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ABSTRACT 
 

Security is a crucial parameter to be recognized with the improvement of electronic communication. 

Today most research in the field of electronic communication includes look into on security concern 

of communication. At present most by and large consumed and recognized standard for encryption 

of data is the Advanced Encryption Standard. AES was transformed to supplant the developing Data 

Encryption Standard. The AES calculation is fit for handling cryptographic keys which are of 256, 

128, & 192 bits to encode & unscramble data in squares of 128 bits. The center of the calculation is 

made up of four key parts, which manage 8 bit data pieces. The whole 128 bit data to the calculation 

is dealt with into a 4 x 4 grid termed a state, to obtain the 8 bit square. 

 

 Considering the complex nature of advance encryption standard (AES) algorithm, it requires a 

huge amount of hardware resources for its practical implementation. The extreme amount of 

hardware requirement makes its hardware implementation very burdensome. During this research, 

a FPGA scheme is introduced which is highly efficient in terms of resource utilization. In this 

scheme implementation of AES algorithm is done as a finite state machine (FSM). VHDL is used 

as a programming language for the purpose of design. Data path and control unit are designed for 

both cipher and decipher block, after that respective data path and control unit are integrated using 

structural modeling style of VHDL. Xilinx_ISE_14.2 software is being used for the purpose of 

simulating and optimizing the synthesizable VHDL code. The working of the implemented 

algorithm is tested using VHDL test bench wave form of Xilinx ISE simulator and resource 

utilization is also presented for a targeted Spartan3e XC3s500e FPGA. 
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1. OVERVIEW 

1.1.  MOTIVATION 
With overall communication of private and secret information over the machine systems then again 

the Internet, there is dependably a plausibility of risk to information privacy, information honesty and, 

likewise information accessibility. Information encryption keeps up information secrecy, 

trustworthiness and validation. Data has happened to the most imperative stakes in developing interest 

of need to store each and every significance of occasions in regular life. Messages need to be secured 

from unapproved gathering. Encipherment is one of the security systems to secure data from 

community. Encryption shrouds the first substance of a message in order to make it mixed up to 

anybody, with the exception of the individual who has the extraordinary information to peruse it. 

 

In the past cryptography implies just encryption and decoding utilizing mystery keys, these days it 

is characterized in diverse components like topsy-turvy-key encipherment (public-key cryptography) 

and symmetric-key encipherment (called as privet-key cryptography). The general population key 

calculation is intricate and has high reckoning time. Private Key calculations include stand out key, 

both for encryption and unscrambling while, open key calculations include two keys, one for 

encryption and an alternate for decoding. There were numerous cryptographic algorithms proposed, 

for example, Data Encryption Standard (DES), 2-DES, 3-DES, the Advanced Encryption Standard, 

Elliptic Curve Cryptography, and different calculations. Numerous examiners and programmers are 

continually attempting to break these calculations utilizing beast constrain and side channel assaults. 

A few strike were effective as it was the situation for the Data Encryption Standard in 1993. 

 

AES, is the well-accepted cryptographic algorithm which could be utilized to ensure security 

towards electronic information. This thesis gives an AES algorithm respect to FPGA and VHDL this 

proposes a strategy to incorporate the AES coder and the AES decoder. This strategy can be of a small-

intricacy structural planning, particularly in sparing the fittings asset in executing the AES (Inv) Sub 

Bytes module and (Inv) Mix column module and so on. Most composed modules could be utilized for 

both AES encryption and decoding. Additionally, the construction modeling can at present convey a 

bulk information rate in both encryption/decoding procedures. The suggested building design is suited 

for equipment-discriminating requisitions, for example, shrewd card, PDA, and cellular telephone, and 

so on. 
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Design optimization is being done by using Finite State Machine. Data path and control unit are 

designed for both cipher and decipher block, after that respective data path and control unit are 

integrated using structural modeling style of VHDL. Xilinx_ISE_14.2 software is being used for the 

purpose of simulating and optimizing the synthesizable VHDL code. 

 

1.2.  RESEARCH OBJECTIVE 
In the light of optimized FPGA implementation of Advance Encryption Standard (AES) algorithm, 

the main objective of our research are: 

 

1. Designing of Finite State Machine (FSM) using minimum number of state for the                  

purpose of FPGA implementation of AES algorithm.   

2. Designing of Hardware efficient data path for Encryption and decryption. 

3. Designing of Hardware efficient control unit path for Encryption and decryption. 

4. FPGA resource optimization. 

5. VHDL Simulation of AES Algorithm. 

 

1.3.  LITERATURE SURVEY 
 

• FPGA schemes for minimizing the power-throughput trade-off in executing the Advanced 

Encryption Standard algorithm, Journal of Systems Architecture 56 (2010) 116–123.(Jason 

Van Dyken, José G. Delgado-Frias) 

• ADVANCED ENCRYPTION STANDARD, Federal Information Processing Standards 

Publication 197, November 26, 2001. 

 

1.4.  DESIGN TOOLS 
 

Several developmental tools were used for the implementation of our project. This includes 

generating Test-bench waveform, RTL simulations etc. and design summary. 

We used Xilinx ISE (integrated software environment) 14.2 software for designing out circuit using 

VHDL code and Developing the Test-bench and schematics of the modules. 

This software allows us to take our design from design entry through Xilinx device programming. The 

ISE project navigator processes our design through various steps in the ISE design flow. 
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The following are the steps used 

• Design Entry  

• Synthesis  

• Implementation  

• Simulation and verification  

• Device Configuration  

The Test-bench waveform containing the signals can be used to simulate the modules used in our 

project in the Xilinx ISE simulator. 

