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Abstract

A biometric system provides automatic identification of an individual

based on a unique feature or characteristic possessed by the person. Iris recog-

nition systems are the most definitive biometric system since complex random

iris patterns are unique to each individual and do not change with time. Iris

Recognition is basically divided into three steps, namely, Iris Segmentation

or Localization, Feature Extraction and Template Matching. To get a perfor-

mance gain for the entire system it becomes vital to improve performance of

each individual process. Localization of the iris borders in an eye image can be

considered as a vital step in the iris recognition process due to high processing

required.

The Iris Segmentation algorithms are currently implemented on general

purpose sequential processing systems, such as common Central Processing

Units (CPUs). In this thesis, an attempt has been made to present a more

straight and parallel processing alternative using the graphics processing unit

(GPU), which originally was used exclusively for visualization purposes, and

has evolved into an extremely powerful coprocessor, offering an opportunity

to increase speed and potentially intensify the resulting system performance.

To realize a speedup in Iris Segmentation, NVIDIA’s Compute Unified Device

Architecture (CUDA) programming model has been used.

Iris Localization is achieved by implementing Hough Circular Transform

on edge image obtained by using Canny edge detection technique. Parallelism

is employed in Hough Transformation step.

Keywords: Canny Edge Detection, CUDA, GPU, Hough Circular Transform,

Kernel
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Chapter 1

Introduction

Personal identification has become absolutely necessary for large variety of ap-

plications like driver licenses, banking, voter id card, etc. The three main kinds of

authentication are something you have (token or card), something you know (for

example, a password), and something you are (biometric). Tokens and cards of one

person can be used by another person. Therefore, even when the cards are recognis-

able, we can’t be sure if the person using the card is the actual owner. Passwords

are weak and easily crackable as individuals tend to make passwords that are easy to

remember or write them down somewhere easily accessible. Biometrics, provides a

secure method of authentication and identification, as they are difficult to replicate

and steal.

As the society grows more dependent on digital systems for everything, expecta-

tions on these systems are rising. The systems are expected to process an increasing

amount of information with an increase in latency which leads to an increasing

demand for faster processing. We see an increase in parallelism using multi-core

processors. But due to large amount of hardware and logic used, the processors

become large and it becomes difficult to incorporate a large number of them onto a

single chip.

Therefore, to achieve the benefits of parallelism, a processor that is inherently

parallel and massively multi-core, the Graphics Processing Unit (GPU) is used. For

attaining this innate parallelism, higher level APIs such as CUDA can be used in
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order to accomplish General Purpose processing on GPU (GPGPU).

1.1 Parallel Computing

Parallel computing aims to solve a complex problem by dividing the problem into

subsets and solving each problem as a separate thread that can be executed in par-

allel [2]. The IEEE Standard Dictionary of Electrical and Electronics Terms denes

an algorithm as, a prescribed set of well dened rules or processes for the solution of

a problem in a nite number of steps [4]. Some processes of an algorithm can run

simultaneously in parallel and some must run sequentially one after the other. A

algorithm where all the tasks could all be performed in parallel simultaneously due

to their data independence is called a parallel algorithm.

1.1.1 Classification of Parallel Systems

The most famous processor taxonomy was proposed by Flynn based on the data

and the operations performed on this data [26]:

(i) SISD (Single Instruction Single Data) - A single processor executes a stream

of instructions to operate on data stored in a single memory.

(ii) SIMD (Single Instruction Multiple Data) - It describes an architecture where

computer with multiple processing elements can exploit data parallelism, a

property of the data stream, which signifies a large mass of data of a similar

type that needs the same instruction operated on it. Examples of such applica-

tions include video compression, medical image analysis , graphics processing

and so on.

(iii) MISD (Multiple Data Single Instruction) - Various functional units perform

different operations on the same data. Some applications of MISD architecture

are neural networks and data flow machines.

(iv) MIMD (Multiple Instruction Multiple Data) - Machines employing MIMD

architecture have many processors running asynchronously and independently.

Each processor has its local data and runs its own instructions on it. Multicore

processors and multithreaded processors are based on this model.

2
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1.1.2 Speedup

The potential benefit of parallel computing is typically measured by the time it takes

to complete a task on a single processor versus the time it takes to complete the

same task on parallel processors [6].

Speedup =
Ts

Tp

(1.1)

where,

Ts is execution time of sequential algorithm

Tp is execution time of parallel algorithm

There are many factors which influence this speedup. Some of the parallel com-

puting overheads are:

Data Dependency

During the implementation, data dependency between two blocks or two statements

requires memory access. More number of dependencies imply further access time

or more inter processor communication. This degrades the real time performance.

The presence of dependency between two computations implies that they cannot be

performed in parallel. The fewer the dependencies, the greater the parallelism [7].

Communication Overhead

For parallel problems, the time required in inter-processor communication, not en-

countered in the serial interpretation, is summed up with the execution time of

processors. This communication time adds to overhead. Kernel call to invoke a

communication handling routine initiates communication of data between proces-

sors. Then, the data is transmitted between processors. Finally, the communication

is completed by resolving the send and received data. Lot of time is wasted in the

transmission and management of the data. Allocation of communication resources

and achieving a connection contribute to communication latency.

Idling

Processing elements in a parallel system may become idle due to many reasons such

as synchronization, load imbalance, and presence of serial components in a program.

3
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For many parallel applications, it is impractical to predict the size of the subtasks

allocated to various processing elements. Therefore, it is impossible to coordinate

the problem division among the processing elements and maintaining uniform work-

load. When different processing elements have disparate workloads, some processing

elements might be idle for a time duration when others are working on the problem.

In certain parallel programs, processing elements need to synchronize at some points

during execution of the parallel program . If not all processing elements are ready

for synchronization at the same time, then those that are ready shortly will be idle

until all the processors are prepared. Parts of an algorithm which can’t be paral-

lelized, allow only a single processing element to work on it. While one processor

works on the serial part, rest of the processors must wait [1].

1.1.3 Communication Techniques

In serial computation, program description is usually helpful for optimization of

pivotal sections of code. For parallel computation, not only does the code execution

needs to be considered but also communication between the various processes which

can induce delays that are malignant to performance. Increase in number of pro-

cesses, elevate the impact of communication delays on performance. Two methods

exist for data communication between processing elements:

Shared Address Space Mechanism

In the shared-memory programming model, tasks share a common address space,

which they read and write asynchronously. Various mechanisms such as locks or

semaphores may be used to control access to the shared memory. The shared mem-

ory address space may be uniformly or non-uniformly accessed. In Uniform Memory

Access (UMA), the time taken by a processor to access any memory location is the

same whereas in Non Uniform Memory Access (NUMA), the time taken by a pro-

cessor to access different memory locations may be different [3].

