies

of FGM plates for various boundary conditions.

Suresh Kumar et al. [26] presented the nonlinear bending properties and static

properties of functionally graded material plate with different boundary condi-

tions, material variation parameter, aspect ratio and length to depth ratios con-

sidering the higher order theory. The numerical results were obtained for different

boundary conditions, material variation parameter, length to depth ratio, aspect

ratio, and the results were validated using linear methods. The influence of non-

linearity response and deflection in the thickness direction of FGM was studied.

Singha et al. [21] presented finite element analysis of FGM plates under out of

plane load considering a higher order plate bending finite element. The neutral

axis position was accurately determined for the formulation. The nonlinearity of

FGM plates were considered in the formulation. Transverse shear deformation

factor was calculated by energy theorem.

Rath and Sahu [16] conducted numerical studies and experimental work on

the free vibration characteristics of layered composite plate exposed to change in

thermal load and moisture. The influence of geometry, composition of material

and layer sequence of fiber composite on the free vibration with change in thermal

load and moisture loads were studied.

Alibakhshi and Khavvaji [2] presented free vibration studies of simply sup-

ported thick rectangular plates modeled considering bimaterial advanced plate

theory. Mass density and Young’s modulus were considered according to power-

10



2.1 Literature review

law variation. Hamilton theory was employed to derive five constitutive equations

of motion. By changing geometrical parameters and boundary condition vibra-

tion analysis was carried out and influence of geometric variables on the natural

frequencies were studied.

Srinivas and Shiva Prasad [25] studied the structural response of functionally

graded flat thick square plate under mechanical loads. Theoretical formulation

for material properties were done using the rule of mixture. Convergence studies

were carried out using different mesh size and layers. Changes of displacement

and stress along the depth of the plate was studied.

Wattanasakulpong [28] presented temperature dependent buckling and elastic

vibration analysis of FGM beams and plates using modified TSDT. The TSDT

gives a better approximation of varying material property in the thickness direc-

tion compared to FSDT. It gives a better representation of the cubic variation

of displacements through the thickness over the FSDT. Critical buckling tem-

perature results for temperature dependent material properties were solved by

an iterative calculation technique. The relationship between the critical tempera-

tures and natural frequencies of the beam and plate structures were also presented.

Thai and Choi [27] presented thickness dependent FGM Kirchhoff and Mindlin

plate theory considering an improved coupled stress theory. This model contained

a material variable that could represent the geometric nonlinearity, size influence

and bi material variation along the depth direction. From the numerical results,

it was observed that the inclusion of material variable increased the natural fre-

quency and the deflection was reduced.

Kiani and Eslami [12] presented an exact analysis for temperature buckling of

circular FGM plate with hole resting on elastic medium. The equations of equi-

librium of the annular plates were derived using CPT. Temperature dependent

11



2.2 Methodology

material properties of the plate were considered to be varying along the depth

direction based on the power -law. Poissons ratio was kept constant. For different

boundary problems, the buckling of supports were studied and stability equations

were derived using equilibrium conditions. An accurate theoretical solution was

derived to obtain the temperature buckling load by calculating eigenvalues.

Fallah et al. [9] studied analysis of medium thick rectangular FGM plates rest-

ing on flexible foundation. Free vibration analysis was considered with different

combinations of simply supported and fixed boundary conditions. Mindlins plate

theory was used to derive equations of motion. A semi analytical method was pre-

sented for governing equations using the extended Kantorovich method together

with an infinite power series solution.

Shen et al. [24] investigated the influence of temperature and moisture con-

ditions on the dynamic response of thick layered plates supported on a flexible

foundation. The plate was modeled with the help of a micro to macro-mechanical

theoretical model. The governing equations were based on HSDT and the effects

of elastic foundation and moisture and temperature effects were included. The in-

fluence due to the thermal environment, foundation stiffness, moisture percentage

and fiber content were presented.

2.2 Methodology

The FGM plate under consideration consists of metal on top surface and ce-

ramic on bottom surface. The material composition changes gradually along the

thickness. The rate of material property change along the thickness is indicated

by a variable n (material gradient index). The plate is considered to be completely

ceramic if n = 0 and the plate is completely metal if n = infinity. Material property

variations are dependent on the gradient index (n) and the distance from the mid-

dle surface in the thickness direction. The material properties vary in accordance

12



2.2 Methodology

with the power-law. (Reddy, 2000)

Pz = (Pt − Pb)Vf + Pb (2.1)

Vf = (
z

h
+

1

2
)n (2.2)

Where ’P’ is the material property, ’z’ is the distance from the center of layer

under consideration to the center of plate, Pt and Pb are the property at the upper

surface and lower surface respectively, Vf represents volume content of ceramic,

’n’ is the gradient index. Young’s modulus (E), Material density (ρ) and Poisson’s

ratio (ν) values change according to equation 2.1. Vf varies over the thickness as

shown in Figure 2.1.

Figure 2.1: Through thickness variation of Vf

13



2.2 Methodology

The temperature dependent material properties may be represented as a func-

tion of temperature. (Huang and Shen, 2004)

P = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (2.3)

Where, P0,P−1,P ,P1,P2,P3 are temperature coefficients . These temperature

coefficients are constant for each constituent material.

Modulus of elasticity (E) and coefficient of thermal expansion (α) are assumed

to be dependent on temperature while thermal conductivity (κ), density (ρ) and

Poisson’s ratio (ν) are assumed to be constant.