This provides a powerful and highly advanced self-contained development platform for designs 

targeting the Spartan 3e FPGA from Xilinx. Features like Xilinx Platform Flash, USB end, JTAG 

parallel programming interfaces are also found on this board. 

 

1.5.  ORGANISATION 
 

This thesis is organized as follows: 

Chapter   2 describe history and requirement of cryptography, concept of Galois field and about data 

encryption standard (DES) algorithms, which was used earlier.  
 

Chapter 3 describes the AES algorithm in details. The four encryption stages are 

presented: Byte Substitution, Shift Rows, Mix Column and lastly Add Round Key and inverse 

part of all four blocks. It also describes the details of Cipher and Decipher block. 

In Chapter 4, a proposed architecture of AES algorithm is presented. In which, we have 

described the detailed architecture of designed data path and control unit for both cipher and 

decipher.  

In Chapter 5, s imu la t ion and resu l t s  a re presented in  th i s  chap ter ,  wi th  the 

tes t  bench wave fo rm and b lock  a rch i tec tu re  o f  each b lock  used  in  the  AES 

a long w i th  complete  AES block.  

Finally, the conclusion and future work are presented in Chapter 6. 
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2. INTRODUCTION 

2.1.  WHY CRYPTOGRAHY? 

Does expanded security give solace to distrustful individuals? Then again does security give 

some extremely essential insurances that we are guileless to accept that we needn't bother with? 

Throughout this period when the World Wide Web gives crucial correspondence between 

countless individuals and is constantly progressively utilized as an apparatus for trade, security 

turns into an enormously essential issue to manage. 

There are numerous angles to security and numerous provisions, extending from safe trade 

and installments to private correspondences and ensuring passwords. One vital perspective for safe 

interchanges is that of cryptography, which the fundamental center of this subject is. At the same 

time it is paramount to notice that when cryptography is fundamental for safe interchanges, it is 

not independent from anyone else sufficient. The onlooker is exhorted, then, that the themes 

secured in this part just portray the first of numerous steps important for important security in any 

count of situations. 

2.2.  WHAT IS CRYPTOGRAPHY? 

Cryptography is an art of composing in mystery symbols and is an antiquated craft; the initially 

reported utilization of cryptography in composing goes once again to circa-1900 B.C. at the point 

when an Egyptian copyist utilized non-standard symbolic representations in an engraving. A few 

masters contend that cryptography showed up spontaneously at some point in the wake of 

composing was imagined, with requisitions running from strategic messages to war-time fight 

tactics. It is not at all astonishment, then, that new types of cryptography came not long after the 

across the board improvement of machine interchanges. In information and telecommunications, 

cryptography is fundamental when conveying over any non-trusted medium, which incorporates 

pretty much any system, especially the WWW. 

 

Inside the connection of any provision-to-requisition communication, there are some particular 

security prerequisites, including: 
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• Authentication: The procedure of demonstrating one's character. (The essential types of 

host-to-have validation on the WWW today are name-based or location-based, both of 

which are famously feeble.) 

• Privacy/confidentiality: Guaranteeing that nobody can read the message with the 

exception of the proposed receiver. 

• Integrity: Guaranteeing the receiver that the received message has not been compromised 

in any possible way from the initial. 

• Non-repudiation: A procedure to demonstrate that the messenger really sent the 

message. [3] 

Cryptography, then ensures information from theft or change, as well as be utilized for client 

confirmation. There are, when all is said in done, three sorts of cryptographic plans ordinarily used 

to achieve these objectives: mystery key (or symmetric) cryptography, open-key (or unbalanced) 

cryptography, and hash works, each of which is depicted beneath. In all instances, the introductory 

decoded information is alluded to as plain-text. It is encoded into figure content, which will thus 

(ordinarily) be decoded into utilizable plain-text. 

2.3.  TYPES OF CRYPTOGRAPHIC ALGORITHM 

There are numerous ways of categorizing cryptographic algorithms. For commitments to this 

thesis, they will be classified based on the number of keys that are engaged for encryption and 

decryption, and further demarcated by their application and use. The three kinds of algorithms that 

is conferred are given below in fig 2.3. 

 

Fig 2.3: Types of Cryptographic Algorithm based on number of keys 

CRYPTOGRAPHIC 

ALGORITHM

Symmetric-key 

Encipherment  

Asymmetric-key 

Encipherment 
Hashing
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2.3.1. Symmetric-key Encipherment or Secret key Cryptography 

 

Fig 2.3.1(a): Block Diagram of Symmetric key Encipherment 

In symmetric-key encipherment a substance say Viku, can make an impression on an 

alternate element, say Ashu, over an unstable channel with the presumption that a foe, say Eve, 

can't comprehend the substance of the message by basically listening stealthily over the channel. 

Viku scrambles the message utilizing an encryption calculation; Ashu unscrambles the message 

utilizing an unscrambling calculation. Symmetric-key encipherment utilizes a solitary mystery 

key for both encryption and unscrambling. Encryption/decoding might be considered electronic 

locking.  In this, Viku puts the message in a crate and locks the container utilizing the imparted 

mystery key; Ashu opens the case with the same key and takes out the message. 

 

 

Fig 2.3.1(b): Example for Symmetric Key Encipherment [2] 

PLAIN TEXT KEY CIPHER TEXT KEY PLAIN TEXT
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2.3.2. Asymmetric-key Encipherment or Public key Cryptography 

 

Fig 2.3.2(a): Block Diagram of Asymmetric key Encipherment 

In asymmetric-key encipherment, we have the same circumstance as the symmetric-key 

encipherment, with a couple of exemptions. Initially, there are two keys rather than one: one open 

key and one private key. To send a secured message to Ashu, Viku first encodes the message 

utilizing Ashu's open key. To unscramble the message, Ashu utilizes his own particular private 

key. 