Message Passing

Processors exchange data through communications by sending and receiving mes-

sages. Each use their own local memory during computation. Data transfer usually

4
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requires collaborative operations to be performed by all the processors. In a tightly

coupled parallel computer, messages are prepared, sent, and received quickly rela-

tive to the clock speed of its processors, but in a loosely coupled parallel computer,

the time required for these steps is much larger.

1.2 Iris Biometrics

Iris plays a significant role among various available biometric traits to provide a

promising solution to authenticate an individual using unique texture patterns [9].

Iris recognition has drawn attention due to highly desirable properties.

Non-invasiveness: Iris recognition technology does not require direct contact be-

tween subject and camera. This characteristic also enables iris recognition for passive

or covert personal identification.

Uniqueness: Texture details in iris images such as freckles, furrows, coronas and

stripes bring out the uniqueness of iris pattern. The irregularly shaped and ran-

domly distributed microstructures of iris patterns make the human iris one of the

most informative and reliable biometric traits.

Scalability: Iris region images are normalized into fixed size rectangular region,

which enables extremely fast feature detection and matching.

Stability: The morphogenesis of iris occurs during seventh month of gestation and

which remain stable throughout life and are protected by body’s own mechanisms.

Security: Compared to other biometric systems, iris recognition is more secure due

to difficulty posed in live iris forgery.

Iris recognition uses camera technology with near infrared illumination to obtain

images of the intricate, detail-rich structures of the iris. Digital template encrypted

from these patterns using mathematical and statistical algorithms lead to identi-

fication of an individual. Enrolled templates stored in database are searched by

matcher engines at speed of millions of templates per second per CPU, and with

infinitesimally small false match rates.

Iris is the most significant and promising feature in the eye image as shown in

Figure 1.1. The dark circle in the center inside the iris is pupil. The dilation and

constriction of pupil and dim and bright light respectively is caused by the muscles

5
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Figure 1.1: Anatomy of a human eye

in the iris. This pupillary motion checks the amount of light entering the eye. The

circumference of iris and pupil is called iris and pupil boundary respectively. Sclera is

the dense, white, fibrous membrane that forms the covering of eyeball. The eyeball is

covered by lower and upper eyelids. The lower eyelid has a smaller degree of motion

which is caused by deformation due to eyeball. The upper eyelid is a stretchable

membrane having a great freedom of motion, ranging from wide open to close. It

forms a cover over the eye [8]. The hairs that grow at the edge of the eyelid and

protects the eye from dust are called as eyelashes.

Iris recognition is employed in many systems all over the world. But they use

algorithm designed for CPU based system which is sequential in nature. As the

number of processors on a CPU increased, the algorithm has been parallelized to

take full advantage of multiple processors. Since the number of processors on a CPU

are limited, utilization of GPUs might prove as an advance option to accelerate

application.

Iris recognition process is basically divided into three steps, namely, iris localiza-

tion or segmentation, feature extraction, template generation and template match-

ing as shown in Figure 1.2. All these stages involve large amount of computation

complexity and their efficiency can be immensely increased by employing parallel

algorithms. GPUs initially used for Graphics visualizations and docking are now

also applied for applications involving large amounts of computations. And thus,

6
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Figure 1.2: Iris Recognition Process

are now also known as General Purpose Graphics Processing Units (GPGPUs).

The altogether performance of iris recognition process depends on the iris seg-

mentation process which is a highly computationally complex task. Iris localization

involves finding iris and pupil boundaries in order to separate the region of interest

in the acquired iris image from the area which would not be utilized in further pro-

cessing. A sample of iris image and its localized image are shown in Figure 1.3. The

portion of image required for further processing is the region between the boundary

of pupil and outer boundary of iris. Also region occluded by eyelids has to be re-

moved.

Figure 1.3: Iris segmentation without removal of portion occluded by eyelids

7
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1.3 Motivation

Noteworthy research and efforts are being put in to develop parallel algorithms for

iris recognition. This active research forms the basic motive of this project. Also,

Graphics Processing Units have seen recent advancements expanding its area of

usage to accelerate applications which otherwise demand considerable amount of

processing time on conventional systems. Iris recognition is an image processing

task which requires considerable amount of computation, and thus gives a prospect

for parallel processing application. Parallelization of localization of iris, which is a

crucial step in iris recognition, improves performance of the entire system.

1.4 Problem Statement

Each stage of the iris recognition process handles a large amount of processing, and

thus takes substantial amount of time, which brings this application into focus. The

algorithms developed for iris recognition until now have been sequential in nature.

These constituents along with the development of parallel infrastructures like the

Graphics Processing Units provide the base for this thesis. The segmentation of

the iris is a significant element in the procedure of iris detection and its sequential

implementation needs a sizable amount of time. The segmentation process is ac-

celerated by implementing parallel hough transform, which is a sturdy method to

encounter the presence of shapes in an image.

1.5 Iris Databases used in Research

The databases used in all the experiments in this thesis that are relevant to the

research are CASIA version 1 [35].

1.6 Thesis Organization

Remaining part of this thesis is divided into following chapters:

Chapter 2: Literature Survey

This chapter summarizes the existing work done in iris segmentation and the se-

quential and parallel approaches developed so far.

8
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Chapter 3: GPU architecture and CUDA

This chapter outlines the basics of GPU architecture and CUDA programming plat-

form. It intends to help to better understand the parallel algorithms implemented

using CUDA.

Chapter 4: Parallel Iris segmentation

This chapter introduces the parallelization of existing sequential algorithm imple-

mented for iris localization.

Chapter 5: Implementation and Results

This chapter describes the implementation of CUDA based parallel algorithm and

analysis of results acquired for iris localization.

Chapter 6: Conclusion

This chapter presents analytical results of overall achievement.

9
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Literature Review

Leonard Flom and Aran Safir originally originally proposed the concept of au-

tomated iris recognition in 1987, both ophthalmology professors, for which they

afterwards obtained a patent entitled ”Iris Recognition Technology” [13]. Later

they approached John Daugman, a professor at Harvard University, to develop an

algorithm build upon their concept [10, 11, 12]. Daugman created an algorithm,

for which he got a patent few years later. After the expiry of patent, various other

algorithms were created based on Daugman’s method and some of them had a per-

formance much improved than Daugman’s algorithm.

