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ABSTRACT 

Damage is one of the vital characteristics in structural analysis because of safety cause as 

well as economic prosperity of the industries. Identification of faults in dynamic structures 

and components are a significant aspect in judgment creating about their overhaul and 

retirement.  Failure to identify the damages has various significances, and they change 

based on the use, and significance of the vibrating structures and elements. Premature 

identification of faults in engineering structure during their service period is the great 

challenge to the engineers because of its importance. Though dynamic based fault 

diagnosis has been advanced for last three decades and there is large number of literatures, 

still there are so many problems avoid doing it from application. 

The existence of cracks which influence the performance of structures as well as 

the vibrational parameters like modal natural frequencies, mode shapes, modal damping 

and stiffness. In this research paper, the effect of crack parameters (relative crack location 

& crack depth, and crack inclination) on the vibrational parameters of a single inclined 

edge crack cantilever beam are examined by different techniques using numerical method, 

finite element analysis (FEA), AI techniques (FUZZY inference method and Artificial 

Neural Network). Experimental analysis is carried out for verifying the results. 

Analytical study has been executed on the cantilever beam with inclined edge 

crack to get the vibration parameters of the structure by using the derivation of strain 

energy release rate and stress intensity factor. The existence of inclined crack in a 

structural element leads a local stiffness that changes its vibration response. The local 

stiffness matrices at inclined crack position have been calculated using the inverse of local 

compliance matrices. Suitable boundary conditions are used for predict the variation in the 

vibration parameters of the cracked cantilever beam from that of the uncrack beam.  

Finite Element Method has been accomplished to derive the vibration signatures of 

the inclined cracked cantilever beam. The results obtained analytically are validated with 

the results obtained from the FEA. The simulations of FEA have done with the help of 

ANSYS software. Different artificial intelligent techniques based on Fuzzy controller and 

Artificial Neural Network controller have been formulated using the computed vibrational 

parameters for inclined edge crack identification in cantilever beam elements with more 

precision and significantly low computational period. 
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NOMENCLATURE 

L = Length of the beam 

b = Width of the beam 

A = cross-sectional area of the beam 

t = Thickness of the beam 

L1 = Length of the beam from fixed end up to crack section 

L2 = Length of the beam at crack section 

L3 = Length of the beam from free end up to crack section 

x = Crack location or distance from fixed end 

a = Crack depth 

θ = Crack inclination angle 

θ‟ = Modified crack inclination angle 

β (= x/L) = Relative crack location 

α (= a/t) = Relative crack depth 

J = Strain energy release rate 

K1, i (i = 1, 2) = Stress intensity factors for Pi loads 

E = Young‟s modulus of elasticity of the beam material 

ν = Poisson's ratio 

Cij = Flexibility influence co-efficient 

C11  = Axial compliance 
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C12= C21 = Coupled axial and bending compliance 

C22  = Bending compliance 

 C11  = Dimensionless form of C11 

C12= C21  = Dimensionless form of C12= C21 

C22  = Dimensionless form of C22 

Ai (i = 1to 12) = Unknown coefficients of matrix A 

Fi (i = 1, 2) = Experimentally determined function 

i, j = Variables 

Kij = Local flexibility matrix elements 

Pi (i=1,2) = Axial force (i=1), Bending moment (i=2) 

Q = Stiffness matrix for free vibration. 

ui (i=1,2) = Normal functions (longitudinal) ui (x) 

x = Co-ordinate of the beam 

y = Co-ordinate of the beam 

yi (i=1,2) = Normal functions (transverse) yi (x) 

ω = Natural circular frequency 

ρ = Mass-density of the beam 

  = Aggregate (union) 

    = Minimum (min) operation 

 = For every 

 Λ
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CHAPTER 01 

                                                   Introduction 

1.1. Theme of the Thesis 

In the present research, an effort has been prepared to formulate and develop an inclined 

edge crack diagnostic tool using the dynamic behavior of cracked and un-cracked 

cantilever beam element using analytical analysis, finite element analysis, experimental 

analysis and artificial intelligence techniques.  

The different stages for the current analysis are listed below:  

1. Analytical analysis for the cantilever beam having single inclined edge crack has been 

achieved to calculate the modal parameters (natural frequencies and mode shapes).  

2. Finite Element Analysis (FEA) has been executed to calculate the vibration signatures 

of the inclined crack and un-cracked cantilever beam with different crack parameters. 

3. Experimental set up has been improved and is being used to get the values of first three 

relative natural frequencies and average relative mode shape differences of the inclined 

cracked cantilever member.  

4. The modal parameters obtained from analytical, finite element and experimental 

analysis have been used to formulate and train the artificial intelligence (AI) techniques. 

 1.2. Motivation of Work 

The objective of this paper is to model the beam structures having inclined edge crack at 

different locations with different crack inclination by taking Euler Bernoulli beam 

elements. Firstly the modelling and simulation of the crack has done by the help of finite 

element method using commercial available FEA software ANSYS 12 and estimates the 

crack position, crack depth and crack angle from the calculated modal data. After that the 

results come from ANSYS are compared with the analytical results. In the present 

research, a methodical effort has been made to improve AI based intelligent system for 
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structural health monitoring of inclined cracked cantilever beam model. The parameters 

required to formulate and train the AI model have been obtained by using the analytical, 

finite element and experimental analysis of the inclined cracked cantilever beam structure. 

1.3. Thesis Layout 

The content of the thesis is organized as follows:  

Chapter 1 is the introductory one; it states about the effect of crack on the functionality of 

different engineering structure and also discuss about the methodologies being adopted by 

the scientific community to diagnosis faults in different industrial applications. 

Chapter 2 followed the literature survey which contains the  previous studies had been 

made in the analysis of cracked structure using vibrational techniques, finite element 

analysis, fuzzy logic techniques, neuro network techniques. 

Chapter 3 introduces the analytical model to calculate the modal parameters (natural 

frequencies and mode shapes) by using strain energy release rate and putting down 

different boundary conditions.  

Chapter 4 defines the finite element analysis being applied on the cracked beam structure 

to calculate the dynamic response of the inclined cracked cantilever beams, afterward the 

measured values are used to identify the crack parameters.  

Chapter 5 presents the experimental procedure along with the instruments used for 

validating the results from techniques being implemented in the present analysis for 

inclined crack identification.  

Chapter 6 shows the applicability of fuzzy inference system for fault diagnosis in cracked 

structure. The Gaussian, triangular and trapezoidal, bell shape and hybrid membership 

function based intelligent model with their detail architecture are briefly discussed. 

 Chapter 7 introduces an inverse technique based on the artificial neural network technique 

for effective identification of crack damage in a cracked cantilever structure containing 

inclined crack. Chapter 8 discusses the conclusions drawn from the research carried out on 

the current topic and gives the recommendations for scope of future work in the same 

domain. 
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CHAPTER 02 

                                                   Literature survey 

2.1. Introduction 

Damage or fault diagnosis, as determined by variation in the dynamic characteristics of 

structures, is a major issue that has focused in the literature. Most of the researchers are 

doing their research work related to crack detection using various techniques. A crack in 

the dynamic structures can lead to untimely failure if it is not identified in early time. The 

existence of a crack in a structural member leads a local flexibility that changes its 

vibration response. The main objective is that modal parameters like modal frequencies, 

mode shapes and modal damping are the functions of the structural properties like 

damping, stiffness and mass of the structure. So, the variation of structural properties will 

cause the variation in the modal properties. 

According to Doebling et al. [1], one damage identification system commonly classifies 

four levels of damage assessment:  

 Level 1: Determining the presence of damage,  

 Level 2: Locating the damage,  

 Level 3: Quantifying the damage severity,  

 Level 4: Prediction of the remaining serviceability of the structure.   

This section emphasizes the various techniques usages by researchers in their research 

work in the last three decades. The area of research basically includes the analytical 

approach, FEA approach, experimental validation and the artificial intelligent techniques. 

2.2. Overview 

Many researchers have used the free and forced vibration techniques for developing 

procedures for crack detection. The eventual goal of this research is to establish new 

methodologies which will predict the crack location, crack depth and crack inclination in a 

dynamically vibrating structure with the help of intelligence technique with considerably less 
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computational time and high precision. This chapter recapitulates the previous works, mostly 

in computational methods for structures, and discusses the possible ways for research. 

2.3. Techniques usages for fault detection 

In the current research paper explain to understand different methods for fault analysis of 

damaged structures exposed to vary dynamic loading. There mainly following three 

methods are briefly described for fault diagnoses which are pioneer for all the researchers. 

They are  

 

 

 

 

 

 

 

2.3.1. Classical Method:   

In this method contains mainly explain the theoretical model for crack identification. To 

derive this method by help of using either energy based method, modal response method, 

algorithm based method or analytical method.  

Narkis [2] has used the crack as an equivalent massless spring (as shown in Fig. 1 and Fig. 

2) which joins the two parts of the beam. Result from this approximate model in algebraic 

equations which compare the natural frequencies to beam and crack features. Muller et al. 

[3] used the theory of Lyapunov exponents to identify the crack of the nonlinear dynamics 

of a cracked rotating shaft. Chinchalkar [4] has determined the location of a crack in a 

beam of varying depth by the help of known lowest three natural frequencies of the 

cracked beam. Here crack is behaved as a rotational spring and graphs are plotted between 

2.3.1. Classical Method 

2.3.2. Finite element Method 

2.3.3. Artificial intelligence (AI) Techniques 

 2.3.3.1. Fuzzy Inference Method 

  2.3.3.1.1. Triangular Fuzzy Controller 

  2.3.3.1.2. Trapezoidal Fuzzy Controller 

  2.3.3.1.3. Gaussian Fuzzy Controller 

  2.3.3.1.4. Bell-shaped Fuzzy Controller 

  2.3.3.1.5. Hybrid Fuzzy Controller 

 2.3.3.2. Neural Network Method 

2.3.4. Experimental Techniques 
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spring stiffness and crack location for each natural frequency. The point of intersection of 

three curves gives the location of the crack. 

 

Dado et al. [5] examined the ratio between the natural frequencies of the cracked and un-

cracked cantilever beam which carrying end mass and rotary inertia and appeared high 

crack depth ratios to increase the coupling effects. Song et al. [6] evaluated the bending 

free vibration of cantilevered laminated composites beams having surface crack with 

based on Laplace transform technique. Majumder and Manohar [7] have developed the 

damage detection of localized or distributed damages in a beam using a time-domain 

approach. Lin [8] has explained the direct and inverse problems of simply supported 

beams having an open crack by the use of analytical transfer matrix method. Here crack 

size can be calculated by using the correlation among the sectional flexibility and the 

crack size. Douka et al. [9, 10] calculated instantaneous frequency (IF) by relating 

empirical mode decomposition and Hilbert transform with the help of both simulated and 

experimental response data. The variation of IF acts as indicator of the crack size and also 

help to improve vibration based crack identification techniques. Law and Lu [11] have 

stated a time domain methods in which detect the crack parameters from strain or 

displacement measurements. Chondros [12, 13] has determined the circumferential crack 

due to torsional vibration by the use of Hu–Washizu–Barr variational formulation which 

improve the differential equation and the boundary conditions of the cracked shaft. Loya 

et al. [14] found the natural frequencies of Timoshenko cracked beams due to bending 

vibrations. Here the beam is demonstrated as two segments joined by two massless springs 

(extensional and rotational) and helps break in both vertical displacement and rotation 

which are proportional to shear force and bending moment respectively where transmitted 

by the cracked section. 

Fig.2.1. Representation of open cracked 

cantilever beam with cross-section 

 

Fig.2.2. Representation of cracked by 

rotational spring of cracked cantilever 

beam 

 

a 
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Viola et al. [15] examined the variations in modal response and the magnitude of natural 

frequencies of a cracked uniform . They used different and appropriate method which 

based on the combination of line-spring element and dynamic stiffness matrix to design 

the cracked beam. Curadelli et al. [16] used wavelet transfer to identify structural damage 

by the help of the instantaneous damping coefficient identification. Faverjon and Sinou 

[17] have identified the size and location of the cracks in a simply supported beam by use 

of a robust damage assessment technique which based on the Constitutive Relation Error 

(CRE) updating method and crack depth error function. Lee [18] has used easy and 

effective method to identify the multiple cracks in a beam in which the crack is used as a 

massless rotational spring. Here finite element method is used as for solving forward 

problem based on the Euler–Bernoulli beam theory and inverse problem is solved 

iteratively for the crack positions and dimensions by the Newton–Raphson method. Shih 

et al. [19] determined damage identification in beams and plates by using multi-criteria 

approach which includes two methods, one is modal flexibility and another is modal strain 

energy method. Behzad [20] has developed a continuous model for flexural vibration of 

beams with an edge crack perpendicular to the neutral plane and used J-integral concept 

from fracture mechanics and solved by using Hamilton principle and modified Galerkin 

method. Ryvkin and Slepyan [21] have expressed the resistance of the crack of the square 

bending beam in the terms of bending moment. The relation is founded on the solutions 

resulting for the lattice with a semi-infinite original crack and for the associated incessant 

anisotropic bending plate. Rezaee and Hassannejad [22] have used energy balance method 

for study of a cracked cantilever beam where both structural damping and crack damping 

are taken into account and also crack opening and closing during vibration are taken into 

account. Prasad et al. [23] investigated that the effect of crack position from free end to 

fixed end of the vibrating cantilever beam at each of the frequency on the resolve of crack 

growth rate. Rezaee and Hassannejad [24, 25] have examined a new analytical method 

(perturbation method) for vibrational study of fatigue cracked simply supported beam. 