 

 

Fig 2.3.2(b): Example for Asymmetric Key Encipherment [2] 

PLAIN TEXT KEY1 CIPHER TEXT KEY2 PLAIN TEXT
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2.3.3. HASHING 

 

Fig 2.3.3(a): Block Diagram of Hashing 

In hashing, an altered-length message condensation is made out of a variable-length 

message. The condensation is typically much more modest than the message. To be valuable, 

both the message and the review be sent to Ashu. Hashing is utilized to give check values, 

which were examined prior in connection to give information respectability. 

 

 

 

Fig 2.3.2(b): Example for Hashing [2] 

 

 

 

 

PLAIN TEXT
HASHING 

FUNCTION
CIPHER TEXT
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2.4.  GALOIS FIELD 

Galois Field, named after Evariste Galois, otherwise called finite field, alludes to a field in 

which there exists finitely numerous components. It is especially valuable in translating machine 

information as they are represented in binary structures. That is, computer information comprise 

of two numbers, 0 and 1, which are the segments in Galois field whose number of element is two. 

Representing to information as a vector in a Galois Field permits scientific operations to scramble 

information effectively and effectively. 

There are many cryptographic algorithms using GF among them, the AES algorithm uses the 

GF (28). The data byte can be characterized using a polynomial representation of GF (28).  

Arithmetic operation is completely not quite the same as typical arithmetic algebra, an addition 

can be discovered utilizing bit-wise XOR operation. In Galois field, the multiplication product of 

polynomials will be modulo an irreducible polynomial so final answer can be within the used finite 

field. The polynomial which cannot be factorized of two or more than two is called as irreducible 

polynomial. In Galois field GF (28) addition/subtraction is same as XOR operation and 

multiplication/division is same as the AND operation. The binary representation of irreducible 

polynomial used in GF (28) is p=100011011. [4] 

 

2.5. DATA ENCRYPTION STANDARD 
 

Up to this point, the primary standard for encryption of the information remained a symmetric 

algorithm called as the DES (Data Encryption Standard). Notwithstanding, this must now been 

supplanted by another standard called by way of the AES (Advanced Encryption Standard) which 

we shall take a gander in future. DES is a 64 bit piece figure which implies that it encrypting 

information 64 bits at once. This is differentiated to a stream cipher in which stand out bit at once 

(or frequently little gatherings of bits, for example, a byte) is scrambled. 

DES was the fruit of a research project performed by International Business Machines (IBM) 

Corporation in the later parts of 1960’s which give rise to a cipher called as LUCIFER. In the 

earlier parts of 1970’s it was decided to commercialize LUCIFER and a quantity of significant 
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modifications were added. IBM wasn’t alone on this ship of modifications as they asked technical 

help from the National Security Agency (NSA) (other outside experts were aboard but it is 

probable that, from a technical point of view, the NSA was the chief backer). The changed variety 

of LUCIFER was presented as a suggestion for the novel national encryption standard demanded 

by the National Bureau of Standards (NBS). It was lastly accepted in 1977 as the Data Encryption 

Standard –(DES) (FIPS PUB 46). [1] 
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3. THE ADVANCED ENCRYPTION STANDARD 

3.1.  INTRODUCTION 
The Advanced Encryption Standard is a determination for the purpose of encryption of 

automated information built by the National Institute of Standards and Technology of U.S. in 

2001. AES is focused around the Rijndael figure created by Joan Daemen and Vincent Rijmen 

(two Belgian cryptographers), who proposed a suggestion to NIST throughout the AES 

determination process. Rijndael is a group of figures with distinctive key and piece sizes. For AES, 

NIST chose three parts of the Rijndael family, each with a piece size of 128 bits, yet three 

distinctive key lengths: 128, 192 and 256 bits. AES has been received by the U.S. government and 

is currently utilized around the world. It succeeds the Data Encryption Standard (DES), which 

was distributed in 1977. The algorithm depicted by AES is a symmetric-key calculation, 

importance the same key is utilized for the purpose of encryption and decryption of the 

information. 

3.2.  HISTORY 
The prior ciphers might be broken without hardly lifting a finger on advanced processing 

frameworks. The DES calculation was softened up 1998 utilizing a framework that cost about 

$250,000. It was additionally unreasonably moderate in programming for it was made for middle-

1970's equipment and doesn’t process effective programming code. Then again, Triple DES has 

three times the same number of iterations as DES and is relatively sluggish. And also, the 64 bit 

square size of triple DES besides DES isn’t extremely effective also is faulty concerning security. 

What was obliged was a fresh out of the box new encryption algorithm that might be 

impervious to the majority of the identified attacks. NIST needed someone to assist the making of 

another algorithm. Nonetheless, in view of the discussion that ran with the DES standard, and the 

ages of a few limbs of the U.S. government having a go at all that they could to upset sending of 

protected cryptography this was liable to increase solid distrust. The issue remained was, NIST 

would really have liked to help make another fantastic encryption standard yet they couldn't get 

included specifically. 

Tragically they were truly the main ones with the specialized notoriety and assets to the lead 

the exertion. As opposed to outlining or serving to outline a figure, what they did rather was to 
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announce a challenge in which anybody on the planet could join in. The challenge was affirmed 

on 2nd January, 1997 and the thought existed to create another encryption algorithm which might 

be utilized for securing delicate, non-characterized, U.S. government data. The figures needed to 

encounter a great deal of prerequisites and the entire configuration must be completely archived 

(not at all like the DES figure). Once the hopeful algorithms had been deposited, a few years of 

examination as cryptographic meetings occurred. In the first adjust of the opposition fifteen 

algorithms were acknowledged and this remained contracted to five in the 2nd adjust.  The 

algorithms remained tried for productivity and safety both by a percentage of the world's finest 

freely eminent cryptographers and NIST themselves. 

