
Implementation of
Homomorphic Encryption Technique

Apurva Sachan

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Implementation of

Homomorphic Encryption Technique

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Information Security)

by

Apurva Sachan
(Roll No. 212CS2115)

under the supervision of

Prof. A. K. Turuk

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Implementation Of Ho-

momorphic encryption technique by Apurva Sachan is a record of an

original research work carried out by her under my supervision and guidance in

partial fulfillment of the requirements for the award of the degree of Master of

Technology with the specialization of Information Security in the department of

Computer Science and Engineering, National Institute of Technology Rourkela.

Neither this thesis nor any part of it has been submitted for any degree or aca-

demic award elsewhere.

Place: NIT Rourkela Dr. A. K. Turuk
Date: June 2, 2014 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I owe my personal gratitude to the people who support me to build this thesis

with the direct and indirect help from the lots of people.

First and foremost, I am very much thankful for my supervisor Dr. A. K. Turuk,

for his endless support and advice during the work. He appreciate my ideas and

let me work in my own way. He is available for the entire time when I need to

discuss about the work.

I am also thankful to our HOD Prof. S. K. Rath to provide the lab for the entire

duration of my work. He is always encouraging and supportive for all his students.

I am also acknowledging the resources provided by our institute NIT Rourkela.

At last but not least, I am dedicating my work to my parents. Their love, support

and encouragement provide me the way to pursue my interest.

Apurva Sachan

Roll: 212CS2115

Declaration

I, Apurva Sachan (Roll No. 212CS2115) understand that plagiarism is defined as

any one or the combination of the following :

1. Uncredited verbatim copying of individual sentences, paragraphs or illus-

trations (such as graphs, diagrams, etc.) from any source, published or

unpublished, including the internet.

2. Uncredited improper paraphrasing of pages or paragraphs (changing a few

words or phrases, or rearranging the original sentence order).

3. Credited verbatim copying of a major portion of a paper (or thesis chapter)

without clear delineation of who did or wrote what. (Source: IEEE, the

Institute, Dec. 2004)

I have made sure that all the ideas, expressions, graphs, diagrams, etc., that are

not a result of my work, are properly credited. Long phrases or sentences that had

to be used verbatim from published literature have been clearly identified using

quotation marks.

I affirm that no portion of my work can be considered as plagiarism and I take full

responsibility if such a complaint occurs. I understand fully well that the guide of

the thesis may not be in a position to check for the possibility of such incidences

of plagiarism in this body of work.

Place: NIT Rourkela Apurva Sachan
Date: June 2, 2014 M.Tech., CSE Department

NIT Rourkela, Odisha

Abstract

Fully homomorphic encryption has long been viewed as cryptography’s prized

”holy grail” amazingly helpful yet rather subtle. Starting from the breakthrough

invention of FHE in 2009 by Craig Gentry, numerous schemes are presented then

by various authors following the Gentry’s blueprint.

We discuss the basic homomorphic encryption given by the DGHV over the inte-

gers. It is modification of the Gentry’s scheme which is based on the ideal lattices.

The main idea of the DGHV scheme is its simplicity for the arithmetic operations.

Our plan is to reduce the size of the public key which ultimately reduces the space

complexity of the algorithm. We then further introduces the concept of the ap-

proximate common divisor problem on the DGHV scheme.

We propose the GACD attack over the modulus switching and public key com-

pression technique of DGHV scheme. The overall contribution of this work is

analysis, design and performance of the scheme.

