
 Page 1 | 60

FPGA IMPLEMENTATION OF

ADVANCED ENCRYPTION STANDARD

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Bachelor of Technology

In
Electronics and COMMUNICATION Engineering

BY

VIKASH KUMAR
110EC0169

ASHUTOSH TIBREWAL

110EC0183

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

2014

 Page 2 | 60

FPGA IMPLEMENTATION OF

ADVANCED ENCRYPTION STANDARD

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Bachelor of Technology

In
Electronics and COMMUNICATION Engineering

BY
VIKASH KUMAR

110EC0169

ASHUTOSH TIBREWAL
110EC0183

Under the guidance

of

Prof. A K SWAIN

Department of Electronics & Communication Engineering

National Institute of Technology, Rourkela

2014

 Page 3 | 60

NATIONAL INSTITUTE OF TECHNOLOGY

ROURKELA

CERTIFICATE

This is to certify that the project work titled “FPGA Implementation of Advanced

Encryption Standard” submitted by Vikash Kumar (110EC0169) and Ashutosh Tibrewal

(110EC0183) in the partial fulfilment of the requirements for the degree of Bachelor of

Technology in Electronics and Communication Engineering during the session 2013-2014 at

National Institute of Technology, Rourkela is an authentic and bona fide work carried out by them

under my supervision.

DATE: Prof. A K Swain, Assistant Professor

 Department of Electronics and Communication Engineering

National Institute of Technology, Rourkela

 Page 4 | 60

ACKNOWLEDGEMENT

We would be keen to express our gratefulness to our project guide Prof A. K. Swain for his guidance

and consistent encouragement throughout the time-span of this Project work.

We would also like to express thanks to Prof K.K. Mahapatra, Prof D. P. Acharya, Prof S. K.

Patra, and Prof S.K. Das for taking up the courses of Digital VLSI Design, Embedded Systems,

Microprocessors, and Digital Electronics respectively which inspired us to take up this project which

comes under the category VLSI and Embedded system.

We would like to thank the VLSI lab staffs for providing us the adequate materials, kits and software

which were essential for developing our project.

We would like to thank the Institute for giving us the opportunity to study here and enrich our

knowledge and skills and providing us the state-of-art infrastructure.

Lastly, we would like to thank our Parents for making us eligible for what we are today and we are

doing to fulfill our wishes.

Vikash Kumar

110EC0169

Ashutosh Tibrewal

110EC0183

 Page 5 | 60

Dedicated To Our Family

And

Our Teachers

 Page 6 | 60

ABSTRACT

Security is a crucial parameter to be recognized with the improvement of electronic communication.

Today most research in the field of electronic communication includes look into on security concern

of communication. At present most by and large consumed and recognized standard for encryption

of data is the Advanced Encryption Standard. AES was transformed to supplant the developing Data

Encryption Standard. The AES calculation is fit for handling cryptographic keys which are of 256,

128, & 192 bits to encode & unscramble data in squares of 128 bits. The center of the calculation is

made up of four key parts, which manage 8 bit data pieces. The whole 128 bit data to the calculation

is dealt with into a 4 x 4 grid termed a state, to obtain the 8 bit square.

 Considering the complex nature of advance encryption standard (AES) algorithm, it requires a

huge amount of hardware resources for its practical implementation. The extreme amount of

hardware requirement makes its hardware implementation very burdensome. During this research,

a FPGA scheme is introduced which is highly efficient in terms of resource utilization. In this

scheme implementation of AES algorithm is done as a finite state machine (FSM). VHDL is used

as a programming language for the purpose of design. Data path and control unit are designed for

both cipher and decipher block, after that respective data path and control unit are integrated using

structural modeling style of VHDL. Xilinx_ISE_14.2 software is being used for the purpose of

simulating and optimizing the synthesizable VHDL code. The working of the implemented

algorithm is tested using VHDL test bench wave form of Xilinx ISE simulator and resource

utilization is also presented for a targeted Spartan3e XC3s500e FPGA.

 Page 7 | 60

CONTENTS

CERTIFICATE ... 3

ACKNOWLEDGEMENT .. 4

ABSTRACT ... 6

1. OVERVIEW .. 9

1.1. MOTIVATION ... 9

1.2. RESEARCH OBJECTIVE .. 10

1.3. LITERATURE SURVEY .. 10

1.4. DESIGN TOOLS ... 10

1.5. ORGANISATION.. 11

2. INTRODUCTION ... 13

2.1. WHY CRYPTOGRAHY? ... 13

2.2. WHAT IS CRYPTOGRAPHY? .. 13

2.3. TYPES OF CRYPTOGRAPHIC ALGORITHM .. 14

2.4. GALOIS FIELD .. 18

2.5. DATA ENCRYPTION STANDARD ... 18

3. THE ADVANCED ENCRYPTION STANDARD .. 21

3.1. INTRODUCTION ... 21

3.2. HISTORY ... 21

3.3. AES CIPHER AND DECIPHER ... 22

3.4. STAGES IN CIPHER AND DECIPHER .. 26

4. AES ARCHITECTURE .. 32

4.1. CIPHER ... 34

4.2. DECIPHER ... 39

4.3. TRANSFORMATION BLOCKS .. 44

5. RESULTS ... 51

5.1. MATLAB GUI IMPLEMENTATION ... 51

5.2. VHDL SIMULATION RESULTS ... 52

6. CONCLUSION .. 60

7. REFERENCE .. 60

 Page 8 | 60

Chapter 1

OVERVIEW

 Page 9 | 60

1. OVERVIEW

1.1. MOTIVATION
With overall communication of private and secret information over the machine systems then again

the Internet, there is dependably a plausibility of risk to information privacy, information honesty and,

likewise information accessibility. Information encryption keeps up information secrecy,

trustworthiness and validation. Data has happened to the most imperative stakes in developing interest

of need to store each and every significance of occasions in regular life. Messages need to be secured

from unapproved gathering. Encipherment is one of the security systems to secure data from

community. Encryption shrouds the first substance of a message in order to make it mixed up to

anybody, with the exception of the individual who has the extraordinary information to peruse it.

