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Abstract  

 

 

The recent technological progressions in industries have offered ascent to the 

continually growing requests for microstructures, sensors, and parts. Micro-milling is a 

promising method to create these scaled down structures, sensors, and parts. Yet, micro-

milling still confronts some significant difficulties, tormenting further provision of this 

innovation. The most noticeable around them is micro burr formation. Burrs created along the 

completed edges and surfaces in micro-milling operation have huge effect on the surface 

quality and performance of the completed parts and microstructures. In any case, deburring of 

micro-parts is not conceivable because of bad accessibility and tight tolerances in micro 

segments. One of the methods to minimize micro burr formation in micro milling is by 

enhancing the geometry of the device. As minimization of micro burrs still remains a key test 

in micro machining, not many researchers have worked in this field. The main aim of the 

research work is to present finite element analysis of flat end mill micro cutters used in micro 

milling by varying geometry of the tools. Apart from this, study has been done in detail on 

burr formation in micro milling and what factors affect it. Burr formation simulation has been 

carried out while varying the tool geometry. 

The outcome of the research will be a static finite element analysis of micro burrs 

formed during micro-milling which can help in determining tool life and a detailed dynamic 

analysis of micro burrs formed during micro-milling operation in Al6061-T6 which can 

benefit the aerospace industry in various ways. The results obtained during the analysis may 

be used for further research for burr minimization through tool optimization and process 

control. 
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Chapter 1. Introduction  

  

  

1 

C  H  A  P  T  E  R  1  

Introduct ion  

 

 

 The fabrication of a wide variety of parts and products in various fields, like 

aeronautics, automotives, biomedical, medical and electronics requires proper finishing for 

proper mating and functioning of products. A variety of operations like milling, drilling, 

turning, grinding, EDM and water jet cutting are utilised to fabricate and finish parts. One of 

the most common and important form of machining is the milling operation, in which material 

is cut away from the workpiece in the form of small chips by feeding it into a rotating cutter 

to create the desired shape. Milling is typically used to produce parts that are not axially 

symmetric and have multiple features, such as holes, slots, pockets, and even three 

dimensional surface contours. Contoured surfaces, which include rack and circular gears, 

spheres, helical, ratchets, sprockets, cams, and other shapes, can be readily cut by using 

milling operation. Recently, micro milling process has gained immense popularity due to 

market requirements and technological advancements which has lead to fabrication and use of 

micro structures. It possesses several advantages like ease of use, capability to produce 

complex three dimensional geometries, process flexibility, low set-up cost, wide range of 

machinable materials and high material removal rates. 

 This chapter develops the background for the present work and discusses the need to 

take up this work. It presents a review of available relevant literature. Objectives of the 

present work along with methodology adopted to accomplish them are also discussed here. 

1.1 Background 

 With the growth in technology, the expectations from products have greatly increased. 

More and more complex shaped parts of varying sizes are being designed, developed and used 

for a wide variety of industrial applications. The commercial success of a new product is 
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strongly influenced by the highest possible quality and productivity achieved. This can be 

achieved only when the parts and/or products have excellent surface finish. 

 One of the important causes of poor surface finish is the formation of burrs along the 

machined edges / boundaries. The impact of burr formation on the surface finish of 

microstructures is much more significant than in case of macrostructures because of 

comparable sizes of burrs and the parts formed during micro machining. Deburring in this 

case is expensive, and sometimes impossible, and, hence, the only solution is to minimise the 

formation of burrs. 

 To realize any surface accurately using conventional subtractive machining process, 

two most important factors to be properly controlled are: geometry of the cutting tool and the 

kinematic structure of the machine tool. The cutting tool geometry along with the relative 

motion between the cutting tool and the work piece generates the profile of the cut. Even the 

shapes not possible to manufacture earlier are achievable due to increased control of machine 

tools by CNC controllers. Optimising the cutting tool geometry or the machining parameters 

or both, can help in the control of burr formation in micro machining. 

1.2 Motivation 

 Conventional milling has a wide range of industrial applications and is used where 

there is a requirement of complex shapes, removal of large amounts of material, and accuracy. 

However, with the advancement in technology, more and more industries are leaning towards 

the use and fabrication of miniaturized parts and products. In the present scenario, 

micromachining is increasingly finding application in various fields like biomedical devices, 

avionics, medicine, optics, communication, and electronics. Among all micro-machining 

operations, micro-milling and micro-drilling are the two most important operations. 

 In today’s competitive world, every industry is dependent on the adequate 

functionality of its micro components. Automobile and aerospace industries need extremely 

good quality machined components due to greater complexity of the workpiece, tighter 

tolerances, miniaturization and use of new composite materials. In case of biomedical devices, 

there are stringent requirements for form and finish of the product like metallic optics and 
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cochlear implants. Good surface finish of micro-components is needed for proper functioning 

of the products, and for proper mating of micro-parts. 

