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Abstract

Fingerprint is one of the most widely used biometric modality for recognition due

to its reliability, non-invasive characteristic, speed and performance. The patterns

remain stable throughout the lifetime of an individual. Attributable to these advan-

tages,the application of fingerprint biometric is increasingly encouraged by various

commercial as well as government organizations. Fingerprint feature detection is to

automatically and reliably extract minutiae from the input fingerprint images. How-

ever, the performance of a minutiae extraction algorithm relies heavily on the quality

of the input fingerprint images. In order to ensure that the performance of an fin-

gerprint authentication system to be robust, it is essential to preprocess fingerprint

image. This thesis describes steps involved during fingerprint preprocessing, which

improves the clarity of ridge and bifurcation structures of input fingerprint images.

After preprocessing minutiae are extracted and stored in database. Further an online

fingerprint authentication system is implemented in which elementary indexing strat-

egy is used. Indexing fingerprint data is done to identify and retrieve a small subset

of candidate data from the database of fingerprint data of individuals. Experimental

work show that incorporating the online system, preprocessing algorithm, matching

algorithm improves the overall response time.

Keywords: Biometrics, FingerPrint recognition, Indexing, kd-trees, authentication.
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Chapter 1

Introduction

The term Biometrics refers to the field of development of statistical and mathe-

matical methods applicable to data analysis problems existing in the biological sci-

ences.Biometrics is the science of establishing the identity of an individual based

on physiological and behavioural characteristics of the individual.The objective of

Biometrics is to promote the use of statistical and mathematical theory towards

the development of novel biometrical techniques and their application to new and

ongoing subject matter challenges. Biometric authentication has evolved from the

disadvantages of traditional means of authentication. It is more reliable and capa-

ble compared to traditional approaches. The problem with token based systems is

that the possession could be lost, stolen, forgotten or misplaced. The drawbacks of

knowledge based approaches is that it is tough for a person to remember difficult

passwords/PINs; while keeping in mind secuirty against attacks.The combination of

knowledge and token based system, e.g. automated teller machine (ATM) also cannot

satisfy the security requirements. The primary advantage of biometrics over token

based and knowledge based approaches is that, it cannot be misplaced, forgotten or

stolen. Also it is very difficult to spoof biometric traits of an individual. A generic

biometric system operates by taking an input from the user, preprocessing the signal

to denoise it to find the region of interest, extracting features, and authenticating an

individual based on the result of comparison [2]. Depending upon the application

context a biometric system operates in the following modes: enrolment mode, veri-
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fication mode, identification mode. In enrolment mode, the feature from a subject

is extracted and stored in the database. In verification mode, a subject is authen-

ticated by comparing, one on one, live query biometric template with the database

template of the individual whom the subject claims himself to be. In identification

mode, the system takes live query template from the subject and searches the entire

database to find the best-match template to identify the subject and thereby making

it a one-to-many process. Several biometric traits such as face, iris, fingerprint, voice,

face-thermograph, signature are of key research area due to enormous need of security

in automated systems.

Observing underlying modalities, two basic categories can be identified as: Physio-

logical (or passive) and Behavioral (or active) biometrics [2]. Physiological biometrics

are based on measurements or data derived from direct measurement of a human body

part. Fingerprint, iris, retina, hand geometry, and face recognition are leading phys-

iological biometrics. Behavioral characteristics, on the other hand, are based on an

action taken by a person. Behavioral biometrics are based on measurements of data

derived from an action, and thereby indirectly measure characteristics of the human

body.A good biometric trait is characterised by use of features that are highly unique,

stable, easy to capture,acceptable, collectable and prevents circumvention.

1.1 Fingerprint Biometrics

Fingerprint based recognition method because of its relatively outstanding features

of universality, permanence, uniqueness, accuracy and low cost has made it most

popular and a reliable technique and is currently the leading biometric technology

[3]. Fingerprint identification is one of the most important biometric technologies

which has drawn a substantial amount of attention recently [22, 24]. A fingerprint is

the pattern of ridges and furrows on the surface of a fingertip. The uniqueness of a

fingerprint is exclusively determined by the local ridge characteristics

These local ridge characteristics are not evenly distributed. Most of them de-

pend heavily on the impression conditions and quality of fingerprints and are rarely
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observed in fingerprints. The two most prominent ridge characteristics, called minu-

tiae, are ridge ending and ridge bifurcation. A ridge ending is defined as the point

where a ridge ends abruptly. A ridge bifurcation is defined as the point where a ridge

forks or diverges into branch ridges. A good quality fingerprint typically contains

about 40-100 minutiae. However, in practice, due to variations in impression condi-

tions, ridge configuration, skin conditions (aberrant formations of epidermal ridges

of fingerprints, postnatal marks, occupational marks), acquisition devices, and non-

cooperative attitude of subjects, etc. a significant percentage of acquired fingerprint

images (approximately 10 percent according to our experience) is of poor quality.

The ridge structures in poor-quality fingerprint images are not always well-defined

and hence they can not be correctly detected. This leads to following problems like

a significant number of spurious minutiae may be created, a large percent of genuine

minutiae may be ignored, and larger errors in their localization (position and orienta-

tion) may be introduced. So because of these problems preprocessing of input image

is done and then feature is extracted. Preprocessing is done in fingerprint biometrics

to enhances image contrast, genuine minutiae and reduces errors.

1.2 Thesis Outline

This thesis is organized as follows, In abstract the problem statements and its ap-

proach to solve is mentioned in brief, and in Chapter 2 Literature review is done

about fingerprint biometrics and several indexing approaches. In Chapter 3 Intro-

duction to KD-Tree and operations involved, are explained in detail with algorithms.

Chapter 4 explains about each and every step involved in fingerprint preprocessing

from minutiae extraction to fingerprint matching, it also describes about the chal-

lenges encountered during minutiae extraction with algorithms and figures. All these

modules constitute fingerprint authentication system. In Chapter 5 the details of

Chapter 4 are implemented and experimental results are demonstrated. In Chapter 6

conclusion of project is described. All important references mentioned are appended

after Chapter 6

3



Chapter 2

Literature Review

Current fingerprint recognition techniques can be broadly classified as Minutiae-

based, Ridge feature-based, Correlation-based [1] and Gradient based [2]. Most

fingerprint identification systems employ techniques based on minutiae points [3].

Although the minutiae pattern of each finger is quite unique, noise and distortion

during the acquisition of the fingerprint and errors in the minutiae extraction process

result in a number of missing and spurious minutiae [4].

The smooth flow pattern of ridges and valleys in a fingerprint can be also viewed

as an oriented texture [3]. [7] describes a global texture descriptor called Finger Code

that utilizes both global and local ridge descriptions for an oriented texture such as

fingerprints. A variation to this method is used by [4] that use localized texture

features of minutiae and another one by [8] that uses texture correlation matching.

In a fingerprint identification system as explained in [9], a person is identified only

by his fingerprint. [9] provides solution to this problem by reducing the number of

fingerprints that have to be matched. This is achieved by extracting features from

the fingerprints and first matching the fingerprints that have the smallest feature dis-

tance to the query fingerprint. the registered directional field esti-mate, FingerCode

and minutiae triplets. It is shown that combining these features results in better

performance

Further, [2] proposed gradient based approach to capture textural information by

dividing each minutiae neighbourhood locations into several local regions of which
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histograms of oriented gradients are then computed to characterize textural informa-

tion around each minutiae location.[5] proposed that Texture feature of Energy of a

fingerprint can be used for effecting fingerprint verification.