In the past cryptography implies just encryption and decoding utilizing mystery keys, these days it

is characterized in diverse components like topsy-turvy-key encipherment (public-key cryptography)

and symmetric-key encipherment (called as privet-key cryptography). The general population key

calculation is intricate and has high reckoning time. Private Key calculations include stand out key,

both for encryption and unscrambling while, open key calculations include two keys, one for

encryption and an alternate for decoding. There were numerous cryptographic algorithms proposed,

for example, Data Encryption Standard (DES), 2-DES, 3-DES, the Advanced Encryption Standard,

Elliptic Curve Cryptography, and different calculations. Numerous examiners and programmers are

continually attempting to break these calculations utilizing beast constrain and side channel assaults.

A few strike were effective as it was the situation for the Data Encryption Standard in 1993.

AES, is the well-accepted cryptographic algorithm which could be utilized to ensure security

towards electronic information. This thesis gives an AES algorithm respect to FPGA and VHDL this

proposes a strategy to incorporate the AES coder and the AES decoder. This strategy can be of a small-

intricacy structural planning, particularly in sparing the fittings asset in executing the AES (Inv) Sub

Bytes module and (Inv) Mix column module and so on. Most composed modules could be utilized for

both AES encryption and decoding. Additionally, the construction modeling can at present convey a

bulk information rate in both encryption/decoding procedures. The suggested building design is suited

for equipment-discriminating requisitions, for example, shrewd card, PDA, and cellular telephone, and

so on.

 Page 10 | 60

Design optimization is being done by using Finite State Machine. Data path and control unit are

designed for both cipher and decipher block, after that respective data path and control unit are

integrated using structural modeling style of VHDL. Xilinx_ISE_14.2 software is being used for the

purpose of simulating and optimizing the synthesizable VHDL code.

1.2. RESEARCH OBJECTIVE
In the light of optimized FPGA implementation of Advance Encryption Standard (AES) algorithm,

the main objective of our research are:

1. Designing of Finite State Machine (FSM) using minimum number of state for the

purpose of FPGA implementation of AES algorithm.

2. Designing of Hardware efficient data path for Encryption and decryption.

3. Designing of Hardware efficient control unit path for Encryption and decryption.

4. FPGA resource optimization.

5. VHDL Simulation of AES Algorithm.

1.3. LITERATURE SURVEY

• FPGA schemes for minimizing the power-throughput trade-off in executing the Advanced

Encryption Standard algorithm, Journal of Systems Architecture 56 (2010) 116–123.(Jason

Van Dyken, José G. Delgado-Frias)

• ADVANCED ENCRYPTION STANDARD, Federal Information Processing Standards

Publication 197, November 26, 2001.

1.4. DESIGN TOOLS

Several developmental tools were used for the implementation of our project. This includes

generating Test-bench waveform, RTL simulations etc. and design summary.

We used Xilinx ISE (integrated software environment) 14.2 software for designing out circuit using

VHDL code and Developing the Test-bench and schematics of the modules.

This software allows us to take our design from design entry through Xilinx device programming. The

ISE project navigator processes our design through various steps in the ISE design flow.

 Page 11 | 60

The following are the steps used

• Design Entry

• Synthesis

• Implementation

• Simulation and verification

• Device Configuration

The Test-bench waveform containing the signals can be used to simulate the modules used in our

project in the Xilinx ISE simulator.

This provides a powerful and highly advanced self-contained development platform for designs

targeting the Spartan 3e FPGA from Xilinx. Features like Xilinx Platform Flash, USB end, JTAG

parallel programming interfaces are also found on this board.

1.5. ORGANISATION

This thesis is organized as follows:

Chapter 2 describe history and requirement of cryptography, concept of Galois field and about data

encryption standard (DES) algorithms, which was used earlier.

Chapter 3 describes the AES algorithm in details. The four encryption stages are

presented: Byte Substitution, Shift Rows, Mix Column and lastly Add Round Key and inverse

part of all four blocks. It also describes the details of Cipher and Decipher block.

In Chapter 4, a proposed architecture of AES algorithm is presented. In which, we have

described the detailed architecture of designed data path and control unit for both cipher and

decipher.

In Chapter 5, s imu la t ion and resu l t s a re presented in th i s chap ter , wi th the

tes t bench wave fo rm and b lock a rch i tec tu re o f each b lock used in the AES

a long w i th complete AES block.

Finally, the conclusion and future work are presented in Chapter 6.

 Page 12 | 60

Chapter 2

INTRODUCTION TO

CRYPTOGRAPHY

 Page 13 | 60

2. INTRODUCTION

2.1. WHY CRYPTOGRAHY?

Does expanded security give solace to distrustful individuals? Then again does security give

some extremely essential insurances that we are guileless to accept that we needn't bother with?

Throughout this period when the World Wide Web gives crucial correspondence between

countless individuals and is constantly progressively utilized as an apparatus for trade, security

turns into an enormously essential issue to manage.

There are numerous angles to security and numerous provisions, extending from safe trade

and installments to private correspondences and ensuring passwords. One vital perspective for safe

interchanges is that of cryptography, which the fundamental center of this subject is. At the same

time it is paramount to notice that when cryptography is fundamental for safe interchanges, it is

not independent from anyone else sufficient. The onlooker is exhorted, then, that the themes

secured in this part just portray the first of numerous steps important for important security in any

count of situations.

2.2. WHAT IS CRYPTOGRAPHY?

Cryptography is an art of composing in mystery symbols and is an antiquated craft; the initially

reported utilization of cryptography in composing goes once again to circa-1900 B.C. at the point

when an Egyptian copyist utilized non-standard symbolic representations in an engraving. A few

masters contend that cryptography showed up spontaneously at some point in the wake of

composing was imagined, with requisitions running from strategic messages to war-time fight

tactics. It is not at all astonishment, then, that new types of cryptography came not long after the

across the board improvement of machine interchanges. In information and telecommunications,

cryptography is fundamental when conveying over any non-trusted medium, which incorporates

pretty much any system, especially the WWW.

Inside the connection of any provision-to-requisition communication, there are some particular

security prerequisites, including:

 Page 14 | 60

• Authentication: The procedure of demonstrating one's character. (The essential types of

host-to-have validation on the WWW today are name-based or location-based, both of

which are famously feeble.)