Keywords: Homomorphic encryption; Fully Homomorphic Encryption; DGHV

scheme; leveled DGHV scheme; approximate common divisor problem

Contents

Certificate i

Acknowledgement ii

Declaration iii

Abstract iv

List of Tables vii

List of Algorithms viii

1 Introduction 2

1.1 Homomorphic Encryption in Cloud computing 3

1.2 Homomorphic Encryption Technique 3

1.3 Motivation . 5

1.4 Outline of Thesis . 5

2 Literature Review 7

3 Fully Homomorphic Encryption over integers 12

3.1 Introduction . 12

3.2 Bootstrappble Encryption . 13

3.3 A Somewhat Homomorphic Encryption Scheme 13

3.4 Limitations of DGHV scheme . 15

3.5 The new DGHV scheme . 15

3.6 Fully Homomorphic Scheme using DGHV scheme 16

4 Attacks on Homomorphic Encryption Technique 19

4.1 New Square Root Algorithm for PACD 19

4.1.1 Overview . 19

v

4.1.2 Description . 20

4.2 Limitations . 22

5 Performance and Optimization 25

5.1 Implementation . 25

5.2 Parameters . 26

5.3 Result . 26

6 Conclusion & Future Work 29

6.1 Conclusion . 29

6.2 Future Work . 29

Bibliography 30

List of Tables

5.1 Concrete parameters as calculated for our implementation to pro-

tect from various attacks. 26

5.2 Time complexity of the scheme with Sage 6.1.1 [1] 26

vii

List of Algorithms

4.1 Solving PACD by multipoint evaluation of univariate polynomials . 20

4.2 [T,D]← TreeProduct(A) . 22

4.3 V ← RecursiveEvaluation(f, ti, D) 22

4.4 V ← RecursiveEvaluation(f, ti, D) 23

viii

Introduction

Chapter 1

Introduction

The essential necessity for a cryptosystem is that adversaries must be prohibited

from learning messages which is confidential. An encryption scheme is said to be

homomorphic scheme that can be defined as the operation performed on cipher-

text and generate the result in an encrypted form which is same as the operation

performed on the respective plain text. The term privacy homomorphism is firstly,

introduced by the Rivest, Adleman and Dertouzous [2] in a little while after the

discovery of RSA algorithm [3]. RSA scheme was multiplicative homomorphic

scheme that is it computes the product of ciphertext and equals to the product

of the plain texts originally. It does not support the addition operation. The first

fully homomorphic encryption was introduced by the Gentry [4] in 2009. Gentry

originally achieved “ Somewhat Encryption Scheme ” limited to few operations to

perform in ciphertext. The operations are limited because the noise is attached

with the ciphertext and increases with each operation. He makes a cryptosystem

with the usual encryption and decryption functions, which change bits from ci-

phertext from plaintext and vice-versa. He also gave an idea of evaluate function

that accepts a description of a operation to be performed on the ciphertext. The

problem is that ciphertext data are corrupted with numerical “noise” slight dis-

crepancies from their absolute values. Every arithmetic operation increases the

noise and it needs to refresh the ciphertext as the noise crosses the certain thresh-

old. Homomorphic encryption would address the worry about protecting the data

against adversaries and even hiding it from the cloud service provider. At the

point when encryption is utilized just to make a protected interchanges channel,

2

1.2 Homomorphic Encryption Technique

it has no immediate impact on the efficiency of calculations done at either end of

the connection. Homomorphic encryption is defined where cryptosystem becomes

the computing platform, and any inefficiency slows the entire process.

1.1 Homomorphic Encryption in Cloud comput-

ing

A number of areas are there in cloud computing, such as medical, financial and

advertising sector where the services of the cloud computing can be implemented.

Large amount of data is stored in the cloud database just because the user doesn’t

have the large space capacity and computational platform. The data stored is so

large, so that user does not want to store and perform any computation locally.

So the user prefers to use cloud storage and computation. Here the homomor-

phic plays very important role as the user want to use the cloud services, but

does not want the cloud provider to access user’s data. Homomorphic encryption

technique provides the way to perform the arithmetic operation like addition and

multiplication on encrypted data.