Mazanoglu and Sabuncu [26] have presented an algorithm for crack detection from 

searching over the frequency map and minimizing the measurement errors. Also a 

statistical approach called „recursively scaled zoomed frequencies (RSZF)‟ is used for 

reducing the deviations. Zheng and Ji [27] have calculated the natural frequencies with a 

variable stiffness distribution along the length of the cracked beam by using improved 

Rayleigh method. Yan et al. [28] have suggested an algorithm which based on closed form 

of element modal strain energy sensitivity that helps for detection of statistical structural 
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damage on simply supported beam with different damage. Mostafa Attar [29] has 

exemplified a new analytical method to determining both natural frequency and mode 

shapes of stepped beam having random number of transverse cracks and also calculating 

the general form of boundary conditions. This method helps to solve the inverse problem 

of calculating the crack location and crack depth of multiple cracks in the stepped beam. 

Maghsoodi et al. [30] have formulated a simple method for determining the location of 

cracks, size of cracks and number of cracks in a multi-stepped beam. They have used 

natural frequencies and mode shapes of un-cracked beam for determine the above 

parameters. Behzad et al. [31] have used a simple method for identification of number of 

edge cracks in beam having different types of cracks. They have taken two types of edge 

cracks for their verification and solved by energy method and LEFM (Linear Elastic 

Fracture Mechanics) theory. Using above theory they have demonstrated a relationship 

among natural frequencies, crack position and stiffness of beam. 

2.3.2. Finite Element Method:   

Apart from the classical methods, finite element method is also have been used for crack 

detection in cracked structures. Various research papers from this field are explained in 

this section.  

B. P. Nandwana and S. K. Maiti [32] have calculated the crack position, crack depth and 

crack inclination by using numerical and experimental method. The inclined crack used as 

a rotational spring for vibrational analysis which helps to determine the crack location and 

depth, according to the changes of vibration signatures. The governing equation obtained 

from the vibration analysis of the beam is manipulated to give a relationship between the 

stiffness of the spring and the location of the crack. Saavedra and Cuitino [33] have used 

to calculate the dynamic response of a cracked free-free beam and a U-frame after a 

harmonic force is applied. For calculating the equations of motion using different 

integration techniques like Taylor, Hilbert and Hughes which are applied using Matlab 

software platform. Viola et al. [34] examined the effect of the crack on the stiffness matrix 

and mass matrix for a cracked Timoshenko beam. Here mass matrix is obtained from the 

shape function for rotational and translational displacements of the beam and detection of 

the cracks in beam using modal test data. 
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Zheng and Kessissoglou [35] have calculated the mode shapes and natural frequencies of 

cracked beam using finite element method. Here global additional flexibility matrix is 

used instead of local additional flexibility matrix to determine the total flexibility matrix 

of a cracked beam. From this total flexibility matrix, the stiffness matrix is obtained. Kisa 

and Gurel [36, 37] have used both finite element method and component mode synthesis 

method to analyse the modal analysis of multi-cracked beams. The main feature of this 

paper is that the mode shapes and natural frequencies of multi-cracked beam can be 

calculated by knowing two end conditions. To verify their results they have taken a 

number of numerical examples. Potirniche et al. [38] used two-dimensional element 

having an implanted edge crack which is not physically designed within the element. Here 

the element is executed as a User Element (UEL) in the field of commercial finite element 

code ABAQUS (as shown in Fig. 3). The stiffness matrix of the components for the 

cracked element is determined from the Castigliano‟s first theorem with the help of 

fracture mechanics. This UEL produces good results as compare to experimental results.  

 

Dong et al. [39] used novel technique, wavelet finite element (WFE) model, having best 

accuracy modal parameter which represents to identify the position and depth of the 

transverse crack in a shaft.  Here crack itself behaves as a massless rotational spring. 

Identify the crack position and depth is measured from the intersection of the three natural 

frequencies curves. Ariaei et al. [40] used both approaches, called finite element method 

(FEM) and discrete element technique (DET), to find the dynamic response of the Euler–

Bernoulli beam having cracks with un-damped and subjected to carrying moving masses. 

Initially formulate the DET by considering both centrifugal forces and effects of Coriolis 

on beam then formulate the beam with breathing cracks. Kalanad and Rao [41] have 

measured relative crack depth up to 0.9 times of total element depth and natural frequency 

of cracked beam more accurately using two dimensional finite element approaches. The 

function of frequency response and function of crack size and location are approached by 

means of surface-fitting techniques. Calculated natural frequencies are used in a crack 
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identification process and the crack position and depth can be determined by finding the 

point of intersection of three natural frequencies lines.  Karaagac et al. [42] have 

calculated natural frequencies and stability of the edge cracked circular curved beam using 

finite element method. The effect of crack size and its location in the cracked beam due to 

buckling load are calculated by the use of energy principle. They have derived governing 

matrix equations based on local flexibility concept. Cheng et al. [43] have used p-version 

finite element method to determine the vibration parameters of cracked rotating tapered 

beam. They have taken fracture mechanics for calculating stiffness matrix of the crack 

elements and also have taken Lagrange equation for calculating p-version finite element 

model of beam. The mode shapes of the cracked beam are found from the spatial wavelet 

transform approach. Kalanad and Rao [44] have upgraded the two-dimensional finite 

element who proposed by Potirniche et al. [45] with an embedded edge crack. Here crack 

depth ratios extending up to 0.9 and for calculating natural frequency of a cracked beam 

high precisely. The calculated crack position and crack sizes are in good agreement with 

the experimental data.  

Sutar [46] has defined the finite element analysis of a cracked cantilever and examined the 

relation among the natural frequencies with crack size and crack position. He used single 

crack at different depth and at different location in the beam and found the relationship 

between crack depth and natural frequency. For verification he used ALGOR analysis 

software. Bing et al. [47] identified the multiple crack of beam by using a 

threestepmeshing method with less subdivision and more precision. It can be used to 

detection of multiple cracks of complicated structure. Khan and Parhi [48] have 

determined the variation of crack size on natural frequency and mode shape of cantilever 

beam by using ANSYS software. Here increasing the natural frequency and decrease the 

mode shape, the crack size will increase.  The experimental results are good agreement 

with results of finite element analysis.   Bouboulas and Anifantis [49] have derived three-

dimensional finite element model for analysis the modal behaviour of non-propagating 

surface crack cantilever beam with dynamic loading. The crack characteristics like 

location, depth and geometry are extracted from that response. Silani et al. [50] 

investigated small open crack over shaft by using new finite element approach. In this 

approach the co-efficient of flexible matrix or the stiffness matrix of elements of crack is 

calculated with changed integration limits which gives more precise than conventional 

method. 
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2.3.3. Artificial Intelligence (AI) Techniques: 

There are different types of AI Techniques for identification of fault in damage structures.  

2.3.3.1. Fuzzy Inference Method 

Sazonov et al. [51] have designed fuzzy expert system based on a finite element (FE) 

model of a simple beam and have provided reliable detection of damage for every tested 

damage scenario. Kim et al. [52] have conferred a computer based crack detection system 

for concrete structures using Fuzzy set theory. They have taken the crack parameters and 

characteristics to build the rooms for the proposed fuzzy inference system. Boutros et al. 

[53] have developed four condition monitoring indicators for detection of transient and 

gradual abnormalities using fuzzy logic approach. Ganguli et al. [54] have used Monte 

Carlo simulation to study the changes in the damage indicator due to uncertainty in the 

geometric properties of the beam. The results obtained from the simulation are used for 

developing and testing the fuzzy logic system. Dash & Parhi [55] have used the fuzzy 

logic based techniques to detect the cracks in a cantilever beam of uniform cross section. 

They have utilized the dynamic characteristics such as change in natural frequencies and 

mode shapes as input to the fuzzy model to predict the crack position and severity, which 

is subsequently validated by finite element and experimental methods. Sugumaran et al. 

[56] described the use of decision tree of a fuzzy classifier for selecting best few features 

that will discriminate the fault condition of the bearing from given trained samples. 

2.3.3.2. Neural Network Method 

Suresh et al. [57] have described a method considering the flexural vibration in a 

cantilever beam having transverse crack. They have executed modal frequency parameters 

analytically for various crack locations and depths and these parameters are used to train 

the neural network to identify the damage location and size. Mehrjoo et al. [58] have 

presented a fault detection inverse algorithm to estimate the damage intensities of joints in 

truss bridge structure using back propagation neural network method. Das & Parhi [59] 

have presented an artificial neural network (ANN) technique to predict crack location and 

crack depth in a cracked cantilever beam. They have used first three relative natural 

frequencies and relative mode shapes as input parameters to the ANN. Paviglianiti et al. 

[60] have devised a scheme for detecting and isolating sensor faults in industrial robot 

manipulators. The dynamics of the proposed scheme has been enriched by using radial 
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basis functions neural network. Eski et al. [61] have presented a fault detection based on 

neural network for an experimental industrial welding robot. Parhi & Dash [62] have 

analyzed the cantilever beam with multiple cracks for its vibrational characteristics, which 

in turn is being utilized to train the neural network controller complemented with back 

propagation technique. 

2.4. Objective 

The objective of this paper is to model the beam structures having inclined edge crack at 

different locations with different crack inclination by taking Euler Bernoulli beam 

elements. Secondly the modeling and simulation of the crack has done by the help of finite 

element method using commercial available FEA software ANSYS 12 and estimates the 

crack position and crack depth from the calculated modal data.  After that the results come 

from ANSYS are compared with the analytical results. In the present analysis, a 

methodical effort has been made to improve AI based intelligent system for structural 

health monitoring of cracked cantilever beam model. The parameters required to formulate 

and train the AI model have been obtained by using the theoretical, finite element and 

experimental analysis of the cracked cantilever beam element. 
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CHAPTER 03 

THEORETICAL VIBRATION ANALYSIS FOR 

IDENTIFICATION OF CRACK 

3.1. Introduction 

In this present research work it has been analysed that the crack can be detected in the 

various structures through visual inspection or by the method of measuring natural 

frequency, mode shape and structural damping.  As the measurement of natural frequency 

and mode shape is quite easy as compared to other parameters, so in this chapter a logical 

approach has been adopted to develop the expression to calculate the natural frequency 

and the mode shape of the cantilever beam with the presence of a transverse crack and the 

effect of natural frequency in the presence of crack. Experimental analysis has been done 

over cracked cantilever beam specimen for validation of the theory established. 

3.2. Theoretical Analysis 

In this analysis, theoretical modeling of un-cracked cantilever beam for calculating the 

modal parameters i.e. modal frequencies and mode shapes and also modeling of cracked 

cantilever beam for calculating the modal parameters of the crack beam having inclined 

edge crack for different crack parameters i.e. crack locations, crack depths and crack 

inclinations. The proposed theoretical method has been established by comparing the 

results with both finite element analysis and the experimental analysis. 

3.2.1. Inclined Crack Model in Cantilever Beam 

A cantilever beam of length „L‟ (=L1+L2+L3), width „b‟, thickness „t‟ having inclined 

crack at a distance „L1‟ from the fixed end as shown in Fig.3.1 and Fig. 3.2. The Fig. 3.3 

represents magnified view at crack region. Let  MNP which is very small which doesn‟t 

affect the stiffness of the whole beam, i.e. neglect the mass of  MNP .  
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Fig.3.1. Cantilever beam having inclined crack 

Fig.3.2. Geometry of inclined crack cantilever beam  
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Fig. 3.3. Magnified view at the inclined crack section of the beam  
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Let  QON=θ  and TMN=θ'  , where θ  and θ'  are the crack inclination angle and 

modified crack inclination angle respectively. Here we assume crack opening (=MO+OP) 

is 0.0008 m = 0.8 mm. 

In Δ QON  and Δ MNT , 

2

-1

L 0.0004QN QN a×tanθ'-0.0004
tanθ= =

OQ a a a

a×tanθ'-0.0004
θ=tan

a


 

 
  

 

                                                           (3.1) 

2LTN TQ+QN 0.0004+a×tanθ
tanθ'= = = =

MT a a a
                                                                 (3.2) 

-1 -12L 0.0004+a×tanθ
θ'=tan =tan

a a

   
   

  
                                                                            (3.3) 

The beam is divided into three parts I, II and III as shown in Fig. 3.2. Consider the whole 

beam is an Euler-Bernoulli‟s beam. Here 

1

2

3

L =x-0.0004

L =0.0004+a×tanθ

L =L-(x+a×tanθ)

                                                                                                         (3.4) 

Let aα=
t

= Relative Crack Depth and xβ=
L

 = Relative Crack Location. Put these values 

in eq. (3.4), we get 

1

2

3

L =βL-0.0004

L =0.0004+αt×tanθ

L =L-(βL+αt×tanθ)

                                                                                                        (3.5) 

Put the values of L= 0.8 m and t= 0.006 m in eq. (3.5). At crack position, we take „N‟ 

number of equal divisions i.e. n=1,2,3,4,......N  as shown in Fig.3.4. So, each division 

having length  

2
n

L
L =

N
                                                                                                                         (3.6) 
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Now thickness of 1
st
 section is  

1

2
1

t =t-MM'

L
t =t-

N×tanθ'


                                                                                                              (3.7) 

In general thickness of each section will be 

 2
n

n L
t =t-

N tanθ'




                                                                                                                (3.8) 

The crack depth and relative crack depth of each section are given in eq. (3.5). 