• Privacy/confidentiality: Guaranteeing that nobody can read the message with the

exception of the proposed receiver.

• Integrity: Guaranteeing the receiver that the received message has not been compromised

in any possible way from the initial.

• Non-repudiation: A procedure to demonstrate that the messenger really sent the

message. [3]

Cryptography, then ensures information from theft or change, as well as be utilized for client

confirmation. There are, when all is said in done, three sorts of cryptographic plans ordinarily used

to achieve these objectives: mystery key (or symmetric) cryptography, open-key (or unbalanced)

cryptography, and hash works, each of which is depicted beneath. In all instances, the introductory

decoded information is alluded to as plain-text. It is encoded into figure content, which will thus

(ordinarily) be decoded into utilizable plain-text.

2.3. TYPES OF CRYPTOGRAPHIC ALGORITHM

There are numerous ways of categorizing cryptographic algorithms. For commitments to this

thesis, they will be classified based on the number of keys that are engaged for encryption and

decryption, and further demarcated by their application and use. The three kinds of algorithms that

is conferred are given below in fig 2.3.

Fig 2.3: Types of Cryptographic Algorithm based on number of keys

CRYPTOGRAPHIC

ALGORITHM

Symmetric-key

Encipherment

Asymmetric-key

Encipherment
Hashing

 Page 15 | 60

2.3.1. Symmetric-key Encipherment or Secret key Cryptography

Fig 2.3.1(a): Block Diagram of Symmetric key Encipherment

In symmetric-key encipherment a substance say Viku, can make an impression on an

alternate element, say Ashu, over an unstable channel with the presumption that a foe, say Eve,

can't comprehend the substance of the message by basically listening stealthily over the channel.

Viku scrambles the message utilizing an encryption calculation; Ashu unscrambles the message

utilizing an unscrambling calculation. Symmetric-key encipherment utilizes a solitary mystery

key for both encryption and unscrambling. Encryption/decoding might be considered electronic

locking. In this, Viku puts the message in a crate and locks the container utilizing the imparted

mystery key; Ashu opens the case with the same key and takes out the message.

Fig 2.3.1(b): Example for Symmetric Key Encipherment [2]

PLAIN TEXT KEY CIPHER TEXT KEY PLAIN TEXT

 Page 16 | 60

2.3.2. Asymmetric-key Encipherment or Public key Cryptography

Fig 2.3.2(a): Block Diagram of Asymmetric key Encipherment

In asymmetric-key encipherment, we have the same circumstance as the symmetric-key

encipherment, with a couple of exemptions. Initially, there are two keys rather than one: one open

key and one private key. To send a secured message to Ashu, Viku first encodes the message

utilizing Ashu's open key. To unscramble the message, Ashu utilizes his own particular private

key.

Fig 2.3.2(b): Example for Asymmetric Key Encipherment [2]

PLAIN TEXT KEY1 CIPHER TEXT KEY2 PLAIN TEXT

 Page 17 | 60

2.3.3. HASHING

Fig 2.3.3(a): Block Diagram of Hashing

In hashing, an altered-length message condensation is made out of a variable-length

message. The condensation is typically much more modest than the message. To be valuable,

both the message and the review be sent to Ashu. Hashing is utilized to give check values,

which were examined prior in connection to give information respectability.

Fig 2.3.2(b): Example for Hashing [2]

PLAIN TEXT
HASHING

FUNCTION
CIPHER TEXT

 Page 18 | 60

2.4. GALOIS FIELD

Galois Field, named after Evariste Galois, otherwise called finite field, alludes to a field in

which there exists finitely numerous components. It is especially valuable in translating machine

information as they are represented in binary structures. That is, computer information comprise

of two numbers, 0 and 1, which are the segments in Galois field whose number of element is two.

Representing to information as a vector in a Galois Field permits scientific operations to scramble

information effectively and effectively.

There are many cryptographic algorithms using GF among them, the AES algorithm uses the

GF (28). The data byte can be characterized using a polynomial representation of GF (28).

Arithmetic operation is completely not quite the same as typical arithmetic algebra, an addition

can be discovered utilizing bit-wise XOR operation. In Galois field, the multiplication product of

polynomials will be modulo an irreducible polynomial so final answer can be within the used finite

field. The polynomial which cannot be factorized of two or more than two is called as irreducible

polynomial. In Galois field GF (28) addition/subtraction is same as XOR operation and

multiplication/division is same as the AND operation. The binary representation of irreducible

polynomial used in GF (28) is p=100011011. [4]

2.5. DATA ENCRYPTION STANDARD

Up to this point, the primary standard for encryption of the information remained a symmetric

algorithm called as the DES (Data Encryption Standard). Notwithstanding, this must now been

supplanted by another standard called by way of the AES (Advanced Encryption Standard) which

we shall take a gander in future. DES is a 64 bit piece figure which implies that it encrypting

information 64 bits at once. This is differentiated to a stream cipher in which stand out bit at once

(or frequently little gatherings of bits, for example, a byte) is scrambled.

DES was the fruit of a research project performed by International Business Machines (IBM)

Corporation in the later parts of 1960’s which give rise to a cipher called as LUCIFER. In the

earlier parts of 1970’s it was decided to commercialize LUCIFER and a quantity of significant

 Page 19 | 60

modifications were added. IBM wasn’t alone on this ship of modifications as they asked technical

help from the National Security Agency (NSA) (other outside experts were aboard but it is

probable that, from a technical point of view, the NSA was the chief backer). The changed variety

of LUCIFER was presented as a suggestion for the novel national encryption standard demanded

by the National Bureau of Standards (NBS). It was lastly accepted in 1977 as the Data Encryption

Standard –(DES) (FIPS PUB 46). [1]

 Page 20 | 60

Chapter 3

ADVANCED

ENCRYPTION STANDARD

 Page 21 | 60

3. THE ADVANCED ENCRYPTION STANDARD

3.1. INTRODUCTION
The Advanced Encryption Standard is a determination for the purpose of encryption of

automated information built by the National Institute of Standards and Technology of U.S. in

2001. AES is focused around the Rijndael figure created by Joan Daemen and Vincent Rijmen

(two Belgian cryptographers), who proposed a suggestion to NIST throughout the AES

determination process. Rijndael is a group of figures with distinctive key and piece sizes. For AES,

NIST chose three parts of the Rijndael family, each with a piece size of 128 bits, yet three

distinctive key lengths: 128, 192 and 256 bits. AES has been received by the U.S. government and

is currently utilized around the world. It succeeds the Data Encryption Standard (DES), which

was distributed in 1977. The algorithm depicted by AES is a symmetric-key calculation,

importance the same key is utilized for the purpose of encryption and decryption of the

information.