 Protruding edges at the boundary of the machined surface are called burrs. Burr 

removal is necessary for good surface finish. In case of conventional milling, surface finishing 

is done by either improving the machining setup or changing the tool geometry. Burr removal 

can be done by using various deburring processes. However, controlling burr formation in 

micro milling can be very challenging because of the sub-micrometer size of the burrs 

produced. Furthermore, in micro-milling operation, deburring solutions utilized in 

conventional machining are not allowed due to inherent material characteristics or limitations 

in part geometry. Deburring processes allowed in micro milling are expensive and can lead to 

microstructural damage. Optimisation of various machine parameters, like cutting speed, feed 

rate and depth of cut, or tool parameters, like rake and relief angle, can help in minimization 

of micro-burrs in micro milling operations. An accurate surface geometry of micro milling 

cutters is one of the essential parameters responsible for the control of micro burrs in micro 

milling. 

 Very limited work has been done on the control and minimisation of micro burrs 

formed during micro milling operation. Virtual finite element analysis of micro burr 

formation during micro milling process is a cost effective method for obtaining optimised tool 

parameters for minimum burr formation. 

1.3 Problem Definition 

This work is an attempt to optimize micro milling tool parameters for minimization of micro 

burrs formed during micro machining. The objectives of this work are stated as follows: 

 To develop three-dimensional solid models of two flute and four flute flat-end micro 

milling cutters. 

 To perform the static finite element analysis of the tools during micro milling. 

 To perform the finite element detailed analysis of the tool and work piece combination 

during micro milling. 

 To perform burr formation simulation in micro milling. 
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1.4 Manufacturing Processes and its Classification 

 Manufacturing can be defined as value addition processes, which produces high utility 

and valued products from raw materials of low value and utility. The procedure of 

manufacturing confers some practical capability with definite dimensions, structure and 

completion to crude materials of lacking material properties and poor or irregular size, shape 

and completion. The center of manufacturing operations is the methodology answerable for 

converting the shape, size and completion of the object. 

Manufacturing processes can be broadly classified in three major groups, namely,  

(i) substractive machining (removal processes),  

(ii) additive manufacturing, (deposition of material in an empty volume or layer) and;  

(iii) shaping or forming processes (plastic deformation)l.  

 

Figure 1,1 shows the different classes of manufacturing processes. The purpose of all these 

manufacturing processes is shape realization. 

 

 

Figure 1.1: Classification of Manufacturing Processes 

 

Manufacturing Processes

Subtractive Machining Additive Manufacturing Forming Processes

Conventional 

Machining
Non-traditional 

Machining 
Processes

(e.g. EDM, 
USM, ECM, 
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WJM etc.)

Conventional 

e.g. Welding, 

Soldering etc.

Non Conventional

(Rapid Prototyping 

Processes)

Conventional 

like casting, 

forging etc.

Non conventional 

like 3D laser 

forming, laser 

bending etc.
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1.5 Metal Cutting 

 Basically, machining is a semi-finishing or finishing process where the excess material 

is removed in the form of chips from the preformed blanks in order to impart required 

dimensional and structural accuracy and surface finish. It provides a higher degree of 

geometric complexity to the work. 

 The cutting tool is an important elements to realize the full potential out of a 

machining operation. It includes relative movement of the cutting tool(s) with respect to the 

work surface(s) to produce the machined surface. The material is made to flow by pressing 

against the hard edge(s) of the cutting too. Shear deformation produced over the tool face 

removes excess material. 

 A cutting tool consists of two groups of functional parts. The first group contains 

surfaces and edges responsible for cutting operation. These are critical tool elements form 

teeth of the cutter. The second group consists of cylinder, hub, shank, disk etc. on which the 

cutting elements are established. These form cutter body and are non-critical and are meant 

for completion of the geometry.  

 Face(s) or rake surface(s), flanks, land, cutting edges and the corner(s) or nose 

constitute cutting tool geometry. Face is the tool surface along which chip flows out, while 

flanks are surfaces that face the workpiece. The land is part of the back of the tooth that is 

adjacent to cutting edge. It is relieved to provide good mating between the machining surface 

and tool. The cutting edge is intersection of the tooth face with the land leading edge. The 

basic cutting tools can be single-point or multi-point, based on the cutting element geometries.  

1.5.1 Single-Point Cutting Tools
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1.5.2 Multi-Point Cutting Tools 

 

1.5.3 Milling and Micro Milling 

 Milling is a subtractive shape realization process that removes a predetermined amount 

of material from the work piece with a cutting tool rotating at a comparatively high speed. 

The cutting tool used for the purpose has multiple cutting teeth. The characteristic feature of 

the milling process is that each milling cutter tooth removes its share of the stock in the form 

of small individual chips during each revolution from the advancing work. 

 

Table 1.1: Relative Motion of various Cutting Operations 

 

Operation Motion of Cutting Tool Motion of Workpiece 

Turning Translation Rotation 

Shaping Translation Intermittent Translation 

Planing Intermittent Translation Translation 

Milling Rotation Translation 

Drilling Rotation and Translation Fixed 

Boring Rotation Forward Translation 

Hobbing Rotation and Translation Rotation 

Surface Grinding Rotation Translation 

 

 Micro milling is used to make miniaturized parts with feature sizes ranging typically 

from one micron to several millimetres. A wide variety of operations can be performed during 
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micro milling since both the workpiece and the cutter can be moved relative to one another in 

combination or independently.  

 

 

Figure 1.2: Various miniaturized components 

 Micro milling consists of two motions: cutter rotation about its axis and a feed motion. 