2
n

2
n

n L
a =

N tanθ'

n L
α =

t×N tanθ'









                                                                                                                (3.9) 

 

3.2.2. Evaluation of local Flexibility of an Inclined Cracked Cantilever Beam under 

Axial and Bending Loading: 

Below Fig. 3.5 and Fig. 3.6 represent inclined crack cantilever beam, subjected to axial 

load (P1) as well as bending moment (P2). The loading provides a coupling effect resulting 
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Fig. 3.4. Magnified view at the inclined crack section having egual 
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in both longitudinal and transverse motion of the beam. The beam contains inclined crack 

having length „L‟, maximum crack depth „a‟, crack depth at n
th

 section of crack „an‟ , width 

„b‟ and thickness „t‟. 

 

 

Due to the presence of crack in the beam a local stiffness will be introduced and 2 2  

matrix is considered, which represent the stiffness of the beam. At the section strain 

energy release rate can be explained as [63]; 

L
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Fig. 3.5. Inclined crack cantilever beam, subjected to axial load (P1) and 

bending moment (P2) 
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2

I1 I2

1
J = (K +K )

E
                                                                                                          (3.10) 

Where 
21 1

=
E E

v


(for plane strain)                                                                               (3.11) 

1 1
=

E' E
(For plane stress)                                                                                     (3.12) 

(Kl1)n , (Kl2)n are the stress intensity factors of mode I (opening of the crack) for load P1 

and P2 respectively at „„n
th

‟‟ section of the crack. The values of stress intensity factors 

from earlier studies [63] are; 

1 n
11 n n 1

2 n
I2 n n 22

P a
(K ) = πa F

bt t

6P a
(K ) = πa F

bt t

  
  
  

  
  
  

                                                                                         (3.13) 

The expression for F1 and F2 are given below 

0.5
3

n n n n
1

n n

0.5
4

n n n
2

n n

a πa 0.752+ 2.02(a /t) +0.37(1-sin(πa /2t))2t
F = tan

t πa 2t cos(πa /2t)

a πa 0.923+0.199(1-sin(πa /2t))2t
F = tan

t πa 2t cos(πa /2t)

      
     

      

      
     

      

                    (3.14) 

Let Ut be the strain energy due to the crack. According to Castigliano‟s theorem, the 

additional displacement along the force Pi is: 

t
i

U
u

Pi





                                                                                                                         (3.15) 

The form of strain energy will have, 

n na a

t
t n n

0 0

U
U = J a da

a
d




  , 1,2,3,4,..........n N                                                             (3.16) 

Where t

n

U
J

a





 the strain energy density function. 
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From eq. (3.10) and (3.16), we can have 

na

i n n

0

u = J(a )da
Pi

 
 

   
                                                                                                     (3.17) 

ij n(C ) = Flexibility influence co-efficient at n
th

 crack section. According to definition, 

na2

i
ij n n n

j j 0

u
(C ) = J(a )da

P P Pi

 


                                                                                         (3.18) 

and can be expressed as, 

na2
2

ij n l1 n l2 n n

j 0

b
(C ) = [(K ) +(K ) ] da

E P Pi



                                                                           (3.19) 

Putting n
n

a
α =

t
 and n

n

da
dα =

t
 in eq. (3.19), we get  

nα2
2

ij n l1 n l2 n n

j 0

bt
(C ) = [(K ) +(K ) ] dα

E P Pi



                                                                          (3.20) 

Where n
n

a
α =

t
 and when a=0; α=0. Using eq. (3.20), the compliance 

11 n 12 n 21 n 22 n(C ) ,(C )  [=(C ) ] and (C )  we get, 

n

n

α

2n
11 n 1 n n2 2

0

α

2

n 1 n n

0

πabt
(C ) = 2(F (α )) dα

E b t

2π
          = [α (F (α ))] dα

bE









                                                                                   (3.21) 

nα

12 n 21 n n 1 n 2 n n

0

12π
(C ) =(C ) = [α (F (α )F (α ))] dα

E bt                                                                (3.22) 

nα

2

22 n n 2 n n2

0

72π
(C ) = [α (F (α )) ] dα

E bt                                                                                  (3.23) 

The dimensionless form of the influence co-efficient will be; 
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n n11 11

bE
(C ) =(C )

2π


; n12 21 12n n

E bt
(C ) =(C ) =(C )

12π


; 

2

22 n 22 n

E bt
(C ) =(C )

72π


    (3.24) 

The inversion of compliance matrix will get local stiffness matrix and can be written as; 

-1

11 n 12 n 11 n 12 n

21 n 22 n 21 n 22 n

(C ) (C ) (K ) (K )
K = =

(C ) (C ) (K ) (K )

   
   
   

                                                                  (3.25) 

3.2.3. Vibration analysis of inclined crack cantilever beam: 

A cantilever beam of length „L‟ (=L1+L2+L3), width „b‟, thickness „t‟ having inclined 

crack at a distance „L1‟ from the fixed end as shown in Fig.3.7. Here L2 is length of the 

inclined crack region which is very much small as compared to length of the beam. The 

amplitude of the longitudinal vibration have been taken 1( , )u x t  and 2 ( , )u x t , and 

amplitudes of bending vibration have been considered as 1( , )y x t and 2 ( , )y x t for the section 

before and after the crack as shown in Fig. 3.16. The expressions of the normal function 

for the system can be defined as 

u u1 1 2u (x)= A cos(K x)+A sin(K x)                                                                             (3.26) 

u u2 3 4u (x)= A cos(K x)+A sin(K x)                                                                            (3.27) 

y y y y5 71 6 8y (x)= A cosh (K x)+A sinh(K x) +A cos(K x)+A sin(K x)                       (3.28) 
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u1 u2 

y1 y1 
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θ' 
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x 

Fig. 3.7. Cantilever beam model with inclined edge crack 
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y y y y2 9 10 11 12y (x)= A cosh (K x)+A sinh(K x) +A cos(K x)+A sin(K x)                    (3.29) 

Where 

   

0.5

2

1
yu 0.5 0.5

ω×L ω×LLyuxx= ;  u= ;  y= ;  β= ; K = ;  K =
L L L L

E E×I
ρ A×ρ

 
 
 
 
  

        (3.30) 

The constants iA ,(i=1 to 12) are to be determined from boundary conditions. The boundary 

conditions of the cantilever beam is considered are; 

At fixed end x = x = 0;   

1u (0) = 0                                                                                                                          (3.31) 

1(0) 0y                                                                                                                           (3.32) 

1y' (0) = 0                                                                                                                         (3.33) 

At free end x = L,  x =1;   

2u' (1) = 0                                                                                                                         (3.34) 

2y" (1) = 0                                                                                                                        (3.35) 

2y"' (1) = 0                                                                                                                       (3.36) 

At the crack section; 

1 2u' (β) = u' (β)                                                                                                                  (3.37) 

1 2y (β) = y (β)                                                                                                                   (3.38) 

1 2y'' (β) = y'' (β)                                                                                                                 (3.39) 

1 2y''' (β) = y''' (β)                                                                                                                (3.40) 
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We take „N‟ number of small equal divisions at crack section. Here we compare two crack 

positions i.e. middle of the crack region (  Nn =
2

section) which is crack prominent and 

end of the crack region ( n = N ) is more prominent. Because our assumption crack depth at 

n = 1  to n = N  goes on increase.  

Also at the cracked section (due to the discontinuity of axial deformation to the left and 

right of the crack location at the distance L1 from the fixed end of the beam), we have: 

1 1 2 1 1 1
11 N 2 1 11 N 1 1 12 N 12 N

2 2

du (L ) dy (L ) dy (L )
AE =(K ) [u (L )]-(K ) [u (L )]+(K ) -(K )

dx dx dx

   
   
   

  (3.41) 

Similarly at the crack section (due to discontinuity of slope to the left and right of the 

crack), we have: 

2

1 1 2 1 1 1
21 N 2 1 21 N 1 1 22 N 22 N2

2 2

d y (L ) dy (L ) dy (L )
EI = (K ) [(u (L )]-(K ) [u (L )]+(K ) -(K )

dx dx dx

   
   
   

(3.42) 

By using normal functions, eq. (3.26), eq.(3.27), eq.(3.28) and eq.(3.29) along with 

boundary conditions as mention above (eq. (3.31) to eq.(3.40)), yield characteristic 

equations (eq. (3.41) & eq.(3.42)) of the system as: 

Q =0                                                                                                                              (3.43) 

Where Q is the 12X12matrix and is expressed as following 12 boundary conditions, i.e. 

the value of eq. (3.31) to (3.42), we get the values A1 to A12. 

1 2

1 2 3 4

5 6 7 8

1 2 1 2

3 4 5 6 3 4 5 6

7 8 9 10 7 8 9 10

11 12 13 14 11 12 13 14

1 2 3 4 5 6

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 -R R 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 S S -S -S

0 0 0 0 0 0 0 0 S S S -S

T -T T T 0 0 0 0 0 0 0 0

0 0 0 0 T T T T -T -T -T -T

0 0 0 0 T T -T -T -T -T T T

0 0 0 0 T T T -T -T -T -T T

M -M M M -M -M

1

2

3

4

5

6

7

8

9

10

7 8 9 10 11 12 11

1 2 3 4 5 6 7 8 9 10 11 12 12

A

A

A

A

A

A
=0

A

A

A

A

M -M M M -M M A

N -N -N N -N -N N N N N -N N A

   
   
   
   
   
   
   
   

  
  
  
  
  
  
  
  
  
     

    (3.44) 
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1 2

1 2 3 4

5 6 7 8

1 2 1 2

3 4 5 6 3 4 5 6

7 8 9 10 7 8 9 10

11 12 13 14 11 12 13 14

1 2 3 4 5

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 -R R 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 S S -S -S

0 0 0 0 0 0 0 0 S S S -S
Q =

T -T T T 0 0 0 0 0 0 0 0

0 0 0 0 T T T T -T -T -T -T

0 0 0 0 T T -T -T -T -T T T

0 0 0 0 T T T -T -T -T -T T

M -M M M -M - 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

=0

M M -M M M -M M

N -N -N N -N -N N N N N -N N

      (3.45) 

Where 

 

0.5

2

y
0.5

ω×L
K =

E×I
A×ρ

 
 
 
 
  

; 

 
u 0.5

ω×L
K =

E
ρ

; 1L
β =

L
  

yP = K  

 1 u uR = K ×sin K ;  2 u uR = K ×cos K  

 
2

1 y yS = K ×cosh K ;  
2

2 y yS = K ×sinh K ;  
2

3 y yS = K ×cos K ;  
2

4 y yS = K ×sin K  

 
3

5 y yS = K ×sinh K ;  
3

6 y yS = K ×cosh K ;  
3

7 y yS = K ×sin K ;  
3

8 y yS = K ×cos K  

 1 u uT = K ×sin K β ;  2 u uT = K ×cos K β ;  

 3 yT = cosh K β ;  4 yT = sinh K β ;  5 yT = cos K β ;  6 yT = sin K β  

 
2

7 y yT = K cosh K β ;  
2

8 y yT = K sinh K β ;  
2

9 y yT = K cos K β ;  
2

10 y yT = K sin K β  

 
3

11 y yT = K sinh K β ;  
3

12 y yT = K cosh K β ;  
3

13 y yT = K sin K β ;  
3

14 y yT = K cos K β  
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 1 u u 11 u5
M = AEK sin(K β)- K Lcos(K β)  ;  2 u u 11 u5

M =AEK cos(K β)+ K Lsin(K β) ;  

 3 11 u10
M = K Lcos(K β) ;  4 11 u10

M = K Lsin(K β) ;  5 12 y y5
M = K K sinh(K β) ;  

 6 12 y y5
M = K K cosh(K β) ;  7 12 y y5

M = K K sin(K β) ;  8 12 y y5
M = K K cos(K β) ;  

 9 12 y y10
M = K K sinh(K β) ;  10 12 y y10

M = K K cosh(K β) ;  11 12 y y10
M = K K sin(K β) ;  

 12 12 y y10
M = K K cos(K β)  

 1 21 u u5
N = K LK sin(K β) ;  2 21 u u5

N = K LK cos(K β) ;  3 21 u u10
N = K LK sin(K β) ;  

 4 21 u u10
N = K LK cos(K β) ;  

2

5 y y 22 y y5
EIN = ×K cosh(K β)+ K K sinh(K β)

L
 ;  

 
2

6 y y 22 y y5
EIN = ×K sinh(K β)+ K K cosh(K β)

L
;  

 
2

7 y y 22 y y5
EIN = ×K cos(K β)+ K K sin(K β)

L
;  

 
2

8 y y 22 y y5
EIN = ×K sin(K β)- K K cos(K β)

L
;  9 22 y y10

N = K K sinh(K β) ;  

 10 22 y y10
N = K K cosh(K β) ;  11 22 y y10

N = K K sin(K β) ;  12 22 y y10
N = K K cos(K β)  

This determinant is a function of natural frequency (ωn), the relative location of the crack 

(L1/L) and the local stiffness matrix (K) which in turn is a function of the relative crack 

depth (an/t). 
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CHAPTER 04 

FINITE ELEMENT ANALYSIS FOR 

IDENTIFICATION OF CRACK 

Premature identification of damages in dynamic structures during their service period is 

the key challenge to the researchers because of its importance.  At early stage of damages, 

it is very difficult to find out damages using visual inspection. It may be identified by 

Non-Destructive Techniques (NDT) such as ultrasonic, magnetic particle, radiography or 

shaft voltage drop etc. Though dynamic based damage diagnosis has been advanced for 

last three decades and there are many literatures, still there are so many problems avoid 

doing it from application. There are many techniques to solve the problem of a cracked 

beam such as numerical, wavelet, artificial intelligence, analytical, semi-analytical, 

experimental etc. FEA (Finite Element Analysis) is a common technique to obtain the 

stiffness matrix of the cracked beam element.  