3.2. HISTORY
The prior ciphers might be broken without hardly lifting a finger on advanced processing

frameworks. The DES calculation was softened up 1998 utilizing a framework that cost about

$250,000. It was additionally unreasonably moderate in programming for it was made for middle-

1970's equipment and doesn’t process effective programming code. Then again, Triple DES has

three times the same number of iterations as DES and is relatively sluggish. And also, the 64 bit

square size of triple DES besides DES isn’t extremely effective also is faulty concerning security.

What was obliged was a fresh out of the box new encryption algorithm that might be

impervious to the majority of the identified attacks. NIST needed someone to assist the making of

another algorithm. Nonetheless, in view of the discussion that ran with the DES standard, and the

ages of a few limbs of the U.S. government having a go at all that they could to upset sending of

protected cryptography this was liable to increase solid distrust. The issue remained was, NIST

would really have liked to help make another fantastic encryption standard yet they couldn't get

included specifically.

Tragically they were truly the main ones with the specialized notoriety and assets to the lead

the exertion. As opposed to outlining or serving to outline a figure, what they did rather was to

 Page 22 | 60

announce a challenge in which anybody on the planet could join in. The challenge was affirmed

on 2nd January, 1997 and the thought existed to create another encryption algorithm which might

be utilized for securing delicate, non-characterized, U.S. government data. The figures needed to

encounter a great deal of prerequisites and the entire configuration must be completely archived

(not at all like the DES figure). Once the hopeful algorithms had been deposited, a few years of

examination as cryptographic meetings occurred. In the first adjust of the opposition fifteen

algorithms were acknowledged and this remained contracted to five in the 2nd adjust. The

algorithms remained tried for productivity and safety both by a percentage of the world's finest

freely eminent cryptographers and NIST themselves.

Later this examination NIST at last picked an algorithm introduced as Rijndael. Rijndael was

titled after the name of, who created and deposited it - Dr. Joan Daemen from Proton World

International & Dr. Vincent Rijmen, a postdoctoral scientist in the Electrical Engineering from

Department of Katholieke Universisteit Leuven (two Belgian cryptographers). On November the

26th of 2001, AES (that is an institutionalized rendition of Rijndael) turned into a FIPS standard

(FIPS 197). [1]

3.3. AES CIPHER AND DECIPHER
Similar to DES, AES is a symmetric block cryptograph, which implies it utilizes the identical

key for the purpose of encryption and decryption. Notwithstanding, AES is truly not the same as

DES in various means. The algorithm Rijndael takes into consideration a mixture of block and key

sizes and not only the 56 and the 64 bits of the DES block and the key size. The block & the key

can indeed be picked freely from 160, 196, 128, 256, and 224 bits and doesn’t need to be identical.

Then again, the AES standard shapes that algorithm can just acknowledge the block size of 128

bits and the decision of 3 keys - 192, 128, & 256 bits. Contingent upon which form is utilized, the

designation of the standard is changed to AES-192, AES-256 or AES- 128 separately. And these

contrasts AES varies from DES in which isn’t a feistel structure. Review that in a feistel structure,

a large portion of the information block is utilized to change the other 50% of the information

block and afterward the parts are exchanged. For this situation the whole information block is

prepared in parallel throughout each one round utilizing replacements and stages.

 Page 23 | 60

Various AES factors rely on upon the key length. For instance, if the key size utilized is 128

then the amount of iterations is ten while it is fourteen and twelve for 256 & 192 bits separately.

At current the utmost widely recognized key size liable to be utilized is 128 bit key. This portrayal

of AES algorithm consequently depicts this specific execution.

Rijndael was planned to have the subsequent features:

• Battle in contradiction of every recognized attacks.

• Rapidity and code firmness on a widespread range of platforms.

• Blueprint Easiness.

The complete assembly of AES can be grasped through fig: 3.3. The input is just a single

data of128 bit for the purpose of decryption & encryption and is recognized as the in dimension.

This data is imitated into a state dimension which is adapted at every phase of the algorithm and

later imitated to an output dimension (see figure). Both the plain text and key are portrayed as a

128 bit square dimension of bytes. This key is later expanded into a dimension of key schedule

words (32 bits) (the w matrix). It need to be noted that the ordering of bytes within the in matrix

is by column. The same is applicable to the w dimension. [1]

��,� ��,� ��,� ��,�

��,� ��,� ��,� ��,�

��,� ��,� ��,� ��,�

��,� ��,� ��,� ��,�

Fig 3.3: Conversion of 128 bits of data to State matrix

The above matrix in fig 3.3 is the state matrix who’s each element is of one byte data.

128 BITS
DATA

 Page 24 | 60

Figure 3.3(a): Block Diagram of Encryption

Figure 3.3(b) Block diagram of Decryption

 Page 25 | 60

3.3.1. INNER WORKING OF ROUNDS

The algorithm initiates from Add round key process followed by total of 9 iterations of

four processes and the 10th iteration of 3 processes. This is applicable for both encryption and

decryption including a special case that each process of an iteration the decryption algorithm is the

reverse of its corresponding process from encryption algorithm. 4 processes used are as given

below in fig 3.3.1(a). [1]

Fig 3.3.1(a): Four Stages of Encryption

The 10th iteration just doesn’t use the Mix Columns transformation. The decryption algorithm

initiates from an Add round key process trailed by 9 iterations of decryption process which

comprises of the subsequent processes shown in fig 3.3.1(b).

Fig 3.3.1(b): Four Stages of Decryption

1. Substitute bytes

2. Shift rows

3. Mix Columns

4. Add Round Key

1. Inverse Shift rows

2. Inverse Substitute bytes

3. Add Round Key

4. Inverse Mix Columnn

 Page 26 | 60

Yet again, the 10th iteration just ignores the Inverse Mix Columns transformation process. For

each of these processes will now be well-thought-out in more detail.