E(z, T ) = [Et(T )− Eb(T )](
z

h
+

1

2
)n + Eb(T ) (2.4)

α(z, T ) = [αt(T )− αb(T )](
z

h
+

1

2
)n + αb(T ) (2.5)

ρ(z) = [ρt − ρb](
z

h
+

1

2
)n + ρb (2.6)

κ(z) = [κt − κb](
z

h
+

1

2
)n + κb (2.7)

The temperature change is considered along the depth of the plate. The tem-

perature variation along the depth can be obtained by solving a steady state heat

conduction equation. (Huang and Shen, 2004)

− d

dz

[
κ(z)

dT

dz

]
= 0 (2.8)

The solution of this equation is obtained by applying the boundary values of

T = Tt at z = h/2 and T = Tb at z = −h/2. The solution can be represented as

a polynomial series as (Huang and Shen. 2004)

T (z) = Tm + (Tc − Tm)η(z) (2.9)

14



2.2 Methodology

Where,

η(z) =
1

C

[
(
z

h
+

1

2
)− κcm

(n+ 1)κm
(
z

h
+

1

2
)(n+1) +

κcm
2

(2n+ 1)κm2
(
z

h
+

1

2
)(2n+1)

− κcm
3

(3n+ 1)κm3
(
z

h
+

1

2
)(3n+1) +

κcm
4

(4n+ 1)κm4
(
z

h
+

1

2
)(4n+1)

− κcm
5

(5n+ 1)κm5
(
z

h
+

1

2
)(5n+1)

]
C = 1− κcm

(n+ 1)κm
+

κcm
2

(2n+ 1)κm2
− κcm

3

(3n+ 1)κm3
+

κcm
4

(4n+ 1)κm4
− κcm

5

(5n+ 1)κm5

κcm = κc − κm

As the material properties of the FGM changes along the depth, the numerical

model is divided in to a number of layers such that it gives the change in properties.

Each layer is considered to be isotropic. To calculate the material property in each

layer powerlaw (Eq 2.1) variation is assumed . The laminated structure represents

the step wise change in properties, by using a high number of layers the gradation

can be approximated.

Figure 2.2: FGM section and equivalent laminated composite section

A MATLAB code based on finite element method is prepared for the computa-

tion. The MATLAB code is checked by comparing the results of flat FGM plates

with published results. Shell element is used to model the thin twisted plate.

Convergence studies are done to find out the suitable mesh size and number of

layers to get accurate results.
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2.3 Objective of the present study

2.3 Objective of the present study

Literature review shows there are a lot of studies in the field of free vibration

analysis of flat FGM plate. In the field of twisted FGM plate, very little research

work have been done. This thesis deals with the vibration analysis of cantilever

twisted FGM plates. The study aims to model the twisted plate using shell el-

ement, and solve the free vibration problem using finite element method. The

influence of various factors such as thermal environment and geometrical variables

on the natural frequencies are studied.
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Chapter 3

FORMULATION

3.1 Twisted plate characteristics

Figure 3.1: Laminated twisted plate

The Figure 3.1 shows a Twisted FGM plate.

Here,

φ= angle of twist.

a and b are length and width of the plate respectively.

h is the thickness of plate.

18



3.3 Free vibration analysis

3.2 Governing differential equations

Consider a small pretwisted element with radius of curvature Rx and Ry in x and

y directions. The forces acting on the twisted plate element are (Nx, Ny, and Nxy)

in plane forces, shearing forces (Qx, and Qy) and the bending moment components

(Mx,My and Mxy).The differential equations of equilibrium for pretwisted doubly

curved shell panel is given as (Sahu and Datta [20] , Chandrashekhara [6]):

∂Nx

∂x
+
∂Nxy

∂y
− 1

2
(

1

Ry

− 1

Rx

)
∂Mxy

∂y
+
Qx

Rx

+
Qy

Rxy

= P1
∂2u

∂t2
+ P2

∂2θx
∂t2

∂Nxy

∂x
+
∂Ny

∂y
+

1

2
(

1

Ry

− 1

Rx

)
∂Mxy

∂x
+
Qy

Ry

+
Qx

Rxy

= P1
∂2v

∂t2
+ P2

∂2θy
∂t2

∂Qx

∂x
+
∂Qy

∂y
− Nx

Rx

− Ny

Ry

− 2
Nxy

Rxy

+Nx
0∂

2w

∂x2
+Ny

0∂
2w

∂y2
= P1

∂2w

∂t2
(3.1)

∂Mx

∂x
+
∂Mxy

∂y
−Qx = P3

∂2θx

∂t2
+ P2

∂2u

∂t2

∂Mxy

∂x
+
∂My

∂y
−Qy = P3

∂2θy

∂t2
+ P2

∂2v

∂t2

Where,

Nx
0 and Ny

0 are external in plane force in ’x’ and ’y’ direction respectively.

Rx and Ry are the radii of curvature in the ’x’ and ’y’ directions respectively.

Rxy is the radius of twist.

(P1, P2, P3) =
n∑
k=1

∫ zk

zk−1

(ρ)k(1, z, z
2)∂z (3.2)

Where,

n = number of layers considered.

ρk =Density at kth layer .