An efficient fingerprint indexing algorithm as proposed in [6] retrieves the top best

matches from a huge database. It considers minutia features based on 9-dimensional

index space comprised of transformation invariant information and a stable trian-

gulation algorithm i.e 1-order Delaunay triangulation, both of which are insensitive

to fingerprint distortion. It uses indexing technique based on kd-tree to reduce the

search space to 15 percent of the large database.

5



Chapter 3

KD-Tree

3.1 Introduction

A k-d tree is a space-partitioning data structure for organizing points in a k-dimensional

space. k-d trees are a useful data structure for several applications, such as searches

involving a multidimensional search key. Figure 3-1 illustrates example of KD-Tree.

Figure 3-1: KDTree Example

The k-d tree is a binary tree in which every node is a k-dimensional point. Every

non-leaf node can be thought of as implicitly generating a splitting hyperplane that
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divides the space into two parts, known as half-spaces. Points to the left of this

hyperplane are represented by the left subtree of that node and points right of the

hyperplane are represented by the right subtree. The hyperplane direction is chosen

in the following way: every node in the tree is associated with one of the k-dimensions,

with the hyperplane perpendicular to that dimension’s axis. So, for example, if for

a particular split the ”x” axis is chosen, all points in the subtree with a smaller ”x”

value than the node will appear in the left subtree and all points with larger ”x”

value will be in the right subtree. In such a case, the hyperplane would be set by the

x-value of the point, and its normal would be the unit x-axis.

Operations on k-d trees are Insert, Delete, FindMin, Search and Nearest Neighbor

described below.

3.2 Operations

3.2.1 Insert

Insertion is performed with the algorithm-1 as given in [6]. Insertions in an kD-tree

are similar to any other search tree. The kD-tree is traversed to locate an appropriate

leaf starting from the root depending on whether the point to be inserted is on the

”left” or ”right” side to accommodate the new entry [6]. The entry is inserted as

either the left or right child of the leaf node again depending on which side of the

node’s splitting plane contains the new node. In case of duplicate entry, it is not

inserted giving a duplicate entry message.
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Algorithm 1 Insert

Input: T : Tree node, P : Point to be inserted, l: level, D: Tree Dimension Output:

T : root node

1: procedure Insert(T, P, l)

2: if T is null then

3: Create new node including point P

4: else if T.data equals P then

5: Notify duplicate entry

6: else if T.data[l] > P [l] then

7: T.left←Insert(T.left, P, (l + 1) mod D)

8: else

9: T.right← Insert(T.right, P, (l + 1) mod D)

10: end if

11: return T

12: end procedure

3.2.2 Delete

To delete a point from an existing k-d tree is to form the set of all nodes and leaves

from the children of the target node, and recreate that part of the tree. Deletion is

performed with the algorithm-2 as given in [6].
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Algorithm 2 Delete

Input: T : Tree node, P : Point to be Deleted, l: level, D: Tree Dimension Output:

T : root node

1: procedure Delete(T, P, l)

2: if T is null then

3: Notify point not found.

4: return T

5: end if

6: if T.data equals P then

7: if T.right 6= null then

8: T.data←FindMin( T.right, l, (l + 1) mod D)

9: T.right←Delete(T.right, T.data, (l + 1) mod D)

10: else if T.left 6= null then

11: T.data←FindMin(T.left, l, (l + 1) mod D)

12: T.left←Delete(T.left, T.data, (l + 1) mod D)

13: else

14: T ← null

15: end if

16: else if T.data[l] > P [l] then

17: T.left←Delete(T.left, P, (l + 1) mod D)

18: else

19: T.right←Delete(T.right, P, (l + 1) mod D)

20: end if

21: return T

22: end procedure

3.2.3 FindMin

FindMin Routine helps to find a point with the smallest value in the dth dimension.

FindMin is performed with the algorithm-3 as given in [6].

9



Algorithm 3 FindMin

Input: T : Tree node, l: level, D: Tree Dimension

Output: R: Tree node

1: procedure FindMin(T, l)

2: if T is null then

3: Notify point not found.

4: return null

5: end if

6: if l equals D then . T splits on the dimension were searching

7: l← (l + 1) mod D

8: if T.left == null then

9: R← T

10: return R

11: else

12: return FindMin(T.left, l)

13: end if

14: else

15: R←Minimum(FindMin(T.left, l), FindMin(T.right, l))

16: end if

17: return R

18: end procedure

3.2.4 Search

Search is performed with the algorithm-4 as given in [6].

10



Algorithm 4 Search

Input: T : Tree node, P : Point of interest

Output: T : Tree node

1: procedure Search(T, P )

2: for all l such that T ! = null do

3: if T.data equals P then

4: return null

5: else if T.data[l] > P [l] then

6: T ← T.left

7: else

8: T ← T.right

9: end if

10: l← (l + 1) mod D

11: end for

12: return null

13: end procedure

3.2.5 RangeSearch

RangeSearch is performed with the algorithm 5.
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Algorithm 5 Range Search

Input: T : Tree node, P1: Point Low , P2: Point High, l: level, D: Tree Dimension

Output: R: List of Node(s)

1: procedure RangeSearch(T, P1, P2, l)

2: if T is null then

3: return R

4: end if

5: if P1[l] <= T.data[l] then

6: RangeSearch(T.left, P1, P2, (l + 1) mod D)

7: end if

8: j ← 0

9: while P1[l] <= T.data[l] <= P2[l] do

10: increment j

11: end while

12: if j == l then

13: Add T to R

14: end if

15: if P2[l] > T.data[l] then

16: RangeSearch(T.right, P1, P2, (l + 1) mod D)

17: end if

18: end procedure

3.2.6 Nearest Neighbor

The nearest neighbour search (NN) algorithm aims to find the point in the tree that

is nearest to a given point. This search can be done efficiently by using the tree

properties to quickly eliminate large portions of the search space.
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Algorithm 6 Nearest Neighbor

Input: T : Tree node, P : Point to be inserted, l: level, BB: Bounding Box Rectangle,

D: Tree Dimension

Output: R: Nearest Neighbor node

1: procedure NearestNeighbor(T, P, l, BB)

2: if T is null or distance(P,BB) > BestDistance then

3: R← T

4: return R . if this bounding box is too far, then do nothing

5: end if

6: dist← distance(Q, T.data) . If this point is better than the best

7: if dist < BestDistance then

8: BestDistance← dist

9: end if

10: l← (l + 1) mod D

11: if P [l] < T.data[l] then

12: R← NearestNeighbor(T.left, P, l, BB.TrimLeft(l, T.data))

13: R←NearestNeighborT.right, P, l, BB.TrimRight(l, T.data))

14: else

15: R←NearestNeighbor(T.right, P, l, BB.TrimRight(l, T.data))

16: R←NearestNeighbor(T.left, P, l, BB.TrimLeft(l, T.data))

17: end if

18: end procedure
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Chapter 4

Proposed Approach: Fingerprint

Preprocessing

4.1 Minutiae Detection

This section first describes what fingerprint minutiae are,

4.1.1 Definition of Minutiae

Traditionally, two fingerprints have been compared using discrete features called

minutiae. These features include points in a finger’s friction skin where ridges end

(called a ridge ending) or split (called a ridge bifurcation). Typically, there are on

the order of 100 minutiae on a tenprint. In order to search and match fingerprints,

the coordinate location and the orientation of the ridge at each minutia point are

recorded. Figure 4-1 shows an example of the two types of minutiae. The minutiae

are marked in the right image, and the tails on the markers point in the direction of

the minutia’s orientation.
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Figure 4-1: Minutiae

The location of each minutia is represented by a coordinate location within the

fingerprint’s image. Different AFIS systems represent this location differently. The

ANSI/NIST standard specifies units of distance in terms of 0.01 mm from an origin in

the bottom left corner of the image. For example, a 500 x 600 pixel image scanned at

19.69 pixels per millimeter (ppmm) has dimensions 25.39 x 30.47 mm which in stan-

dard units of 0.01 mm is Thus, the pixel coordinate (200, 192) will be represented in

standard units at where the Y-coordinate is measured from the bottom of the image

upward. Minutiae orientation is represented in degrees, with zero degrees pointing

horizontal and to the right, and increasing degrees proceeding counter-clockwise. The

orientation of a ridge ending is determined by measuring the angle between the hori-

zontal axis and the line starting at the minutia point and running through the middle

of the ridge. The orientation of a bifurcation is determined by measuring the angle

between the horizontal axis and the line starting at the minutia point and running

through the middle of the intervening valley between the bifurcating ridges.