3.4. STAGES IN CIPHER AND DECIPHER

3.4.1. BYTE SUBSTITUTION

Byte Substitution is basically a lookup table utilizing a 16×16 double dimension of byte values

known as s-box. This dimension comprises of every conceivable combos of 8 bit sequence (2� =

16 × 16 = 256). Nonetheless, the s-box isn’t only an arbitrary stage of these qualities and there is

an overall-characterized technique for making the s-box matrix. The architects of Rijndael

demonstrated how this was carried out dissimilar to the s-box DES for which not at all justification

was given. We won't be excessively interested here how the s-boxes are created and can basically

take them as lookup tables. Again the dimension that gets worked upon all around the encryption

is called state-matrix.

We need to be interested with how this framework is influenced in every one iteration. For this

specific adjust every byte is linked into another 8 bits in the accompanying way: the left-hand side

4 bits of the half word is utilized to determine a specific row of the s-box and the right-hand side

4 bits tags a specific column. For instance, the 8 bits {95} (wavy sections speak to hex values in

FIPS PUB 197) chooses line nine segment five that eventually comes out to hold the quantity {2a},

which is utilized to modify the state matrix.

Figure 3.4.1: Byte Substitution

 Page 27 | 60

The Inverse byte substitution change makes utilization of an Inverse s-box. For this situation what

is wanted is to choose the quality {2a} and get the worth {95}. The s-box is intended to be

impervious to called cryptanalytic ambushes. Particularly, the Rijndael engineers looked for a plan

that has a low connection between data bits and yield bits, and the property that the yield can't be

depicted as a straightforward numerical capacity of the information. Also, the s-box has no altered

focuses (s-box (a) = an) and no inverse settled focuses (s-box (a) = −a) where (an) is the bitwise

compliment of a. The s-box must be invertible if decrypting is to be conceivable (Is-box[s-box (a)]

= a) be that as it may it ought not to be its counter directionally toward oneself i.e. s-box (a) 6 =

Is-box.

3.4.2. SHIFT ROW TRANSFORMATION

Shift Row Transformation is as displayed in figure 3.4.2. This is a humble permutation and

nothing more. It works as below:

• The very initial row (i.e. row 0th) of the state matrix isn’t modified.

• The 2nd row is left shifted by 1 byte in a round path.

• The 3rd row is left shifted by 2 bytes in a round path.

• The fourth row is left shifted by 3 bytes in a round path.

Figure 3.4.2: Row Shift Transformation

 Page 28 | 60

The Inverse Shift Rows conversion (called as Inv Shift Rows) performs these round

movements in the inverse heading for each of the last three columns (the first column was

unchanged in any situation). This process may not seem to do abundant yet in the event that

you contemplate how the bytes are requested inside state then it could be seen to have

significantly a greater amount of an effect. Keep in mind that state is dealt with as a cluster of

four byte sections, i.e. the main section really speaks to bytes 1, 2, 3 and 4. A one byte

movement is in this way a direct separation of 4 bytes. The conversion additionally guarantees

that the 4 bytes of 1 segment are extent out to 4 separate segments.

3.4.3. MIX COLUMN TRANSFORMATION

MIX COLUMN TRANSFORMATION is essentially a substitution yet it makes utilization

of math of GF (2�). Every segment is worked on separately. Every byte of a segment is charted

into another esteem that is a capacity of each of the 4 bytes in the section. The conversion might

be dictated by the accompanying grid increase on state demonstrated in fig 3.4.3

Every component of the item framework is the entirety of results of components of one

line and one segment. For this situation the unique augmentations & multiplication are achieved

in GF (2�). The Mix Columns change of a solitary segment j (0 _ j _ 3) of state could be

communicated as: Where x means multiplication over the finite field GF (2�).

Figure 3.4.3: Mix column Transformation

 Page 29 | 60

3.4.4. ADD ROUND KEY

In this process (called as Add Round Key) the 128 bits of state are bitwise Xored through

the 128 bits of the round key. The procedure is seen as a column wise process between the word

of a state column and one WORD of the round key. This conversion is as basic as would be prudent

which benefits in effectiveness yet it additionally influences all of state.

3.4.5. KEY EXPANSION UNIT

The AES key extension calculation takes input as a 4-word key and crops a direct cluster of 44

words (32 bits). Every one round uses 4 of these words. Each one expression holds 32 bytes which

implies each one sub key is 128 bits in length.

The key is duplicated into the initial four expressions of the stretched key. The rest of the stretched

key is packed in 4 words at once. Each one included word w[i] hinge on the promptly going before

word, w[i − 1], and the expression 4 places back w[i − 4]. In 3 out of 4 cases, upfront XOR is

utilized. For a statement whose location in the w exhibit is a numerous of four, a more random

capacity is utilized.

State

Matrix

Expanded

Key

Output State

Matrix

 Page 30 | 60

1. RotWord just rotates the word data by a one-byte round left movement. This implies

that a data word [a0, a1, a2, a3] is changed into [a1, a2, a3, a0].

2. SubWord substitutes every bytes of the word using byte substitution method , utilizing

the S-box portrayed prior.

3. The consequence of above processes is bitwise XORed with round constant, known as

Rcon[j].

The round constant (RCON) is a word (32 bit) which has the 3 right hand-side bytes are zero every

time. Therefore, the result of an XOR of the word with Rcon is just only to achieve an XOR on

the left hand-side byte of word. The round constant is dissimilar for each iteration and is well-

defined as	
��
�� = (�
��, 0,0,0), withRC
1� = 	1, RC
j� = 	2 • 	RC
j	 − 1�and the

multiplication is done over the GF (2�).

The key expansion remained intended to be impervious to recognized cryptanalytic assaults. The

consideration of a round-needy round steady dispenses with the symmetry, or comparability,

between the courses in which adjust keys are produced in diverse iterations [1].

 Page 31 | 60

Chapter 4

AES

ARCHITECTURE

 Page 32 | 60

4. AES ARCHITECTURE

We have designed our AES architecture in VHDL Language using Xilinx 14.2 for Spartan 3E

XC3s500e FPGA. Our architecture takes 128 bits of data as input along with the 128 bits of key

along with three control signal clk, go_i, and reset signal each of single bit. The block diagram of

the AES block is provided below in fig 4.1(a).