2.1 Iris Recognition

The human eye iris comprises of complex random texture patterns that can be

obtained from the digital image of the human eye, and then encoded into a template,

employing image processing techniques. This template can then be stored in a

database. The unique information stored in the iris is mathematically represented

in the template, allowing the comparison of templates from the database.

The first operational iris biometric system was developed by Daugman at Uni-

versity of Cambridge in 1994 [10]. Near-infrared light source is employed to capture

the digital images of eye to control the illumination. The algorithm used for image

acquisition resolves focus of the system to maximize the spectral power, thus prov-
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ing to be highly robust. Further, iris in the image is found that uses deformable

templates. Some parameters and shape of the eye are used to train a deformable

template to guide the detection process [14]. Daugman used multi-scale quadrature

2D Gabor wavelets to extract texture information in order to generate a 2048 bit

pattern called IrisCode [11]. All the commercial systems in operation today are

based on this method.

To sum up, Daugman’s process is carried out through:

(i) Detection of the inner and outer boundaries using an Integro differential op-

erator.

(ii) Extraction of texture information employing multi-scale quadrature 2D Gabor

wavelets and stored in form of unique binary vectors constituting the IrisCode.

(iii) Detection of the hamming distance between the input IrisCode and the IrisCodes

in the database using a statistical matcher ( logical XOR operator ).

In another significant work succeeding Daugman’s work, Wildes et al. have rep-

resented the Iris texture by constructing laplacian pyramids with different resolution

values [15]. In order to detect whether inpput and model image belong to the same

class, they have used normalized correlation. R.Wilde’s solution has following steps

[3]:

(i) Iris localization using Hough Transform.

(ii) Laplacian pyramid(multi-scale decomposition) to represent distinctive spatial

characteristics of the human iris.

(iii) Modified normalized correlation process for the matching step.

An iris biometric system was developed at Sarnoff labs which followed a different

approach. The authors used a diffused source of light with low level light camera

for the image acquisition. Iris and pupil segmentation was accomplished through

Hough transform. The iris images were matched using Laplacian of Gaussian filter

at multiple scales for producing templates and computing normalised correlation to

act as a similarity measure [16].

In Robust encoding of local ordinal measures, proposed by Z.A. Sun, T.N. Tan,

and Y.H. Wang, the textures are represented using Gaussian filter [17]. A local

11
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orientation at each pixel is obtained by convolving the gradient vector field of an

iris image with a Gaussian filter from normalised iris image. The angle is quantized

into six bins. This method has been tested on 2255 images of CASIA database and

was found to have a correct recognition rate of 100%. In Efficient iris recognition

by characterizing key local variations, put forth by L. Ma, T. Tan, Y. Wang, and

D. Zhang, dyadic wavelet transform has been applied on a sequence of 1-D intensity

signals around the inner part of the iris to create a binary iris code [18]. The system

achieved 100% correct recognition rate with an EER of 0.07%. In yet anpther ap-

proach, Modified Log-Gabor filters are used because unlike Log-Gabor filters Gabor

filters are not bandpass filters [19].

2.2 Iris Segmentation

Iris preprocessing involves finding the iris and pupil boundaries from the eye image.

These boundaries are presumed to be circular. To further improve the segmentation

performance few authors have also worked on detecting eyelids and eyelashes [20].

Figure 2.1 shows localized iris image after removal of eyelids and eyelashes.

Figure 2.1: Removal of eyelids and eyelashes in iris localization

The iris recognition algorithms were originally designed to be deployed on CPU

based systems and thus, were serial in nature. The work began with Daugman

and various approaches have been developed ever since. As stated by Daugman’s

algorithm, iris recognition consists of three steps. First step is to obtain an iris image

using digital video camera. Near infrared illumination is used for image acquisition

so that a darker iris will show more details [11]. Then iris segmentation extracts the

12
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region of interest from the iris image. Then Gabor wavelets are employed for feature

extraction to generate IrisCode, a 2048 bit binary code. Then finally matching step

is performed.

2.2.1 Daugman’s Method

Daugman proposed an integro-differential operator which searches for the maximum

in the blurred partial derivative of the image [12]. He used a model of iris where the

iris and pupil boundaries are circular thus the boundary of circle can be described

using three parameters: center of the circle x0, y0 and radius r. The operator is

defined as:

max(r, x0, y0)|Gσ(r) ∗ ∂

∂r

∮

r,x0,y0

I(x, y)

2πr
ds| (2.1)

where, I(x, y) is the image of the eye and Gσ(r) is a blurring function. Different

values of σ provide different levels of smoothing. The operator searches the entire

image domain (x, y) for the maximum in the blurred partial derivative with respect

to the increasing radius (r) of the normalised contour integral of the image I(x, y)

along a circular arc ds with centre coordinates (x0, y0) and of radius r. The operator

in totality behaves as a circular edge detector. Absolute value of partial derivative

is taken into account to address the issue that the pupil is not always darker than

the iris.

The Iris recognition process does not take into account the iris color, although

there is a considerable variation in the color of the iris ranging from blue to green

and also black to brown , rather the process focuses on the texture patterns like the

crypts, furrows, corona and rings. After the iris segmentation, features of the iris are

extracted for comparison. The most considerable trouble faced in iris comparison is

that, all the iris images are of various sizes. The iris features need to be invariant

to change in scale, size, orientation, etc. The size of iris in an image is affected by

the distance between the eye and the camera. The issue of linear deformation of

the iris pattern caused by change in orientation of iris due to movement of eyeball,

camera position, head tilt, etc, and alteration in illumination that causes dilation

13
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or contraction of pupil has been tackled by Daugman by mapping the iris into a

dimensionless polar coordinate system [12]. The matching score is determined by

the similarity of the two iris representations.

2.2.2 Wilde et al.’s Stratergy

In Wilde’s scheme, first the intensity information of the image is converted into a

binary edge map [15, 21]. Then the edge points vote to manifest particular contour

parameter values. Using a gradient based edge detection scheme the edge map is

acquired. This is accomplished by thresholding the magnitude of the image intensity

gradient.