Later this examination NIST at last picked an algorithm introduced as Rijndael. Rijndael was 

titled after the name of, who created and deposited it - Dr. Joan Daemen from Proton World 

International & Dr. Vincent Rijmen, a postdoctoral scientist in the Electrical Engineering from 

Department of Katholieke Universisteit Leuven (two Belgian cryptographers). On November the 

26th of 2001, AES (that is an institutionalized rendition of Rijndael) turned into a FIPS standard 

(FIPS 197). [1] 

 

3.3.  AES CIPHER AND DECIPHER 
Similar to DES, AES is a symmetric block cryptograph, which implies it utilizes the identical 

key for the purpose of encryption and decryption. Notwithstanding, AES is truly not the same as 

DES in various means. The algorithm Rijndael takes into consideration a mixture of block and key 

sizes and not only the 56 and the 64 bits of the DES block and the key size. The block & the key 

can indeed be picked freely from 160, 196, 128, 256, and 224 bits and doesn’t need to be identical. 

Then again, the AES standard shapes that algorithm can just acknowledge the block size of 128 

bits and the decision of 3 keys - 192, 128, & 256 bits. Contingent upon which form is utilized, the 

designation of the standard is changed to AES-192, AES-256 or AES- 128 separately. And these 

contrasts AES varies from DES in which isn’t a feistel structure. Review that in a feistel structure, 

a large portion of the information block is utilized to change the other 50% of the information 

block and afterward the parts are exchanged. For this situation the whole information block is 

prepared in parallel throughout each one round utilizing replacements and stages.  
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Various AES factors rely on upon the key length. For instance, if the key size utilized is 128 

then the amount of iterations is ten while it is fourteen and twelve for 256 & 192 bits separately. 

At current the utmost widely recognized key size liable to be utilized is 128 bit key. This portrayal 

of AES algorithm consequently depicts this specific execution. 

Rijndael was planned to have the subsequent features: 

• Battle in contradiction of every recognized attacks. 

• Rapidity and code firmness on a widespread range of platforms. 

• Blueprint Easiness. 

 

The complete assembly of AES can be grasped through fig: 3.3. The input is just a single 

data of128 bit for the purpose of decryption & encryption and is recognized as the in dimension. 

This data is imitated into a state dimension which is adapted at every phase of the algorithm and 

later imitated to an output dimension (see figure). Both the plain text and key are portrayed as a 

128 bit square dimension of bytes. This key is later expanded into a dimension of key schedule 

words (32 bits) (the w matrix). It need to be noted that the ordering of bytes within the in matrix 

is by column. The same is applicable to the w dimension. [1] 

 

��,� ��,� ��,� ��,� 

��,� ��,� ��,� ��,� 

��,� ��,� ��,� ��,� 

��,� ��,� ��,� ��,� 

 

Fig 3.3: Conversion of 128 bits of data to State matrix 

The above matrix in fig 3.3 is the state matrix who’s each element is of one byte data.  

128 BITS 
DATA 
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Figure 3.3(a): Block Diagram of Encryption 

 

 

Figure 3.3(b) Block diagram of Decryption 
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3.3.1. INNER WORKING OF ROUNDS 

The algorithm initiates from Add round key process followed by total of 9 iterations of 

four processes and the 10th iteration of 3 processes. This is applicable for both encryption and 

decryption including a special case that each process of an iteration the decryption algorithm is the 

reverse of its corresponding process from encryption algorithm. 4 processes used are as given 

below in fig 3.3.1(a). [1] 

 

Fig 3.3.1(a): Four Stages of Encryption 

The 10th iteration just doesn’t use the Mix Columns transformation. The decryption algorithm 

initiates from an Add round key process trailed by 9 iterations of decryption process which 

comprises of the subsequent processes shown in fig 3.3.1(b). 

 

Fig 3.3.1(b): Four Stages of Decryption 

1. Substitute bytes

2. Shift rows

3. Mix Columns

4. Add Round Key

1. Inverse Shift rows

2. Inverse Substitute bytes

3. Add Round Key

4. Inverse Mix Columnn
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Yet again, the 10th iteration just ignores the Inverse Mix Columns transformation process. For 

each of these processes will now be well-thought-out in more detail. 

 

3.4.  STAGES IN CIPHER AND DECIPHER 
 

3.4.1. BYTE SUBSTITUTION 

Byte Substitution is basically a lookup table utilizing a 16×16 double dimension of byte values 

known as s-box. This dimension comprises of every conceivable combos of 8 bit sequence (2� = 

16 × 16 = 256). Nonetheless, the s-box isn’t only an arbitrary stage of these qualities and there is 

an overall-characterized technique for making the s-box matrix. The architects of Rijndael 

demonstrated how this was carried out dissimilar to the s-box DES for which not at all justification 

was given. We won't be excessively interested here how the s-boxes are created and can basically 

take them as lookup tables. Again the dimension that gets worked upon all around the encryption 

is called state-matrix.  

We need to be interested with how this framework is influenced in every one iteration. For this 

specific adjust every byte is linked into another 8 bits in the accompanying way: the left-hand side 

4 bits of the half word is utilized to determine a specific row of the s-box and the right-hand side 

4 bits tags a specific column. For instance, the 8 bits {95} (wavy sections speak to hex values in 

FIPS PUB 197) chooses line nine segment five that eventually comes out to hold the quantity {2a}, 

which is utilized to modify the state matrix. 