In some applications, the feed is given to the workpiece while in others workpiece is 

stationary and the cutter traverses across with a given feed rate. The motion of feed is along a 

straight line in milling flat and cylindrical surfaces, rotary in milling surfaces of revolution 

and helical in milling helicoidal surfaces.  

 Micro milling applications include the production of flat or contoured surfaces, 

recesses, slots, bodies of revolution, profile surfaces, threads, grooves and other 

configurations.  

1.6 Review of Literature 

 In direction of micro cutting tools, researchers have approached few works related to 

modeling and analysis of micro drilling (Cheong [1999], Hinds [2000], Kudla [2001], Endo 

[2006], Nakagawa [2007], Chen [2007], Kim [2008], Fu [2010], Zhang [2011], Aziz [2012]). 

In the field of micro milling cutters, some work has been significantly explored.  Bao et al. 

[2000] had presented a work discussing analytical modeling of micro end mill cutters and  
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tool run out. Vogler [2004], Jun [2006], Liu [2007] has worked on dynamic modeling and 

analysis of machining performance for surface generation and prediction of cutting forces in 

micro milling. Three dimensional dynamic force model for micro end milling have been 

investigated by Kang [2007], Li [2007], Filiz [2011], Li [2011]. Recently, Jun [2012], Wu 

[2012] & Mustapha [2013] have done the work related to cutting force and finite element 

modeling of micro milling process. 

 Modeling and control of burr formation in both macro- and micro- machining 

processes assumes a lot of significance. Gillespie [1976], Ko [1996], Chu [2000], Satish 

[2003], Alrabii [2009], etc. have discussed the burr formation and minimization in macro 

level. Besides, Kim [2004], Lee [2005], Liang [2009], Chang [2010], Lekkala [2011], Saptaji 

[2012], Chen [2012], Aziz [2012], etc. have also discussed micro burr modeling, analysis and 

minimization. 

 The finite element method (FEM) features accurate predictions on a user friendly 

graphical interface and is employed widely for modeling, simulation and optimization of 

cutting processes. Thus, the cutting process potentially allows designers and engineers to 

reduce need for costly shop-floor trials, optimizes process conditions, improves cutting tool 

design, and shortens the lead time. The analysis of stresses in micro-drills using the finite 

element method was presented by Hinds et al. [2000], who discussed correlation between the 

stresses and life of the drill bit tool. Park et al. [2000] have presented finite element model of 

orthogonal metal cutting including burr formation.  Thrust force analysis of the drilling burr 

formation using finite element model have been discussed by Min et al. [2001]. Laia et al. 

[2008]  have discussed the FE model and analytical model of micro-milling considering size 

effect, micro cutter edge radius and minimum chip thickness. Liang et al. [2011] developed a 

three-dimensional finite element model to analyze micro burr formation in micro end-milling 

process and predicted effects of tool-tip breakage and various tool edge radius on burr 

formation. The micro burr formation is dynamically simulated. Afazov et al. [2010] presented 

a new approach for predicting micro-milling cutting forces using the finite element method. 

Finite element modeling of a micro-drill bit and experiments on high speed ultrasonically 

assisted micro-drilling was conducted by Zhang et al. [2011]. 

 Recently, Chen et al. [2012] and Lekkala et al. [2011] have worked on the 

characterisation and modeling of burr formation in micro end milling. Chen et al. observed 

the effects of axial depth of cut, spindle speed and feed per tooth on size of top burr and 
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concluded that, among the three factors, axial depth is most significant. Lekkala et al. deduced 

that the depth of cut and the tool diameter are the main parameters, which influence the burr 

height and thickness significantly whereas the speed and the feed rate have small to negligible 

effect on the burr thickness and height. Zhang et al. [2013] has analysed the influence of size 

effect on burr formation in micro cutting. They examined the effect of the ratio of uncut chip 

thickness to cutting edge radius on the height of Poisson burr. The work related to 

minimization of micro-burr through process control has been elaborately discussed by K. Lee 

[2005]. 

1.7 Scope of the Present Work 

 The outcome of the research will be a static finite element analysis of micro burrs 

formed during micro-milling which can help in determining tool life and detailed dynamic 

analysis of micro burrs formed during micro-milling operation in Al6061T6 which can benefit 

the aerospace industry, which utilises this alloy for fabrication of a large number of 

components. The results obtained during the analysis may be used for further research for burr 

minimization through tool optimization and process control. 

1.8 Flow of Work 

The approach adopted to accomplish the present work is by: 

(i) Generating CAD models of two flute and four flute micro end milling cutters as well 

as of the workpiece. 

(ii) Performing detailed FEA on each of the tool and by varying tool parameters in each 

case. 

(iii) Performing simulation of the burr formed during the process. 

(iv) Results in the form of Von Mises Stress and deformation of selected micro cutters. 

1.8.1  Proposed Method for Analysis 

Various outputs and characteristics of the metal cutting processes such as cutting forces, 

stresses, temperatures, chip shape, etc. can be predicted by using FEM without doing any 

experiment. 



Chapter 1. Introduction  

  

  

10 

 

 

1.8.1.1 Lagrangian method 

 Lagrangian formulation is used mainly in problems on solid mechanics. In this, the 

mesh moves and distorts with the material being modeled as a result of forces from 

neighboring elements. It is highly preffered when flow of material involved is unconstrained. 