Each minutia symbol is comprised of a circle or square, marking the location

of the minutia point, and the line or tail proceeding from the circle or square is

projected along either the ridge endings ridge, or the bifurcations valley. The angle

of orientation as specified by the ANSI/NIST standard is marked as angle A in the

illustration.
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4.1.2 Latent Fingerprints

In addition to tenprints, there is a smaller population of fingerprints also important.

These are fingerprints captured at crime scenes that can be used as evidence in solving

criminal cases. Unlike tenprints, which have been captured in a relatively controlled

environment for the expressed purpose of identification, crime scene fingerprints are

by nature incidentally left behind. They are often invisible to the eye without some

type of chemical processing or dusting. It is for this reason that they have been

traditionally called latent fingerprints. As one would expect, the composition and

quality of latent fingerprints are significantly different from tenprints. Typically, only

a portion of the finger is present in the latent, the surface on which the latent was

imprinted is unpredictable, and the clarity of friction skin details are often blurred

or occluded. All this leads to fingerprints of significantly lesser quality than typical

tenprints. While there are 100 minutiae on a tenprint, there may be only a dozen

on a latent. Figure 4-2 shows a ”good” quality latent on the left and its matching

tenprint on the right.

Figure 4-2: Latent Fingerprints

Due to the poor conditions of latent fingerprints, today’s AFIS technology oper-

ates poorly when presented a latent fingerprint image. It is extremely difficult for

the automated system to accurately classify latent fingerprints and reliably locate the
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minutiae in the image. Consequently, human fingerprint experts, called latent exam-

iners, must analyze and manually mark up each latent fingerprint in preparation for

matching. This is a tedious and labor intensive task. To support the processing of

latent fingerprints, the FBI and NIST collaboratively developed a specialized work-

station called the Universal Latent Workstation (ULW). This workstation has been

designed to aid the latent examiner in preparing a latent fingerprint for search. In ad-

dition, the workstation provides for interoperability between different AFIS systems

by functioning as a vendor-independent front-end interface. These two aspects of

the ULW contribute significantly to the advancement of the state-of-the-art in latent

fingerprint identification and law enforcement

4.1.3 Minutiae Detection Process

It should be noted that in minutae detection process algorithms and software param-

eters have been designed and set to optimally process images scanned at 500 pixels

per inch and quantized to 256 levels of gray.
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Figure 4-3: Minutiae Detection Process

the program for detecting minutiae in a fingerprint image. minutiae detection pro-

cess. Figure 4-3 lists the functional steps executed. The software has been designed in

a modular fashion so that each of the steps listed in Figure 4-3 is primarily executed

by a single subroutine. This permits other alternative approaches to be implemented

and substituted into the process, and the overall impact on performance can be eval-
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uated. To support the many required operating parameters, a single global control

structure is used to record sizes, tolerances, and thresholds.

4.1.3.1 Input Fingerprint Image File

Mindtct inputs a fingerprint image and automatically detects minutiae on the fin-

gerprint. The algorithms and parameters have been developed and set for images

scanned at 19.69 ppmm and quantized to 256 levels of gray. The application can read

files in ANSI/NIST, WSQ, JPEGB, JPEGL, and IHEAD formats. In ANSI/NIST

formatted files it searches the file structure for a grayscale fingerprint record. Once

found, the fingerprint image in this record is processed. Currently, only the first

grayscale fingerprint record in the ANSI/NIST file is processed, but the application

could be changed to process all grayscale fingerprints in the ANSI/NIST file. Mindtct

has an option that will allow it to enhance very low contrast images. If the option

is selected, mindtct will evaluate the histogram of the input image. If the image is

a very low contrast image, it is enhanced to improve the contrast otherwise it is not

modified.

4.1.3.2 Generate Image Quality Maps

Because the image quality of a fingerprint may vary, especially in the case of latent

fingerprints, it is critical to be able to analyze the image and determine areas that

are degraded and likely to cause problems. Several characteristics can be measured

that are designed to convey information regarding the quality of localized regions

in the image. These include determining the directional flow of ridges in the image

and detecting regions of low contrast, low ridge flow, and high curvature. These last

three conditions represent unstable areas in the image where minutiae detection is

unreliable, and together they can be used to represent levels of quality in the image.

4.1.3.3 Direction Map

One of the fundamental steps in this minutiae detection process is deriving a direc-

tional ridge flow map, or direction map. The purpose of this map is to represent areas
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of the image with sufficient ridge structure. Well-formed and clearly visible ridges

are essential to reliably detecting points of ridge ending and bifurcation. In addition,

the direction map records the general orientation of the ridges as they flow across the

image.

To locally analyze the fingerprint, the image is divided into a grid of blocks.

All the pixels within a block are assigned the same results.Therefore, in the case

of the direction map, all the pixels in a block will be assigned the same ridge flow

direction. Several considerations must be made when using a block-based approach.

First, it must be determined how much local information is required to reliably derive

the desired characteristic. This area is referred to as the window. The characteristic

measured within the window is then assigned to each pixel in the block. It is typically

desirable to share data used to compute the results assigned to neighboring blocks.

This way some of the image that contributed to one blocks results is included in the

neighboring blocks results as well. This helps minimize the discontinuity in block

values as you cross the boundary from one block to its neighbor. This smoothing can

be implemented using a system where a block is smaller than its surrounding window,

and windows overlap from one block to the next. This is illustrated in Figure 4-4.

Figure 4-4: Direction Map
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The large frame at the top of the figure depicts a window (in white) surrounding

a smaller block (in gray). Assuming that neighboring blocks are adjacent and non-

overlapping, this scenario is defined by three parameters: the window size L, the block

size M and the offset of the block from the windows origin N. In the global control

structure, lfsparmsV2, these parameters are defined as MAPWINDOWSIZEV2=24,

MAPBLOCKSIZEV2=8, and APWINDOWOFFSETV2=8 respectively. As a result,

the image is divided up into a grid of 8x8 pixel blocks with each block being assigned

a result from a larger surrounding 24x24 pixel window, and the area for windows of

neighboring blocks overlap by up to 2/3. The bottom row of frames in the Figure 4-4

illustrates how this works in practice. Designating the address of a block by its (row,

column) indices, the left frame shows the first block (1,1) being computed. The next

frame advances to the next adjacent block to the right, block (1,2). Correspondingly,

its window is shifted 8 pixels, and the new block receives its results. Note that there

are two copies of the image being used. Each window operates on the original image

data, while block results are written to a separate output image. The third frame

in the illustration depicts the window configuration for block (2,1), and the fourth

frame shows its right neighborbeing computed.

One additional consideration must be made when using blocks. It must be de-

termined how to handle the edges of the image. The dimensions of the image will

likely not be an even multiple of blocks, and the windows surrounding blocks along

the perimeter of the image may extend off the image. In this software, the image

is padded by a margin of medium gray pixels (set to intensity 128). This margin

is sufficiently large to contain the perimeter windows in the image. The processing

of partial blocks is also accounted for at the right and bottom of the image. Given

the above approach for computing block results with an overlapping window, the

technique used for determining ridge flow direction in the image can be described.