 

Figure 3.4.1: Byte Substitution 
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The Inverse byte substitution change makes utilization of an Inverse s-box. For this situation what 

is wanted is to choose the quality {2a} and get the worth {95}. The s-box is intended to be 

impervious to called cryptanalytic ambushes. Particularly, the Rijndael engineers looked for a plan 

that has a low connection between data bits and yield bits, and the property that the yield can't be 

depicted as a straightforward numerical capacity of the information. Also, the s-box has no altered 

focuses (s-box (a) = an) and no inverse settled focuses (s-box (a) = −a) where (an) is the bitwise 

compliment of a. The s-box must be invertible if decrypting is to be conceivable (Is-box[s-box (a)] 

= a) be that as it may it ought not to be its counter directionally toward oneself i.e. s-box (a) 6 = 

Is-box. 

 

3.4.2. SHIFT ROW TRANSFORMATION 

Shift Row Transformation is as displayed in figure 3.4.2. This is a humble permutation and 

nothing more. It works as below: 

• The very initial row (i.e. row 0th) of the state matrix isn’t modified. 

• The 2nd row is left shifted by 1 byte in a round path. 

• The 3rd row is left shifted by 2 bytes in a round path. 

• The fourth row is left shifted by 3 bytes in a round path. 

 

 

Figure 3.4.2: Row Shift Transformation 
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The Inverse Shift Rows conversion (called as Inv Shift Rows) performs these round 

movements in the inverse heading for each of the last three columns (the first column was 

unchanged in any situation). This process may not seem to do abundant yet in the event that 

you contemplate how the bytes are requested inside state then it could be seen to have 

significantly a greater amount of an effect. Keep in mind that state is dealt with as a cluster of 

four byte sections, i.e. the main section really speaks to bytes 1, 2, 3 and 4. A one byte 

movement is in this way a direct separation of 4 bytes. The conversion additionally guarantees 

that the 4 bytes of 1 segment are extent out to 4 separate segments. 

 

3.4.3. MIX COLUMN TRANSFORMATION 

MIX COLUMN TRANSFORMATION is essentially a substitution yet it makes utilization 

of math of GF (2�). Every segment is worked on separately. Every byte of a segment is charted 

into another esteem that is a capacity of each of the 4 bytes in the section. The conversion might 

be dictated by the accompanying grid increase on state demonstrated in fig 3.4.3  

Every component of the item framework is the entirety of results of components of one 

line and one segment. For this situation the unique augmentations & multiplication are achieved 

in GF (2�). The Mix Columns change of a solitary segment j (0 _ j _ 3) of state could be 

communicated as: Where x means multiplication over the finite field GF (2�). 

 

Figure 3.4.3: Mix column Transformation 
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3.4.4. ADD ROUND KEY 

In this process (called as Add Round Key) the 128 bits of state are bitwise Xored through 

the 128 bits of the round key. The procedure is seen as a column wise process between the word 

of a state column and one WORD of the round key. This conversion is as basic as would be prudent 

which benefits in effectiveness yet it additionally influences all of state. 

 

 

 

3.4.5. KEY EXPANSION UNIT 

The AES key extension calculation takes input as a 4-word key and crops a direct cluster of 44 

words (32 bits). Every one round uses 4 of these words. Each one expression holds 32 bytes which 

implies each one sub key is 128 bits in length.  

 

The key is duplicated into the initial four expressions of the stretched key. The rest of the stretched 

key is packed in 4 words at once. Each one included word w[i] hinge on the promptly going before 

word, w[i − 1], and the expression 4 places back w[i − 4]. In 3 out of 4 cases, upfront XOR is 

utilized. For a statement whose location in the w exhibit is a numerous of four, a more random 

capacity is utilized.  
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1. RotWord just rotates the word data by a one-byte round left movement. This implies 

that a data word [a0, a1, a2, a3] is changed into [a1, a2, a3, a0].  

2. SubWord substitutes every bytes of the word using byte substitution method , utilizing 

the S-box portrayed prior.  

3. The consequence of above processes is bitwise XORed with round constant, known as 

Rcon[j]. 

The round constant (RCON) is a word (32 bit) which has the 3 right hand-side bytes are zero every 

time. Therefore, the result of an XOR of the word with Rcon is just only to achieve an XOR on 

the left hand-side byte of word. The round constant is dissimilar for each iteration and is well-

defined as	
��
�� = (	�
��, 0,0,0), withRC
1� = 	1, RC
j� = 	2 • 	RC
j	 − 1�and the 

multiplication is done over the GF (2�). 

The key expansion remained intended to be impervious to recognized cryptanalytic assaults. The 

consideration of a round-needy round steady dispenses with the symmetry, or comparability, 

between the courses in which adjust keys are produced in diverse iterations [1]. 
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4. AES ARCHITECTURE 

We have designed our AES architecture in VHDL Language using Xilinx 14.2 for Spartan 3E 

XC3s500e FPGA. Our architecture takes 128 bits of data as input along with the 128 bits of key 

along with three control signal clk, go_i, and reset signal each of single bit. The block diagram of 

the AES block is provided below in fig 4.1(a). 

 

Fig 4(a): AES Block Diagram 

Inside of AES comprises of Cipher block and a Decipher block. Cipher block is connected to 

decipher block as given below in fig 4(b). Cipher block takes all the input provided to AES block 

and give us a Cipher Text of 128 bits as output. Cipher block controls the processing of decipher 

block, it keeps the decipher block in wait state unless it is ready with the cipher text, detail 

explanation would be provided later. Decipher block takes the cipher text as input and provide us 

the decipher text which would be exactly similar to the input data. 
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Fig 4(b): Internal Schematic of AES block 
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4.1.  CIPHER 
Cipher block is basically used for the encryption of data, which takes in 128 bits of input 

data and 128 bits of key. This block process the data only at the appropriate signal given by 

the three control signal namely clk (it is a clock signal), reset (used to reset various data), and 

go_i (it controls the control unit). It provide us with the cipher text of 128 bits and a control 

signal go_d of one bit used to control the decipher block. We will discuss the complete 

schematic, data path, control unit of the cipher block below in fig 4.1. 