Boundaries and chip shape need not be known beforehand. Simulation of discontinuous chips 

or material fracture can be done by using chip separation criteria in metal cutting models 

based on Lagrangian formulation. However, metal being suffers severe plastic deformation 

and distortion occurs. Mesh regeneration is therefore needed. Chip separation criteria also 

must be provided. 

 

1.8.1.2 Eulerian method 

 In Eulerian formulation, the FE mesh is fixed spatially, which allows materials to flow 

from one element to the next. Besides, fewer elements are required for the analysis, which 

reduces the computation time. However, determination of the boundaries and the chip shape 

needs to be done prior to the simulation. Also during the analysis, the tool-chip contact length, 

the contact conditions between tool-chip and the chip thickness, have to be kept constant. 

 

1.8.1.3 Arbitrary Lagrangian-Eulerian (ALE) method 

 Arbitrary Lagrangian-Eulerian (ALE) combines the best features of Eulerian and 

Lagrangian formulations. In ALE formulation, the material flow is followed and Langrangian 

step is used to solve displacement problems, while the mesh is repositioned and Eulerian step 

is used to solve velocity problems. Eulerian approach is used for modeling the tool tip area 

where cutting process occurs. Hence, without using remeshing, severe element distortion is 

avoided. Lagrangian approach is used for the unconstrained material flow at free boundaries. 
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Figure 1.3: Eulerian and Lagrangian boundary conditions in ALE simulation 

1.9 The Layout of the Thesis 

A brief overview of the work carried out in the thesis and organization of the same are 

summarized below. 

Chapter 1 presents the background, motivation and problem definition of the thesis 

work. Here, brief information is given for the manufacturing processes, cutting tools available 

and a brief description of milling and micro milling operations. It is followed with a brief 

review of the relevant literature. This chapter concludes with the scope of the work along with 

the methodology adopted to accomplish the work. 

Analytical modeling of a micro end mill is presented in Chapter 2. The chapter 

describes force models obtained during micro milling operations and micro burr formation. 

Chapter 3 gives a detailed description of burrs formed during micro milling. It includes 

types of burrs, mechanism of burr formation and various cutting parameters that affect the 

characteristics of the burrs formed. 

Chapter 4 deals with three dimensional CAD modeling of different two flute and four 

flute micro flat end mills by using different rake and relief angles. The virtual tool models are 

developed using CATIA V6 environment. The chapter further presents details of the finite 

element static analysis performed on the tool. It includes material properties of the tool and the 
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workpiece as well as the machining parameters and the tool parameters chosen to carry out the 

analysis. 

 Chapter 5 deals with the dynamic finite element analysis performed on the tool and work 

piece. It also shows the simulation of micro burrs formed during the micro milling process. 

Chapter 6 summarizes the significant findings of the work performed and provides 

some recommendations for future work that would be further helpful in the minimization of 

micro burrs during micro milling operation.  
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Micro  Mi l l ing  Burrs  

 

 

2.1 Introduction 

 Burrs structured in processing and also micro-processing operations are points of far 

reaching examination in light of the fact that these operations discover requisitions in passes 

on and molds utilized as a part of the injection molding of micro fluidic gadgets, prototyping 

and assembling of energy components (micro channels), generation of tubular parts in fluid 

filtration. A few requisitions in the fields of optics, gadgets, pharmaceutical, biomedical 

gadgets, correspondences and flying oblige without burr parts. Hence, demonstrating and 

control of burr arrangement in the micromachining methods that produce micro parts accept a 

considerable measure of centrality. On the other hand, it is noted that the all the micro and in 

addition macro machining courses of action leave burrs on the machined parts. In the micro-

machining methodology, be that as it may, the burr is generally extremely troublesome to 

evacuate and, all the more vitally, burr evacuation can genuinely harm the workpiece. 

Accepted deburring operations can't be effectively connected to micro-burrs because of the 

little size of parts. Likewise, deburring may present dimensional blunders and lingering 

burdens in the part. These issues are exceedingly subject to burr size and sort. Consequently, 

the best result is to avoid burr arrangement in any case. In the event that this is not plausible, a 

second approach is to minimize burr creation. For the usage of this methodology, it is 

discriminating to comprehend the essential systems included in burr development and the 

relationship between the cutting parameters, device geometry and burr phenomena. 

2.2 Mechanism of micro burr formation 

 According to Min and Dornfeld [2004], burr formation has eight basic stages. The 

process starts with the continuous cutting stage in which burr formation is unaffected by the 

deformation and stress distribution, as long as the workpiece edge does not affect it. In the 

pre-initiation stage, the workpiece edge bends due to elastic deformation and a plastic 

deformation zone is formed around the primary shear zone. This is followed by burr 
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initiation in which the plastic deformation zone and the primary shear zone both extend. A 

pivoting point appears on the workpiece edge in the pivoting stage, and cutting forces 

decrease, leading to a large deformation. As the burr develops, it enters the negative shear 

zone development stage in which the large deformation in the pivoting point expands and 

connects with the primary shear zone. The burr size increases as the tool approaches the work 

piece edge. Following this stage, there are three more stages – crack initiation, crack growth 

and positive (in case of ductile materials) or negative (in case of brittle materials) burr 

formation. These final three stages are characterised by the ductile or brittle nature exhibited 

by the material. 