∇G(x, y) ∗ I(x, y), where ∇ = (∂/∂x, ∂/∂y) (2.2)

and

G(x, y) =
1

2πσ2
e−

(x−x0)2+(y−y0)2
2σ2 (2.3)

The voting procedure is implemented using Hough Transforms on the parametric

definitions of the iris boundary contours [21, 22, 23]. Following equation represents

the hough transform :

H(xc, yc, r) =
n∑

j=1

h(xj, yj, xc, yc, r) (2.4)

where

h(xj, yj, xc, yc, r) =





1, if g(xj, yj, xc, yc, r) = 0

0, otherwise
(2.5)

with

g(xj, yj, xc, yc, r) = (xj − xc)2 + (yj − yc)2 − r2 (2.6)

2.2.3 Other Schemes

The method proposed by Ritter et al. uses active contour models for pupil localiza-

tion [24]. To further improve the time of localization, few authors have also worked
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towards improving the localization performance by the recognition of eyelids and

eyelashes [20]. The localization and normalization phases of Iris localization assume

the pupil and iris boundaries to be circular in shape. Considerable work has also

been done for the detection of eyelids and eyelashes.

Few authors have proposed thresholding based approaches for pupil localisation.

The authors in Fast algorithm and application of hough transform in iris segmen-

tation, take the pixels below a threshold as pupil and then find the circles using

Hough transform and edge detection in the limited area [25]. Additionally, an iris

localization based on adaptive threshold is proposed in [26]. In this proposition, the

iris image is first dissected into rectangular regions and intensity means is acquired

for each of the region. Then the minimum value of the mean is used as threshold for

converting the image into binary. In another approach, split and merge algorithm is

utilized to detect connected regions in the image. Yet another method was proposed

where the concept for iris localization which was similar to Daugman. Firstly the

irregularities are separated using bilinear interpolation, then the candidate locations

are produce to provide the initial conditions for pupil and iris boundary. After that,

pupil and iris parameters are recovered for each seed (x, y) [27] . The algorithm

proposed by B. Bonney et al. finds the pupil using least significant bit planes [28].

The algorithm proposed in Real-time iris segmentation based on image morphology

uses a novel sector based method for the iris segmentation [29]. Using an adaptive

thresholding the iris image is converted into binary and the inner iris boundary is

identified. The outer iris boundary is detected by first taking the sum of concentric

circles of incrementing radii starting from the pupil radius. Then the difference of

adjacent circles is obtained. The circle having the maximum difference is taken as

the outer boundary of the iris. Also the noise caused by eyelids and eyelashes is

removed by employing a sector based approach.

The technique suggested by Huang et al. improves the iris localization time by

obtaining the outer iris boundary in the rescaled image [30]. Scaling the image for

an optimum fraction of the original gives improved performance than the original

image. Various other authors have also put forth methods to detect the eyelids and

eyelashes. The detection of eyelids involves the search for two curves, which satisfy
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the polynomial equation of the form:

x(t) = at2 + bt+ c, t ∈ [0, 1] (2.7)

Kong and Zhang suggested a method for the eyelashes detection. He divided

the eyelashes into two categories [31]. First one is separable eyelashes which can

be easily separated from the image and the second one being multiple eyelashes,

which are bunched together and are found overlapping in the eye image [3]. One

dimensional Gabor filters can be applied to detect separable eyelashes since the

gaussian smoothing of a separable eyelash leads to a low output value. Variation of

intensity method is employed to identify multiple eyelashes. When the variance of

the intensity values in a window is lower than a threshold value then the center of

the window is a point on the eyelash.

2.3 Parallelization of Iris Recognition

Works in parallelization of iris recognition began quite late. It received attention

with the progress of parallel computing infrastructure like multicore architecture and

advanced technologies for the development of parallel programs. Daugman himself

instigated the application of parallelism in the matching of the IrisCode generated

from the image to the template IrisCodes stored in the database. The template can

now be compared to a stored template using the fractional Hamming distance as

the measure of closeness.

HammingDistance =
||(CodeA⊕

CodeB) ∩MaskA ∩MaskB||
||MaskA ∩MaskB|| (2.8)

The
⊕

operator is the EXCLUSIVE OR operation to detect disagreement be-

tween the pairs of bits that represent the directions in the two templates, ∩ rep-

resents the binary AND function, and masks A and B identify the values in each

template that are not corrupted by artifacts such as eyelids and eyelashes and spec-

ularities [32]. The denominator of equation 2.8 make certain that only the bits that

are important are included in the calculation, after artifacts are deducted. Rotation

mismatch(due to head-tilt) between irises is managed with leftright shifts of the

coded one-bit template to choose the minimum Hamming distance. Lower the HD
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value, higher the match between the two irises that are compared. The fractional

Hamming distance of two templates is analogized to a predetermined threshold value

and a match or nonmatch statement is made. The speed performance is highly af-

fected by time-consumption of template matching, since it is related to the size of

the database that it is being matched against.

Depending on the manner the computer handles the bitwise operations, the

compuation of Hamming distance can be done very quickly. Bitwise operations are

performed directly at the hardware level. It takes only 1.7 seconds to compare the

IrisCodes of a million templates on a 2.2 GHz computer [3]. Such high performance

levels enable the iris recognition system to be used for large scale applications where

the comparison of calculated IrisCode needs to be done against millions of templates.

Since the IrisCode is of size 2048 bits, the comparisons could be done in parallel in

terms of 32 bit chunks.

Figure 2.2: Comparison of new template with the templates stored in database

Recently, many authors have suggested new approaches towards parallelizing iris

recognition. In 2011 Fatma Zaky Sakr et al. introduced an alternative technique

by employing direct parallel processing, utilising the Graphics Processing Units [33,

34]. They proposed parallelization of iris recognition after the evaluation of the

most tedious processes involved in Iris Recognition. Precisely they concentrated

on the matching and identification phases since they need the maximum volume of

computation when the size of the database to be compared against is extremely high.

They have utilised Daugman’s algorithm in every phase of the process. The speedup
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Figure 2.3: Parallel computation of Hamming Distance

obtained was around 10 to 15 times in the matching and identification phases and

around 1.3 times when taking all the stages of iris recognition into consideration

[33].

According to Daugman’s methodology, identification process comprises of match-

ing the 2048 bit IrisCodes for the images by evaluating the Hamming distance be-

tween the input code and the template codes. The method put forth by F.Z. Sakr

et al. scrutinizes this fact by matching the codes in parallel [33]. The code is seg-

regated into bit slices and then a single bit slice of 32 bits is analysed on a single

processor by XORing the input code with the template codes as shown in Figure

2.3.

Later, they proposed another method where they focused on localization and

extraction processes, considering these are the two highly time consuming steps

compared to the matching step [34]. They realized a speedup of 9.6 and 12.4 for the

two processes and a total speedup of 12.4 taking into account all the processes.