For each block in the image, the surrounding window is rotated incrementally and a

Discrete Fourier Transform (DFT) analysis is conducted at each orientation. The top

left box in the figure depicts a window with its rows rotated 90deg. counterclockwise

so that they are aligned vertically. This is considered orientation 0 in the software.
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The parameter NUMDIRECTIONS in the global control structure, lfsparsV2, speci-

fies the number of orientations to be analyzed in a semicircle. This parameter is set

to 16, creating an increment in angle of 11.25deg. between each orientation. These

orientations are depicted on the circle in the figure. The bottom row in the figure

illustrates the incremental rotation of the windows rows at each defined orientation.

When determining the direction of ridge flow for a block, each of its window

orientations is analyzed. Within an orientation, the pixels along each rotated row of

the window are summed together, forming a vector of 24 pixel row sums. The 16

orientations produce 16 vectors of row sums. Each vector of row sums is convolved

with 4 waveforms of increasing frequency. The top waveform in the figure has a

single period extending across the length of the entire vector. The second waveforms

frequency is doubled from the first; the third is doubled from the second, and so

forth. Discrete values for the sine and cosine functions at the 4 different frequencies

are computed for each unit along the vector. The row sums in a vector are then

multiplied to their corresponding discrete sine values, and the results are accumulated

and squared. The same computation is done between the row sums in the vector and

their corresponding discrete cosine values. The squared sine component is then added

to the squared cosine component, producing a resonance coefficient that represents

how well the vector fits the specific waveform frequency.

4.1.3.4 High Curve Map

Another part of fingerprint image that is problematic when it comes to detecting

minutiae reliably is in areas of high curvature. This is especially true of the core

and delta regions of a fingerprint. The high curve map marks blocks that are in

high-curvature areas of the fingerprint. Two different measures are used. The first,

called vorticity, measures the cumulative change in ridge flow direction around all

the neighbors of a block. The second called, curvature, measures the largest change

in direction between a blocks ridge flow and the ridge flow of each of its neighbors.

The details are in the source code. In the event that minutiae are detected in these

blocks, their assigned quality is reduced because they have been detected within a
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less reliable part of the image. The white cross marks in the fingerprint image in

Figure 4-5 label blocks with high-curvature ridges.

Figure 4-5: High Curve Map

4.1.3.5 Binarize Image

The minutiae detection algorithm in this system is designed to operate on a bi-level (or

binary) image where black pixels represent ridges and white pixels represent valleys

in a finger’s friction skin. To create this binary image, every pixel in the grayscale

input image must be analyzed to determine if it should be assigned a black or white

pixel. This process is referred to as image binarization. A pixel is assigned a binary

value based on the ridge flow direction associated with the block the pixel is within.

If there was no detectable ridge flow for the current pixel’s block, then the pixel is

set to white. If there is detected ridge flow, then the pixel intensities surrounding the

current pixel are analyzed within a rotated grid as illustrated in Figure 4-6.

Figure 4-6: Rotation grid

Rotated grid used to binarize the fingerprint image. This grid is defined in the

global control structure, lfsparmsV2, with column width (DIRBINGRIDW) set to 7
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pixels and row height (DIRBINGRIDH) set to 9 pixels. With the pixel of interest

in the center, the grid is rotated so that its rows are parallel to the local ridge flow

direction. Grayscale pixel intensities are accumulated along each rotated row in the

grid, forming a vector of row sums. The binary value to be assigned to the center

pixel is determined by multiplying the center row sum by the number of rows in the

grid and comparing this value to the accumulated grayscale intensities within the

entire grid. If the multiplied center row sum is less than the grid’s total intensity,

then the center pixel is set to black; otherwise, it is set to white.

Figure 4-7: Binarize Image

The results of binarization are shown in the Figure 4-7. The original grayscale

image is on the left, and its binarization results are on the right. It should be noted

that the binarization step is critical to the successful detection of minutiae in this

approach. The binarization results need to be robust in terms of effectively dealing

with varying degrees of image quality and reliable in terms of rendering ridge and

valley structures accurately. These are challenging, and at times conflicting goals.

It is desirable to preserve as much image information and ridge/valley structure as

possible so that minutiae are not missed, and yet it is undesirable to accentuate

degraded areas in the image to the point of introducing false minutiae. Significant

effort has been invested to promote both robust and reliable binary images, and yet

the current system tends to produce a considerable number of false minutiae. This is

particularly troublesome when processing latent fingerprint images.
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4.1.3.6 Detect Minutiae

This step methodically scans the binary image of a fingerprint, identifying localized

pixel patterns that indicate the ending or splitting of a ridge. The patterns searched

for are very compact as illustrated in Figure 4-8. The left-most pattern contains six

binary pixels in a 2x3 configuration. This pattern may represent the end of a black

ridge protruding into the pattern from the right. The same is true for the next 2x4

pattern. The only difference between this pattern and the first one is that the middle

pixel pair is repeated. In fact, this is true for all the patterns depicted. This ”family”

of ridge ending patterns can be represented by the right-most pattern, where the

middle pair of pixels (signified by *) may repeat one or more times.

Figure 4-8: Localized pixel patterns

Candidate ridge endings are detected in the binary image by scanning consecutive

pairs of pixels in the image looking for sequences that match this pattern. Pattern

scanning is conducted both vertically and horizontally. The pattern as illustrated is

configured for vertical scanning as the pixel pairs are stacked on top of each other. To

conduct the horizontal scan, the pixel pairs are unstacked, rotated 90deg clockwise,

and placed back in sequence left to right. Using the representation above, a series

of minutiae patterns are used to detect candidate minutia points in the binary fin-

gerprint image. These patterns are illustrated in Figure 4-9. There are two patterns

representing candidate ridge endings, the rest represent various ridge bifurcations. A

secondary attribute of appearing/disappearing is assigned to each pattern. This des-

ignates the direction from which a ridge or valley is protruding into the pattern. All

pixel pair sequences matching these patterns, as the image is scanned both vertically
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and horizontally, form a list of candidate minutia points.

Figure 4-9: Ridge bifurcation patterns

4.1.3.7 Remove False Minutiae

Using the patterns in Figure 4-9, candidate minutiae points are detected with as few

as six pixels. This facilitates a particularly greedy detection scheme that minimizes

the chance of missing true minutiae; however, many false minutiae are included in the

candidate list. Because of this, much effort is spent on removing the false minutiae.

These steps include removing islands, lakes, holes, minutiae in regions of poor image

quality, side minutiae, hooks, overlaps, minutiae that are too wide, and minutiae that

are too narrow (pores). A short description of each of these steps is provided in the

order in which they are executed.

4.1.3.7.1 Remove Islands and Lakes

Figure 4-10: Remove Islands and Lakes
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Algorithm 7 Remove Islands and Lakes

1: procedure Remove Islands and Lakes (A,B)

2: if distance(A,B) <= 18pixels then

3: if directionAngle(A,B) >= 123.75deg then

4: if onLoop(A) AND onLoop(B) then

5: if loopLength <= 80pixels then

6: remove(A,B)

7: end if

8: end if

9: end if

10: end if

11: fillLoop()

12: end procedure

In this step, ridge ending fragments and spurious ink marks (islands) along with

interior voids in ridges (lakes) are identified and removed. These features are some-

what larger than the size of pores in the friction skin and they are often elliptical in

shape; therefore, they typically will have a pair of candidate minutia points detected

at opposite ends. An illustration of these types of features is shown in Figure 4-10.

Included at the bottom of the figure are the criteria used to detect islands and lakes.