 

 

Figure 2.1: Schematic of the burr formation process 

2.3 Types of burrs 

Figure 2.2 contains a flowchart classifying different types of burrs. 
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Figure 2.2: Flowchart showing different types of burrs formed in milling 

 Chern [1993] found that burrs formed in milling are dependent on the in-plane exit 

angle and classified burrs formed into five categories - the knife-type burr, the wave type burr, 

the curl-type burr, the edge breakout, and the secondary burr. 

 

Figure 2.3: Types of burrs based on dependency on in-plane exit angle 
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 Hashimura [1999] classifies burrs formed in milling according to burr locations as top 

burrs, side burrs, entrance burrs and exit burrs. 

 

Figure 2.4: Types of burrs based on burr location 

Gillespie [1976] classified four types of burrs based on formation mechanism - Tear, 

Rollover, Poisson and Cut-off burrs. A tear burr is the consequence of material tearing 

detached from the workpiece as opposed to shearing. The rollover burr is basically a chip that 

is bowed as opposed to sheared, bringing about a nearly bigger burr. This kind of burr is 

otherwise called a passageway burr in light of the fact that it is typically framed at the end of a 

cut in face-processing. The Poisson burr is an aftereffect of a material's tendency to lump at 

the sides when it is compacted until perpetual plastic deformation happens. It is like the burr 

shaped in punching operations. The cut-off burr is the consequence of workpiece partition 

from the crude material before the detachment cut is done. 

 

Figure 2.5: Types of burrs based on formation mechanisms 
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 A combination of the Poisson and tear burr can end up as a so-called top burr or 

entrance burr along the top edge of a machined slot, or along the periphery of a hole when a 

tool enters it (Lee [2005]). In traditional courses of action, these top or entrance type burrs are 

generously more diminutive than exit type burrs, and typically no deburring procedure is 

important. Then again, micro-top or entrance type burrs are large comparatively in light of the 

fact that the cutting edge radius is substantially large as compared to the feed per tooth. 

 

2.4 Cutting parameters affecting micro burrs 

The important characteristics of the burr are burr height, burr thickness and burr width. Major 

cutting parameters that influence these characteristics of burrs are tool diameter, depth of cut, 

feed rate, number of flutes in the milling tool and cutting speed. 

 

 

 

Figure 2.6: Indicators of burr size 

 

 In research work effectively done in this field, it has been seen that the depth of cut 

and the tool diameter are the principle parameters, which impact the burr height and thickness 

essentially. On the other hand, the velocity and the feed rate have little to immaterial impact 

on the burr thickness and height. Additionally, it has been seen that expanding the no. of 

flutes reduces the burr height in up and down milling. The proportion of uncut chip thickness 

to cutting edge radius was additionally seen to influence the height of Poisson burr. 
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C  H  A  P  T  E  R  3  

Analyt ica l  Model ing  o f  Micro  

End Mi l l  

 

 

3.1 Introduction 

 The investigation of the progress of cutting forces in any machining methodology is 

profoundly key for fitting, arranging and control of machining process and for the 

enhancement of the cutting conditions to minimize production expenses and times. Cutting 

force analysis assumes an imperative part in study of the different qualities of a machining 

process, viz. the dynamic stability, situating precision of the instrument as for the work piece, 

harshness of the machined surface and structure mistakes of the machined component, and so 

on. 

 In most micro-end-processing operations, the micro cutting device measurement 

differs from 0.1 mm to 1 mm, and anxiety variety on the modest shaft of the micro cutting 

apparatus is much higher than that on an expected scale instrument, which definitely 

abbreviates the instrument's life (Li et al. [2007]).  The tools can even break if the cutting 

conditions are not chosen likewise. Subsequently, an exact estimation of the cutting powers of 

micro-end-milling assumes an essential part in controlling the determination of cutting 

conditions with a specific end goal to monetarily acquire high machining quality and 

guarantee as long an tool life as could be expected under the circumstances. At micro level, 

we can't accept that edge radius has unimportant impacts on cutting powers. Weule et al 

[2001] discovered that the roundness of a forefront is more critical at micro scale machining. 

As the span of an instrument decreases, the sharpness of the gadget can't be upgraded 

moderately due to stipulations in the mechanical assembly creation strategies and reduction in 

the structural nature of the instrument. Along these lines, the feed per tooth in micro-

processing may be for all intents and purpose indistinguishable to or even short of what the 

cutting edge span because of the obliged reach of approach parameters for a stable machining 
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scale with the method. Yuan et al. [1996] worked on ultraprecision machining to determine 

minimum chip thickness. Kim et al [2004] tentatively confirmed that when the feed per tooth 

is practically identical with the edge radius of the apparatus, as is frequently the case in micro-

milling courses of action, the chip shaping methodology gets discontinuous and the accepted 

comprehension that a chip is framed with each tooth pass is no more legitimate. As indicated 

by their model, the base chip thickness of different consolidations of devices and work piece 

materials may be evaluated focused around effortlessly achievable cutting force information. 

 

3.2 Force Modeling 

The Coordinate system of model in end-milling operations is shown in figure 2.1.  

 

Figure 3.1: Coordinate system of model in end-milling operations 

 

Cutting forces can be modeled according to two different milling regimes.  