3.3 Free vibration analysis

The governing equation for free vibration analysis is given by:

[M ] {q̈}+ [K]{q} = 0 (3.3)

19



3.3 Free vibration analysis

[K]− ωn2[M ] = 0 (3.4)

Where, [M] is the mass matrix, ωn is the natural frequencies, [K] is the stiffness

matrix, and {q} is the vector of degrees of freedom.

Considering a plate subjected to thermal environment the governing equation

becomes,

[M ] {q̈}+ ([K] + [Kg]){q} = 0 (3.5)

[K] + [Kg]− ωn2[M ] = 0 (3.6)

Where,

[Kg] is the initial stress stiffness matrix due to temperature stress.

3.3.1 Constitutive relations

The constitutive relations for the composite plate exposed to thermal load is given

by.

{F} = [D]{ε} − {FN} (3.7)

Where,

{F} = {Nx Ny Nxy Mx My Mxy Qx Qy}T (3.8)

{FN} = {Nx
N Ny

N Nxy
N Mx

N My
N Mxy

N 0 0}T (3.9)

{ε} = {εx εy εxy Kx Ky Kxy φx φy}T (3.10)

D =



A11 A12 A16 B11 B12 B16 0 0

A21 A22 A26 B21 B22 B26 0 0

A61 A62 A66 B61 B62 B66 0 0

B11 B12 B16 D11 D12 D16 0 0

B21 B22 B26 D21 D22 D26 0 0

B61 B62 B66 D61 D62 D66 0 0

0 0 0 0 0 0 S44 S45

0 0 0 0 0 0 S54 S55



(3.11)
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3.3 Free vibration analysis

In plane forces and bending moment resultants due to thermal load can be repre-

sented as:

{Nx
N Ny

N Nxy
N}T =

n∑
k=1

(Qij)k{εk}(zk − zk−1) For i,j=1,2,6 (3.12)

{Mx
N My

N Mxy
N}T =

1

2

n∑
k=1

(Qij)k{εk}(zk
2 − zk−1

2) For i,j=1,2,6 (3.13)

{ε}N = {εxN εyN εxyN}T = {α α 0}T (T − T0) (3.14)

Coefficients of stiffness are defined as:

(Aij, Bij, Dij) =
n∑
k=1

∫ zk

zk−1

[Qij]k(1, z, z
2)∂z for i,j=1,2,6 (3.15)

Sij =
5

6

n∑
k=1

∫ zk

zk−1

[Qij]k∂z. (3.16)

A coefficient of 5
6

is considered in Sij calculations as a shear correction factor .

[Q] =



Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55


(3.17)

Q11 = Q22 =
E

(1− ν2)

Q12 = Q21 =
νE

(1− ν2)

Q44 = Q55 = Q66 =
E

2(1 + ν)
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3.3 Free vibration analysis

3.3.2 Strain Displacement Relations

Green-Lagranges strain displacement relations are used in this analysis. The total

strain is divided in to linear strain and non linear strain. The linear strain con-

sidered to derive the stiffness matrix. The non linear strain part is considered in

the derivation of initial stress stiffness matrix.

{ε} = {εl}+ {εnl} (3.18)

The linear strain components for a twisted shell element is given by:

εxl =
∂u

∂x
+

w

Rx

+ zkx

εyl =
∂v

∂y
+

w

Ry

+ zky

Υxyl =
∂u

∂y
+
∂v

∂x
+

2w

Rxy

+ zkxy (3.19)

Υxzl =
∂w

∂x
+ θx −

u

Rx

− v

Rxy

Υyzl =
∂w

∂y
+ θy −

v

Ry

− u

Rxy

The bending strain components are given by.

kx =
∂θx
∂x

ky =
∂θy
∂y

kxy =
∂θx
∂y

+
∂θy
∂x

+
1

2
(

1

Ry

− 1

Rx

)(
∂v

∂x
− ∂u

∂y
) (3.20)

The nonlinear strain components are given by

εxnl =
1

2
(
∂u

∂x
)
2

+
1

2
(
∂v

∂x
)
2

− 1

2
(
∂w

∂x
− u

Rx

)
2

+
1

2
z2
[
(
∂θx
∂x

)
2

+ (
∂θy
∂x

)
2]

εynl =
1

2
(
∂u

∂y
)
2

+
1

2
(
∂v

∂y
)
2

− 1

2
(
∂w

∂y
− u

Ry

)
2

+
1

2
z2
[
(
∂θx
∂y

)
2

+ (
∂θy
∂y

)
2]

(3.21)

Υxynl =
∂u

∂x
(
∂u

∂y
) +

∂v

∂x
(
∂v

∂y
) + (

∂w

∂x
− u

Rx
)(
∂w

∂y
− v

Ry
)

+ z2
[
(
∂θx
∂x

)(
∂θx
∂y

) + (
∂θy
∂x

)(
∂θy
∂y

)
]
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3.4 Finite element formulation

3.4 Finite element formulation

Finite element method can be used for complex shape and boundary conditions

were analytical methods are not so easily applicable. Using the First order shear

deformation theory the finite element formulation was developed for the structural

analysis of FGM pretwisted shell elements. The plate is assumed to be consisting of

a number layers, where each layer is considered to be homogenous and isotropic.