Fig 4(a): AES Block Diagram

Inside of AES comprises of Cipher block and a Decipher block. Cipher block is connected to

decipher block as given below in fig 4(b). Cipher block takes all the input provided to AES block

and give us a Cipher Text of 128 bits as output. Cipher block controls the processing of decipher

block, it keeps the decipher block in wait state unless it is ready with the cipher text, detail

explanation would be provided later. Decipher block takes the cipher text as input and provide us

the decipher text which would be exactly similar to the input data.

 Page 33 | 60

Fig 4(b): Internal Schematic of AES block

 Page 34 | 60

4.1. CIPHER
Cipher block is basically used for the encryption of data, which takes in 128 bits of input

data and 128 bits of key. This block process the data only at the appropriate signal given by

the three control signal namely clk (it is a clock signal), reset (used to reset various data), and

go_i (it controls the control unit). It provide us with the cipher text of 128 bits and a control

signal go_d of one bit used to control the decipher block. We will discuss the complete

schematic, data path, control unit of the cipher block below in fig 4.1.

Fig 4.1(a): block schematic of data path of cipher block.

Fig 4.1(b): Control Unit of Cipher block

 Page 35 | 60

4.1.1. SCHEMATIC

Fig.4.1.1: internal schematic of Cipher block.

The above figure (Fig.4.1.1) shows the connection between the control unit and the datapath of the

cipher block. The control unit controls the datapath (cipher_mod) with various control signal

namely count_en (used to control the counter in datapath), load_reg (used to load data at the

rgisters), load_rgk (used to load key register), enable (used to control various transformation

blocks), sline (used as select signal to select between input data and last round result), rnd_in and

rnd_out are the round signal containing round count.

 Page 36 | 60

4.1.2. DATA PATH

Fig.4.1.2: Datapath for AES CIPHER

The above figure (Fig .4.1.2) is the datapath of the cipher block which shows the connection of the

various components of the datapath and the flow of data. It consist of 4 transformation processes

named as byte substitution, row shift transformation, mix column transformation and add around

key which uses a key expansion unit which produces a new key each round. The above 4 processes

takes in a 128 bit data and transform it according an algorithm. The output signal Sa is feedback

to multiplexer which selects between it and input data depending upon the output of the control

unit. The registers above load on the appropriate condition provided by the control unit. Each

transformation block also execute there algorithms if the control unit allows them to. In short the

data path works under the guidance of the control unit.

 Page 37 | 60

4.1.3. STATE DIAGRAM

Fig.4.1.3: State diagram of Cipher

The above figure (Fig – 4.1.3) is the state diagram of cipher which shows how the state

transformation takes place which is started from init state. It proceeds to S0 when it receives a

signal named as go_i. This state has four states to follow, it goes to state S1 when round is 0. It

goes to S2 when round is less than 10, to S3 for round = 10 and to S4 for round > 10. Each state

from S1 – S4 returns back to S0. S4 sets the round count back to 0.

4.1.4. Tabular Description of State

The table 4.1.4 provided below clearly shows what control unit asks the data path to

perform at various state which depends on round count. State init is the initial state or a reset state

which resets all data to 0 and maintain the round count to 0. State S0 is the selection state where

we select the data which is needed to process further i.e. between input data and the result of the

previous round, in round 0 it selects the input data whereas for rest of the round it reselects the

output of the previous round. State S1 is used to process only add round key. State S2 is used to

process all the four transformation processes. State S3 is used to process all the processes except

mix column transformation and also to load the output register. State S4 is just like the init state

S0

R
=

0

S1

S2

S3S4

INIT

 Page 38 | 60

used to reset round to 0. All the register are loaded excluding output register in state S1 and S2

and including output register in state S3. Counter is enabled in state S1, S2 and S3.

 INIT S0 S1 S2 S3 S4

BYTE
SUBSTITUTION

NO NO NO YES YES NO

ROW SHIFT
TRANSFORMATION

NO NO NO YES YES NO

MIX COLUMN
TRANSFORMATION

NO NO NO YES NO NO

ADD ROUND KEY NO NO YES YES YES NO

RESULT REGISTER
LOADING

NO NO NO NO YES NO

REGISTERS
LOADING

NO NO YES YES YES NO

SLINE 0 0/1 0 1 1 1

ROUND 0 Input Input Input Input 0

COUNTER OFF OFF ON ON ON OFF

Table 4.1.4 State description of control unit of cipher block

 Page 39 | 60

4.2. DECIPHER

Decipher block is basically used for the decryption of cipher text, which takes in 128 bits of

cipher text from cipher block and 128 bits of key. This block process the data only at the

appropriate signal given by the three control signal namely clk (it is a clock signal), reset (used to

reset various data), and go_i (it controls the control unit). It provide us with the decipher text of

128 bits. We will discuss the complete schematic, data path, control unit of the cipher block below

in fig 4.2.

Fig 4.2(a): block schematic of decipher.

Fig 4.2(b): Control Unit of Decipher block

 Page 40 | 60

4.2.1. SCHEMATIC

Fig.4.2.1: internal schematic of decipher block.

The above figure (Fig.4.2.1) shows the connection between the control unit and the

datapath of the decipher block. The control unit controls the datapath (decipher_mod) with various

control signal namely count_en (used to control the counter in datapath), load_reg (used to load

data at the rgisters), load_rgk (used to load key register), enable (used to control various

transformation blocks), sline (used as select signal to select between input data and last round

result), rnd_in and rnd_out are the round signal containing round count.

 Page 41 | 60

4.2.2. DATA PATH

Fig.4.2.2: Datapath for AES DECIPHER

The above figure (Fig – 3.2) is the datapath of the decipher block which shows the

connection of the various components of the datapath and the flow of data. It consist of 4

transformation processes named as inverse byte substitution, inverse row shift transformation,

inverse mix column transformation and add around key which uses a key expansion unit which

produces a new key each round. The above 4 processes takes in a 128 bit data and transform it

according an algorithm. The output signal Sa is feedback to multiplexer which selects between it

and input data depending upon the output of the control unit. The registers above load on the

appropriate condition provided by the control unit. Each transformation block also execute there

algorithms if the control unit allows them to. In short the data path works under the guidance of

the control unit.