 

Fig 4.1(a): block schematic of data path of cipher block. 

 

Fig 4.1(b): Control Unit of Cipher block 
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4.1.1. SCHEMATIC 

 

Fig.4.1.1: internal schematic of Cipher block. 

The above figure (Fig.4.1.1) shows the connection between the control unit and the datapath of the 

cipher block. The control unit controls the datapath (cipher_mod) with various control signal 

namely count_en (used to control the counter in datapath), load_reg (used to load data at the 

rgisters), load_rgk (used to load key register), enable (used to control various transformation 

blocks), sline (used as select signal to select between input data and last round result), rnd_in and 

rnd_out are the round signal containing round count. 
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4.1.2. DATA PATH 

 

Fig.4.1.2: Datapath for AES CIPHER 

 

The above figure (Fig .4.1.2) is the datapath of the cipher block which shows the connection of the 

various components of the datapath and the flow of data. It consist of 4 transformation processes 

named as byte substitution, row shift transformation, mix column transformation and add around 

key which uses a key expansion unit which produces a new key each round. The above 4 processes 

takes in a 128 bit data and transform it according an algorithm. The output signal Sa is feedback 

to multiplexer which selects between it and input data depending upon the output of the control 

unit. The registers above load on the appropriate condition provided by the control unit. Each 

transformation block also execute there algorithms if the control unit allows them to. In short the 

data path works under the guidance of the control unit. 
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4.1.3. STATE DIAGRAM 
 

 

 

Fig.4.1.3: State diagram of Cipher 

 

The above figure (Fig – 4.1.3) is the state diagram of cipher which shows how the state 

transformation takes place which is started from init state. It proceeds to S0 when it receives a 

signal named as go_i. This state has four states to follow, it goes to state S1 when round is 0. It 

goes to S2 when round is less than 10, to S3 for round = 10 and to S4 for round > 10. Each state 

from S1 – S4 returns back to S0. S4 sets the round count back to 0. 

4.1.4. Tabular Description of State 

The table 4.1.4 provided below clearly shows what control unit asks the data path to 

perform at various state which depends on round count. State init is the initial state or a reset state 

which resets all data to 0 and maintain the round count to 0. State S0 is the selection state where 

we select the data which is needed to process further i.e. between input data and the result of the 

previous round, in round 0 it selects the input data whereas for rest of the round it reselects the 

output of the previous round. State S1 is used to process only add round key. State S2 is used to 

process all the four transformation processes. State S3 is used to process all the processes except 

mix column transformation and also to load the output register. State S4 is just like the init state 

S0

R
=

0

S1

S2

S3S4

INIT
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used to reset round to 0. All the register are loaded excluding output register in state S1 and S2 

and including output register in state S3. Counter is enabled in state S1, S2 and S3. 

 

 

 INIT S0 S1 S2 S3 S4 

BYTE 
SUBSTITUTION 

NO NO NO YES YES NO 

ROW SHIFT 
TRANSFORMATION 

NO NO NO YES YES NO 

MIX COLUMN 
TRANSFORMATION 

NO NO NO YES NO NO 

ADD ROUND KEY NO NO YES YES YES NO 

RESULT REGISTER 
LOADING 

NO NO NO NO YES NO 

REGISTERS 
LOADING 

NO NO YES YES YES NO 

SLINE 0 0/1 0 1 1 1 

ROUND 0 Input Input Input Input 0 

COUNTER OFF OFF ON  ON ON OFF 

Table 4.1.4 State description of control unit of cipher block 
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4.2.  DECIPHER 

Decipher block is basically used for the decryption of cipher text, which takes in 128 bits of 

cipher text from cipher block and 128 bits of key. This block process the data only at the 

appropriate signal given by the three control signal namely clk (it is a clock signal), reset (used to 

reset various data), and go_i (it controls the control unit). It provide us with the decipher text of 

128 bits. We will discuss the complete schematic, data path, control unit of the cipher block below 

in fig 4.2. 

 

Fig 4.2(a): block schematic of decipher. 

 

Fig 4.2(b): Control Unit of Decipher block 
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4.2.1. SCHEMATIC 
 

 

Fig.4.2.1: internal schematic of decipher block. 

The above figure (Fig.4.2.1) shows the connection between the control unit and the 

datapath of the decipher block. The control unit controls the datapath (decipher_mod) with various 

control signal namely count_en (used to control the counter in datapath), load_reg (used to load 

data at the rgisters), load_rgk (used to load key register), enable (used to control various 

transformation blocks), sline (used as select signal to select between input data and last round 

result), rnd_in and rnd_out are the round signal containing round count. 

 

 

 

 

 



           Page 41 | 60 
 

4.2.2. DATA PATH 
 

 

 

Fig.4.2.2: Datapath for AES DECIPHER 

 

The above figure (Fig – 3.2) is the datapath of the decipher block which shows the 

connection of the various components of the datapath and the flow of data. It consist of 4 

transformation processes named as inverse byte substitution, inverse row shift transformation, 

inverse mix column transformation and add around key which uses a key expansion unit which 

produces a new key each round. The above 4 processes takes in a 128 bit data and transform it 

according an algorithm. The output signal Sa is feedback to multiplexer which selects between it 

and input data depending upon the output of the control unit. The registers above load on the 

appropriate condition provided by the control unit. Each transformation block also execute there 

algorithms if the control unit allows them to. In short the data path works under the guidance of 

the control unit. 
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4.2.3. STATE DIAGRAM 
 

 

Fig.4.2.3: State diagram of Cipher 

 

The above figure (Fig – 4.2.3) is the state diagram of decipher which shows how the state 

transformation takes place which is started from init state. It proceeds to S0 when it receives a 

signal named as go_i. This state has four states to follow, it goes to state S1 when round is 10. It 

goes to S2 when round is greater than 0, to S3 for round = 00 and to S4 for round > 10. Each 

state from S1 – S4 returns back to S0. S4 sets the round count back to 10. 