4.1. Introduction 

The finite element method (FEM) is a numerical method for analysing structures. It is 

firmly established as a powerful popular analysis tool. It is most widely used in structural 

mechanics. The finite element procedure produces many simultaneous algebraic 

equations, which are generated and solved on a digital computer. In this chapter FEA is 

carried out to identify crack location, crack depth and crack inclination in a cracked beam 

having inclined crack. The results from FEA have been compared with that of numerical 

analysis and it is found that finite element method can be suitable used for inclined crack 

detection in faulty elements. 

4.2. Steps for Finite Element Analysis 

Due to the orderly and suitable modeling of the complicated structure, FEA finds 

extensive applications in several technical fields. Different analysis can be done for 

different dynamic structures by applying the suitable boundary conditions. Commercial 
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finite element software packages (e.g. ANSYS, ALGOR, ABAQUS etc.) are available to 

solve the various problems occurred in many engineering applications. 

The procedure of computational modeling of the structure for finding out the natural 

frequencies and mode shapes of the cracked beam using FEM broadly consists of 

following steps: 

 Selecting the Element Type 

 Defining Material Properties 

 Creating Geometrical Model of the Structure 

 Discretization of the Structure (or Meshing of the structure) 

 Apply the boundary, initial and loading conditions 

 Setting up an Analysis 

4.3. Analysis of Finite Element by ANSYS 

ANSYS is universal software, which is used on simulation of the structural elements, fluid 

dynamics, vibration, thermal transfer and electro mechanics for engineers. We can 

simulate with ANSYS structures and then test them in the virtual environment. Mesh on 

the beam is generated automatically by ANSYS, while is used the spatial element type 

SOLID187 as shown in Figure 4.1. The element (SOLID 187) is defined by 10 nodes 

while each node has three degrees of freedom. The SOLID187 has a quadratic shifting 

behaviour and is suitable for modelling of the finite element irregular mesh. The 

maximum size of the element is 5 mm.  

 

4.4. Process of Crack Identification 

In this chapter identification of inclined crack in a cracked cantilever beam has been 

executed in two ways. Firstly, the finite element model of the inclined crack cantilever 

Fig.4.1. Element type SOLID 187 
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beam is developed and the cracked beam is discretized into a number of elements, and the 

crack location is supposed to be in each of the elements. Next, for particular location of 

the crack in each element, the crack depth and crack inclination are varied. Modal analysis 

for each crack location, crack depth and crack inclination is then executed to determine the 

natural frequencies and mode shapes of the cracked beam. 

4.5. Modal Analysis of cracked beam using finite element analysis (FEA) 

The modal analysis deals with the dynamics behaviour of dynamic structures under the 

dynamics excitation. The modal analysis helps to decrease the noise produced from the 

system to the environment. It helps to point out the reasons of vibrations that cause 

fault/damage of the integrity of system components. Using it, we can develop the overall 

performance of the system in certain operating situations. We know two basic methods of 

the modal analysis, namely the numerical modal analysis and the experimental modal 

analysis. The experimental modal analysis deals with measurement input data from which 

a mathematical model is derived. However, it has to take different levels of analysis, from 

which the model is constructed.  

We can effect computational period of the modal analysis, when a range of frequencies or 

number of mode shapes is defined. The type of solution and the solver method in software 

package ANSYS is selected automatically. In direct solver method, the block Lanczos 

method is used for the modal analysis. The variation of first three relative natural 

frequencies with respect to relative crack locations, relative crack depths and crack 

inclinations as shown in Fig. 4.2 to Fig. 4.17. The first three mode shapes are shown in 

Fig. 4.18 to Fig. 4.44. All the results are compared with the numerical results.  

The relative natural frequency (RNF) and relative mode shape difference (RMD) used in 

different analysis can be defined as given. 

Natural Frequency of Cracked Beam
RNF = 

Natural Frequency of Uncracked Beam
  

Modal Amplitude of Uncracked Beam - Modal Amplitude of Cracked Beam
RMD = 

Modal Amplitude of Uncracked Beam
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4.5.1. Variation of relative crack location with relative natural frequencies for 

particular relative crack depth and crack inclination 
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Fig.4.2. Relative first mode natural 

frequencies Vs. Relative crack location 

from fixed end at crack angle (θ) 30
0
 

Fig.4.3. Relative second mode natural 

frequencies Vs. Relative crack location 

from fixed end at crack angle (θ) 30
0
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Fig.4.4. Relative third mode natural 
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Fig.4.6. Relative Second mode natural 
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4.5.2. Variation of relative crack depth with relative natural frequencies for 

particular relative crack location and crack inclination 
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Fig.4.8. Relative first mode natural 

frequencies Vs. Relative crack depth at 
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Fig.4.9. Relative second mode natural 

frequencies Vs. Relative crack depth at 

crack angle (θ) 35
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Fig.4.12. Relative second mode natural 

frequencies Vs. Relative crack depth at 

relative crack location (β) 0.4 
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Fig.4.13. Relative third mode natural 

frequencies Vs. Relative crack depth at 

relative crack location (β) 0.4 
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Fig.4.10. Relative third mode natural 

frequencies Vs. Relative crack depth at 

crack angle (θ) 35
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4.5.3. Variation of relative crack inclination with relative natural frequencies for 

particular relative crack location and relative crack depth 

 

4.5.4.  First three mode shapes at different crack location, crack depth & crack angle 
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Fig.4.18. First mode relative amplitude 

Vs. Relative location from fixed end at 

β = 0.25, α = 0.3 and Ɵ = 30° 
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Fig. 4.16. Relative second mode natural 

frequencies Vs. Crack angles at β = 0.3, α = 0.25 
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 Fig. 4.17. Relative third mode natural frequencies 

Vs. Crack angles at β = 0.3, α = 0.25 
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Fig.4.22. Third mode relative amplitude 

Vs. Relative location from fixed end at 

β = 0.25, α = 0.3 and Ɵ = 30° 
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Fig.4.23. Magnified view of Third mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.25, α = 0.3 and Ɵ = 
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Fig.4.24. Magnified view of First mode 

relative amplitude Vs.Relative location 

from fixed end at β = 0.7, α = 0.3 and Ɵ = 

30° 
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Fig.4.25. Magnified view of Second mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.7, α = 0.3 and Ɵ = 30° 
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Fig.4.20. Second mode relative amplitude 

Vs. Relative location from fixed end at  

β = 0.25, α = 0.3 and Ɵ = 30° 

0.2475 0.2500 0.2525
-0.960

-0.955

-0.950

-0.945

-0.940

-0.935

-0.930

-0.925

-0.920

-0.915

S
e

c
o

n
d

 m
o

d
e

 r
e

la
ti

v
e

 a
m

p
li

tu
d

e

Relative location from fixed end

 uncrack

 crack

( Magnified view of crack at 

         )

Fig.4.21. Magnified view of Second mode 

relative amplitude Vs. Relative location from 

fixed end at β = 0.25, α = 0.3 and Ɵ = 30° 
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Fig.4.27. Magnified view of First mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.25 and Ɵ = 30° 
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Fig.4.28. Magnified view of Second mode 

relative amplitude Vs. Relative location from 

fixed end at β = 0.25 and Ɵ = 30° 
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Fig.4.29. Magnified view of Third mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.25 and Ɵ = 30° 

Fig.4.30. Magnified view of First mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.5 and Ɵ = 30° 

 

0.498 0.499 0.500 0.501 0.502
0.756

0.758

0.760

0.762

0.764

0.766

0.768

0.770

F
ir

s
t 

m
o

d
e
 r

e
la

ti
v
e
 a

m
p

li
tu

d
e

Relative location from fixed end

 uncrack

 crack with  

 crack with  = 0.3

 crack with 

( Magnified view of crack at 

 )

Fig.4.31. Magnified view of Second mode 

relative amplitude Vs. Relative location 

from fixed end at β = 0.5 and Ɵ = 30° 
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4.6.   Results and discussions of finite element analysis 

4.6.1. Comparing Results of Finite Element Analysis with Numerical Analysis 

 

Fig.4.36. First mode relative amplitude Vs. 

Relative location from cantilever end at β = 

0.3, α = 0.35 and Ɵ = 35° 
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Fig.4.37. Magnified view of First mode relative 

amplitude Vs. Relative location from cantilever 

end at β = 0.3, α = 0.35 and Ɵ = 35° 

 

Fig.4.32. Magnified view of Third mode 

relative amplitude Vs. Relative location 
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Fig.4.33. Magnified view of First mode 

relative amplitude Vs.Relative location from 

fixed end at β = 0.7 and Ɵ = 30° 
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Fig.4.34. Magnified view of Second mode 

relative amplitude Vs.Relative location 

from fixed end at β = 0.7 and Ɵ = 30° 
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Fig.4.35. Magnified view of Third mode 

relative amplitude Vs.Relative location from 

fixed end at β = 0.7 and Ɵ = 30° 
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The results obtained from theoretical analysis and finite element analysis in the form of 

mode shapes are compared in Fig. 4.36 to Fig. 4.41. Also the results obtained from 

theoretical analysis and finite element analysis due to different crack parameters in form 

of modal frequencies are given in Table 4.1. 

Table 4.1 represents the comparison study of modal analysis between numerical and finite 

element analysis (FEA). First three columns present first three relative natural frequencies, 

columns four to six present first three relative mode shape differences, columns seven and 

nine present relative crack locations and columns  eight and ten presents relative crack 

depths. 

 

Fig.4.38. Second mode relative amplitude 

Vs. Relative location from cantilever end at 

β = 0.3, α = 0.35 and Ɵ = 35° 
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Fig.4.39. Magnified view of Second 

mode relative amplitude Vs. Relative 

location from cantilever end at β = 0.3, α 

= 0.35 and Ɵ = 35° 
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Fig.4.40. Third mode relative amplitude Vs. 

Relative location from cantilever end at β = 

0.3, α = 0.35 and Ɵ = 35° 
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Fig.4.41. Magnified view of Third mode 

relative amplitude Vs. Relative location 

from cantilever end at β = 0.3, α = 0.35 and 

Ɵ = 35° 
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Table 4.1 Comparison the results of modal analysis between numerical and FEA 

SL 

NO. 

1 2 3 4 5 6 7 8 9 10 

RFNF RSNF RTNF RFMD RSMD RTMD 
Numerical FEA 

β α β α 

Crack inclination (θ) 0° 

1 0.99968 0.99998 0.99978 0.0006 -0.00017 -0.00073 0.245 0.0985 0.25 0.1 

2 0.99846 0.99988 0.9989 0.00259 -0.00093 -0.00328 0.24625 0.195 0.25 0.2 

3 0.99893 0.99582 0.99985 0.00187 -0.00394 0.01222 0.49125 0.294 0.5 0.3 

4 0.99809 0.99182 0.99993 0.00391 -0.00788 0.00928 0.4875 0.389 0.5 0.4 

5 0.99999 0.99703 0.9914 0.00013 -0.03827 -0.02445 0.72938 0.392 0.75 0.4 

6 0.99992 0.99491 0.98529 0.00034 -0.06516 -0.04052 0.73125 0.4875 0.75 0.5 

Crack inclination (θ) 15° 

1 0.99966 0.99998 0.99978 0.0006 -0.00019 -0.00073 0.24625 0.0988 0.25 0.1 

2 0.99852 0.99992 0.99897 0.00269 -0.00088 -0.00328 0.24563 0.1963 0.25 0.2 

3 0.99908 0.99609 0.99993 0.00186 -0.00382 0.00767 0.49375 0.2933 0.5 0.3 

4 0.99817 0.99215 0.99993 0.00375 -0.00757 0.01086 0.49 0.3898 0.5 0.4 

5 0.99999 0.99714 0.99162 0.00013 -0.0371 -0.02377 0.73313 0.3906 0.75 0.4 

6 0.99981 0.99483 0.98514 0.00034 -0.06545 -0.04119 0.73688 0.4894 0.75 0.5 

Crack inclination (θ) 30° 

1 0.99959 0.9999 0.99971 0.00032 -0.00036 -0.00079 0.24638 0.0987 0.25 0.1 

2 0.99855 0.99988 0.99897 0.00245 -0.0009 -0.0031 0.2455 0.1957 0.25 0.2 

3 0.99908 0.99633 0.99985 0.00165 -0.00357 0.00753 0.4925 0.2929 0.5 0.3 

4 0.99832 0.99294 0.99993 0.00327 -0.00671 0.01007 0.48935 0.3906 0.5 0.4 

5 0.99999 0.99745 0.99272 6.7E-05 -0.03106 -0.01996 0.73395 0.3904 0.75 0.4 

6 0.99988 0.99543 0.98669 0.00027 -0.05856 -0.03671 0.73598 0.4911 0.75 0.5 

Crack inclination (θ) 45° 

1 0.99963 0.99994 0.99971 0.00046 -0.00028 -0.00079 0.2447 0.0979 0.25 0.1 

2 0.99861 0.99996 0.99904 0.00278 -0.00078 -0.00316 0.24513 0.1952 0.25 0.2 

3 0.99893 0.99588 0.99978 0.00178 -0.00382 0.01317 0.48825 0.293 0.5 0.3 

4 0.9981 0.99191 0.99993 0.00375 -0.00763 0.01217 0.48935 0.3901 0.5 0.4 

5 0.99999 0.99714 0.99184 0.00013 -0.03492 -0.02265 0.73583 0.3915 0.75 0.4 

6 0.99992 0.99491 0.98492 0.00034 -0.06586 -0.04142 0.73508 0.4911 0.75 0.5 
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CHAPTER 05 

EXPERIMENTAL ANALYSIS FOR 

IDENTIFICATION OF CRACK 

5.1.   Introduction 

In  order  to  support  the  validation  of  the  results  from  the  theoretical  analysis  and  

finite  element analysis  discussed  in  chapter-3  and  chapter-4,  which  are  used  in  

different  artificial  intelligence controller  proposed  to  forecast  crack  location, crack  

depth and crack inclination discussed  in  chapter-6  and chapter-7,  Experimental  analysis  

is  carried  out.  For the analysis, the experimental setup is made to measure the natural 

frequency and mode shapes and to observe the response of cantilever beam with the 

presence of inclined crack.  