A pair of minutia must be within 16 pixels (MAXRMTESTDISTV2) of each other. If

so, then the directions of the two minutiae must be nearly opposite (123.75deg) each

other. Next, both minutiae must lie on the edge of the same loop, and the perimeter

of the loop must be 60 pixels (MAXHALFLOOPV2). If all these criteria are true,

then the pair of candidate minutiae are removed for the list and the binary image is

altered so that the island

4.1.3.7.2 Remove Holes
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Figure 4-11: Remove Holes

Algorithm 8 Remove Holes

1: procedure Remove Holes (A,B)

2: if onLoop(A) AND onLoop(B) then

3: if loopLength <= 15pixels then

4: remove(A)

5: end if

6: end if

7: end procedure

Here a hole is defined similarly to an island or lake, only smaller, and the loop need

only have one minutia point on it. The criteria for removing a hole are illustrated in

Figure 4-11. If a candidate minutia point lies on the edge of a loop with perimeter

length 15 pixels(SMALLLOOPLEN), then the point is removed from the candidate

list.

4.1.3.7.3 Remove Pointing to Invalid Block
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Figure 4-12: Remove Pointing to Invalid Block

Algorithm 9 Remove Pointing to Invalid Block

1: procedure Remove Pointing to Invalid Block (A,B)

2: B = translate(A, 4pixels, direction(A))

3: D = direction(block(B))

4: if D is invalid then

5: remove(A)

6: end if

7: end procedure

This step and the next identify and remove candidate minutiae that are located

near blocks that contain no detectable ridge flow. These blocks are referred to as con-

taining invalid ridge flow direction and represent low-quality areas in the fingerprint

image.

This step is illustrated in Figure 4-12. A minutia point is translated 4 pix-

els(TRANSDIRPIXV2) in the direction the minutia is pointing. If the translated

point lies within a block with invalid ridge flow direction, then the original minutia

point is remove from the list.

4.1.3.7.4 Remove Near Invalid Blocks
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Figure 4-13: Remove Near Invalid Blocks

Algorithm 10 Remove Near Invalid Blocks

1: procedure Remove Near Invalid Blocks (A)

2: Nbrs = blockNeighbors(A)

3: InvNbrs = invalidDirections(Nbrs)

4: while Ni in InvNbrs do

5: NiNbs = neighbors(Ni)

6: Ci = countV alidDirections(NiNbrs)

7: end while

8: if Ci < 7 then

9: remove(A)

10: end if

11: end procedure

Here, the proximity of a candidate minutia to a number of surrounding blocks with

invalid ridge flow direction is evaluated. Given a minutia point, the blocks sufficiently

close to the minutia (details left to the source code), and immediately neighboring

the block in which the minutia resides, are tested in turn. If one of these neighboring

blocks has invalid ridge flow direction, then its surrounding 8 neighbors are tested.

The number of surrounding blocks with valid ridge flow direction are counted, and

if the number of valid blocks is less than 7 (RMVALIDNBRMIN), then the original

minutia point is removed from the candidate list. Figure 4-13 illustrated this step.

4.1.3.7.5 Remove or Adjust Side Minutiae
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Figure 4-14: Remove or Adjust Side Minutiae

Algorithm 11 Remove or Adjust Side Minutiae

1: procedure Remove or Adjust Side Minutiae (A)

2: Pts = traceContours(A, 7pixels)

3: RPts = rotatePointsV ertical(Pts, direction(A))

4: (MinY s,MaxY s) = minMaxY s(RPts)

5: if MinY s == 1 then

6: Adjust(A,Pts[MinY 1])

7: else if (MinY s,MaxY s) == (MinY 1,MaxY 1) then

8: MinY = pointAtMinY (RPts,MinY s)

9: Adjust(A,Pts[MinY ])

10: else

11: revove(A)

12: end if

13: end procedure

This step accomplishes two purposes. The first is to fine-tune the position of a

minutia point so that it is more symmetrically placed on a ridge or valley ending.

In the process, it may be determined that there is no clear symmetrical shape to

the contour on which the candidate minutia lies. This is often the case with points

detected along the side of a ridge or valley instead of the ridge or valley’s ending. In

this case, the misplaced minutia point is removed. In Figure 4-14, the illustration
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on the left depicts the adjustment of a minutia point from point A1 to A2. The

illustration on the right depicts the removal of a side point, B. To accomplish this,

starting at the candidate minutia point, the edge of either the ridge or valley is

traced to the right and to the left 7 pixels (SIDEHALFCONTOUR) , producing a

list of 15 contour points. The coordinates of these contour points are rotated so that

the direction of the candidate minutia is pointing vertical. The rotated coordinates

are then analyzed to determine the number and sequence of relative maxima and

minima in the rotated y-coordinates. If there is only one y-coordinate minima, then

the point of the minimum is assumed to lie at the bottom of a bowl-shaped rotated

contour, and the candidate minutia is moved to correspond to this position in the

original image. If there are more than one y-coordinate minima, then a specific

sequence of minima-maxima-minima must exist, in which case the candidate minutia

is moved to the point. in the original image corresponding to the lowest y-coordinate

minima. Again, this is assumed to be the bottom of a relatively bowl-shaped rotated

contour. If there is more than one ycoordinate minima and there is not an exact

minima-maxima-minima sequence along the rotated contour, then the minutia point

is determined to lie along the side of a ridge or valley, and it isremoved from the

candidate list

4.1.3.7.6 Remove Hooks
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Figure 4-15: Remove Hooks

Algorithm 12 Remove Hooks

1: procedure Remove Hooks (A,B)

2: if distance(A,B) <= 16pixels then

3: if directionAngle(A,B) >= 123.75deg then

4: if type(A)! = type(B) then

5: Pts=traceCountours(A, 30 pixels)

6: if inPoints(Pts,B) then

7: remove(A,B)

8: end if

9: end if

10: end if

11: end if

12: end procedure

A hook is a spike or spur that protrudes off the side of a ridge or valley. An example
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is illustrated in Figure 4-15. This feature typically has two minutiae of opposite type,

one on a small piece of ridge and the other in a small valley, that are relatively close

to each other. The two points must be within 16 pixels (MAXRMTESTDISTV2)

of each other, their directions must be nearly opposite (123.75deg), they must be of

opposite type, and they must lie on the same ridge/valley edge within 30 contour

pixels (MAXHOOKLENV2) from each other. If all these are true, then the two

minutia points are removed from the candidate list.

4.1.3.7.7 Remove Overlaps

Figure 4-16: Remove Overlaps
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Algorithm 13 Remove Overlaps

1: procedure Remove Overlaps (A,B)

2: if distance(A,B) <= 8pixels then

3: if directionAngle(A,B) >= 123.75deg then

4: if type(A) == type(B) then

5: J=joinDirections(A, B)

6: if directionAngle(180deg − A, J) <= 90deg then

7: remove(A,B)

8: else if distance(A,B) <= 18pixels AND freePath(A,B) then

9: remove(A,B)

10: end if

11: end if

12: end if

13: end if

14: end procedure

In this step, an overlap is a discontinuity in a ridge or valley. These artifacts

are typically introduced by the fingerprint impression process. A break in a ridge

causes 2 false ridge endings to be detected, while a break in a valley causes 2 false

bifurcations. The criteria for detecting an overlap are illustrated in Figure 4-16.

Two minutia points must be within 8 pixels (MAXOVERLAPDIST) of each other,

and their directions must be nearly opposite (123.75deg). If so, then the direction

of the line joining the two minutia points is calculated. If the difference between

the direction of first minutia and the joining line is (90deg), then the two minutiae

are removed from the cadidate list. Otherwise, if the minutiae are within 6 pixels

(MAXOVERLAPJOINDIST) of each other, and there are no pixel value transitions

along the joining line, then the points are removed from the candidate list.