 

4.2.4. TABULAR DESCRIPTION OF STATE 
 

The table provided below clearly shows what control unit asks the data path to perform at 

various state which depends on round count. State init is the initial state or a reset state which 

resets all data to 0 and maintain the round count to 10. State S0 is the selection state where we 

select the data which is needed to process further i.e. between input data and the result of the 

previous round, in round 0 it selects the input data whereas for rest of the round it reselects the 

output of the previous round. State S1 is used to process only add round key. State S2 is used to 
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process all the four transformation processes. State S3 is used to process all the processes except 

inverse mix column transformation and also to load the output register. State S4 is just like the init 

state used to reset round to 10. All the register are loaded excluding output register in state S1 and 

S2 and including output register in state S3. Counter is enabled in state S1, S2 and S3. 

 

 

 INIT S0 S1 S2 S3 S4 

INVERSE BYTE 
SUBSTITUTION 

NO NO NO YES YES NO 

INVERSE ROW SHIFT 
TRANSFORMATION 

NO NO NO YES YES NO 

INVERSE MIX 
COLUMN  

NO NO NO YES NO NO 

ADD ROUND KEY NO NO YES YES YES NO 

RESULT REGISTER 
LOADING 

NO NO NO NO YES NO 

REGISTERS 
LOADING 

NO NO YES YES YES NO 

SLINE 0 0/1 0 1 1 1 

ROUND 10 Input Input Input Input 10 

COUNTER OFF OFF ON  ON ON OFF 

Table 4.2.4: State description of control unit of decipher block 
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4.3.  TRANSFORMATION BLOCKS 
 

Transformation blocks takes the data and transform it according to an algorithm to another 

data. Each block transforms when the enable signal is high else it return the input as output when 

the signal is low. In this architecture we have designed two types of block depending upon the bit 

size, one for 128 bits of input and output other 4 bit of input and output.
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4.3.1. Byte Substitution 

We have already explained the main procedure of the byte substitution in section 3.4.1, 

here we are introducing the schematic of the process which is shown below in the fig 4.3.1. Its 

internal schematic uses a function called as STATE_SUB, this function is defined along with other 

function stated in later stage is defined in package created by us as AES_package. All the block 

process with a high enable, else returns the input as output. 

 

Fig 4.3.1: Block Schematic of Byte Substitution process  

4.3.2. Row Shift Transformation 

We have already explained the main procedure of the row shift transformation in section 

3.4.2, here we are introducing the schematic of the process which is shown below in the fig 

4.3.2. Its internal schematic uses a function called as row_shift. 

 

Fig 4.3.2: Block Schematic of Row Shift Transformation 
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4.3.3. Mix Column Transformation 

We have already explained the main procedure of the mix column transformation in 

section 3.4.3, here we are introducing the schematic of the process which is shown below in the 

fig 4.3.3. Its internal schematic uses a function called as mix_column. 

 

Fig 4.3.3: Block Schematic of Mix Column Transformation 

 

4.3.4. Add Round Key 

We have already explained the main procedure of add round key in section 3.4.4, here we 

are introducing the schematic of the process which is shown below in the fig 4.3.4. Its internal 

schematic uses a function called as add_round_key. 

 

Fig 4.3.4: Block Schematic of Add Round Key 
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4.3.5. Inverse Byte Substitution 

We have already explained the main procedure of the inverse byte substitution in section 

3.4.1, here we are introducing the schematic of the process which is shown below in the fig 

4.3.5. Its internal schematic uses a function called as STATE_INV_SUB. 

 

Fig 4.3.5: Block Schematic of Inverse Byte Substitution process  

4.3.6. Inverse Row Shift Transformation 

We have already explained the main procedure of the inverse row shift transformation in 

section 3.4.2, here we are introducing the schematic of the process which is shown below in the 

fig 4.3.6. Its internal schematic uses a function called as inv_row_shift. 

 

Fig 4.3.6: Block Schematic of Inverse Row Shift Transformation 
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4.3.7. Inverse Mix Column Transformation 

We have already explained the main procedure of the inverse mix column transformation 

in section 3.4.3, here we are introducing the schematic of the process which is shown below in 

the fig 4.3.7. Its internal schematic uses a function called as inv_mix_column. 

 

Fig 4.3.7: Block Schematic of Inverse Mix Column Transformation 

 

4.3.8. Key Expansion unit 

We have already explained the main procedure of the key expansion unit in section 3.4.5, 

here we are introducing the schematic of the process which is shown below in the fig 4.3.8. Its 

internal schematic uses a function called as key_exp_unit. 

 

Fig 4.3.8: Block Schematic of Key Expansion Unit 
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4.3.9. Up Counter 

This block is used to increase the round number in cipher block when we need to move to the next 

round. The schematic of the block is shown below in the fig 4.3.9. 

 

Fig 4.3.9: Block Schematic of the Up Counter, Fig 4.3.10: Block Schematic of the Down Counter 

 

4.3.10. Down Counter 

This block is used to decrease the round number in decipher block when we need to move to the 

next round. The schematic of the block is shown above in the fig 4.3.10. 