An aluminium cantilever beam specimen of dimension (800 x 60 x 6 mm
3
) has been taken 

for the experimental analysis. A number of experiments have been done on the cracked 

beam with different configurations of crack parameters (crack locations, crack depths and 

crack inclinations) to measure the first three natural frequencies and mode shapes.  

5.2. Experimental Setup  

The schematic block diagram of the complete experimental setup is shown in Figure: 5.1. 

An experimental set-up contains following devices for performing the experiment. 

1. Vibration Analyser 2. Accelerometer 3. Power Distribution 

4. Vibration Exciter 5. Power Amplifier 6. Test Specimen-beam 

7. Vibration Indicator (PULSE 

Labshop software) 

8. Function Generator   

Before the experimental study the beams surface has been cleaned and organized for 

straightness. Subsequently, transverse inclined crack is created at different location from 

fixed end in different specimens with the help of Wire EDM machine. The natural 
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frequencies corresponding to1st, 2nd and 3rd mode are noted with different crack depth at 

different crack locations and different crack inclinations in the cracked cantilever beam.  

 

Fig.5.1. Schematic Block Diagram of Experimental set-up 

 

5.3. Experimental Results 

 

Fig.5.2. First mode relative amplitude Vs. 

Relative location from cantilever end at β = 

0.3, α = 0.35 and Ɵ = 35° 
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Fig.5.3. Magnified view of First mode 

relative amplitude Vs. Relative location 

from cantilever end at β = 0.3, α = 0.35 and 

Ɵ = 35° 
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5.4. Comparison between the results of numerical, finite element and experimental 

analysis 

The results obtained from theoretical analysis, finite element analysis and experimental 

analysis in the form of mode shapes are compared in Fig. 5.2 to Fig. 5.7. Also the results 

obtained from theoretical analysis, finite element analysis and experimental analysis due 

to different crack parameters in form of modal frequencies are given in Table 5.1. 

 

 

 

Fig.5.4. Second mode relative amplitude Vs. 

Relative location from cantilever end at β = 

0.3, α = 0.35 and Ɵ = 35° 

 

0.0 0.2 0.4 0.6 0.8 1.0
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
e

c
o

n
d

 M
o

d
e

 R
e

la
ti

v
e

 A
m

p
li
tu

d
e

Relative Location from Cantilever End

  Crack Numerical

  Crack FEA

  Crack Experimental

( 

Fig.5.5. Magnified view of Second mode 

relative amplitude Vs. Relative location 

from cantilever end at β = 0.3, α = 0.35 

and Ɵ = 35° 
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Fig.5.6. Third mode relative amplitude Vs. 

Relative location from cantilever end at β = 

0.3, α = 0.35 and Ɵ = 35° 
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Fig.5.7. Magnified view of Third mode 

relative amplitude Vs. Relative location 

from cantilever end at β = 0.3, α = 0.35 and 

Ɵ = 35° 
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Table 5.1 Comparison the results of modal analysis between numerical, FEA and 

Experimental 

RFNF RSNF RTNF RFMD RSMD RTMD 
Numerical FEA Experiment 

β α β α β α 

Crack inclination (θ) 0° 

0.99968 0.99998 0.99978 0.0006 -0.00017 -0.00073 0.245 0.0985 0.25 0.1 0.2575 0.104 

0.99846 0.99988 0.9989 0.00259 -0.00093 -0.00328 0.24625 0.195 0.25 0.2 0.2588 0.207 

0.99893 0.99582 0.99985 0.00187 -0.00394 0.01222 0.49125 0.294 0.5 0.3 0.5125 0.311 

0.99809 0.99182 0.99993 0.00391 -0.00788 0.00928 0.4875 0.389 0.5 0.4 0.52 0.41 

0.99999 0.99703 0.9914 0.00013 -0.03827 -0.02445 0.72938 0.392 0.75 0.4 0.7799 0.411 

0.99992 0.99491 0.98529 0.00034 -0.06516 -0.04052 0.73125 0.4875 0.75 0.5 0.7838 0.515 

Crack inclination (θ) 15° 

0.99966 0.99998 0.99978 0.0006 -0.00019 -0.00073 0.24625 0.0988 0.25 0.1 0.258 0.103 

0.99852 0.99992 0.99897 0.00269 -0.00088 -0.00328 0.24563 0.1963 0.25 0.2 0.2594 0.207 

0.99908 0.99609 0.99993 0.00186 -0.00382 0.00767 0.49375 0.2933 0.5 0.3 0.521 0.312 

0.99817 0.99215 0.99993 0.00375 -0.00757 0.01086 0.49 0.3898 0.5 0.4 0.5138 0.41 

0.99999 0.99714 0.99162 0.00013 -0.0371 -0.02377 0.73313 0.3906 0.75 0.4 0.7826 0.4411 

0.99981 0.99483 0.98514 0.00034 -0.06545 -0.04119 0.73688 0.4894 0.75 0.5 0.7743 0.517 

Crack inclination (θ) 30° 

0.99959 0.9999 0.99971 0.00032 -0.00036 -0.00079 0.24638 0.0987 0.25 0.1 0.2538 0.103 

0.99855 0.99988 0.99897 0.00245 -0.0009 -0.0031 0.2455 0.1957 0.25 0.2 0.2563 0.207 

0.99908 0.99633 0.99985 0.00165 -0.00357 0.00753 0.4925 0.2929 0.5 0.3 0.5225 0.306 

0.99832 0.99294 0.99993 0.00327 -0.00671 0.01007 0.48935 0.3906 0.5 0.4 0.5163 0.41 

0.99999 0.99745 0.99272 6.7E-05 -0.03106 -0.01996 0.73395 0.3904 0.75 0.4 0.7706 0.413 

0.99988 0.99543 0.98669 0.00027 -0.05856 -0.03671 0.73598 0.4911 0.75 0.5 0.7811 0.509 

Crack inclination (θ) 45° 

0.99963 0.99994 0.99971 0.00046 -0.00028 -0.00079 0.2447 0.0979 0.25 0.1 0.2574 0.103 

0.99861 0.99996 0.99904 0.00278 -0.00078 -0.00316 0.24513 0.1952 0.25 0.2 0.2547 0.204 

0.99893 0.99588 0.99978 0.00178 -0.00382 0.01317 0.48825 0.293 0.5 0.3 0.5179 0.308 

0.9981 0.99191 0.99993 0.00375 -0.00763 0.01217 0.48935 0.3901 0.5 0.4 0.5128 0.411 

0.99999 0.99714 0.99184 0.00013 -0.03492 -0.02265 0.73583 0.3915 0.75 0.4 0.7817 0.412 

0.99992 0.99491 0.98492 0.00034 -0.06586 -0.04142 0.73508 0.4911 0.75 0.5 0.7676 0.52 

5.5. Discussion 

The results obtained from theoretical and FEA have been compared with the result 

obtained from experimental as shown in Fig. 5.2 to Fig. 5.6 and Table 5.1. Above Fig. 5.2, 

Fig. 5.4 and Fig. 5.6 represent the deviation of first three mode shapes for the presence of 

inclined crack in cantilever beam and Fig. 5.3, Fig. 5.5 and Fig. 5.7 represent the 

magnified view of the deviation of mode shapes at the respective crack locations.     
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CHAPTER 06 

ANALYSIS OF FUZZY INFERENCE SYSTEM (FIS) 

FOR INCLINED CRACK IDENTIFICATION 

6.1.   Introduction 

In this chapter, an inclined edge crack identification algorithm using fuzzy inference 

system has been designed and the performance has been calculated. The fuzzy inference 

system for crack detection has been formulated with six inputs (first three relative natural 

frequencies and first three relative mode shape differences) and three outputs (relative 

crack location, relative crack depth and crack angle). A number of fuzzy linguistic terms 

and fuzzy membership functions (triangular, trapezoidal, Gaussian, bell shape and hybrid) 

have been taken to improve the proposed crack detection technique. The vibrating 

response obtained from the numerical, finite element and experimental analyses have been 

used to set up the rule base for designing of the fuzzy system. The performance of the 

proposed fuzzy based system for crack detection have been compared with the results 

obtained from FEA, numerical and experimental analysis and it is observed that, the 

current fuzzy model can be implemented successfully for structural health monitoring.  

6.2. Fuzzy inference system 

The fuzzy system generally consists of five steps. They are as follows,  

Step 1: Inputs to fuzzy system: The fuzzy system at first is fed with the input parameters 

and then the system recognizes the degree of association of the data with the 

corresponding fuzzy set through the membership functions.  

Step 2: Application of fuzzy operator: After the fuzzification of the inputs, the fuzzy 

model measures the degree to which each of the antecedents satisfies for each rule of the 

fuzzy rule data base. If the rule has a more than one part, the fuzzy operator is employed to 

obtain a single value for the given rule. 
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Step 3: Application of method for fulfillment of rules: Method is applied to reshape the 

output of the membership functions, which is represented by a fuzzy set. The reshaping of 

the output is done by a function related to the antecedent.  

Step 4: Aggregation of results: The results obtained from each rule are unified to get a 

decision from the system. Aggregation process leads to a combined fuzzy set as output. 

Step 5 : Defuzzification: In this process the defuzzification layer of the fuzzy system 

incorporate method like centroid, maxima etc. in order to convert the fuzzy set into crisp 

value, which will be easier to analyze. 

6.3. Analysis of fuzzy controller used for inclined crack identification 

The fuzzy controllers designed in the present analysis based on membership functions 

having six input parameters and three output parameters as shown in Fig. 6.1.  

 

 

The linguistic term used for the inputs are as follows; 

 Relative first natural frequency = “RFNF”; 

Fig.6.1.  Fuzzy inference system 
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 Relative second natural frequency = “RSNF”;  

 Relative third natural frequency = “RTNF”;  

 Average relative first mode shape difference = “RFMD”;  

 Average relative second mode shape difference = “RSMD”;  

 Average relative third mode shape difference = “RTMD”. 

The linguistic term used for the outputs are as follows; 

 Relative crack location = “RCL”; 

 Relative crack depth = “RCD”; 

 Crack inclination or angle = “CA”. 

The pictorial representation of the triangular, Gaussian, trapezoidal, bell-shape and hybrid 

membership fuzzy controllers are shown in Fig. 6.2 to Fig. 6.6 respectively. 