Ryan N. Rakvik et al. proposed a parallel processing alternative utilizing Field

Programmable Gate Arrays (FPGAs), which accelerates the application to a higher

level [35, 36]. They adopted parallel processing to speed up most time consuming

phases involved in the process of iris recognition. Iris Segmentation, template gener-

ation and matching phases require a lot of computation and its has been parallelized

on an FPGA system, giving an average speedup of 9.6 for the segmentation step,
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324 for template generation step and 19 for matching step when compared to a CPU

based system.
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GPU Architecture and CUDA

GPUs abbreviated as Graphical Processing Units are processors fashioned to

reduce the workload on the CPU, short for Central Processing Unit, when working

on video or graphic concentrated applications. Over the time, GPUs have evolved to

be an essential component of computing platforms for interactive simulations, high-

end 3D rendering, and video games. GPUs could be perceived as accelerators or

co-processors. They do not preclude the demand for a CPU. Specifically, CPUs are

devised to execute serial applications as speedily as possible. Latterly, CPUs have

developed into multicore and are capable of achieving some extent of multithreaded

parallelism, but are still optimised for serial execution. However, GPUs are devised

for densely threaded parallelism instead of serial computation that can be executed

on the CPU. Hence, an application developer may apply a heterogeneous execution

model to carry out densely parallel sections of an application on the GPU and the

serial parts on the CPU [37].

Recently, GPUs have drawn great attention for their use as a more general pur-

pose computing element rather than just video and graphic accelerator [38]. Thus,

they are also sometimes referred to as General Purpose Graphics Processing Units

(GPGPUs). This course was launched with shader languages. It has lately evolved

into an entire series of development tools distributed by the major GPU chipset

developers to ease general purpose GPU computing. Prime vendors of GPUs are

nVidia, AMD (formerly ATI) and Intel. While Intel supplies low-end graphics pro-
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cessors desegregated into varied mother board chipsets, nVidia and AMD participate

in the competition for the high-end GPU market. nVidia and AMD have alterna-

tive proprietary GPU platforms each of which is compatible only with their own

hardware [37]. Precisely, AMD delivers the ATI Stream SDK while nVidia presents

the CUDA Toolkit. Besides, a vendor independent standard, OpenCL, is being

developed to execute HPC applications to be expanded independent of hardware

[39].

3.1 GPU Architecture

The GPUs are highly parallel, multithreaded programmable devices capable of ren-

dering realtime graphics applications. It has tens, hundreds or sometimes even

thousands of cores with tremendous power capable of high precision floating point

arithmetic which is the requirement of realtime video processing [3]. Graphics cards

have a very high memory bandwidth of at least 64 bits in the modern processors

which allows large amounts of data transfers in a single flow and a large number of

on chip registers which allows it to hold several variable values while computation

[40].

Compared to the number of floating point operations per second(FLOPS) for a

high end CPU, FLOPS for GPU are exponentially higher. A standard GPU has

a computation speed of few hundred gigaflops while for a high end CPU its few

tens of gigaflops. High end GPUs have computation speeds in few teraflops. The

reasoning for such high computation speed is that GPUs are proficient in performing

compute intensive highly parallel tasks such as graphics rendering. It is fashioned

in a manner such that large number of transistors are dedicated to data processing

instead of flow control and data caching.

The GPUs are ideal for embarrassingly parallel applications i.e. applications

where scant endeavour is required to divide the problem into number of parallel

tasks and the arithmetic operations are much higher than memory operations. Flow

of data between processors is very less since the same program is completed on

different data sets on different processing elements. The memory latency is therefore

not visible and it remains hidden under the heavy calculations that take place inside

the processors [40].
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Applications which require usage of large data sets can employ a parallel pro-

gramming model for speed up. In 3D image rendering applications like computer

gaming programs, large number of pixels are mapped onto processing cores for in-

dependent parallel processing. Similarly video encoding and decoding applications

can map a subset of data like an image block onto a separate processor for execution

[40].

3.1.1 GPU Processing Elements

Figure 3.1: Diagram of multiprocessors in GPU [41]

The GPUs endure several Streaming Processing Clusters (SPC). All SPCs com-
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prise many streaming multiprocessors (SM), every one of which contains streaming

processors (also known as cores) that share admission to local memory. Every core

contains a fused multiply-adder capable of single precision arithmetic (shown in

Figure. 3.1). Alongwith single precision operations, all the SMs contain one 64-

bit fused multiple adder for double precision operations. Therefore, a SM contains

8 single precision streaming processors for every double precision unit. SMs also

contain 16KB of shared memory and 16KB of registers [41].

3.1.2 GPU Memory Organization

GPUs manufactured by nVidia have various memory spaces usable with its own

advantages and constraints. Understanding the memory hierarchy and effectively

utilizing it can result in better performance for GPU based applications.

Device registers are the fastest memory available, which is accessible without

latency on each clock cycle, just as in CPU. Each streaming multiprocessor (SM)

has 16KB of registers. Each thread residing on GPU has its own register. These

registers cannot be shared among threads. Also, all the registers are dispensed

among all the threads that reside concurrently on the GPU. Therefore, if CUDA

kernels utilize oodles of registers, the device will not be able to complete as many

threads simultaneously.

Each multiprocessor has shared memory space which is a 16KB region with very

short access times. The purpose of shared memory is to act as a means for fast

communication between threads. However, due to its speed, it can also be employed

as a programmer controlled memory cache.

After this, GPUs have DRAM (Dynamic Random Access Memory), or device

memory, accessible at relatively 150x latency in comparison to registers or shared

memory. This memory is logically partitioned into four regions: global memory,

local memory, texture memory, and constant memory. Global memory is handy

to all threads and is relentless between GPU calls. It resides off chip from the

multiprocessors, resulting in 100x access time compared to shared memory. Local

memory, specific to individual threads can also be used as a substitute when the

compiler is incapable to fit desired data into the device’s registers. In such case

registers are said to spill to local memory. Texture memory is read-only with a

small texture cache optimized for manipulation of textures. Texture memory is
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advantageous than global memory since the memory reads do not require an access

pattern to obtain better performance and addressing calculations are done outside

the kernel. Constant memory is also a read-only part which also has a small cache

of 8K constant memory.

At the end, host memory (system’s main memory) is accessible obliquely and

comparatively slower to the GPU. Host memory space is handy only to the GPU

when copied over the PCI-Express (Peripheral Component Interconnect Express)

bus to the GPU’s device memory.