 Page 42 | 60

4.2.3. STATE DIAGRAM

Fig.4.2.3: State diagram of Cipher

The above figure (Fig – 4.2.3) is the state diagram of decipher which shows how the state

transformation takes place which is started from init state. It proceeds to S0 when it receives a

signal named as go_i. This state has four states to follow, it goes to state S1 when round is 10. It

goes to S2 when round is greater than 0, to S3 for round = 00 and to S4 for round > 10. Each

state from S1 – S4 returns back to S0. S4 sets the round count back to 10.

4.2.4. TABULAR DESCRIPTION OF STATE

The table provided below clearly shows what control unit asks the data path to perform at

various state which depends on round count. State init is the initial state or a reset state which

resets all data to 0 and maintain the round count to 10. State S0 is the selection state where we

select the data which is needed to process further i.e. between input data and the result of the

previous round, in round 0 it selects the input data whereas for rest of the round it reselects the

output of the previous round. State S1 is used to process only add round key. State S2 is used to

S0

R
=

1
0

S1

S2

S3S4

INIT

 Page 43 | 60

process all the four transformation processes. State S3 is used to process all the processes except

inverse mix column transformation and also to load the output register. State S4 is just like the init

state used to reset round to 10. All the register are loaded excluding output register in state S1 and

S2 and including output register in state S3. Counter is enabled in state S1, S2 and S3.

 INIT S0 S1 S2 S3 S4

INVERSE BYTE
SUBSTITUTION

NO NO NO YES YES NO

INVERSE ROW SHIFT
TRANSFORMATION

NO NO NO YES YES NO

INVERSE MIX
COLUMN

NO NO NO YES NO NO

ADD ROUND KEY NO NO YES YES YES NO

RESULT REGISTER
LOADING

NO NO NO NO YES NO

REGISTERS
LOADING

NO NO YES YES YES NO

SLINE 0 0/1 0 1 1 1

ROUND 10 Input Input Input Input 10

COUNTER OFF OFF ON ON ON OFF

Table 4.2.4: State description of control unit of decipher block

 Page 44 | 60

4.3. TRANSFORMATION BLOCKS

Transformation blocks takes the data and transform it according to an algorithm to another

data. Each block transforms when the enable signal is high else it return the input as output when

the signal is low. In this architecture we have designed two types of block depending upon the bit

size, one for 128 bits of input and output other 4 bit of input and output.

Transformation

Blocks

128 Bits

Byte Substitution

Row Shift

Transformation

Mix Column

Transformation

Add Round Key

Inverse Byte

Substitution

Inverse Row Shift

Transformation

Inverse Mix

Column

Transformation

Key Expansion

unit

4 Bits

Up Counter

Down Counter

 Page 45 | 60

4.3.1. Byte Substitution

We have already explained the main procedure of the byte substitution in section 3.4.1,

here we are introducing the schematic of the process which is shown below in the fig 4.3.1. Its

internal schematic uses a function called as STATE_SUB, this function is defined along with other

function stated in later stage is defined in package created by us as AES_package. All the block

process with a high enable, else returns the input as output.

Fig 4.3.1: Block Schematic of Byte Substitution process

4.3.2. Row Shift Transformation

We have already explained the main procedure of the row shift transformation in section

3.4.2, here we are introducing the schematic of the process which is shown below in the fig

4.3.2. Its internal schematic uses a function called as row_shift.

Fig 4.3.2: Block Schematic of Row Shift Transformation

 Page 46 | 60

4.3.3. Mix Column Transformation

We have already explained the main procedure of the mix column transformation in

section 3.4.3, here we are introducing the schematic of the process which is shown below in the

fig 4.3.3. Its internal schematic uses a function called as mix_column.

Fig 4.3.3: Block Schematic of Mix Column Transformation

4.3.4. Add Round Key

We have already explained the main procedure of add round key in section 3.4.4, here we

are introducing the schematic of the process which is shown below in the fig 4.3.4. Its internal

schematic uses a function called as add_round_key.

Fig 4.3.4: Block Schematic of Add Round Key

 Page 47 | 60

4.3.5. Inverse Byte Substitution

We have already explained the main procedure of the inverse byte substitution in section

3.4.1, here we are introducing the schematic of the process which is shown below in the fig

4.3.5. Its internal schematic uses a function called as STATE_INV_SUB.

Fig 4.3.5: Block Schematic of Inverse Byte Substitution process

4.3.6. Inverse Row Shift Transformation

We have already explained the main procedure of the inverse row shift transformation in

section 3.4.2, here we are introducing the schematic of the process which is shown below in the

fig 4.3.6. Its internal schematic uses a function called as inv_row_shift.

Fig 4.3.6: Block Schematic of Inverse Row Shift Transformation

 Page 48 | 60

4.3.7. Inverse Mix Column Transformation

We have already explained the main procedure of the inverse mix column transformation

in section 3.4.3, here we are introducing the schematic of the process which is shown below in

the fig 4.3.7. Its internal schematic uses a function called as inv_mix_column.

Fig 4.3.7: Block Schematic of Inverse Mix Column Transformation

4.3.8. Key Expansion unit

We have already explained the main procedure of the key expansion unit in section 3.4.5,

here we are introducing the schematic of the process which is shown below in the fig 4.3.8. Its

internal schematic uses a function called as key_exp_unit.

Fig 4.3.8: Block Schematic of Key Expansion Unit

 Page 49 | 60

4.3.9. Up Counter

This block is used to increase the round number in cipher block when we need to move to the next

round. The schematic of the block is shown below in the fig 4.3.9.

Fig 4.3.9: Block Schematic of the Up Counter, Fig 4.3.10: Block Schematic of the Down Counter

4.3.10. Down Counter

This block is used to decrease the round number in decipher block when we need to move to the

next round. The schematic of the block is shown above in the fig 4.3.10.

4.3.11. Register

Fig 4.3.11: Block Schematic of a register

This block is used to load the 128 bits of data and save it for future processing, the block

schematic of the register is shown above in fig 4.3.11.