1.2 Homomorphic Encryption Technique

The real problem of the somewhat homomorphic encryption is the “noise” is at-

tached with the ciphertext. The source of the noise lies in the probabilistic encryp-

tion process. Every arithmetic operation amplifies the noise and produces error

during the decryption.That is why Somewhat Homomorphic Encryption technique

supports only few operations. As the number of operations, i.e. multiplication and

addition are increased, the noise related to the ciphertext is increased. Decryption

is failed when the noise exceeds the certain threshold of the noise. Gentry proposed

that the functions which compute the operation on the ciphertext are polynomi-

als of small and bounded degree. Approximately speaking, each homomorphic

addition operation doubles the noise in the ciphertext, and each multiplication

squares it. Therefore number of operations on the ciphertext must be limited or

decryption operation produces the incorrect result. The technique is said to be

3

1.2 Homomorphic Encryption Technique

“somewhat homomorphic” when there is limit on ciphertext depth. To avoid the

problem of noise in the ciphertext, Craig introduces the technique “bootstrap-

pable” to convert the scheme into the Fully Homomorphic Scheme.

When arithmetic operation such as addition and multiplication can be performed

implicitly on the ciphertext then the technique is called fully homomorphic. In

Gentry technique, there is usual encrypt and decrypt for the encryption and de-

cryption of data respectively. There is also one more function calledevaluate to

perform the arithmetic operation on ciphertext. The evaluate function is having

a circuit, where input symbols are given through the cascade of logic gates which

perform operation on the ciphertext. In principal, any computable function can

be expressed in terms of the boolean circuit of arbitrary depth. The depth of the

circuit can be defined as the longest path from the input to the output. The main

idea behind the depth limit of the circuit is that when the noise associated with

the ciphertext cross the certain threshold, then it is decrypted and again, it is en-

crypted so that the noise again comes to the original level. In this way computer

can perform any number of arithmetic operations and can handle the circuit of

any depth. The resulting scheme is called Fully Homomorphic Encryption.

The major application of FHE is cloud computing. By this way, user can store

his/her data in encrypted form in public cloud without letting know the real data.

Cloud is having more storage and computing capabilities then user’s system. So

the computation can be done in cloud with the help of FHE without the knowledge

of secret key to the cloud administrator. More precisely, FHE is having the fol-

lowing property whenever f is a function composed of addition and multiplication

operation in the ring:

Decrypt (f (c1, . . . , ct)) = f{m1, . . . ,mt} (1.1)

On the off chance that the cloud (or an adversary) can proficiently compute

f(c1, . . . , ct) from ciphertexts c1, . . . , ct , without realizing any data about the

relating plaintexts m1, . . . ,mt , then the framework is proficient and secure.

An another prerequisite for FHE is that the ciphertext sizes stay remain bounded,

independent of the function f ; this is known as the ”compact ciphertexts” pre-

4

1.4 Outline of Thesis

requisite.

1.3 Motivation

Cloud processing security difficulties and its additionally an issue to numerous

researchers; first necessity was to center on security which is the greatest concern

of organizations that are recognizing a move to the cloud. Our proposal is to

provide the scheme to perform the arithmetic computation on the encrypted data

present in the cloud without any knowledge accessed to the cloud service provider.

In this paper we tried to achieve the fully homomorphic encryption which can

perform unlimited arithmetic operations on the ciphertext.

1.4 Outline of Thesis

The rest of the thesis is organized as follows:

Chapter 2 contains the brief description of the work already done in the homo-

morphic encryption field. We describe the recent development of homomorphic

encryption and security issues are also studied.

Chapter 3 contains the brief review related to the field of fully homomorphic en-

cryption. First we described the basic of the fully homomorphic encryption which

is explained in Gentry’s [4] work. Then we discuss about the DGHV [6] FHE

scheme over integers given Dijk, Gentry, Halevi, and Vaikuntanathan and further

modification done in this scheme [7] given by the Coron, Mandal, Naccache, and

Tibouchi. We also describe the security issues in this scheme.

Chapter 4 contains the results and performance of the existing work done in the

field of the homomorphic encryption using the DGHV scheme [5] using Modu-

lus Switching and Public Key Compression technique. Then we implemented the

GACD attack of Chen and Nguyen [8] on the existing scheme as my proposed

work. Finally i present the results of my implementation on the SageMath.