4.1.3.7.8 Remove Too Wide Minutiae
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Figure 4-17: Remove Too Wide Minutiae

Algorithm 14 Removal of too wide minutiae

1: procedure Removal of too wide minutiae (A,B)

2: Pts1 = traceContour(A, 20 pixels)

3: Pts2 = traceContour(A, -20 pixels)

4: B= Pts1(10); C = Pts1(20)

5: E = Pts2(10); F = Pts2(20)

6: D10 = distance(B, E)

7: D20 = distance(C, F)

8: if D20/D10 > 2.0 then

9: remove(A)

10: end if

11: end procedure

The next two steps identify false minutiae that lie on malformed ridge and valley

structures. A generalized ridge ending is comprised of a Y-shaped valley enveloping a

black rod. The inverse is true for a generalized bifurcation. Simple tests are applied
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to evaluate the quality of this Yshape. This step evaluates whether the structure

enveloping a ridge or valley ending is relatively Yshaped and not too wide. Figure

4-17 illustrates the criteria applied. The edge of the ridge or valley is traced to the

left and to the right 20 pixels (MALFORMATIONSTEPS2) producing 2 lists of con-

tour points. On each contour,coordinates at pixel index 10 (B,E) and at pixel index

20 (C,F) are stored. The distance between pixels at index 10 (MALFORMATION-

STEPS1) is computed as is the distance between pixels at index 20. The ratio of

these two distances is then calculated (D20/D10), and if the ratio is larger than 2.0

(MINMALFORMATIONRATIO), then the minutia point is removed from the can-

didate list. It should be noted that based on these criteria the bifurcation in the

illustration would not be removed.

4.1.3.7.9 Remove Too Narrow Minutiae

Figure 4-18: Remove Too Narrow Minutiae
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Algorithm 15 Removal of too narrow minutiae

1: procedure Removal of too narrow minutiae (F )

2: T = 180 - direction(F)

3: R = translate(F, 3 pixels, T)

4: Q = findEdge(R, Up, 12 pixels)

5: P = findEdge(R, Down, 12 pixels)

6: Pts = traceContour(Q, 10 pixels)

7: A = Pts(10)

8: Pts = traceContour(Q, -8 pixels)

9: C = Pts(8)

10: Pts = traceContour(P, 10 pixels)

11: B = Pts(10)

12: Pts = traceContour(P, -8 pixels)

13: D = Pts(8)

14: D1 = distance(A, B)

15: D2 = distance(C, D)

16: if D1/D2 <= 2.25 then

17: remove(F )

18: end if

19: end procedure

The previous step tests for candidate minutiae that are too wide. This step tests

for points that are on structures that are too narrow. This is typical, for example,

of pores in the friction skin. Figure 4-18 illustrates this test. Starting with the

candidate minutia point, F, its coordinates are translated 3 pixels (PORESTRANSR)

opposite the minutia’s direction. The top edge and bottom edges of the enveloping

structure are then located at (Q, P). From these two points, the edge is traced to the

left 10 pixels (PORESSTEPFWD) and to the right 8 pixels (PORESSTEPBWD).

The points at the end of the 10 pixel contours are stored (A, B), and the points

at the end of the 8-pixel contours are stored (C, D). Next, distances are computed
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between these pairs of points, and the ratio (D1/D2) is computed. If the ratio is 2.25

(PORESMAXRATIO), then the minutia point is removed from the candidate list. In

fact, if the process fails to find any of the points in the illustration, then the candidate

minutia is removed. It should be noted that, mindtct, only searches for minutiae that

are too narrow within high-curvature regions or regions where ridge flow direction is

non-determinable.

4.1.3.8 Count Neighbor Ridges

Fingerprint minutiae matchers often use information in addition to just the points

themselves. Ancillary information usually includes the minutia’s direction, its type,

and it may include information pertaining to minutiae neighbors. Beyond a minutia’s

position, direction, and type, there are no standard neighbor schemes. Different AFIS

systems use different neighbor topologies and attributes. One common attribute is the

number of intervening ridges (called ridge crossings) between a minutia and each of its

neighbors. For example, the FBI’s IAFIS uses ridge crossings between a minutia and

its 8 nearest neighbors, where each neighbor is the closest within a specified octant.

Up to 5 nearest neighbors (MAXNBRS) are reported. Given a minutia point, the

closest neighbors below (in the same pixel column), and to the right (within entire

pixel columns) in the image are selected. These nearest neighbors are sorted in order

of their direction, starting with vertical and working clockwise. Using this topology,

ridge counts are computed and recorded between a minutia point and each of its

nearest neighbors.

4.1.3.9 Assess Minutia Quality

One of the goals of developing this software package was to compute a quality/reliability

to be associated with each detected minutia point. Even with the lengthy list of re-

moval steps above, false minutiae potentially remain in the candidate list. A robust

quality measure can help manage this in that false minutiae should be assigned a

lower quality than true minutiae. Through dynamic thresholding, a trade off be-

tween retaining false minutiae and throwing away true minutiae may be determined.
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To this end, mindtct, computes and reports minutiae qualities. Two factors are com-

bined to produce a quality measure for each detected minutia point. The first factor,

L, is taken directly from the location of the minutia point within the quality map

described in Section 4.1.3.3. One of five quality levels is initially assigned, with 4

being the highest quality and 0 being the lowest. The second factor is based on

simple pixel intensity statistics (mean and standard deviation) within the immediate

neighborhood of the minutia point. The size of the neighborhood is set to 11 pixels

(RADIUSMM). This is sufficiently large to contain generous portions of an average

ridge and valley. A high quality region within a fingerprint image will have significant

contrast that will cover the full grayscale spectrum. Consequently, the mean pixel

intensity of the neighbor hood will be very close to 127. For similar reasons, the pixel

intensities of an ideal neighborhood will have a standard deviation greater than or

equal to 64. Using this logic, the following reliability measure, R, is calculated given

neighborhood mean and standard deviation This results in a quality value on the

range .01 to .99. A low quality value represents a minutia detected in a lower quality

region of the image, whereas a high quality value represents a minutia detected in a

higher quality region.

4.1.3.10 Output Minutiae

Upon completion, resulting minutiae outputs to a file. If the input file was an

ANSI/NIST formatted file, mindtct adds two new records and writes a new ANSI/NIST

formatted file to oroot.mdt, where oroot is passed as a parameter to mindtct. The

new records are a Type-9 record, holding the detected minutiae, is constructed and

inserted along with a Type-13 or Type-14 record, holding the image binarization

results. If the input image is of a latent fingerprint, then the binarization results

are stored in a Type-13 record; otherwise, the image results are stored in a Type-14

record. It should be noted that the minutiae in the Type-9 record are formatted

in the NIST-assigned fields according to the ANSI/NIST standard.[17] The utilities,

an2k7toiaf and iaf2an2k7, as described in the Reference Manual of this document may

be used to convert between these fields and the FBI/IAFISassigned fields 13-23.[17]
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If the input file is not in ANSI/NIST format, the resulting minutiae can be accessed

in the text file oroot.min and there is no ANSI/NIST output file created but a raw

pixel file is created that has the image binarization results. For all input types the

detected minutiae are also written to a text file oroot.xyt that is formatted for use

with the bozorth3 matcher. This file has one space delimited line per minutiae con-

taining its x and y coordinate, direction angle theta, and the minutiae quality. The

output minutiae are in the ANSI/NIST format which has the origin at the bottom

left of the image and directions pointing out and away from the ridge ending or bi-

furcation valley. There is an option to output the minutiae in the M1 (ANSI INCITS

378-72 3004) representation which has the pixel origin at the top left of the image

and directions pointing up the ridge ending or bifurcation valley. If this option (-m1)

is used when running mindtct it should also be used by bozorth3 when matching the

minutiae files. The last text output file, oroot.min, contains a formatted listing of

attributes associated with each detected minutiae in the fingerprint image. Among

these attributes are the minutia’s pixel coordinate location, its direction, and type.