 

Fig. 6.2. Triangular Fuzzy Controller 
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Fig. 6.3. Trapezoidal Fuzzy Controller 
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Fig. 6.4. Gaussian Fuzzy Controller 
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6.3.1. Fuzzy mechanism for inclined crack identification 

Based on the above fuzzy subsets, the fuzzy control rules are defined in a general form as  

Follows: 

If (RFNF is RFNFi and RSNF is RSNFj and RTNF is RTNFk and RFMD is RFMDl and 

RSMD is RSMDm and RTMD is RTMDn) then (RCL is RCLijklmn and RCD is RCDijklmn 

and CA is CAijklmn)                                                                                                           (6.1) 

where i=1 to 9, j=1 to 9, k = 1 to 9, l= 1 to 9, m= 1 to 9, n= 1 to 9 

As “RFNF”, “RSNF”, “RTNF”, “RFMD”, “RSMD” and “RTMD” have nine membership 

functions each. From the above equation (6.1), three sets of rules can be written  

i. If (RFNF is RFNFi and RSNF is RSNFj and RTNF is RTNFk and RFMD is RFMDl and RSMD 

is RSMDm and RTMD is RTMDn) then (RCL is RCLijklmn) 

ii. If (RFNF is RFNFi and RSNF is RSNFj and RTNF is RTNFk and RFMD is RFMDl and 

RSMD is RSMDm and RTMD is RTMDn) then (RCD is RCDijklmn) 

iii. If (RFNF is RFNFi and RSNF is RSNFj and RTNF is RTNFk and RFMD is RFMDl and 

RSMD is RSMDm and RTMD is RTMDn) then (CA is CAijklmn) 

According to the usual fuzzy logic control method [64, 65], a factor is defined in the rules as 

follows: 

Fig. 6.5. Bell-Shaped Fuzzy Controller 
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Fig. 6.6. Hybrid Fuzzy Controller 
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i j kijklmn RFNF i RSNF j RTNF K RFMD RSMD RTMDW = μ (RF ) μ (RF ) μ (RF ) μ (RM ) μ (RM ) μ (RM )
l m nl m n      

 Where RFi, RFj and RFk are the relative first, second and third mode natural frequencies of the 

inclined crack cantilever beam respectively; RMl, RMm and RMn are the relative first, second and 

third mode shape differences of the inclined crack cantilever beam respectively. By applying the 

composition rule of inference [64, 65], the membership values of the relative crack location, 

relative crack depth and crack angle, (location)RCL, (depth)RCD and (angle)CA can be computed as; 

RCLijklmn ijklmn RCLijklmn length

RCDijklmn ijklmn RCDijklmn depth

CAijklmn ijklmn CAijklmn

μ (location) = W μ (location)      RCL

μ (depth) = W μ (depth)              RCD

μ (angle) = W μ (angle)                   

  

  

 angle CA

                                     (6.2) 

The overall conclusion by combining the outputs of all the fuzzy rules can be written as follows: 

RCL RCL111111 RCLijklmn RCL10 10 10 10 10 10 

RCDijklmn RCD111111 RCDijklmn RCD10 10 10 10 10 10 

μ (location) = μ (location) ... μ (location) ... μ (location)

μ (depth) = μ (depth) ... μ (depth) ......... μ (depth)

   

   

CAijklmn CA111111 CAijklmn CA10 10 10 10 10 10 μ (angle) = μ (angle) ... μ (angle) ................. μ (angle)   

    (6.3) 

The crisp values of the relative crack location, relative crack depth and crack angle are computed 

using the center of gravity method [64, 65] as: 

RCL1,2

1,2

RCL1,2

RCD1,2

1,2

RCD1,2

(location).μ (location).d(location)
Relative crack location = RCL =

(μ (location).d(location))

(depth).μ (depth).d(depth)
Relative crack depth = RCD = 

(μ (depth).d(depth))

Crack









CA1,2

1,2

CA1,2

(angle).μ (angle).d(angle)
 angle = CA = 

(μ (angle).d(angle))





                    (6.4) 

   

            

Fig.6.8. Triangular Membership 

functions for RFMD, RSMD and 

RTMD of vibration respectively 

Fig.6.7. Triangular Membership functions 

for RFNF, RSNF and RTNF of vibration 

respectively 
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Fig.6.10. Trapezoidal Membership 

functions for RFNF, RSNF and 

RTNF of vibration respectively 

Fig.6.9. Triangular Membership functions 

for RCL, RCD and CA of vibration 

respectively 

Fig.6.14. Gaussian Membership 

functions for RFMD, RSMD and 

RTMD of vibration respectively 

Fig.6.13. Gaussian Membership 

functions for RFNF, RSNF and 

RTNF of vibration respectively 

Fig.6.12. Trapezoidal Membership 

functions for RCL, RCD and CA of 

vibration respectively 

Fig.6.11. Trapezoidal Membership 

functions for RFMD, RSMD and 

RTMD of vibration respectively 
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Fig.6.18. Bell-Shape Membership 

functions for RCL, RCD and CA of 

vibration respectively 

Fig.6.16. Bell-Shape Membership 

functions for RFNF, RSNF and 

RTNF of vibration respectively 

Fig.6.20. Hybrid Membership 

functions for RFMD, RSMD and 

RTMD of vibration respectively 

Fig.6.19. Hybrid Membership 

functions for RFNF, RSNF and 

RTNF of vibration respectively 

Fig.6.17. Bell-Shape Membership 

functions for RFMD, RSMD and 

RTMD of vibration respectively 

Fig.6.15. Gaussian Membership functions 

for RCL, RCD and CA of vibration 

respectively 
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Table 6.1. Description of Linguistic terms in fuzzy controllers 

Membership Functions 

Name 

Linguistic 

Terms 
Definition of the Linguistic terms 

F1L1, F1L2, F1L3 RFNF1 to 3 
Low ranges of relative first natural frequencies for 

the first mode of vibration  

F1L4, F1M, F1H1 RFNF4 to 6 
Medium ranges of relative first natural frequencies 

for the first mode of vibration  

F1H2, F1H3, F1H4 RFNF7 to 9 
Higher ranges of  relative first natural frequencies of 

the first mode of vibration  

F2L1, F2L2, F2L3 RSNF1 to 3 
Low ranges of relative second natural frequencies for 

the second mode of vibration  

F2L4, F2M, F2H1 RSNF4 to 6 
Medium ranges of relative second natural frequencies 

for the second mode of vibration 

F2H2, F2H3, F2H4 RSNF7 to 9 
Higher ranges of  relative second natural frequencies 

for the second mode of vibration 

F3L1, F3L2, F3L3 RTNF1 to 3 
Low ranges of relative third natural frequencies for 

the third mode of vibration  

F3L4, F3M, F3H1 RTNF4 to 6 
Medium ranges of relative third natural frequencies 

for the third mode of vibration 

F3H2, F3H3, F3H4 RTNF7 to 9 
Higher ranges of  relative third natural frequencies 

for the third mode of vibration 

M1L1, M1L2, M1L3 RFMD1 to 3 Low ranges of  relative first mode shape difference  

M1L4, M1M, M1H1 RFMD4 to 6 
Medium ranges of  relative first mode shape 

difference 

M1H2, M1H3, M1H4 RFMD7 to 9 Higher ranges of relative first  mode shape difference  

M2L1, M2L2, M2L3 RSMD1 to 3 
Small ranges of  second relative mode shape 

difference  

M2L4, M2M, M2H1 RSMD4 to 6 
Medium ranges of second relative mode shape 

difference  

M2H2, M2H3, M2H4 RSMD7 to 9 
Higher ranges of second  relative mode shape 

difference  

M3L1, M3L2, M3L3 RTMD1 to 3 Small ranges of  third relative mode shape difference  

M3L4, M3M, M3H1 RTMD4 to 6 
Medium ranges of  third relative mode shape 

difference  

Fig.6.21. Hybrid Membership functions for RCL, RCD and CA of vibration 

respectively 
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M3H2, M3H3, M3H4 RTMD7 to 9 
Higher ranges of third  relative mode shape 

difference  

PL1, PL2, PL3, PL4 RCL1 to 4 Very low ranges of relative crack locations  

PL5, PL6, PL7, PL8 RCL5 to 8 Low ranges of relative crack locations 

PL9, PM, PH1 RCL9 to 11 Medium  ranges of relative  crack locations 

PH2, PH3, PH4, PH5 RCL12 to 15 High  ranges of relative  crack locations 

PH6, PH7, PH8, PH9 RCL16 to 19 Very high  ranges of relative  crack locations 

DL1, DL2, DL3 RCD1 to 3 Low ranges of relative crack depths 

DL4, DM, DH1 RCD4 to 6 Medium ranges of relative crack depths 

DH2, DH3, DH4 RCD7 to 9 High ranges of relative crack depths 

AL1, AL2, AL3, AL4 CA1 to 4 Very very low crack angles 

AL5, AL6, AL7, AL8 CA5 to 9 Very low crack angles 

AL9,AL10,AL11,AL12 CA9 to 12 Low crack angles 

AL13,AL14,AM,AH1,AH2 CA13 to 17 Medium crack angles 

AH3,AH4,AH5,AH6 CA18 to 21 High crack angles 

AH7,AH8,AH9,AH10 CA22 to 25 Very high crack angles 

AH11,AH12,AH13,AH14 CA26 to 29 Very  very high crack angles 

6.3.2. Results of fuzzy model 

The results calculated from the designed fuzzy inference system for inclined crack 

detection are shown in this section. The fuzzy inference model (Fig. 6.1) has been 

designed with six inputs (relative first three natural frequencies and relative first three 

mode shape differences) and three outputs (relative crack location, relative crack depth 

and crack angle). Five types of membership functions (triangular, Gaussian, trapezoidal, 

bell shape and hybrid) have been engaged to develop the fuzzy inference model (Fig.6.2 to 

Fig 6.21). The results obtained from numerical, finite element, fuzzy triangular, fuzzy 

trapezoidal, fuzzy Gaussian, fuzzy bell shape and hybrid model and experimental analysis 

are compared in Table 6.2 and Table 6.3.  
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Table 6.2. Comparison between Triangular, Trapezoidal, Gaussian, Bell Shape & Hybrid 

Fuzzy Controllers results of inclined edge crack in cantilever beams 
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Table 6.3. Comparison between Gaussian, Bell Shape & Hybrid Fuzzy Controllers with 

FEA  & Experimental results of inclined edge crack in cantilever beams 
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6.3.3. Summary 

The fuzzy method agreed in the current analysis has been studied and following 

conclusions are made. The presence of inclined crack in cantilever beam has considerable 

effect on the dynamic response of the dynamic structure.The first three relative natural 

frequencies and first three relative mode shape differences are taken as inputs to the fuzzy 

controller and relative crack location, relative crack depth and crack angle are the output 

parameters. The validity of the proposed method has been established by comparing the 

results from the fuzzy models (triangular, trapezoidal, Gaussian, bell shape and hybrid) 

with that of the numerical, finite element and experimental analysis. The results are found 

to be well in agreement. Fromthe analysis of the results obtained from the fuzzy models 

using various membership functions, it is observed that the fuzzy system based on 

Gaussian, bell shape and hybrid membership function provides better results in 

comparison to numerical, finite element analysis, trapezoidal and triangular fuzzy models. 

Hence, the proposed Gaussian, bell shape and hybrid fuzzy model can be effectively used 

as inclined crack diagnostic tools in dynamically vibrating structures.  
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CHAPTER 07 

ANALYSIS OF ARTIFICIAL NEURAL NETWORK 

FOR IDENTIFICATION OF CRACK 

The presence of crack in the engineering structure increases the flexibility, decreases the 

stiffness or decreases the modal frequencies and changes the modal amplitude of 

vibration. Those variations of vibration parameters used to locate the crack position, crack 

depth and crack inclination. Hence, it is of importance to develop and design an Artificial 

Intelligent technique for inclined crack identification to avoid catastrophic failure of a 

structural element. In this chapter, an intelligent technique has been developed, called 

Artificial Neural Network (ANN) to identify the presence of inclined crack in vibrating 

structure. ANN is designed with required amount of trained data generated from back 

propagation technique. Finally, the results from this model have been compared with the 

experimental results for validate the proposed neural technique. 

7.1. Introduction 

  Artificial Neural Networks (ANNs) are non-linear mapping structures based on the 

function of the human brain. They are powerful tools for modeling, especially when the 

underlying data relationship is unknown. ANNs can identify and learn correlated patterns 

between input data sets and corresponding target values. After training, ANNs can be used 

to predict the outcome of new independent input data. ANNs imitate the learning process 

of the human brain and can process problems involving non-linear and complex data even 

if the data are imprecise and noisy. An ANN is a computational structure that is inspired 

by observed process in natural networks of biological neurons in the brain. It consists of 

simple computational units called neurons, which are highly interconnected. A very 

important feature of these networks is their adaptive nature, where “learning by example” 

replaces “programming” in solving problems. This feature makes such computational 

models very appealing in application domains where one has little or incomplete 

understanding of the problem to be solved but where training data is readily available. The 

most widely used learning algorithm in an ANN is the Back propagation algorithm. There 
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are various types of ANNs like Multilayered Perceptron, Radial Basis Function and 

Kohonen networks.  

7.2. Development of an ANN Model  

  Development of ANN model is discussed here briefly. ANNs are constructed with 

layers of units, and thus are termed multilayer ANNs. A layer of units in such an ANN is 

composed of units that perform similar tasks. First layer of a multilayer ANN consists of 

input units. These units are known as independent variables in statistical literature. Last 

layer contains output units. In statistical nomenclature, these units are known as dependent 

or response variables. All other units in the model are called hidden units and constitute 

hidden layers. There are two functions governing the behavior of a unit in a particular 

layer, which normally are the same for all units within the whole ANN, i.e.  

 the input function, and  

 the output/activation function.   

  Input into a node is a weighted sum of outputs from nodes connected to it. The 

input function is normally given by equation (1) as follows:  

net w x μ
i ij j i

j
                                                                     (7.1) 

where neti describes the result of the net inputs xi ij ) impacting 

on unit i. Also, wij are weights connecting neuron j to neuron i, xj is output from unit j and 

µi is a threshold for neuron i. Threshold term is baseline input to a node in absence of any 

other inputs. If a weight wij is negative, it is termed inhibitory because it decreases net 

input, otherwise it is called excitatory.  