(i) At the point when the genuine uncut chip thickness ha(t, k) is littler than the base chip 

thickness, the work piece flexibly and plastically misshapes under the connection with the 

processing cutter, and no material is thought to be uprooted from the work piece. For 

describing the relationships of forces and actual engagement, the tangential force Ft, radial 

force Fr and axial force Fa are modeled as power functions (Kim et al. [2004]) described by, 

dFt(t, k, z) = Atha(t, k, z)
B

t dz 
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dFr(t, k, z) = Arha(t, k, z)
B

r dz 
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when ha(θ,k) < hmin 

 

 

when ha(θ, k) >= hmin 
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C  H  A  P  T  E  R  4  

Micro  End Mi l l  

 

 

4.1 Introduction 

 Different machines and different types of cutters are used to perform micro milling 

operations. Micro milling cutters rotate about their axes and have surfaces containing equally 

spaced cutting. Micro milling operation does not depend on work piece materials, dimensions 

and shapes. However, micro mill cutters are very thin and cutter deflection and vibration may 

cause degradation of tool failure and accuracy. The calculations and formulae for determining 

speeds and feeds that work reasonably well for conventional mills require changes for use in 

the case of micro milling cutters. 

 Flat and ball end milling cutters are the most common types of micro milling cutters 

used for various operations. End mills have cutting teeth at one end as well as on the sides. 

These can be broadly categorized as being one of two types: Flat end mill cutters (Flat 

bottomed cutters) or Ball nose end mill cutters ( Hemispherical-ended cutters). 

They are usually made from HSS (High Speed Steel) or cemented carbide and can have one 

or more flutes.  

 

 

Figure 4.1: Micro end mills 
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4.2 Development of Three Dimensional CAD model of micro flat 

 end mill 

The micro end mill cutters used in this work are a two flute and a four flute flat micro end 

mill cutter. Method involved in the design of a micro end mill cutter includes: 

 Creation of cross-sectional profile of the tool and helix generation 

 Flute creation using slot operation 

 Creation of back surface of the tool 

 Cutting edge generation 

Parameters involved in generating the cross sectional profile are: 

 Rake angle of the tool 

 Relief angle of the tool 

 Tool diameter 

 Number of flutes 

Parameters involved in modeling the helix are: 

 Height of the tool 

 Diameter of the tool 

 Pitch of the helix 

 Helix angle of the tool 

The three dimensional CAD models of both the flat end mills was produced by performing 

solid modeling in CATIA V6 environment. 

 

 

Figure 4.2: CATIA model of two flute micro end mill 
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Figure 4.3: CATIA model of four flute micro end mill 
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C  H  A  P  T  E  R  5  

Analys i s  and  S imulat ion  

  

 Once a three dimensional CAD model of micro end mill cutter is developed, a no. of 

downstream applications can be performed, one of which is detailed finite element analysis 

and simulation of micro end mill during micro machining. Here, the static analysis of the 

micro end mill and simulation of burr formation process in micro milling has been carried out. 

In this work, tool material used is Tungsten Carbide (WC). Cemented carbides (WC-Co) are 

recently being used instead of tungsten carbides. Cemented carbide is a composite material 

containing a binder like cobalt (Co) which provides increased tool hardness.  

 The workpiece is a cuboidal block of aluminium alloy Al6061-T6 which is used in 

many aerospace applications. Al6061-T6 is a T6 tempered aluminium alloy containing 

magnesium and silicon as its major alloying elements. 

Table 5.1: Alloy composition of Al6061-T6 

Elements Minimum (% by weight) Maximum (% by weight) 

Silicon 0.4 0.8 

Iron 0 0.7 

Copper 0.15 0.4 

Manganese 0 0.15 

Magnesium 0.8 1.2 
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Chromium 0.04 0.35 

Zinc 0 0.25 

Titanium 0 0.15 

Others 0.05 0.15 

Aluminium 95.85 98.56 

 

Table 5.2: Properties of Tungsten Carbide and Al6061-T6 

Properties Tungsten carbide 

(Tool) 

Al6061-T6 (Work 

piece) 

Units 

Density 15.63 2.703 g/cm
3 

Poisson’s Ratio 0.2 - - 

Young’s Modulus of Elasticity 550 69 GPa 

Ultimate tensile strength (UTS) 344.8 310 MPa 

Tensile Yield Strength - 276 MPa 

Specific Heat 184 885 J/kgK 
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 In research work done, it has been observed that, in case of micro milling, the depth of 

cut and the tool diameter are the main parameters, which influence the burr height and 

thickness significantly. The speed and the feed rate have been seen to have small to negligible 

effect on the burr thickness and height. 

 In the proposed method, different sets of machining parameters have been used for 

static and dynamic analysis as show in Table 5.3. These parameters have been kept constant 

during each analysis. 

 

Table 5.3: Machining parameters 

Properties Static analysis Dynamic analysis 

Cutting speed 10,000 rpm 20,000 rpm 

Feed rate 150 mm/min 500mm/sec 

Depth of cut 0.2 mm 0.1 mm 

 

Five different sets of relief and rake angles each have been used in the case of two flute and 

four flute micro end mill as input as listed in Table 5.4. 
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Table 5.4: Micro mill cutter parameters 

Properties Two flute flat end micro 

mill cutter 

Four flute flat end micro 

mill cutter 

Relief angle (degrees) 0         2 3 5 5 0         2 3 5 5 

Rake angle (degrees) 10 6 8 5 6 10 6 8 5 6 

Cutter diameter (mm) 0.30 0.38 

 

5.1 Meshing 

  Meshing can be done by using tetrahedral or hexahedral elements. More the no. of 

nodes in the element type, the greater is the accuracy of the results obtained. 