An eight noded isoparametric quadratic shell element is used in analysis. The

shell element consists of midsurface nodes. Each node has five degrees of freedom

u,v,w,θx and θy. The Jacobian matrix transfers the isoparametric element in

natural coordinate system into Cartesian coordinate system. The Figure 3.2 shows

8 noded isoparametric element with node numbers. The shape function for 8 noded

shell element is given by,

u(ξ, η) = α1 + α2ξ + α3η + α4ξ
2 + α5ξη + α6η

2 + α7ξ
2η + α8ξη

2 (3.22)

The shape function represent the displacement between nodes Ni.

Ni = (1 + ξξi)(1 + ηηi)
(ξξi + ηηi − 1)

4
i=1 to 4

Ni = (1− ξ2)1 + ηηi
2

i=5,7 (3.23)

Ni = (1 + ξξi)
(1− η2)

2
i=6,8

Where ξ and η are the natural coordinates of the element and ξi and ηi are the

values at i th node. The derivatives of the shape function (Ni) with respect to

Cartesian coordinate ’x’ and ’y’ can be converted to natural coordinate ( ξ and η)

by Ni,x

Ni,y

 = [J ]−1

Ni,ξ

Ni,η

 (3.24)

[J ] =

Xi,ξ Yi,ξ

Xi,η Yi,η

 (3.25)
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3.4 Finite element formulation

Figure 3.2: Isoparametric quadratic shell element

Where, [J] is the Jacobian matrix.

Based on the FSDT the displacement field is given by

u(x, y, z) = u0(x, y) + zθx(x, y)

v(x, y, z) = v0(x, y) + zθy(x, y) (3.26)

w(x, y, z) = w0(x, y)

Where, u, v and w are displacement in the x, y and z directions respectively

u0, v0, w0 are displacement at the midplane in the x, y and z directions respectively

θx and θy are the rotations of the midplane normal to the x and y axes respectively.

The displacements calculated from shape function as

x =
∑

Nixi, y =
∑

Niyi

u0 =
∑

Niui, v0 =
∑

Nivi w0 =
∑

Niwi (3.27)

θx =
∑

Niθxi, θy =
∑

Niθyi
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3.4 Finite element formulation

3.4.1 Derivation of element elastic stiffness matrix

The linear strain components can be expresses in term of displacements as:

{ε} = [B]{de} (3.28)

Where,

{de} = {u1 v1 w1 θx1 θy1 . . . u8 v8 w8 θx8 θy8} (3.29)

[B] = [[B1] [B2] . . . [B8]] (3.30)

[Bi] =



Ni,x 0 Ni

Rx
0 0

0 Ni,y
Ni

Ry
0 0

Ni,y Ni,x
2Ni

Rxy
0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni, x

−Ni

Rx

−Ni

Rxy
Ni,x Ni 0

−Ni

Rxy

−Ni

Ry
Ni,y 0 Ni



(3.31)

Element elastic stiffness matrix is given by

[ke] =

∫ 1

−1

∫ 1

−1

[B]T [D][B]|J |dξdη (3.32)

3.4.2 Derivation of element initial stress stiffness matrix

The non-linear strain components can be expressed in matrix form:

εnl = {εxnl εynl γxynl}T =
[R]{d}

2
(3.33)

Where,

{d} = {ux uy vx vy wx wy θx,x θx,y θy,x θy,y θx θy}T (3.34)

Displacement {d} can be expressed as

{d} = [G]{de} (3.35)

25



3.4 Finite element formulation

[G] =
8∑
i=1



Ni,x 0 0 0 0

Ni,y 0 0 0 0

0 Ni,x 0 0 0

0 Ni,y 0 0 0

0 0 Ni,x 0 0

0 0 Ni,y 0 0

0 0 0 Ni,x 0

0 0 0 Ni,y 0

0 0 0 0 Ni,x

0 0 0 0 Ni,y



(3.36)

The element initial stress stiffness matrix due to thermal stress is given by:

[kg]e =

∫ 1

−1

∫ 1

−1

[G]T [S][G]|J |dξdη (3.37)

Where,

[S] =



S11 S21 0 0 0 0 0 0 S91 S101 0 S121

S21 S22 0 0 0 0 0 0 S92 S102 0 S122

0 0 S33 S43 0 0 S73 S83 0 0 S113 0

0 0 S43 S44 0 0 S74 S84 0 0 S114 0

0 0 0 0 S55 S65 0 0 0 0 0 0

0 0 0 0 S65 S66 0 0 0 0 0 0

0 0 S73 S74 0 0 S77 S87 0 0 0 0

0 0 S83 S84 0 0 S87 S88 0 0 0 0

S91 S92 0 0 0 0 0 0 S99 S109 0 0

S101 S102 0 0 0 0 0 0 S109 S1010 0 0

0 0 S113 S114 0 0 0 0 0 0 0 0

S113 S114 0 0 0 0 0 0 0 0 0 0



(3.38)
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3.4 Finite element formulation

S11 = S33 = S55 = Nx
r, S22 = S44 = S66 = Ny

r

S21 = S43 = S65 = Nxy
r, S77 = S99 =

Nx
rt2

12

S88 = S1010 =
Ny

rt2

12
, S87 = S109 =

Nxy
rt2

12

−S73 = S91 = Mx
r, −S84 = S102 = My

r

−S113 = S121 = Qx
r, −S114 = S122 = Qy

r

−S74 = −S83 = S92 = S101 = Mxy
r

3.4.3 Derivation of element mass matrix

The element mass matrix is given by

[me] =

∫ 1

−1

∫ 1

−1

[N ]T [P ][N ]|J |dξdη (3.39)