  Each unit takes its net input and applies an activation function to it. For example, 

output of j
th 

unit, also called activation value of the unit, is  ij ig w x  , where g(.) is 

activation function and xi is output of i
th

 unit connected to unit j. A number of nonlinear 

functions have been used in the literature as activation functions. The threshold function is 

useful in situations where the inputs and outputs are binary encoded. However, most 

common choice is sigmoid functions, such as  
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-1

-netinputg netinput = 1+e 
 

  

Or,      =tanh(netinput)g netinput   

  The activation function exhibits a great variety, and has the biggest impact on 

behavior and performance of the ANN. The main task of the activation function is to map 

the outlying values of the obtained neural input back to a bounded interval such as [0, 1] 

or [–

the context of finding a steepest descent gradient for the back propagation method and 

moreover maps a wide domain of values into the interval [0, 1].   

 The various steps in developing a neural network forecasting model are:  

 1. Variable Selection: 

  The input variables important for modeling/ forecasting variable(s) under study are 

selected by suitable variable selection procedures.  

 2. Formation of Training, Testing and Validation Sets: 

  The data set is divided into three distinct sets called training, testing and validation 

sets. The training set is the largest set and is used by neural network to learn patterns 

present in the data. The testing set is used to evaluate the generalization ability of a 

supposedly trained network. A final check on the performance of the trained network is 

made using validation set.  

3. Neural Network Architecture:  

  Neural network architecture defines its structure including number of hidden 

layers, number of hidden nodes and number of output nodes etc.  

(i) Number of hidden layers: The hidden layer(s) provide the network with its ability to 

generalize. In theory, a neural network with one hidden layer with a sufficient number of 

hidden neurons is capable of approximating any continuous function. In practice, neural 

network with one and occasionally two hidden layers are widely used and have to perform 

very well.  
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(ii) Number of hidden nodes: There is no magic formula for selecting the optimum 

number of hidden neurons. However, some thumb rules are available for calculating 

number of hidden neurons. A rough approximation can be obtained by the geometric 

pyramid rule proposed by Masters (1993). For a three layer network with an input and m 

output neurons, the hidden layer would have sqrt (n*m) neurons.  

(iii) Number of output nodes: Neural networks with multiple outputs, especially if these 

outputs are widely spaced, will produce inferior results as compared to a network with a 

single output.  

 (iv) Activation function: Activation functions are mathematical formulae that determine 

the output of a processing node. Each unit takes its net input and applies an activation 

function to it. Nonlinear functions have been used as activation functions such as logistic, 

tanh etc. The purpose of the transfer function is to prevent output from reaching very large 

value which can „paralyze‟ neural networks and thereby inhibit training. Transfer 

functions such as sigmoid are commonly used because they are nonlinear and 

continuously differentiable which are desirable for network learning.  

7.3.  Model Building  

  Multilayer feed forward neural network or multilayer perceptron (MLP) is very 

popular and is used more than other neural network type for a wide variety of tasks. 

Multilayer feed forward neural network learned by back propagation algorithm is based on 

supervised procedure, i.e., the network constructs a model based on examples of data with 

known output. The characteristics of Multilayer Perceptron are as follows:  

 (i) has any number of inputs  

 (ii) has one or more hidden layers with any number of nodes. The internal layers are 

called “hidden” because they only receive internal input (input from other processing 

units) and produce internal output (output to other processing units). Consequently, they 

are hidden from the output world.  

 (iii) uses linear combination function in the hidden and output layers  

 (iv) uses generally sigmoid activation function in the hidden layers  
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 (v) has any number of outputs with any activation function.  

 (vi) has connections between the input layer and the first hidden layer, between the 

hidden layers, and between the last hidden layer and the output layer.  

  An MLP with just one hidden layer can learn to approximate virtually any function 

to any degree of accuracy. One hidden layer is always sufficient provided we have enough 

data. Schematic representation of neural network is given in Fig. 1 and mathematical 

representation of neural network is given in Fig. 2.  

   

Fig.7.1: Schematic representation of neural network 

 

Fig.7.2: Mathematical representation of neural network 
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 Each interconnection in an ANN has a strength that is expressed by a number 

referred to as weight. This is accomplished by adjusting the weights of given 

interconnection according to some learning algorithm. Learning methods in neural 

networks can be broadly classified into three basic types (i) supervised learning (ii) 

unsupervised learning and (iii) reinforced learning. In MLP, the supervised learning will 

be used for adjusting the weights. The graphic representation of this learning is given in 

Fig.7.3.  

 

Fig.7.3: A learning cycle in the ANN model 

7.4. Architecture of Neural Networks  

  There are several types of architecture of ANN. However, the two most widely 

used ANN are discussed below:  

1. Feed forward Networks  

  Feed forward ANNs allow signals to travel one way only; from input to output. 

There is no feedback (loops) i.e. the output of any layer does not affect that same layer. 

They are extensively used in pattern recognition.  

 2. Feedback/Recurrent Networks  

  Feedback networks can have signals traveling in both directions by introducing 

loops in the network. Feedback networks are dynamic; their 'state' is changing 

continuously until they reach an equilibrium point. They remain at the equilibrium point 

until the input changes and a new equilibrium needs to be found.  
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7.5. Back propagation Algorithm  

  The MLP network is trained using one of the supervised learning algorithms of 

which the best known example is back propagation, which uses the data to adjust the 

network's weights and thresholds so as to minimize the error in its predictions on the 

training set.  

We denote by Wij the weight of the connection from unit ui to unit uj. It is then convenient 

to represent the pattern of connectivity in the network by a weight matrix W whose 

elements are the weights Wij. The pattern of connectivity characterizes the architecture of 

the network. A unit in the output layer determines its activity by following a two-step 

procedure.    

 First, it computes the total weighted input xj, using the formula:  

 
j i ij

i

x = y w                                                                                                             (7.2) 

where yi is the activity level of the j
th

 unit in the previous layer and Wij is the weight of the 

connection between the i
th

 and the j
th

 unit.  

 Next, the unit calculates the activity yj using some function of the total weighted input.  

Typically we use the sigmoid function:  

j
-1

-x

j
y = 1+e 

  
                                                                                                               (7.3) 

Once the activities of all output units have been determined, the network computes the 

error E, which is defined by the expression:  

2

i i
i

1
E= (y -d )

2                                                                                                           (7.4) 

where yj is the activity level of the j
th 

unit in the top layer and dj is the desired output of the 

j
th

 unit.  

 



National Institute of Technology, Rourkela Page 65 

 

The back propagation algorithm consists of four steps:  

   (i) Compute how fast the error changes as the activity of an output unit is changed. 

This error derivative (EA) is the difference between the actual and the desired activity.  

  
j j j

j

EEA = = y -d
y




                                                                                      (7.5) 

  (ii) Compute how fast the error changes as the total input received by an output 

unit is changed. This quantity (EI) is the answer from step (i) multiplied by the rate at 

which the output of a unit changes as its total input is changed.  

  j
j j j j

j j j

yE EEI = = × =EA y (1-y )
X y x

 
  

                                         (7.6) 

  (iii) Compute how fast the error changes as a weight on the connection into an 

output unit is changed. This quantity (EW) is the answer from step (ii) multiplied by the 

activity level of the unit from which the connection emanates.  

  j
ij j i

ij j ij

XE EEW = = × =EI y
W X W

 
  

                                              (7.7) 

  (iv) Compute how fast the error changes as the activity of a unit in the previous 

layer is changed. This crucial step allows back propagation to be applied to multilayer 

networks. When the activity of a unit in the previous layer changes, it affects the activities 

of all the output units to which it is connected. So to compute the overall effect on the 

error, we add together all these separate effects on output units. But each effect is simple 

to calculate. It is the answer in step (iii) multiplied by the weight on the connection to that 

output unit.  

   
j

j
i j ij

i j i

W
XE EEA = = × = EI

y X y

 
                                                (7.8) 

  By using steps (ii) and (iv), we can convert the EAs of one layer of units into EAs 

for the previous layer. This procedure can be repeated to get the EAs for as many previous 

layers as desired. Once we know the EA of a unit, we can use steps (ii) and (iii) to 
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compute the EWs on its incoming connections. 

7.6. Analysis of Artificial Neural Network model for crack identification 

A back propagation artificial neural network model has been developed for detection of 

inclined crack (i.e. relative crack location, relative crack depth and crack angle) of a 

cantilever beam (Fig.7.4). The designed neural model has been developed with six input 

parameters and three output parameters. The input parameters to the neural network model 

are “RFNF”, “RSNF”, “RTNF”, “RFMD”, “RSMD” and “RTMD”. The output parameters 

from the neural network model are “RCL”, “RCD” and “CA”. The back propagation 

neural network has been designed with one input layer, one output layer and five hidden 

layers. The input layer contains six neurons, whereas the output layer contains three 

neurons. The number of neurons in each hidden layers i.e. 1
st
, 2

nd
, 3

rd
, 4

th
 and 5

th
 layer are 

9, 11, 13, 11 and 9 neurons respectively in order to give the neural network a diamond 

shape and for better convergence of results (Fig.5). 

 

Fig.7.4. Schematic Representation of Neural Model 

The neural network model used in the present analysis is a seven-layered feed forward 

neural network model trained with back propagation technique. The chosen number of 

layers was found empirically to facilitate training.  
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training, the model is fed with six input parameters i.e. first three relative natural 

frequencies and first three mode shape differences. The outputs are relative crack location, 

relative crack depth and crack angle.  

 

Fig.7.5. Schematic Representation of Neural Model 

During training and during normal operation, the input patterns fed to the neural network 

comprise the following components: 
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  differenc shape modefirst  ofdeviation  relative     y 1

4               

  difference shape mode second ofdeviation  relative     y 1

5                            

  difference shape mode  thirdofdeviation  relative     y 1

6                                

The outputs generated due to the distribution of the input to the hidden neurons are given 

by [66]: 

           yVf lay

j

lay

j        (7.10) 

Where, 

     lay

j

i

1lay

i

lay

ji V   .yW  
      (7.11)                

layer number (2 or 6) = lay   

label for j
th

 neuron in hidden layer „lay‟= j   

label for i
th

 neuron in hidden layer „lay-1‟= i  

Weight of the connection from neuron i in layer „lay-1‟ to neuron j in layer „lay‟=  lay

jiW  

Activation function, chosen in this work as the hyperbolic tangent function = f (.), where,   

 xf
ee

ee
xx

xx









         (7.12)       

In the process of training, the network output actual, n (i=1 to 2) may differ from the desired 

output desired, n (n=1 to 2) as specified in the training pattern presented to the network. The 

measure of performance of the network is the instantaneous sum-squared difference 

between desired, n and actual, n for the set of presented training patterns: 

 2
 

,,
2

1
 

patterns
trainingall

nactualndesiredErr        (7.13) 

(7.9 (d)) 

(7.9 (e)) 

(7.9 (f)) 
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Where actual, n (n=1) represents the relative crack location (“RCL”) 

            actual, n (n=2) represents the relative crack depth (“RCD”) 

            actual, n (n=3) represents crack angle (“CA”) 

During the development of the neural model, the error back propagation method is 

employed to train the network [66]. This method requires the computation of local error 

gradients in order to determine appropriate weight corrections to reduce error. For the 

output layer, the error gradient  5
  is:  

   






























 nactualndesiredVf ,,
5

1
5            (7.14) 

Hence, the local gradient for neurons in hidden layer {lay} is given by: 

        








  

k

1lay

kj

1lay

k

lay

j

lay

j WVf                    (7.15) 

Synaptic weights are updated according to the following expressions: 

     11  tWtWtW jijiji                    (7.16) 

and         1lay

i

lay

jjiji ytW  1tW                    (7.17) 

Where Momentum coefficient (chosen statistically as 0.2 in this work)  Learning rate 

(chosen statistically as 0.35 in this work) = , Iteration number, each iteration consisting 

of the presentation of a training pattern and correction of the weights = t, Following 

expression shows, the final output from the neural network as;  

        (7.18) 

Where    
 








i i
y

ni
WnV

455       (7.19) 

 = learning rate (chosen empirically as 0.35 in this work) 

  5
, nVf
nactual
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t = iteration number, each iteration consisting of the presentation of a training pattern and 

correction of the weights. 