Chapter 5 summarizes the contribution in the field of the homomorphic encryp-

tion technique. There is also the comparison of our work with the DGHV scheme.

Chapter 6We additionally depict the possible future expansions to our work.

5

Literature Review

Chapter 2

Literature Review

Rivest, Adleman, and Dertouzos [2]were the first to give the idea of fully homo-

morphic encryption, which they termed as ”privacy homomorphism”, and they

suggested a few applicant plans. Basic RSA is the first homomorphic scheme,

given that c1 = pe1modN and c2 = pe2modN , and one can compute c = c1c2 =

(p1p2)
emodN which encrypts the product of the original plaintexts. However,

RSA is not semantically secure but it is deterministic algorithm . Despite the fact

that RSA is not semantically secure but still it’s multiplicative property still is

used in many applications.

The first scheme that gives the idea of semantic security by Goldwasser-Micali [9]

in 1982. In this paper he introduced the notion of Probabilistic encryption instead

of trapdoor function. The GM encryption scheme supports addition of encrypted

bits mod 2 (that is, the exclusiveOR function). It becomes easy to decrypt the

data at the receiver end but difficult for the adversary. Some other additively

homomorphic schemes are also proposed with proof of semantically security such

as Benaloh [10], Naccache-Stern [11] and Paillier [12].

RSA [2] is multiplicative homomorphic encryption technique while Elgamal [13]

is additive homomorphic technique. This paper presents frameworks that de-

pend on the difficulty of computing logarithms over finite flelds. The security

of scheme is equivalent to that of the distribution scheme. It also provide the

comparison of the Elgamal to the RSA scheme. Some other schemes such as

BonehGoh-Nissim [14] are proposed that are semantically secure as well as can

perform computation of both addition and multiplication. This scheme allows the

7

computation of quadratic formulas over the ciphertext. The other scheme by Fel-

lows and Koblitz [15] which also allows the computation of arbitrary circuit over

the ciphertext. But the problem with the both schemes is exponentially expansion

the ciphertext with the increase in depth of the circuit.

It is also proved that one can develop additively homomorphic encryption scheme

from lattices [16], [17], [18]. In lattice based scheme [18], we define a chained en-

cryption scheme which permit an effective evaluation of polynomials of degree d

over encrypted data. This system also permits the generation of the ciphertext at

the monetary value of the exponential increase of the ciphertext. These schemes

are different from the other conventional scheme because of the ”noise” attached

with the ciphertext and it grows as the as operations are performed on the cipher-

text. The exponential growth of the noise as the operations are performed on the

ciphertetxt makes these schemes inefficient. There should be an algorithm that

must bound the ciphertext growth.

A MIT CSAIL technical report ”Interval Obfuscation” [19] to be published in

2009 which can be considered as symmetric homomorphic encryption. The brief

description of this report is given to the Fully Homomorphic Encryption tech-

nique [4] given by Craig gentry. It uses a secret integer modulus M and a secret

integer s that is relatively prime to M . A s.xmodM is an encryption of ’0’ for

some x ∈ [1, a] where ′a′ is a small integer. While s.xmodM is an encryption of ’1’

for some x ∈ [b + 1, b + a] where ′b′ is a large integer. The receiver can decrypt c

by setting c′ ← c/sdmodM and then bc′/bde as output.This idea is also termed as

ideal lattice of one dimensional.The somewhat homomorphic encryption is based

same idea, but instead using one dimensional lattice it uses n-dimensional lattice.

Ishai and Paskin [20] gave an idea to evaluate branching programs with smaller

ciphertext. It is based on public key encryption scheme where there is encrypted

based on branching program P . The plain text x is having the ciphertext c then it

is easy to compute c′ from which we can easily decode the P (x) using the decrypted

with the use of public key. The length of the ciphertetxt is directly proportional

to the branching program P and the plaintext x.