Where the shape function matrix

[N ] =



Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni


for i = 1, 2, . . . 8 (3.40)

[P ] =



P1 0 0 P2 0

0 P1 0 0 P2

0 0 P1 0 0

P2 0 0 P3 0

0 P2 0 0 P3


(3.41)

(P1, P2, P3) =
n∑
k=1

∫ zk

zk−1

(ρ)k(1, z, z
2)dz (3.42)

Where [B] - is the strain-displacement matrix, [D] - is the stress-strain matrix,

[N]- is the shape function matrix |J | is the determinant of Jacobian matrix. [P]-

is the mass density parameters.
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Chapter 4

Results and Discussions

4.1 Introduction

In this chapter, the results of the free vibration analysis of FGM twisted can-

tilever panels are presented. A MATLAB code based on FEM is written for the

computations. The 8 noded isoparametric shell element is used for the analysis.

The mesh size and number of layers required to get accurate results are fixed by

conducting the convergence study. The results are compared with previous studies

in order to validate the modelling using MATLAB code.

4.2 Convergence study

The convergence study is conducted for the mesh size or number of divisions

required for the finite element analysis. Second convergence study is conducted for

the number of layers required to represent the FGM. First three lowest non dimen-

sional frequencies of free vibration of the FGM square plate are considered and

the results are compared with previous studies. For this study an Al/Al2O3 FGM

square flat plate with a/b =1, b/h=100, (where a, b, h are width, length and thick-

ness of the plate respectively) was taken. The material properties are Al - (Den-

sity = 2707kg/m3, Young’s modulus = 70GPa, Poisson’s ratio = 0.3), Al/Al2O3 -

(Density =3800kg/m3, Young’s modulus =380GPa, Poisson’s ratio=0.3). Bound-

ary condition - all sides are simply supported.
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4.2 Convergence study

Non-dimensional frequency (ω∗) is given by

ω∗ =
ωπ2a2

t

√
ρm
Em

(4.1)

Convergence study for number of mesh divisions is done first. The convergence

studies are conducted on a simply supported isotropic plate (n=0). The first four

frequencies are observed with increase in number of mesh divisions. The Table

4.1 shows the observations. The results show good convergence for mesh division

10× 10. The mesh division 10× 10 is used for further study.

Table 4.1: Convergence of Non-dimensional frequency (ω∗) with varying mesh size
n = 0

Non-dimensional frequency (ω∗)

Mesh division 1st frequency 2ndand 3rd frequency 4th frequency

4 x 4 116.80 306.25 631.86

6 x 6 115.94 290.80 473.02

8 x 8 115.90 289.86 464.33

10 x 10 115.90 289.68 463.39

12 x 12 115.89 289.62 463.19

Ref [30] 115.89 289.58 463.07

The FGM section is considered as an equivalent laminate section for the finite

element modeling. Convergence study is conducted for determining the number of

layers required to represent the FGM property accurately. The convergence study

is done by using Al/Al2O3 simply supported FGM plate with gradient index=1.

The first four non-dimensional frequencies are observed with increase in number

of layers. The observations are given in Table 4.2. From the observations, it is

concluded that 50 number of layers is sufficient to represent the FGM property

as an equivalent laminated section. The further analysis is conducted using 50

numbers of layers.
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4.3 Comparison with previous studies

Table 4.2: Convergence of Non-dimensional frequency (ω∗) with number of layers
(n = 1)

Non-dimensional frequency (ω∗)

Mesh division 1st frequency 2ndand 3rd frequency 4th frequency

4 89.24 223.58 357.17

6 88.70 222.22 355.01

12 88.42 221.51 353.87

36 88.44 221.08 353.69

50 88.44 221.06 353.66

80 88.43 221.05 353.65

Ref [30] 88.43 220.97 353.38

4.3 Comparison with previous studies

The FGM plate modeling as an equivalent laminated section and the finite

element formulation using MATLAB code is validated by comparing the non-

dimensional frequencies with published results. First the FGM section is validated

by comparing the non-dimensional frequencies of simply supported square FGM

plate. Table 4.3 gives the comparison of Non-dimensional fundamental frequencies

with published results, by changing the material property index for Al/Al2O3

(a/b=1, b/h=100). All edges of the plate are taken as simply supported. From

Table 4.3 it is observed that the non-dimensional frequencies obtained by the

present formulation for the different gradient index are almost same. First four

modes of vibrations are compared in this table.

To validate the twisted plate modeling, the free vibration results of isotropic

twisted plate results are compared. For different angle of twist non dimensional

frequencies of vibration are checked. Four modes of vibration considered in the

study are first bending mode (1B), Second bending mode (2B), Twisting mode

(1T), Chord wise bending mode (CB). The four mode shapes are plotted using

MATLAB code. The different mode shape profiles are shown in Figure 4.1. The
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4.3 Comparison with previous studies

Table 4.3: Non-dimensional frequency (ω∗) of Al/Al2O3 with varying material
property index (a/b=1, b/h=100, φ = 0)

Gradient

index

Mode 1 Mode 2 & 3 Mode 3

Present

study

FSDT

Ref [30]

Present

study

FSDT

Ref [30]

Present

study

FSDT

Ref [30]

n=0 115.90 115.89 289.68 289.58 463.39 463.07

n=0.5 98.16 98.13 245.36 245.22 392.51 392.15

n=1 88.43 88.42 221.05 220.97 353.64 353.38

n=2 80.40 80.39 200.96 200.89 321.49 321.27

three dimensional mode shapes are shown in Figure 4.2. The comparison of non-

dimensional frequencies (λ) of cantilever isotropic plate for different angle of twist

with published results Ref [11], Ref [14] are shown in Table 4.4. The plate dimen-

sions are (a/b =1, b/h = 20, E = 200GPa, ν = 0.3).