7.7. Results and discussion of neural controller 

Table 7.1. The results of modal analysis obtained from ANN Controller 

Input to the ANN Controller 

Output from the 

ANN Controller 

RFNF RSNF RTNF RFMD RSMD RTMD RCL (β) RCD (α) 

Crack inclination (θ) 0° 

0.99968 0.99998 0.99978 0.0006 -0.00017 -0.00073 0.257 0.103 

0.99846 0.99988 0.9989 0.00259 -0.00093 -0.00328 0.2575 0.2068 

0.99893 0.99582 0.99985 0.00187 -0.00394 0.01222 0.5122 0.309 

0.99809 0.99182 0.99993 0.00391 -0.00788 0.00928 0.518 0.4 

0.99999 0.99703 0.9914 0.00013 -0.03827 -0.02445 0.775 0.408 

0.99992 0.99491 0.98529 0.00034 -0.06516 -0.04052 0.781 0.509 

Crack inclination (θ) 15° 

0.99966 0.99998 0.99978 0.0006 -0.00019 -0.00073 0.251 0.101 

0.99852 0.99992 0.99897 0.00269 -0.00088 -0.00328 0.256 0.201 

0.99908 0.99609 0.99993 0.00186 -0.00382 0.00767 0.518 0.309 

0.99817 0.99215 0.99993 0.00375 -0.00757 0.01086 0.513 0.408 

0.99999 0.99714 0.99162 0.00013 -0.0371 -0.02377 0.781 0.435 

0.99981 0.99483 0.98514 0.00034 -0.06545 -0.04119 0.772 0.511 

Crack inclination (θ) 30° 

0.99959 0.9999 0.99971 0.00032 -0.00036 -0.00079 0.252 0.102 

0.99855 0.99988 0.99897 0.00245 -0.0009 -0.0031 0.254 0.202 

0.99908 0.99633 0.99985 0.00165 -0.00357 0.00753 0.521 0.302 

0.99832 0.99294 0.99993 0.00327 -0.00671 0.01007 0.514 0.406 

0.99999 0.99745 0.99272 6.7E-05 -0.03106 -0.01996 0.7699 0.41 

0.99988 0.99543 0.98669 0.00027 -0.05856 -0.03671 0.779 0.503 

Crack inclination (θ) 45° 

0.99963 0.99994 0.99971 0.00046 -0.00028 -0.00079 0.2568 0.101 

0.99861 0.99996 0.99904 0.00278 -0.00078 -0.00316 0.25398 0.202 

0.99893 0.99588 0.99978 0.00178 -0.00382 0.01317 0.516 0.303 

0.9981 0.99191 0.99993 0.00375 -0.00763 0.01217 0.519 0.408 

0.99999 0.99714 0.99184 0.00013 -0.03492 -0.02265 0.779 0.409 

0.99992 0.99491 0.98492 0.00034 -0.06586 -0.04142 0.761 0.515 
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Table 7.2.Comparing the results of modal analysis between numerical, FEA, ANN and 

Experimental 
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Table 7.3. Comparing the results of modal analysis between Fuzzy Controller, numerical, 

FEA, ANN and Experimental 
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Table 7.4. Comparing the results of modal analysis between Fuzzy Controller, numerical, 

FEA, ANN and Experimental 
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7.8. Summary 

An artificial neural network (ANN) model with six inputs and three outputs has been 

developed for crack identification in cracked cantilever beam elements. The training data 

for the developed neural network model have been derived from theoretical, finite element 

and experimental analysis. The results obtained from the neural network model for crack 

parameters are very closer to the experimental results; therefore the neural network model 

can be effectively used for inclined crack identification in cracked cantilever beam 

structures. The comparison the results between different fuzzy controllers and ANN 

model, it is concluded that the predicted results from ANN controller are nearer to the 

experimental results as compared to the developed intelligent fuzzy controllers. 
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CHAPTER 08 
Installation and description of 

experimental setup for 

IDENTIFICATION OF CRACK 

8.1. Introduction 

8.2. Detail specifications of the vibration measuring instruments 

8.3. Experimental procedure and its architecture 
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CHAPTER 08 

INSTALLATION AND DESCRIPTION OF 

EXPERIMENTAL SETUP FOR IDENTIFICATION 

OF CRACK 

Experimental Analysis plays a key role in the research field. Experimental Analysis is 

being carried out to justify the validation of theoretical analysis, finite element analysis 

and different intelligent techniques projected in the chapter 6 to 7 for identification of 

crack. For the analysis, the experimental setup is made to determine the natural 

frequencies and mode shapes to observe the response of cantilever beam with the presence 

of inclined crack. The experimental setup is discussed in detail in the subsequent sections 

of this chapter. 

8.1. Introduction 

The experimental analysis has been carried out to measure the natural frequencies and 

mode shapes of the inclined crack cantilever beam. Experiments have been performed on 

the cracked beam structures with different crack location, crack depth and crack 

inclination to validate the results obtained from theoretical, finite element and other 

artificial intelligent techniques used for inclined crack detection as discussed in the 

previous chapters of the thesis. This chapter briefly describes the systematic procedures 

adopted for experimental investigation and the required instrumentation for measuring the 

vibration characteristics of the cantilever beam structures. 

8.2. Detail specifications of the vibration measuring instruments 

Experiments have been performed using the developed experimental set up (Table 8.1)  

for calculating the dynamic response (natural frequencies and amplitude of vibration) of 

the cantilever beam specimens made from Aluminum with dimension 

800mm*60mm*6mm. During the experiment the cracked and un-cracked beams have 

been vibrated at their 1
st
, 2

nd
 and 3

rd
 mode of vibration by using an exciter and a function 
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generator. The vibrations characteristics of the beams correspond to 1
st
, 2

nd
 and 3

rd
 mode 

of vibration have been recorded by placing the accelerometer along the length of the 

beams. The signals from the accelerometer which contains the vibration parameters such 

as natural frequencies and mode shapes are analyzed and shown on the vibration 

indicator. The Table 8.1 shown below gives the detail specifications of the instruments 

used in the current experimental analysis. 

Table 8.1. Specifications of the instruments used in the experimental set up 

SL 

NO 

Name of the Instrument  

1 Vibration Analyzer 

Type : 3560L  

Product Name : Pocket front end  

Make : Bruel & kjaer  

Frequency : 7 Hz to 20 Khz  

ADC Bits : 16  

Channels : 2 Inputs, 2 Tachometer  

Input Type : Direct/CCLD  

2 Accelerometer 

Type : 4513-001  

Make : Bruel & kjaer  

Sensitivity : 10mv/g-500mv/g  

Frequency Range : 1Hz-10KHz  

Supply voltage : 24volts  

Operating temperature  

Range : -50
0
C to +100

0
C  

4 Vibration Exciter 

Type : 4808  

Force rating 112N (25 lbf) sine peak )  

Frequency : 5Hz to 10 kHz  

First axial resonance : 10 kHz  

Acceleration : 700 m/s2 (71 g)  

Continuous 12.7 mm (0.5 in)   

3 Power Distribution 

220V power supply, 50Hz 
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5 Power Amplifier 

Type : 2719  

Power Amplifier : 180VA  

Make : Bruel & kjaer 

 

6 Test Specimen-beam 

Cracked (Multiple crack) cantilever beams 

made from Aluminum with dimension 

800mmx60mmx6mm 

 

7 Vibration Indicator (PULSE Lab shop 

software) 

PULSE LabShop Software Version 12  

Make : Bruel & kjaer 

 

8 Function Generator 

Model : FG200K  

Frequency  

Range : 0.2Hz to 200 KHz  

Output Level : 15Vp-p into 600 ohms  

Rise/Fall Time : <300nSec  
 

8.3. Experimental procedure and its architecture 

The authenticity of the results obtained from theoretical, finite element and AI based 

techniques for inclined crack identification have been established by measuring the 

dynamic response of the undamaged and cracked Aluminum beam specimen through 

experimentation. The test specimen made from Aluminum is of 800 mm length and has a 
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cross section of 60mmx6 mm. The free end of the beam specimen was excited by an 

appropriate signal from the function generator, which was amplified by the amplifier. The 

cantilever was excited at first three modes of vibration, and the corresponding natural 

frequencies and mode shapes were recorded by the hard ware support i.e. miniature 

accelerometer by suitable positioning, data acquisition system and tuning the vibration 

generator at the corresponding resonant frequencies. Finally, the analysis of the vibration 

parameters from the intact and cracked beam were done by the PULSE Lab shop Software 

loaded in the laptop of the vibration analyzer.  

 

 

Fig. 8.1. Complete view of the experimental setup 
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CHAPTER 9 
Conclusion and future work 

9.1. Contribution 

9.2. Conclusion 

9.3. Application 

9.4. Scope for Future Work 
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CHAPTER 10 

CONCLUSION AND FUTURE WORK 

In the present work, identification of inclined crack in structural elements from the 

measured vibration parameters has been emphasized. During the crack detection, 

numerical method, finite element method and experimental method have been 

implemented to simulate the actual working condition. The measured natural frequencies 

and mode shapes at different modes of vibration, with different crack parameters, have 

been used to improve inverse techniques based AI techniques such as Fuzzy logic, Neural 

Network techniques for identification of relative crack location, relative crack depth and 

crack inclination angle.  

10.1. Contributions 

For identification of inclined crack, an analytical method has been developed on the basis 

of stress intensity factors and strain energy release rate to determine the effect of crack 

location, crack depth and crack inclination angle on changes of vibration signatures. Finite 

element method and experimental method have also been taken out on the inclined crack 

beam element to measure the effect of cracks on the vibration signatures of the beam. 

Different AI techniques have been composed for inclined crack identification using Fuzzy 

Inference System (FIS) and Artificial Neural Network (ANN). 

10.2. Conclusions 

Based on the results obtained from various techniques for identification of inclined crack 

on the cantilever beam structure, the following conclusions are drawn: 

 Due to the changes in the crack parameters (crack location, crack depth and crack 

angle) there is always a significant change in the vibration parameters (natural frequencies 

and mode shapes). 

 The results of the crack parameters have been obtained from the comparison of the 

results of the un-cracked and cracked cantilever beam during the vibration analysis. It is 
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also observed that analytical, finite element and experimental analysis are in good 

agreement. 

 From the inspection of the mode shapes of the inclined cracked cantilever beam with 

different crack location, crack depth and crack inclination, the magnitude of deviation in 

mode shapes increases with increase in crack depths. 

 When the crack location and crack inclination are constant, but the crack depth 

increases:  

The natural frequency of the cracked beam decreases with increase the crack depth. The 

amplitude at crack location decreases with increase the crack depth for each mode shape. 

 The crack depth and crack inclination are constant, but crack location increases from 

cantilever end:  

When the crack location increases, the natural frequency also increases. At particular 

crack location of a beam, the amplitude is minimum w.r.t. other beams having a different 

crack location. 

 The crack inclination angles are valid up to 45 ° for examining the transverse vibration. 

The crack location in the cantilever beam can be projected for crack size of more than 

10% of depth. 

 It has also been seen from experimental examples that the determination of the crack 

location is more precise than the determination of the crack size. 

 The error increases as the crack position from the fixed end or the crack inclination 

angle increases. The maximum error is predicted up to 5% of all the cases calculated. The 

values found from FEA are in a good match with experimental values. 

 The calculated vibration parameters from the first three modes of the cantilever beam 

model and the corresponding relative crack parameters have been used to design the fuzzy 

inference system (FIS) for inclined crack identification in structural elements.  

 The FIS has six inputs and three outputs. The fuzzy controllers are based on fuzzy 

triangular, fuzzy trapezoidal, fuzzy Gaussian, fuzzy Bell-shaped and fuzzy hybrid 

membership functions. Results obtained from different fuzzy controllers, it has been found 

that, the developed fuzzy inverse models forecast the crack parameters more rapidly and 
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accurately than the theoretical and finite element analysis. Experimental results are also 

carried out for verifying the results from fuzzy controllers. 

 The results obtained from different fuzzy controllers, it is observed that fuzzy model 

with Gaussian, Bell-shaped and hybrid membership function gives better results than the 

fuzzy model with triangular and trapezoidal membership function. So, these intelligent 

fuzzy controllers can be successfully used for structural health monitoring. 

 An artificial neural network (ANN) model with six inputs and three outputs has been 

developed for crack identification in cracked cantilever beam elements. The training data 

for the developed neural network model have been derived from theoretical, finite element 

and experimental analysis. The results obtained from the neural network model for crack 

parameters are very closer to the experimental results; therefore the neural network model 

can be effectively used for inclined crack identification in cracked cantilever beam 

structures.  

 The comparison the results between different fuzzy controllers and ANN model, it is 

concluded that the predicted results from ANN controller are nearer to the experimental 

results as compared to the developed intelligent fuzzy controllers. 

10.3. Applications 

 The developed intelligent techniques used for crack diagnosis are non-destructive in 

nature, so these intelligent techniques can be used for online condition monitoring of 

engineering systems. 

 For crack diagnosis  which  uses  optimization  and  Artificial Intelligence  technique  

can  be  used  for handling inverse engineering applications. 

 The intelligent techniques developed for crack diagnosis can be used for online 

condition monitoring of various engineering structures like cantilever type bridges, beams, 

turbine shafts, cantilever type cranes, marine structures, nuclear plant, biomedical 

engineering applications, etc. 
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Scope for Future Work 

 The artificial intelligent techniques may be developed to design in complex 

engineering structures.  

 The application of the artificial intelligent techniques may be extended for multiple 

damage detection in bi material and composite material elements.  

 More robust hybrid techniques may be developed and employed for fault detection of 

various vibrating parts in dynamic systems such as cone crusher, railway tracks, 

overhead cranes, oil rigs, turbine shafts etc.  

 The artificial intelligence techniques may be embedded and integrated with the 

vibrating systems to make on line condition monitoring easier. 
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Fig.5. illustrates the mode shape variation of  (a) 1
st
, (b) 2

nd
 and (c) 3

rd
 mode 

cantilever beam with crack at β =0.3, α = 0.35 and θ = 35° respectively. 

 

Fig.4. Magnified view at the crack zone 
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Fig.3. Finite element mesh model of the 

cracked beam 
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