4.2 Fingerprint Matching

An algorithm and utility for taking features extracted from two fingerprints (minutiae

detection) and matching them together for either the purpose of one-to-one verifica-

tion or one-to-many identification. This type of algorithm is commonly referred to as

a fingerprint matcher.

The BOZORTH3 matching algorithm computes a match score between the minu-

tiae from any two fingerprints to help determine if they are from the same finger.

It’s a modified version of a fingerprint matcher written by Allan S. Bozorth while at

the FBI. The early version of the matching algorithm that NIST has used internally

was named bozorth98.[5][7][8] The BOZORTH3 matcher is functionally the same as

the bozorth98 matcher, improvements have been made to remove bugs in the code

(specifically memory leaks in statically defined variables) and improve the speed of

the matcher. The BOZORTH3 matcher using only the location (x,y) and orientation
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(theta) of the minutia points to match the fingerprints. The matcher is rotation and

translation invariant. The matcher builds separate tables for the fingerprints being

matched that define distance and orientation between minutia in each fingerprint.

These two tables are then compared for compatibility and a new table is constructed

that stores information showing the inter-fingerprint compatibility. The inter-finger

compatibility table is used to create a match score by looking at the size and number

of compatible minutia clusters. A detailed description of the BOZORTH3 matching

algorithm is described below.

4.2.1 Background

An FBI employee by the name of Allan S. Bozorth, had set off on an effort to in-

vestigate the notion of a translation and rotation invariant algorithm for matching

two fingerprints to each other. It was around this time that the construction of the

demonstration display began. In the demonstration, the Home Office algorithm for

minutiae detection (the algorithm on which MINDTCT is based) was used; and when

the need for a fingerprint matcher arose, Allans algorithm was selected and integrated

into both the IAFIS and NCIC portions of the display. The matcher performed at

an adequate level to support the demonstration where a guest could be enrolled and

searched against a very small background. Much to Allans surprise and credit, this

algorithm has since been extensively used as a technology benchmark by NIST to

support work under the U.S. Patriot Act.[5] The algorithm has been shown to per-

form respectably well for both verification and identification applications. In honor

of Allans hard work and accomplishments, NIST has chosen to name this matcher

the Bozorth Matcher, or in short Bozorth. A description of the algorithm follows.

4.2.2 Bozorth Algorithm

Two key things are important to note regarding this fingerprint matcher:

1. Minutia features are exclusively used and limited to location (x,y) and orienta-

tion t,represented as x,y,t.
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2. The algorithm is designed to be rotation and translation invariant.

The algorithm is comprised of three major steps:

1. Construct Intra-Fingerprint Minutia Comparison Table.

a. One table for the probe fingerprint and one table for each gallery fingerprint

to be matched against

2. Construct an Inter-Fingerprint Compatibility Table.

a. Compare a probe prints minutia comparison table to a gallery prints minutia

comparison table and construct a new compatibility table

3. Traverse the Inter-Fingerprint Compatibility Table

a. Traverse and link table entries into clusters

b. Combine compatible clusters and accumulate a match score
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4.2.2.1 Construct Intra-Fingerprint Minutia Comparison Tables

Figure 4-19: inter-minutia measurements

The first step in the Bozorth Matcher is to compute relative measurements from each

minutia in a fingerprint to all other minutia in the same fingerprint. These relative

measurements are stored in a minutia comparison table and are what provide the al-

gorithms rotation and translation invariance. Figure 4-19 illustrates the inter-minutia

measurements that are used. There are two minutiae shown in this example. Minutia

k is in the lower left of the fingerprint and is depicted by the dot representing location

(xk,yk) and the arrowed line pointing down and to the right representing orientation

tk. A second minutia j is in the upper right with orientation pointing up and to the

right. To account for relative translational position, the distance dkj is computed

between the two minutia locations. This distance will remain relatively constant be-

tween corresponding points on two different finger impressions regardless of how much
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shifting and rotating may exist between the two prints. To make relative rotational

measurements is a bit more involved. The objective for each of the minutiae in the

pair-wise comparison is to compute the angle between each minutias orientation and

the intervening line between both minutiae. This way, these angles remain relatively

constant to the intervening line regardless of how much the fingerprint is rotated. In

the illustration above, the angle kj of the intervening line between minutia k and j

is computed by taking the arctangent of the slope of the intervening line. Angles

k and j are computed relative to the intervening line as shown by incorporating kj

and each minutias orientation t. It should be noted that the point-wise comparison is

conducted on minutia positions sorted first on xcoordinate, then on y-coordinate, and

that all orientations are limited to the period (-180deg, 180deg) with 0deg pointing

horizontal to the right and increasing degrees proceeding counter clockwise. For each

pair-wise minutia comparison, an entry is made into a comparison table Entries are

stored in the comparison table in order of increasing distance and the table is trimmed

at the point in which a maximum distance threshold is reached. Making these mea-

surements between pairs of minutiae, a comparison table must be constructed for

each and every fingerprint you wish to match with or against.

4.2.2.2 Construct Inter-Fingerprint Minutia Comparison Tables

The next step in the Bozorth matching algorithm is to take the minutia comparison

tables from two separate fingerprints and look for compatible entries between the

two tables. Figure 4-20 depicts two impressions of the same fingerprint with slight

differences in both rotation and scale. Two corresponding minutia points are shown

in each fingerprint. The upper left print represents a probe print in which all its

minutiae have been pair-wised compared with relative measurements stored in minutia

comparison table P. The measurements computed from the particular pair of minutia

in this example have been stored as the mth entry in table P, denoted Pm. The

notation of individual values stored in the table are represented as lookup functions

on a given table entry. For example, the index of the lower left minutia is stored

in table entry Pm and is referenced as k(Pm), while the distance between the two
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minutiae is also stored in table entry Pm and is referenced as d(Pm). The lower right

fingerprint represents a gallery print, and uses similar notation, except that all its

pair-wise minutia comparisons have been stored in table G, and the measurements

made on the two corresponding minutia in the gallery print have been stored in table

entry Gn. The following three tests are conducted to determine if table entries Pm

and Gn are compatible. The first test checks to see if the corresponding distances are

within a specified tolerance Td. The last two tests check to see if the relative minutia

angles are within a specified tolerance T.

Figure 4-20: intra-minutia measurements

If the relative distance and minutia angles between the two comparison table

entries are within acceptable tolerance, then the following entry is entered into a

compatibility table: A compatibility table entry therefore incorporates two pairs of

minutia, one pair from the probe fingerprint (k(Pm), j(Pm)) and the other from
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the gallery fingerprint (k(Gn), j(Gn)). The entry into the compatibility table then

indicates that k(Pm) corresponds with k(Gn) and j(Pm) corresponds with j(Gn).

4.2.2.3 Traverse the Inter-Fingerprint Compatibility Table

At this point in the process, we have constructed a compatibility table which consists

of a list of compatibility association between two pairs of potentially corresponding

minutiae. These associations represent single links in a compatibility graph. To

determine how well the two fingerprints match each other, a simple goal would be

to traverse the compatibility graph finding the longest path of linked compatibility

associations. The match score would then be the length of the longest path. There

are some serious challenges to such a simple approach. These include:

1. The compatibility table is not a coherent graph, but rather a disjoint collection

of single links within a graph.

2. Each node in the graph is potentially linked to many other nodes.

3. This leads to the potential for circuits.

4. There is no obvious root node in the graph that can be predicted to lead to the

maximum path.