Non-dimensional frequency (λ) is given by

λ = ωa2
√
ρh

D
(4.2)

Where,

D =
Eh3

12(1− ν2)
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4.3 Comparison with previous studies

Table 4.4: Non-dimensional frequency (λ) of cantilever twisted isotropic plate

Angle of

Twist
Mode Ref [14] Ref [11]

Present

study

0

1B 3.46 3.49 3.46

2B 21.44 22.01 20.89

1T 8.53 8.51 8.33

1CB 27.05 27.33 26.64

30

1B 3.41 3.42 3.40

2B 18.88 19.51 18.79

1T 16.88 14.43 15.95

1CB 27.98 27.41 27.33

45

1B 3.36 3.35 3.32

2B 16.51 17.22 16.26

1T 22.31 20.45 24.33

1CB 30.40 28.76 29.89

The temperature depended material properties, temperature variation along the

thickness direction and the influence of temperature initial stress are validated by

comparing free vibration analysis in thermal environment. Simply supported FGM

square plate made up of Si3N4/SUS304 is considered in the study. For different

ceramic temperature and different gradient index, the free vibration frequencies are

observed and the results are compared with the published results, the observations

are given in Table 4.7. The plate dimensions considered in the study are a/h=8,

a/b=1. The temperature dependent coefficients for calculating material property

at different temperature is given in Table 4.5. The material properties are given

in Table 4.6.

The natural frequency parameter (Ω)

Ω =
ωa2

h

[ρm(1− ν2)
Em0

] 1
2

(4.3)
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(a) 1st bending mode (b) 2nd bending mode

(c) 1st twisting mode (d) 1st chordwise bending

Figure 4.1: First four mode shape profile of 450 twisted cantilever plate

Table 4.5: Temperature dependent coefficients (Huang and Shen,2004)

Material Properties P0 P−1 P1 P2 P3

Si3N4
E(Pa) 348.43× 109 0 −3.07× 10−4 2.160× 10−7 −8.946× 10−11

α(1/K) 5.8723× 10−6 0 9.095× 10−4 0 0

SUS304
E(Pa) 201.04× 109 0 3.079× 10−4 −6.534× 10−7 0

α(1/K) 12.330× 10−6 0 8.086× 10−4 0 0

ZrO2
E(Pa) 244.27× 109 0 −1.371× 10−3 1.214× 10−6 −3.681× 10−10

α(1/K) 12.766× 10−6 0 −1.491× 10−3 1.006× 10−5 −6.778× 10−11

Ti-6Al-4V
E(Pa) 122.56× 109 0 −4.586× 10−4 0 0

α(1/K) 7.5788× 10−6 0 6.638× 10−4 −3.147× 10−6 0
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(a) 1st bending mode (b) 2nd bending mode

(c) 1st twisting mode (d) 1st chordwise bending

Figure 4.2: First four mode shape of 450 twisted cantilever plate

Table 4.6: Material properties (Huang and Shen, 2004)

Material
Density

(kg/m3

Thermal

Conductivity (κ)

(W/mK)

Poisson’s ratio

Si3N4 2370 9.19 0.28

SUS304 8166 12.04 0.28

ZrO2 3000 1.80 0.3

Ti-6Al-4V 4429 7.82 0.3
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Table 4.7: Comparison of natural frequency parameter for Si3N4/SUS304 in ther-
mal environment (a/h=8,a/b=1)

Temperature
Gradient

index (n)

Mode 1 Mode 2 Mode 3

Present

study
Ref [27]

Present

study
Ref [27]

Present

study
Ref [27]

Tc=300K

Tm=300K

0 12.501 12.495 29.272 29.131 44.245 43.845

0.5 8.609 8.675 20.142 20.262 30.441 30.359

1 7.545 7.555 17.649 17.649 26.668 26.606

2 6.775 6.777 15.839 15.809 23.923 23.806

Tc=400K

Tm=300K

0 12.308 12.397 28.976 29.083 48.863 43.835

0.5 8.453 8.615 19.925 20.215 30.168 30.530

1 7.398 7.474 17.451 17.607 26.423 26.590

2 6.635 6.693 15.654 15.762 23.697 23.786

Tc=600K

Tm=300K

0 11.888 11.984 28.385 28.504 43.115 43.107

0.5 8.118 8.269 19.476 19.783 29.615 29.998

1 7.082 7.171 17.033 17.213 25.914 26.104

2 6.326 6.398 15.253 15.384 23.210 23.237
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4.4 Free vibration analysis

Free vibration analysis of cantilever twisted Al/Al2O3 FGM plate is studied.

The plate characteristics are a/b =1, b/h=100. The material properties are

Al - (Density = 2707 kg/m3, Youngs modulus = 70GPa, Poissons ratio = 0.3),

Al2O3 - (Density=3800 kg/m3, Young’s modulus =380GPa, Poisson’s ratio=0.3)

The influence of aspect ratio on the free vibration of pretwisted plate is studied

first. For this study an Al/Al2O3 twisted FGM plate with gradient index n =1

and angle of twist φ = 150 is taken. Other dimensions are a=1, a/h=100. First

four natural frequencies are observed for different aspect ratio. Table 4.8 shows

the observations. With the increase in aspect ratio the frequencies are observed

to be decreasing. Figure 4.3 shows this variation for fundamental frequency.