 Tetrahedral meshing is a robust meshing routine and is easier way of meshing. 

However, linear tetrahedral elements perform poorly in problems with plasticity, nearly 

incompressible materials, and acute bending. Also, tetrahedral elements consider a lot of 

approximations, even more so in complicated structures. 

 Hexahedral elements, on the other hand, give more accurate results than tetrahedral 

elements, in case of complex structures. They also consider lesser amount of approximations. 

However, hexahedral elements face difficulties at corners of parts/elements. Also, automatic 

mesh generation is often not feasible for building many three dimensional hexahedral meshes. 

 Meshing and analysis of the micro milling machining operation has been carried out 

using ANSYS 13.0 software.  The mesh generated for the end mill cutters in this work is a 

tetrahedral mesh, the properties of which are given in Table 5.5 and Table 5.6. 
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Table 5.5: Meshing Information for micro end mill cutter 

Parameters Two flute 

micro cutter 

Four flute 

micro cutter 

Nodes 5257 7190 

Elements 2920 4039 

 

                                        

              (a)               (b) 

Figure 5.1: Meshing performed on (a) two flute and (b) four flute micro end mill 

 

Figure 5.2: Meshing performed on the work piece 
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5.2 Static finite element analysis 

5.2.1 Analysis 

 For static analysis at any particular instantaneous time, forces are considered on a 

single flute in feed direction (Fx), normal direction (Fy), and axial direction (Fz) for an axial 

depth of 0.2mm. The input forces for this analysis are obtained from the work done by Zaman 

et al. [2005] in which the analytical cutting force expressions developed in were simulated for 

a set of cutting conditions and were found to be comparable to experimental results.. 

 The applied forces in feed, normal and axial directions are Fx = 3.82 N, Fy = 4.01 N 

and Fz = -0.34 N. 

 

 

Table 5.6: Cutting forces used as input 

 

Force in feed direction (Fx) 3.82 N 

Force in normal direction (Fy) 4.01 N 

Force in axial direction (Fz) -0.34 N 

Cutting force applied (Fc) 5.548 N 

 

5.2.2 Results 

  Figures 5.3 and 5.4 show the result for static analysis with deformed mesh and 

Von Mises stress respectively for the applied load for two flute flat end mill of diameter 0.3 

mm.  
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 (a) Rake angle = 0º, Relief angle = 10º    (b) Rake angle = -2º, Relief angle = 6º      (c) Rake angle = 3º, Relief angle =8º                         

 

 

 (d) Rake angle = 5º, Relief angle = 5º      (e) Rake angle = 5º, Relief angle = 6º 

 

Figure 5.3: Total deformation in the case of two flute micro end mills 

 

 

 

(a) Rake angle = 0º, Relief angle = 10º        (b) Rake angle = -2º, Relief angle = 6º         (c) Rake angle = 3º, Relief angle =8º               
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(d) Rake angle = 5º, Relief angle = 5º                (e) Rake angle = 5º, Relief angle = 6º 

 

Figure 5.4: Von Mises stress in the case of two flute micro end mills 

  

 

 Figures 5.5 and 5.6 show the result for static analysis with deformed mesh and Von 

Mises stress respectively for the applied load for four flute flat end mill of diameter 0.3 mm.  

 

 

 

 

(a) Rake angle = 0º, Relief angle = 10º    (b) Rake angle = -2º, Relief angle = 6º        (c) Rake angle = 3º, Relief angle =8º        
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(d) Rake angle = 5º, Relief angle = 5º                (e) Rake angle = 5º, Relief angle = 6º 

 

Figure 5.5: Total deformation in the case of four flute micro end mills 

 

 

 

       (a) Rake angle = 0º, Relief angle = 10º     (b) Rake angle = -2º, Relief angle = 6º   (c) Rake angle = 3º, Relief angle =8º    

 

 

(d) Rake angle = 5º, Relief angle = 5º                (e) Rake angle = 5º, Relief angle = 6º 

 

Figure 5.6: Von Mises stress in the case of four flute micro end mills 
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The results obtained are presented in Table 5.7. 

 

 

Table 5.7: Results of static finite element analysis of micro end mills 

 

N o .  o f  

f l u t e s  

R a k e  a n g l e  

( d e g r e e s )  

R e l i e f  a n g l e  

( d e g r e e s )  

M a x i m u m  

t o t a l  

d e f o r m a t i o n  

( m m )  

M a x i m u m  

V o n  M e s i s  

s t r e s s  

( M P a )  

 

 

2  

0  1 0  0 . 0 1 1 5 3 2  1 3 6 4 . 8  

- 2  6  0 . 0 6 3 9 8 9  3 3 9 . 4 9  

3  8  0 . 0 0 6 7 3 6  4 6 1 . 2 8  

5  5  0 . 0 0 6 6 0 5  3 6 9 . 1 4  

5  6  0 . 0 0 7 2 5 5 3  5 0 5 . 5 2  

 

 

4  

0  1 0  0 . 0 0 3 3 0 7 6  6 5 4 . 4 1  

- 2  6  0 . 0 0 3 3 0 4 3  6 5 0 . 3 1  

3  8  0 . 0 0 3 4 2 4 8  5 6 7 . 4 3  

5  5  0 . 0 0 3 4 8 3 3  7 0 8 . 0 7  

5  6  0 . 0 0 3 4 6 0 7  6 9 7 . 2 8  

 

 From Table 5.6 it can be seen that a two flute micro end mill cutter with rake angle -2º 

and relief angle 6º takes the least amount of Von Mises equivalent stress. In case of four flute 

micro end mills, the least amount of Von Mises stress is taken by tool with rake angle 3º and 

relief angle 8º. 