 Page 50 | 60

Chapter 5

RESULTS

 Page 51 | 60

5. RESULTS
5.1. MATLAB GUI IMPLEMENTATION

Fig 5.1 Gui Result

A Graphical User Interface was designed as shown above for the purpose of encryption and

decryption using Advanced Encryption Standard algorithm. Here we have provided a 16 bytes

(128 bits) key word and plain text of unknown length. We can clearly see the cipher text and the

decipher text as generated.

 Page 52 | 60

5.2. VHDL SIMULATION RESULTS

5.2.1. Byte Substitution

Fig. 5.2.1: Byte Substitution waveform.

The above figure 5.2.1 signifies the waveforms produced by the substitution byte transformation.

The input clock is of 10ns time period, Reset is high, and 128 bits state as a std_logic_vector. The

output obtained is exactly as described in the segment 3.4.1.

5.2.2. Row Shift Transformation

Fig.5.2.2: row shift transformation waveform.

The above figure 12 signifies the waveforms produced by the row shift transformation. The input

clock is of 10ns time period Reset is high, and 128 bits state as a std_logic_vector. The output

obtained is exactly as described in the segment 3.4.2.

 Page 53 | 60

5.2.3. Mix Column Transformation

Fig.5.2.3: mix column transformation waveform.

The above Fig: 5.2.3 signifies the waveforms produced by the Mix Columns transformation and

its block architecture. The input clock is of 10ns time period, Reset is high, and 128 bits state as

a std_logic_vector. The output obtained is exactly as described in the segment 3.4.3.

5.2.4. Add Round Key

Fig.5.2.4: add round key transformation waveform

The above figure 14 signifies the waveforms produced by add round key transformation. The

input clock is of 10ns time period, Reset is high, and 128 bits state as a std_logic_vector. The

output obtained is exactly as described in the segment 3.4.4.

 Page 54 | 60

5.2.5. Inverse Byte Substitution

Fig.5.2.5: inv. byte substitution waveform.

The above figure 5.2.5 signifies the waveforms produced by the Inverse byte substitution

transformation. The input clock is of 10ns time period, Reset is high, and 128 bits state as a

std_logic_vector. The output obtained is exactly as described in the segment 3.4.1. It is to be noted

that this block reversed the effect of the byte substitution transformation.

5.2.6. Inverse Row Shift Transformation

Fig.5.2.6: inv. row shift transformation waveform

The following figure 5.2.6 signifies the waveforms produced by the Inverse row shift

transformation. The input clock is of 10ns time period, Reset is high, and 128 bits state as a

std_logic_vector. The output obtained is exactly as described in the segment 3.4.2. It is to be noted

that this block reversed the effect of the row shift transformation.

 Page 55 | 60

5.2.7. Inverse Mix Column Transformation

Fig.5.2.7: inv. row shift transformation waveform

The following figure 5.2.7 signifies the waveforms produced by the Inverse mix column

transformation. The input clock is of 10ns time period, Reset is high, and 128 bits state as a

std_logic_vector. The output obtained is exactly as described in the segment 3.4.3. It is to be noted

that this block reversed the effect of the mix column transformation.

5.2.8. Key Expansion unit

Fig.5.2.8: key expansion waveform

The above figure 15 signifies the waveforms produced by the key expansion unit and its and its

block architecture. The input clock is of 10ns time period, Reset is high, and 128 bits state as a

std_logic_vector. The output obtained is exactly as described in the segment 3.4.5.

 Page 56 | 60

5.2.9. CIPHER

Fig.5.2.9: test bench waveform of cipher block.

The above figure 5.2.9 signifies the waveforms produced by the cipher. The input clock is of 10ns

time period, Reset is high, go_i, 4 bit rend_in, sline, load_rgk, 4 bit select line, 4 bit load register

and 128-bit state as a std_logic_vector whose outcome is encrypted as described in AES algorithm.

Cipher block is designed using six sate FSM.

5.2.10. DECIPHER

Fig.2.4: test bench waveform of Decipher block.

The above figure 2.4 signifies the waveforms produced by the 128-bit Decipher and its block

architecture. The input clock is of 10ns time period, Reset is high, go_i, 4 bit rnd_in, sline,

load_rgk, 4 bit select line, 4 bit load register and 128-bit state as a std_logic_vector whose outcome

is encrypted as described in AES algorithm. Decipher block is designed using six sate FSM.

 Page 57 | 60

5.2.11. AES

Fig. 5.2.11(A): test bench waveform of Decipher block up to 400ns.

Fig. 5.2.11(B): test bench waveform of Decipher block from 400ns to 900ns period.

Above waveform shows the complete result of AES where data is the input data, key is 128 bit

input key, cipher is the ciphered text and decipher is the deciphered text.

 Page 58 | 60

5.2.12. DESIGN SUMMARY

Fig 5.2.12: Design Summary

The Final design summary of the project is as shown in the above figure 5.2.12. This design

summary is done keeping in the view that we are using Spartan 3E XC3s500e FPGA. Though

IOBs count is quite high it can be managed by decreasing the input and output parameters like

taking data and key as an input one at a time and visualizing the cipher text and decipher text one

at a time, this can decrease the IOBs to quite low. Rest of the logic blocks utilization’s are quite

low, thus we can implement our project in the above stated FPGA board.

 Page 59 | 60

Chapter 6

Conclusion

 Page 60 | 60

6. CONCLUSION

• We have developed an optimized and process able VHDL code for the implementation of

both encryption and decryption process.

• The FPGA resource used was drastically decreased from past result which can be seen in

the fig 5.2.12.

• Hence, Advanced Encryption Standard architecture designed by us can be executed with

rational efficiency on a Spartan 3E XC3s500e FPGA.

7. REFERENCE

1. ADVANCED ENCRYPTION STANDARD, Federal Information Processing Standards

Publication 197, November 26, 2001.

2. Google Images: www.images.google.co.in.

3. Wikipedia: www.wikipedia.org.

4. B.A. Forouzan and D. Mukhopadhyay, Cryptography and Network Security,

2nd Ed.,Tata McGraw Hill, New Delhi, 2012.

5. VHDL Primer (3rd edit ion) by J. Bhasker