5. Occlusions and/or voids within either of the two fingerprints being matched will

cause discontinuities in the graph.

To account for these issues, Allan Bozorth implemented an algorithm that pro-

cesses the compatibility table so that traversals are initiated from various staring

points. As traversals are conducted, portions or clusters of the compatibility graph

are created by linking entries in the table. Once the traversals are complete, compat-

ible clusters are combined and the number of linked table entries across the combined

clusters is accumulated to form the match score. The larger the number of linked

compatibility associations, the larger the match score.
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Chapter 5

Experimental Results

5.1 Performance

The following result in Figure 5-1 shows the total time required to convert entire

database (NIST DB2, DB3, DB4 [27]) of images from one format to another and

total time to Index entire databases.

Figure 5-1: Full database DB4, DB3, DB2 indexing speed test

The following result in Figure 5-2 shows the CPU Usage and Memory consumption
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during Image conversion and Indexing of entire databases.

Figure 5-2: CPU state during Full database DB4, DB3, DB2 indexing

The following result in Figure 5-3 shows the time taken from start to finish of

matching 1 fingerprint in a group of 72 fingerprints. Here all 44 samples were tested.
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Fingerprint Matching Test On 2013-12-05
Sample 1:72 Start Finish Delta Match Found?
A001.AN2.xyt 18:17:10.512 18:17:10.612 0:00:00.100 Y

A002.AN2.xyt 18:17:11.720 18:17:11.722 0:00:00.002 Y

A003.AN2.xyt 18:17:12.618 18:17:12.620 0:00:00.002 Y

A004.AN2.xyt 18:17:13.317 18:17:13.319 0:00:00.002 Y

A005.AN2.xyt 18:17:14.089 18:17:14.091 0:00:00.002 Y

A006.AN2.xyt 18:17:14.717 18:17:14.719 0:00:00.002 Y

A007.AN2.xyt 18:17:15.568 18:17:15.570 0:00:00.002 Y

A008.AN2.xyt 18:17:16.898 18:17:16.900 0:00:00.002 Y

A009.AN2.xyt 18:17:17.631 18:17:17.633 0:00:00.002 Y

A010.AN2.xyt 18:17:18.932 18:17:18.934 0:00:00.002 Y

A011.AN2.xyt 18:17:19.612 18:17:19.614 0:00:00.002 Y

A012.AN2.xyt 18:17:20.346 18:17:20.347 0:00:00.001 Y

A013.AN2.xyt 18:17:21.424 18:17:21.426 0:00:00.002 Y

A014.AN2.xyt 18:17:22.351 18:17:22.353 0:00:00.002 Y

A015.AN2.xyt 18:17:23.405 18:17:23.407 0:00:00.002 Y

A016.AN2.xyt 18:17:24.442 18:17:24.443 0:00:00.001 Y

A017.AN2.xyt 18:17:25.343 18:17:25.345 0:00:00.002 Y

A018.AN2.xyt 18:17:26.346 18:17:26.348 0:00:00.002 Y

A019.AN2.xyt 18:17:27.485 18:17:27.487 0:00:00.002 Y

A020.AN2.xyt 18:17:28.332 18:17:28.334 0:00:00.002 Y

A021.AN2.xyt 18:17:29.293 18:17:29.295 0:00:00.002 Y

A022.AN2.xyt 18:17:30.024 18:17:30.026 0:00:00.002 Y

A023.AN2.xyt 18:17:30.733 18:17:30.735 0:00:00.002 Y

A024.AN2.xyt 18:17:31.581 18:17:31.583 0:00:00.002 Y

A025.AN2.xyt 18:17:32.851 18:17:32.854 0:00:00.003 Y

A026.AN2.xyt 18:17:34.241 18:17:34.243 0:00:00.002 Y
A027.AN2.xyt 18:17:35.055 18:17:35.057 0:00:00.002 Y

A028.AN2.xyt 18:17:36.963 18:17:36.964 0:00:00.001 Y

A029.AN2.xyt 18:17:37.808 18:17:37.810 0:00:00.002 Y

A030.AN2.xyt 18:17:39.490 18:17:39.492 0:00:00.002 Y

A031.AN2.xyt 18:17:40.232 18:17:40.234 0:00:00.002 Y

A032.AN2.xyt 18:17:41.239 18:17:41.241 0:00:00.002 Y

A033.AN2.xyt 18:17:41.932 18:17:41.934 0:00:00.002 Y

A034.AN2.xyt 18:17:42.977 18:17:42.979 0:00:00.002 Y

A035.AN2.xyt 18:17:44.170 18:17:44.172 0:00:00.002 Y

A036.AN2.xyt 18:17:45.552 18:17:45.554 0:00:00.002 Y

A037.AN2.xyt 18:17:46.723 18:17:46.725 0:00:00.002 Y

A038.AN2.xyt 18:17:47.582 18:17:47.584 0:00:00.002 Y

A039.AN2.xyt 18:17:47.995 18:17:47.997 0:00:00.002 Y

A040.AN2.xyt 18:17:48.803 18:17:48.805 0:00:00.002 Y

A041.AN2.xyt 18:17:49.295 18:17:49.297 0:00:00.002 Y

A042.AN2.xyt 18:17:49.659 18:17:49.661 0:00:00.002 Y

A043.AN2.xyt 18:17:49.938 18:17:49.940 0:00:00.002 Y

A044.AN2.xyt 18:17:50.573 18:17:50.575 0:00:00.002 Y

Figure 5-3: Fingerprint matching test on DB2

The following result in Figure 5-4 shows the score of matching 1 fingerprint in
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a group of 72 fingerprints. Here as expected A002 fingerprint on match with A002

produces highest score.

Figure 5-4: Another Fingerprint matching test result with scores on DB2

The following result in Figure 5-5 shows the score of matching 1 fingerprint in

a group of 72 fingerprints. Here as expected A003 fingerprint on match with A003

produces highest score.
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Figure 5-5: Another Fingerprint matching test result with scores on DB2

5.2 Real-time Experiment

Outline of fingerprint enrollmnt module is shown in Figure 5-6
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Figure 5-6: Fingerprint enrollment outline

In real time first step is to capture image, we use a better hamster as shown in

Figure 5-7 to capture Fingerprint Image

Figure 5-7: Hamster fingurprint capture

Here are the visual output generated from simulation of Fingerprint Preprocessor
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Module. In Figure 5-8 one can see visual output of preprocessing procedures as

described in Chapter 4.

Figure 5-8: Preprocessing input image

Here are the visual output generated from simulation of Minutiae Detector Mod-

ule. In Figure 5-9 one can see visual output of how minutiae are extracted as described

in Chapter 4.
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Figure 5-9: Process involved in feature extraction

Fingerprint with features and Figure 5-10 describes what output file will store

from selected minutiae.

Figure 5-10: Storing feature vector in Output file
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Output fingerprint data is stored in speacially defined vikxyt vector file, which is

encoded and compressed for security reasons and collection of such file is shown in

Figure 5-11

Figure 5-11: Vectors stored in file
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Chapter 6

Conclusion

In this thesis, elementary indexing approach is proposed and implemented. Also

kD-tree was implemented. Complex systems like fingerprint authentication systems

constitute many modules. Major modules like Fingerprint preprocessor, Minutiae

extractor and Fingerprint matching were explored, implemented and simulation of

realtime fingerprint authentication system was performed. The preliminary results

on testing with 40+ volunteers were obtained as expected. This project opened

new doors and gave a insight that real time fingerprint authentication systems are

professional, accurate and complicated. elementary indexing approach of grouping

people from a large group was incorporated. The model was successfully implemented

and simulated in scheduled time.
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