Figure 3.2: GPU Memory Hierarchy

3.2 CUDA

nVidia has released a complete software development toolkit for development of

software for their GPUs, CUDA (Compute Unified Device Architecture). This tookit

includes a GPU compiler (nvcc) and a kernel profiler. CUDA is only adaptable with

nVidia devices. It is a parallel computing platform and programming model which

employs the Parallel Compute Engine to handle the threads running on the GPU.

It is the job of the Parallel Compute Engine to lineup the threads to be executed
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on the GPU and map them to the vacant cores such that it complies with the

CUDA architecture and specification. The CUDA platform provides a bedding for

expansion to the C programming language alongside petty additions and limitation.

To control hardware specific to the GPU, some additional language constructs are

added [40]. Some constraints such as a lack of function pointers and recursion exist,

because all functions are inlined by the compiler automatically. CUDA provides

support for high level languages like C, C++, FORTRAN, DirectCompute and

OpenACC, while third party wrappers are available for other languages like Python

and Java [40].

3.2.1 Building Components

CUDA C allows to define C functions called kernels , which are executed in parallel

by N different CUDA threads.

A CUDA kernel is defined as:

global void kernel function name (parameter list)

global declaration specifier indicates that code is executed on device and is

invoked from host code.

A thread is the basic unit of a CUDA program and it serves as the main com-

ponent of a CUDA program. GPU can handle thousands on concurrent threads,

CUDA allows a kernel launch to specify more threads than the GPU can execute

concurrently which helps to amortize kernel launch times. Threads are grouped into

blocks which in turn are grouped into a grid. It is in the hand of the programmer to

specify the number of blocks to be created for execution of the parallel application.

The programmer also defines the maximum number of threads that can be created

per block.

NumberofBlocks =
Totalnumberofthreads

Numberofthreadsperblock
(3.1)
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A CUDA kernel is called by following execution configuration syntax:

kernel function name <<<Number of blocks, Number of threads per block >>>

The number of CUDA threads that execute that kernel for a given kernel call is

specified within <<<... >>>

Under CUDA, it is possible to have upto 8 blocks resident on multiprocessor at

any time, as long as that multiprocessor has enough registers and shared memory

to hold those blocks. However, there is a limitation on number of threads per block.

CUDA arranges the threads and blocks in 1D, 2D or 3D array. Variables assigned

to retrieve thread location are: threadIdx, blockIdx, blockDim, gridDim.

Figure 3.3: A thread of blocks [40]

3.2.2 Scalability

The programmer does not need to ponder upon the optimization of the program for

the GPU being used. This accounts for automatic scalability. The same application
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will successfully run on any GPU with any number of cores. It is the solitary

responsibility of the GPU Compute Engine to lineup the threads appropriately on

the device with a given architecture.

Blocks may execute in arbitrary order, sequentially or concurrently, and paral-

lelism increases with resources. This forms the basis for scalability of CUDA pro-

grams. Blocks are p;aces one on each of the SMs. When all the threads in a block

terminate, new block is placed on that SM.In case threads of some block needs to

access the device’s global memory, the multiprocessor will sit idle while the request

is filled. To minimize the idle time encountered by processor, CUDA scheduler may

place a second block on the same SM and execute the threads of the latter blocks.

Since two blocks will be residing on a single multiprocessor, the processor keeps busy

by switching between blocks, whenever threads of one block need to wait.

Thus a GPU with more number of multiprocessors will automatically run the

program in less time compared to a GPU with less number of multiprocessors.

Figure 3.4: Automatic Scalability [40]
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3.2.3 CUDA Programming Model

CUDA utilizes a SIMT (Single Instruction Multiple Thread) programming model,

alike the SIMD (Single Instruction Multiple Data) model usual in vector processors.

All the threads executing on the GPU carry out the same instruction set simultane-

ously, on different datasets. But, unlike time honored SIMD architectures, CUDA

allows threads to bifurcate at a performance cost. When branches are encountered

in the code the divergent threads will turn inactive till the conforming threads finish

their separate execution. When execution unifies, the threads further proceed to

operate in parallel. Full advantage of the GPU hardware can be realised if the code

is written in a way that lessens thread separation.

Thus, the heart of CUDA’s programming model lies in the thought that there

exists abundance of data that has to be operated on in a consistent way by some

instructions [37]. The model requires a host (or CPU) and one or more devices

(GPUs) each of which has plenty of arithmetic execution units to accomplish many

calculations in parallel. This model can be applied to various applications such as

bioinformatics, physics simulations, image processing,etc. which incorporate very

large regular arrays of data requiring regular processing.

GPU and CPU code co-exist within a lone source which also comprises of GPU

kernels. The CPU executes host code till a GPU kernel is invoked as shown Fig-

ure 3.5. This is when, the GPU commences many, possibly thousands, of parallel

threads, as a consequence, control returns asynchronously to the CPU. If some other

GPU call is initiated which invokes another kernel or when a GPU memory transfer

is started, the GPU waits until the first call finishes. Therefore only one kernel

execute on current GPUs at a time.

Hence, a CUDA program consists of the following elements :

• Allocation of host memory for the required variables

• Allocation of device Memory for the variables

• Copying values from host to device

• Computation of the results on the device by launching CUDA kernels.

• Copying the computed values back to the host
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Figure 3.5: Kernel Execution

3.3 Strengths of GPU platform

Performance. The most apparent benefit of GPU computing is the usable perfor-

mance at low cost. Some nVidia GPU cards provides 480 CUDA cores and can

accomplish a peak GFLOP rate of 1788.48 for single precision. The fastest desktop

CPUs have a theoretical peak rate of around 70 GFLOPs.

Inexpensive and Convenient. Compared to customary supercomputing plat-

forms, such as clusters, GPU computing has several noteworthy advantages. GPUs

are available at low costs compared to desktop systems with CPU cores that would

implement calculations at an equivalent rate, presuming that communication costs

could be kept unknown. Further, a GPU system does not need a specialized server

room with additional energy and maintenance costs. Thus, GPU computing pro-

vides many advantages, in terms of space, cost, and convenience, over the cluster as

an alternative platform.

Ubiquitous. CUDA compatible hardware is formerly available and set up on

millions of machines. Even though the GPUs existing in older desktops and laptops

are unable to deliver combative performance, the ubiquity of compatible hardware

provides a chance for anyone to learn about and experiment with the technology. In
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this sense, CUDA is the first readily available ubiquitous HPC platform [37].