Table 4.8: Natural frequencies (ω) in Hz of cantilever Twisted Al/Al2O3 FGM
plate with varying a/b ratio. (n=1,a=1m,a/h=100,φ = 150 )

a/b ratio 1st frequency 2nd frequency 3rd frequency 4th frequency

1 12.724 77.108 119.82 135.140

1.5 5.644 34.178 82.052 94.286

2 3.165 19.175 37.027 54.792

2.5 2.019 12.246 24.705 35.028

3 1.399 8.489 17.830 24.277

The effect of angle of twist is studied secondly. Cantilever twisted Al/Al2O3

FGM plate is considered in the study with gradient index=1 and other plate

dimensions are a/b=1 and a/h=100. The angle of twist changes from 00 to 450.

The change in first four non-dimensional frequencies are observed. Table 4.9 gives

the results of the vibration study. The fundamental frequencies decrease slightly

with an increase in angle of twist.

The influence of gradient index on the free vibration of pretwisted Al/Al2O3

FGM plate is studied. The FGM plate with angle of twist 200 and a/b =1,

a/h=100 are taken for the analysis. The change in non-dimensional frequencies
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Figure 4.3: Variation of fundamental frequency (ω) with a/b ratio

Table 4.9: Non-dimensional frequencies (ω∗) of cantilever Twisted Al/Al2O3 FGM
plate with varying angle of twist. (n=1,a=1m,a/h=100,a/b=1 )

Angle of twist 1st frequency 2nd frequency 3rd frequency 4th frequency

0 15.56 38.05 95.37 121.72

10 15.55 95.37 105.68 143.05

20 15.46 91.89 180.95 189.23

30 15.31 86.06 232.86 236.15

45 15.00 75.66 240.72 282.42
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are observed with increase in gradient index. The gradient index is varied from

0 to 100. The change in non-dimensional frequencies are observed to be a cubic

variation with gradient index. For gradient index 0 to 5 the variation is high and

for higher gradient index, variation is less. The observations are given in Table

4.10. The variation of fundamental non-dimensional frequency with gradient index

is shown in Figure 4.4

Table 4.10: Non-dimensional frequencies (ω∗) of cantilever Twisted Al/Al2O3

FGM plate with varying gradient index. (a=1m,a/h=100,a/b=1, φ = 200)

Gradient index 1st frequency 2nd frequency 3rd frequency 4th frequency

0 20.24 120.21 222.09 236.33

0.5 17.20 102.23 196.85 207.01

1 15.46 91.89 180.95 189.23

2 14.03 83.35 163.58 171.20

5 13.26 78.73 144.23 153.87

10 12.78 75.87 132.89 143.93

20 11.97 71.05 123.99 134.49

30 11.42 67.84 119.91 129.47

100 10.35 61.51 113.31 120.68

The effect of side to thickness ratio on the free vibration of cantilever pretwisted

Al/Al2O3 FGM plates is studied. Twisted square plate with angle of twist 150 and

gradient index =1 is taken for this study. The first four natural frequencies are

observed with increase in side to thickness ratio. Table 4.11 shows the variation

in natural frequencies with varying side to thickness ratio. From the results, it

is observed that the frequency of vibration decreases with an increase in side to

thickness ratio. This study is repeated with changing gradient index. The figure

4.5 shows the change in natural frequencies with side to thickness ratio for different

gradient indices.
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Figure 4.4: Variation of Non-dimensional frequency (ω) with material gradient
index

Table 4.11: Natural frequencies (ω) of cantilever Twisted Al/Al2O3 FGM plate
with varying a/h ratio. (n=1,a=1m,a/h=100,a/b=1, φ = 150)

a/h ratio 1st frequency 2nd frequency 3rd frequency 4th frequency

10 125.73 323.30 704.34 878.73

20 63.33 199.76 376.60 491.98

30 42.29 164.25 254.01 339.15

40 31.74 149.13 191.52 263.10

50 25.41 141.02 153.73 218.58

60 21.18 128.42 135.87 189.86

70 18.16 110.29 132.11 170.13

80 15.90 96.65 129.07 155.92

90 14.14 86.19 126.39 145.31

100 12.73 77.49 123.92 137.16
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Figure 4.5: Variation of fundamental frequency (ω) with a/h ratio
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4.5 Free vibration analysis in thermal environ-

ment

The FGM plates are often used in situations where it is exposed to high tem-

perature environment. Due to the inhomogeneous property of FGM plates the

temperature change along the thickness is not constant. Through thickness non-

linear temperature variation is considered in this portion. The gradient index and

coefficient of thermal conductivity are the determining factors in the temperature

change along the thickness.

The influence of temperature stress in the free vibration of pretwisted FGM

plate is studied. The FGM plate made up of Silicon Nitride and Stainless steel

(Si3N4/SUS304) is taken for the study. Temperature dependent material prop-

erties are considered. Young’s modulus and thermal expansion coefficient are

considered as temperature dependent. Material properties of different ceramic

and metal are given in table 4.6. Temperature dependent coefficients of these

materials are given in Table 4.5.