 The deformation values shown in the above figures actually occur momentarily due to 

vibration of the cutter which is not taken into account during the analysis. 

5.3 Dynamic finite element analysis and simulation of burr formation of 

 two flute micro end mill 

5.3.1 Analysis 

 In order to observe burr formation and chip flow mechanism in a virtual environment, 

an explicit analysis has to be done on the tool and work piece interaction. In this paper, we 
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have achieved the same using ANSYS software. Two different two flute micro end mills have 

been used for dynamic finite element analysis. ALE has been used for carrying out the 

analysis. Reference frame for the tool is chosen to be Langrangian and that for the workpiece 

is chosen to be Eulerian. 

 In order to get required interaction between the two bodies, the required body 

interaction constraints among them must be defined properly. Since the desired result is the 

simulation of machining operation, the contact between the tool and the work piece has to be 

frictional in nature. When the tool runs over the work piece, the friction generates heat 

energy. The chip carries the heat from the work piece and releases it in the environment. So a 

frictional contact is defined between the tool and the work piece. The static coefficient of 

friction is kept to be 0.39 and the dynamic coefficient of friction is kept to be 0.32 (Raczy et 

al.). 

 The work piece is fixed from three faces. The two side faces are given zero degree of 

freedom as they are constrained using mechanical fixtures while machining. The lower 

surface is given zero degree of freedom as they are held using vacuum fixtures. The tool is 

provided with an angular velocity of 20,000 rpm (Campos et al. [2013]). In the input 

variables, tool is provided with a linear velocity, which represents the feed rate of our 

machining operation. The feed rate in our setup is fixed to be 500 mm/sec (Campos et al. 

[2013]). The end time specifies the no. of iterations to be performed by the solver and informs 

the solver when to stop the process. Since the work piece is 20 mm in length, and the feed rate 

is 500 mm/sec, an end time of 0.05 seconds was chosen so that the entire tool length can be 

covered in the simulation. The total time taken in order to solve is 120 hours. 

5.3.2 Results 

        

     (a) Entry of tool into the workpiece               (b) Chip formation initiation 
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 (c) Chip flow    (d) Chip separation  (e) Exit of tool from workpiece 

Figure 5.7: Simulation of micro burr formation using tool with rake angle 3º and relief angle 8º 

 

 

   (a) Entry of tool into the workpiece                      (b) Chip formation initiation 

 

 

       (c) Chip flow       (d) Chip separation          (e) Exit of tool from workpiece 

Figure 5.8: Simulation of micro burr formation using tool with rake angle 5º and relief angle 6º 
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C  H  A  P  T  E  R  6  

Conclus ions  and  Future  

Direct ions  

 

 

 This chapter concludes the technical sum-up of the thesis work on three-dimensional 

geometric modeling and analysis of micro end milling cutters and simulation of micro burrs 

formed during micro milling of Al6061-T6 alloy by using a tungsten carbide two flute micro 

end mill cutter. This is followed by directions for future work.  

6.1 Concluding remarks 

 Burr formation is a major hindrance to good surface finish in case of both macro and 

micro milling. However, burr formation in case of micro milling is of greater importance than 

in case of conventional milling as burrs formed in the former case are of sub-micrometer size 

and deburring processes are expensive, and sometimes impossible. Hence, burr minimization 

is the only way of obtaining good surface finish in microstructures. 

 To minimize formation of burrs in case of micro milling, either the cutting conditions 

or the tool geometry can be optimized. In this work, tool geometry optimization has been tried 

to be achieved by performing FE analysis on tools with different sets of rake and relief angles, 

for both two flute and four flute micro end mills. The results of the static finite element 

analysis of the tungsten carbide flat end micro milling tools offer the conclusion that in the 

given cutting conditions, the least amount of Von Mises stress generated in case of a two flute 

flat end micro mill cutter is for a cutter having rake angle -2º and relief angles of 6º and that in 

the case of four flute end micro mill cutter is for a cutter having rake angle 3º and relief angle 

8º. 

 FE dynamic analysis of the tool-chip interaction in the micro milling process as 

performed and micro burr formation process was simulated using ANSYS 13.0 software. 
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6.2 Future scope 

 The results obtained from static FE analysis of micro end mills can be used in future to 

predict tool life and to choose the correct cutter geometry from available options for 

performing various micro milling operations. 

 The results obtained from dynamic analysis of micro burrs formed during micro-

milling operation in Al6061T6 can benefit the aerospace industry, which utilises this alloy for 

fabrication of a large number of components.  

 The results obtained during the analysis may also be used for further research for burr 

minimization through tool optimization and process control. 
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