3.4 Limitations of GPU platform

The memory constrictions. The CUDA platform has two memory constrictions.

Firstly, chokepoint of communication between the device GPU and the host CPU.

Transfer of data to and from GPU poses great difficulties. Similarly, while func-

tioning on accelerated device registers, GPU behaves optimum, compared to while

working with device memory. GPU conducts at extreme speed when it executes

many operations for each memory access to hide this latency. Applications requir-

ing random access to very large datasets are usually memory bound and are unable

to attain near the peak capabilities of a GPU.

Programming Difficulty. In spite of the fact that GPU programming has pro-

gressed substantially well and GPU chipset developers made considerable progress in

designing tools for producing GPU accelerated software promptly accessible, GPU

programming is yet not an effortless task that is undoubtedly suitable for a novice

programmer. Competent GPU programming demands deep understanding of a mod-

ern memory hierarchy and programming model with new terminology and concepts.

Precision. The prevailing generations of GPUs are mainly used with single pre-

cision. Although the current GPU generation supports double precision, there is a

considerable performance penalty [37].
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Parallel Iris Localization

Most of the currently existing Iris segmentation methods are sequential in nature.

The target of this thesis is to implement an existing Iris Segmentation method on a

parallel system to speedup the task. The fidelity of the approach has already been

proven by their developers. To accomplish the process of Iris segmentation, Hough

transform method will be used for the detection of circular boundaries, and, GPU

with CUDA architecture will act as the parallel system for implementation. The

motive for using Hough transform is it’s robustness and efficiency in dealing with

noisy and incomplete data, unlike several threshold based approaches.

4.1 Hough Transform

Conventional Hough Transform is a very effective method for identification of basic

shapes present in an image. Initially the Hough transform was employed to detect

lines in an image but later it was extended for the determination of other shapes

like circles and ellipses. The thought of Hough Transform was proposed by Richard

Duda and Peter Hart in 1972, and they termed it as Generalized Hough Transform

[21].

An edge detection algorithm finds out the points in an image where the brightness

changes sharply or has discontinuities. The result of an edge detection algorithm

is used as an input for the Hough transformation step. Succeeding algorithm then
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detects the required shape present in the edge image. Hough transform is specially

effective for noisy data where there are several imperfections in the image and also

in the edge detection algorithm, but it is accompanied by a cost of computational

complexity which is quite large.

Following equation represents the hough transform :

H(xc, yc, r) =
n∑

j=1

h(xj, yj, xc, yc, r) (4.1)

where

h(xj, yj, xc, yc, r) =





1, if g(xj, yj, xc, yc, r) = 0

0, otherwise
(4.2)

with

g(xj, yj, xc, yc, r) = (xj − xc)2 + (yj − yc)2 − r2 (4.3)

Hough transform uses the extracted edge features and groups them to a befitting

set of lines, circles or ellipses. It makes this possible by performing grouping of edge

points into object candidates by performing an explicit voting procedure over a set

of parameterized image objects. Since the iris and pupil boundaries are assumed to

be circular, Hough circular transform is used for their detection.

Hough Transformation can be described as a modification of a point in the x,

y-plane to the parameter space. The parameter space is determined according to

the shape of the object of interest. The circle is easier to represent in parameter

space, when compared to other shapes, because the parameters of the circle can be

directly transferred to the parameter space

The equation of a circle is:

r2 = (x− a)2 + (y − b)2 (4.4)

where,

r is the radius of the circle and,

a & b are the center of the circle in x & y direction respectively.
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The parametric representation of circle is

x = a+ rCosθ (4.5)

y = b+ rSinθ (4.6)

Changing the value of θ from 0 to 360 degrees generates the complete circle. In

the circular Hough transform we try to find a triplet (x; y; r) which has a high

probability to be a circle in the image. Assuming that the radius is known. Every

point in the image space will be equivalent to a circle in the Hough space, i.e.

Parameter space. Rearranging the above equations we get:

a = x− rCosθ (4.7)

b = y − rSinθ (4.8)

These represent circle in the parameter space corresponding to a particular point

(x; y) in the image space. To detect the iris and pupil boundaries, Hough transform

works as follows, at each edge point result from previous edge detection step we

draw a circle with center in the point with the desired radius. This circle is drawn

in the parameter space. Figure 4.1 illustrates this process.

Figure 4.1: Image space to Hough space

The result of edge detector algorithm serves as an input to Hough transform.

The maximum and the minimum values of radius rmax and rmin need to be defined

over which to search for a circle. For each radius r such that rmin ≤ r ≤ rmax an

accumulator array houghspace is produced with a size equal to that of the image,

i.e. width ∗ height of the image. The accumulator array is initialized to trivial value

0. For every edge pixel in the image, circle of the particular radius r is constructed
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and votes are added to accumulator array cells for all the pixels lying on that circle.

A high value in the accumulator shows that the pixel falls on the intersection point

of various circles in the parameter space. This intersection point corresponds to a

potential point for the center of a circle in the image space.

Since we do not know the radius of the circle we are targeting for, we search

for all possible circles with radius up to the diagonal of the image being searched,

since no circle with radius greater than that, be present in the image. A search for

the circles with all possible radii is done, and accumulators are maintained for all

the searches, i.e. One accumulator array for the search of a circle with a particular

radius.The highest values from each accumulator cell are gathered in another list,

and the highest values in this list represent the potential circles [3]. The process is

shown in Algorithm 1.

4.2 Canny Edge Detection

There are many methods for edge detection, but one of the most optimal edge detec-

tion methods is Canny edge detection [45]. It gets a greyscale image and produces

a binary map analogous to the identified edges. It begins by a blur operation fol-

lowed by the generation of a gradient map for each image pixel. A non-maximal

suppression stage sets the value of 0 to all the pixels of the gradient map that have

neighbours with higher gradient values. Further, the hysteresis process uses two

predefined values to classify some pixels as edge or non-edge. Finally, edges are

recursively extended to those pixels that are neighbours of other edges and with

gradient amplitude higher than a lower threshold.

4.3 Parallel Hough Transform

Algorithm 2 describes the mapping of Hough transform algorithm onto GPU. The

initial steps are similar to the serial algorithm. For each possible radius value, each

CUDA block contains the maximum number of allowable threads and thus the grid

size becomes width∗height/blocksize. Each thread evaluates the position for a pixel

in the hough space, then loads the value of the image pixel from the circle edge image

and updates the houghspace accumulator array for the particular radius.