Figure 4.6 shows the nonlinear temperature variation in the thickness direction

for different gradient index. The Al/ZrO2 plate is considered, the temperature at

the ceramic surface is kept 600K and metal surface temperature is kept at 300K.

The influence of increase in temperature on the free vibration is studied by

increasing the temperature at ceramic face and frequencies are found out at each

increase in temperature. The Si3N4/SUS304 FGM plate is considered in the study

and temperature is given at Si3N4 face. The cantilever plate with gradient index

= 1 is considered for the study. The first three natural frequency parameters are

compared with an increase in temperature. The temperature at the metal surface

is kept constant.Table 4.12 gives first three natural frequency parameters (Ω) for

Si3N4/SUS304 FGM plate for change in ceramic temperature. From the study

it is observed that the thermal initial stress decreases the natural frequency of

vibration.
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4.5 Free vibration analysis in thermal environment

Figure 4.6: Through thickness temperature variation of Al/ZrO2 FGM plate

Table 4.12: Natural frequencies (ω) of cantilever Twisted Si3N4/SUS304 FGM
plate with varying temperature. (a/h=10, n=1, a/b=1, φ = 200)

Temperature (K) Mode 1 Mode 2 Mode 3 Mode 4

Tc=300, Tm=300 1.3748 3.7147 7.3448 9.4530

Tc=325, Tm=300 1.3160 3.6444 7.2876 9.3892

Tc=350, Tm=300 1.2527 3.5716 7.2285 9.2334

Tc=375, Tm=300 1.1842 3.4961 7.1675 9.2554

Tc=400, Tm=300 1.1096 3.4178 7.1045 9.1851

Tc=425, Tm=300 1.0272 3.3364 7.0394 9.1125

Tc=450, Tm=300 0.9350 3.2518 6.9720 9.0378
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The influence of gradient index in the case of temperature depended free vi-

bration is studied. For different gradient index the natural frequency parameter

is found out with an increase in temperature at ceramic face. Table 4.13 gives

natural frequency parameter (Ω) for Si3N4/SUS304 FGM plate for change in

temperature and gradient index. The Figure 4.7 shows this variation graphically.

Table 4.13: Natural frequencies (ω) of cantilever Twisted Si3N4/SUS304 FGM
plate with varying temperature and gradient index. (a/h=10, a/b=1, φ = 200)

Temperature (K) n=0 n=0.5 n=1 n=2

Tc=300, Tm=300 2.2782 1.5688 1.3748 1.2348

Tc=325, Tm=300 2.2066 1.5079 1.3160 1.1769

Tc=350, Tm=300 2.1310 1.4429 1.2527 1.1143

Tc=375, Tm=300 2.0508 1.3731 1.1842 1.0460

Tc=400, Tm=300 1.9652 1.2975 1.1096 0.9707

Tc=425, Tm=300 1.8737 1.2152 1.0272 0.8866

Tc=450, Tm=300 1.7750 1.1244 0.9350 0.7908

Figure 4.7: Variation of natural frequency parameter with temperature
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The influence of temperature in free vibration of cantilever pretwisted plate

with different side to thickness ratio is studied. Table 4.14 gives the variation

in fundamental frequency of Si3N4/SUS304 FGM plate with temperature of ce-

ramic surface for different side to thickness ratio. Figure 4.8 shows the variation

of fundamental frequency with temperature. From the figure for higher side to

thickness ratio the variation in natural frequency with temperature is not linear.

Table 4.14: Natural frequencies (ω) of cantilever Twisted Si3N4/SUS304 FGM
plate with varying temperature and a/h ratio. (n=1, a/b=1, φ = 200)

Temperature (K) a/h=8 a/h=10 a/h=12 a/h=15 a/h=20

Tc=300, Tm=300 142.94 114.97 96.11 77.09 57.95

Tc=310, Tm=300 141.38 113.05 93.80 74.20 54.04

Tc=320, Tm=300 139.79 111.06 91.41 71.14 49.72

Tc=330, Tm=300 138.17 109.02 88.92 67.90 44.86

Tc=340, Tm=300 136.52 106.92 86.32 64.43 39.25

Tc=350, Tm=300 134.83 104.76 83.61 60.70 32.49
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Figure 4.8: Variation of fundamental frequency with temperature
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Chapter 5

Conclusion

5.1 Conclusion

From the free vibration analysis of cantilever twisted FGM plates following con-

clusions are made in this study.

1. With the increase in the angle of pretwist, the fundamental frequency of

vibration decreases.

2. As the gradient index increases, the fundamental frequency of vibration de-

creases.

3. The fundamental frequency of vibration decreases as the aspect ratio (a/b)

increases.

4. The fundamental frequency of vibration decreases as the length to thickness

ratio (a/h) increases.

5. The natural frequencies of vibration of FGM plate decreases with increase

in temperature gradient due to reduction of stiffness.

6. The reduction in natural frequency due to temperature need not be linear,

it depends upon side to thickness ratio and gradient index.
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5.2 Future Work

Present study considered the FGM plate as step wise graded and the

material properties are varied accordingly. In the actual case the material

properties are varying gradually, if the gradual variation in material proper-

ties are taken in to account the results will be more accurate. In this study

free vibration analysis is done, dynamic studies and the effect of lateral load

is a scope for further study. The study can be extended to sandwich FGM

plates and FGM plates with change in porosity.
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