4.3.11. Register 

 

Fig 4.3.11: Block Schematic of a register 

This block is used to load the 128 bits of data and save it for future processing, the block 

schematic of the register is shown above in fig 4.3.11.  
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5. RESULTS 
5.1.  MATLAB GUI IMPLEMENTATION 

 

 

Fig 5.1 Gui Result 

A Graphical User Interface was designed as shown above for the purpose of encryption and 

decryption using Advanced Encryption Standard algorithm. Here we have provided a 16 bytes 

(128 bits) key word and plain text of unknown length. We can clearly see the cipher text and the 

decipher text as generated. 
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5.2.  VHDL SIMULATION RESULTS 
 

5.2.1. Byte Substitution 
 

 

Fig. 5.2.1: Byte Substitution waveform. 

The above figure 5.2.1 signifies the waveforms produced by the substitution byte transformation.  

The input clock is of 10ns time period, Reset is high, and 128 bits state as a std_logic_vector. The 

output obtained is exactly as described in the segment 3.4.1. 

 

5.2.2. Row Shift Transformation 
 

 

Fig.5.2.2: row shift transformation waveform. 

The above figure 12 signifies the waveforms produced by the row shift transformation.  The input 

clock is of 10ns time period Reset is high, and 128 bits state as a std_logic_vector. The output 

obtained is exactly as described in the segment 3.4.2.      
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5.2.3. Mix Column Transformation 
 

Fig.5.2.3: mix column transformation waveform. 

The above Fig: 5.2.3 signifies the waveforms produced by the Mix Columns transformation and 

its block architecture.  The input clock is of 10ns time period, Reset is high, and 128 bits state as 

a std_logic_vector. The output obtained is exactly as described in the segment 3.4.3. 

5.2.4. Add Round Key 

 

Fig.5.2.4: add round key transformation waveform 

The above figure 14 signifies the waveforms produced by add round key transformation.  The 

input clock is of 10ns time period, Reset is high, and 128 bits state as a std_logic_vector. The 

output obtained is exactly as described in the segment 3.4.4. 
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5.2.5. Inverse Byte Substitution 

Fig.5.2.5: inv. byte substitution waveform. 

The above figure 5.2.5 signifies the waveforms produced by the Inverse byte substitution 

transformation.  The input clock is of 10ns time period, Reset is high, and 128 bits state as a 

std_logic_vector. The output obtained is exactly as described in the segment 3.4.1. It is to be noted 

that this block reversed the effect of the byte substitution transformation. 

5.2.6. Inverse Row Shift Transformation 
 

 

Fig.5.2.6: inv. row shift transformation waveform 

The following figure 5.2.6 signifies the waveforms produced by the Inverse row shift 

transformation.  The input clock is of 10ns time period, Reset is high, and 128 bits state as a 

std_logic_vector. The output obtained is exactly as described in the segment 3.4.2. It is to be noted 

that this block reversed the effect of the row shift transformation. 
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5.2.7. Inverse Mix Column Transformation 
 

 

Fig.5.2.7: inv. row shift transformation waveform      

The following figure 5.2.7 signifies the waveforms produced by the Inverse mix column 

transformation.  The input clock is of 10ns time period, Reset is high, and 128 bits state as a 

std_logic_vector. The output obtained is exactly as described in the segment 3.4.3. It is to be noted 

that this block reversed the effect of the mix column transformation. 

 

5.2.8. Key Expansion unit 
 

 

Fig.5.2.8: key expansion waveform 

The above figure 15 signifies the waveforms produced by the key expansion unit and its and its 

block architecture.  The input clock is of 10ns time period, Reset is high, and 128 bits state as a 

std_logic_vector. The output obtained is exactly as described in the segment 3.4.5. 
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5.2.9. CIPHER 
 

 

Fig.5.2.9: test bench waveform of cipher block. 

The above figure 5.2.9 signifies the waveforms produced by the cipher.  The input clock is of 10ns 

time period, Reset is high, go_i, 4 bit rend_in, sline, load_rgk, 4 bit select line, 4 bit load register 

and 128-bit state as a std_logic_vector whose outcome is encrypted as described in AES algorithm. 

Cipher block is designed using six sate FSM. 

5.2.10.  DECIPHER 
 

 

Fig.2.4: test bench waveform of Decipher block. 

The above figure 2.4 signifies the waveforms produced by the 128-bit Decipher and its block 

architecture.  The input clock is of 10ns time period, Reset is high, go_i, 4 bit rnd_in, sline, 

load_rgk, 4 bit select line, 4 bit load register and 128-bit state as a std_logic_vector whose outcome 

is encrypted as described in AES algorithm. Decipher block is designed using six sate FSM. 
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5.2.11. AES  
 

Fig. 5.2.11(A): test bench waveform of Decipher block up to 400ns.

 
Fig. 5.2.11(B): test bench waveform of Decipher block from 400ns to 900ns period. 

 

Above waveform shows the complete result of AES where data is the input data, key is 128 bit 

input key, cipher is the ciphered text and decipher is the deciphered text. 
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5.2.12. DESIGN SUMMARY 

 

Fig 5.2.12: Design Summary 

The Final design summary of the project is as shown in the above figure 5.2.12. This design 

summary is done keeping in the view that we are using Spartan 3E XC3s500e FPGA. Though 

IOBs count is quite high it can be managed by decreasing the input and output parameters like 

taking data and key as an input one at a time and visualizing the cipher text and decipher text one 

at a time, this can decrease the IOBs to quite low. Rest of the logic blocks utilization’s are quite 

low, thus we can implement our project in the above stated FPGA board. 
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6. CONCLUSION  

• We have developed an optimized and process able VHDL code for the implementation of 

both encryption and decryption process.  

• The FPGA resource used was drastically decreased from past result which can be seen in 

the fig 5.2.12. 

• Hence, Advanced Encryption Standard architecture designed by us can be executed with 

rational efficiency on a Spartan 3E XC3s500e FPGA. 
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