34



Chapter 4 Parallel Iris Localization

Algorithm 1 SerialSegment (Image)

1: img← LoadImage(Image)

2: edgeImg← Canny(img)

3: Define maximum and minimum values of radius, rmin and rmax

4: Define Pointcenter, radius and maxval an initialize to 0

5: Define array imgValue of size Image

6: Initialize imgValue with value 255 for all edge pixels and 0 for others

7: for r← rmin to rmax do

8: Define array houghspace of size Image and initialize it to 0

9: for every pixel in imgValue do

10: if pixel represents an edge point then

11: Draw circle of radius r and increment houghspace cell value

for all the pixels lying on that circle

12: max← Maximum value of a pixel in houghspace

13: if max > maxval then

14: maxval← max

15: center← pixel

16: radius← r
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Algorithm 2 ParallelSegment (Image)

1: img← LoadImage(Image)

2: edgeImg← Canny(img)

3: Define maximum and minimum values of radius, rmin and rmax

4: Define Pointcenter, radius and maxval an initialize to 0

5: Define array imgValue of size Image

6: Initialize imgValue with value 255 for all edge pixels and 0 for others

7: for r← rmin to rmax do

8: Define array houghspace of size Image

9: blocksize← 1024

10: gridsize← (width*height)/blocksize

11: Call parallel initializeHoughspaceKernel(cudaHough, height, width)

12: Call parallel HoughKernel(imgValue, r, cudaHough, height, width)

13: max← Maximum value of a pixel in houghspace

14: if max > maxval then

15: maxval← max

16: center← pixel

17: radius← r

Algorithm 3 initializeHoughKernel (cudaHough, height, width)

1: pixel← Position in houghspace corresponding to current thread

2: houghspace[pixel]← 0

Algorithm 4 HoughKernel (imgValue, r, cudaHough, height, width)

1: pixel← Position in houghspace corresponding to current thread

2: if pixel represents an edge point then

3: Draw circle of radius r and increment houghspace cell value

for all the pixels lying on that circle

4: Synchronize threads
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4.4 Time Complexity

In the serial algorithm, the extreme cases are radius = 1 (minimum radius value)

and radius = d (maximum value) where d is the diagonal of the image, given

by d =
√
width2 + height2. Hence the total number of possible radius values is

equivalent to the diagonal of the image, d.

For each radius value radius, we analyse width ∗ height number of pixels and

draw circles around the edge pixels which again leads to calculation of 72 points.

This time complexity of serial algorithm is proportional to d ∗ (width ∗ height) ∗ 72

Ts = O(d ∗ width ∗ height) (4.9)

As for the parallel algorithm, we again handle d number of radius values. Again

for each radius value we create blocks with maximum number of threads and grid

with (width ∗ height)/blocksize number of blocks. Each thread deals with a single

pixel and the 72 pixels on its circle if its an edge pixel.

Since width ∗ height ∗ 72 number of threads run in parallel, the time complexity

can be given by:

Tp = O(d) (4.10)

The above equation holds if there are sufficient number of cores to handle each

thread independently. For lesser number of cores the time complexity will be a

multiple of Tp.
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Chapter 5

Implementation and Results

This chapter provides the details of the results obtained for serial and parallel

iris segmentation and its analysis. The localization from proposed parallel algorithm

is compared against the serial algorithm. Since iris segmentation is the fundamental

and most significant step in iris recognition, there should not be any errors. The

basic idea behind the parallel implementation of Iris Localization algorithm is the

fact that the data can be decomposed into smaller parts that can be executed in

parallel.

5.1 Implementation Environment

For parallel implementation of the algorithm, a low end GPU was chosen which still

provides appreciable results in terms of speedup of the application in comparison to

CPU based serial algorithm.

Total number of CUDA cores affect the total execution time of the algorithm.

More the number of cores, faster is the execution and lesser is the time consumed,

but it comes with limitations. The bandwidth of memory interface present between

the GPU cores and GPU memory plays a significant role.

The details of the environment and hardware used for the application are shown

in the Table 5.1.
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Item Details

GPU NVIDIA Quadro K1000M

GPU Specifications 192 CUDA cores, 2048 MB

GPU Memory

Processor Intel Core i7 3720QM,

2.60GHz

System Memory 8GB

Operating System Windows 7

Table 5.1: Details of Implementation Environment

5.2 Results

Table 5.2 shows the execution time for the detection of iris and pupil boundaries

in the random eye images taken from the standard CASIA database. The average

speedup obtained on the GPU is 9.228x for sample from the CASIA database [28].

Even though the GPU used has 192 processor cores, the Speedup obtained is not

192 due to a lot of factors like amount of sequential code, idling and communication

latency as addressed in Chapter 1. This is a significant improvement, provided the

fact that the speedup realized will be much higher on the actual dedicated systems

for the purpose of iris recognition, since the implementation environment is affected

by various factors like hundreds of processes executing on the processor at any given

time, and many other factors. This comparison is shown in Figure 5.1
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Sample No. Tserial (sec) Tparallel (sec) Speedup

1 27.648 2.917 9.47

2 28.603 3.026 9.45

3 21.560 2.590 8.32

4 22.698 2.793 8.13

5 25.802 2.792 9.24

6 29.172 3.010 9.69

7 27.893 2.887 9.66

8 29.766 3.011 9.88

9 27.831 3.151 8.83

10 29.090 3.026 9.61

Table 5.2: Execution times of serial and parallel algorithm on sample images of size

320 x 280 taken from CASIA database

Figure 5.1: Execution time of serial algorithm on CPU and parallel algorithm on

GPU
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Conclusion

In this thesis, a critical part of Iris recognition, i.e. Iris segmentation is par-

allelized on Graphics Processing Unit(GPU), using NVIDIA’s CUDA architecture.

CUDA provides a platform to express a complex parallel algorithm in a standard

high level language like C. The expressiveness and flexibility of CUDA eases the

parallel implementation of Iris segmentation, that can be incorporated in parallel

iris recognition systems.

If all the steps involved in Iris recognition are accelerated using GPUs, the

speedup will be greatly increased and thus the overall performance of the system

will improve. With the recent projects such as UIDAI which has images of millions

of people enrolled, the benefit of parallel implementations increase, while searching

for a record in the database. GPUs have overturned the way computing is done, and

this revolution will continue with development of more and more parallel versions

of existing sequential algorithms being created for execution on the GPUs.
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