8

There are so many homomorphic encryption schemes are proposed since after the

discovery of ”privacy homomorphism” but it all were hindered due to the expo-

nential growth of the ciphertext.The major breakthrough was achieved in 2009

by the Craig gentry in his PhD thesis fully homomorphic scheme [4] affirmed by

IBM on June 25, 2009. It was based on the lattice based cryptography. His

scheme is to solve the problem of arbitrary depth circuits while performing the

unlimited operations on the. The development of scheme begins from a to a some-

what homomorphic encryption scheme utilizing ideal lattices that is constrained

to evaluating low-degree polynomials over encrypted data. He then demonstrates

to enhance his scheme to make it bootstrappable specifically, he indicates that

by modifying homomorphic encryption slightly, it can evaluate its own particu-

lar decrypting circuit which is a self-referential property. He also proved that any

bootstrappable function to some degree homomorphic encryption scheme could be

changed over into a completely homomorphic encryption. In the specific instance,

gentry gave the idea that if the noise associated with the ciphertext crosses the

certain threshold then the ciphertext needs to be refreshed. The refresh process

brings the noise to the original level and allows to perform the further addition

and multiplication on the new refreshed ciphertext. Fully homomorphic scheme

is based on the security of his plan on the assumed hardness of two problems:

certain worst-case scenario problems over ideal lattices, and the sparse (or low-

weight) subset sum problem.

Gentrys scheme turn out to have inherent efficiency limitations. It turns out that

the barrier in practical deployments of FHE is the per-gate evaluation time, de-

fined as the ratio of the time it takes to evaluate a circuit C homomorphically to

the time it takes to evaluate C on plaintext inputs. The approximate time taken

to evaluate is ω(λ4), which is fairly long time complexity. After the Craig’s work,

other schemes are also published on the basis of Craig’s idea. Other work done

which further reduces the FHE problem to the integers given by van Dijk, Gentry,

Halevi and Vaikuntanathans(DGHV scheme) [6] over the integers. This scheme is

simpler than the Gentry’s scheme because it works on integers rather than lattices.

9

A little while ago, scheme was proposed in [7] that the public key elements are

reduced to small subset. Further the elements of public key can be obtained by

combining the small subset elements multiplicatively. In particular Brakerski and

Vaikuntanathan [21] shows that the hardness of the FHE can also be implemented

using the ”learning with error” introduced by Regev [22]. It is hard as to solve the

problem of shortest vector problem on arbitrary lattice in worst case. Our paper

presents new reduction technique and compression of the key and ciphertext [5]

to reduce the space and time complexity of the decryption algorithm.

The simplest scheme among what we discussed till now is DGHV [6] published at

EUROCRYPT’10. The security of this scheme is based on hardness of approxi-

mate integer common divisors problems in 2001 by Howgrave-Graham [23]. There

are two versions of the problem is given GACD and PACD. GACD is defined as

the general version of the problem as well as PACD is defined as partial version

of the problem.

In GACD, the goal of the problem is to recover the secret number p, given poly-

nomially many near multiples x0, · · · , xm of p, that is, each integer xi is of the

hidden form xi = pqi+ri where each qi is vey large integer and each ri is very small

integer. Whereas in PACD, the setting is exactly same, except that x0 is chosen as

an exact multiple of p, namely x0 = pq0 where q0 is very large integer chosen such

that no non-trivial factor of x0 can be found efficiently; for instance, [7] selects q0

as a rough number, i.e. without small prime number.

The hardness of the approximate integer common divisors lies on the strength

how qi and ri is generated. For the generation of [6] and [7], noise of r′is should

be small. Because of the small value of the noise, the best known attack is gcd

exhaustive search. In [7] and [6], GACD will try every noise of pair (r0, r1) and

check whether gcd(x0 − r0, x1 − r1) is sufficiently large and allows to recover the

secret key. There are various approaches are given to break the FHE over the

integers.

10

Fully Homomorphic Encryption
over integers

Chapter 3

Fully Homomorphic Encryption
over integers

3.1 Introduction

Our parameters and definitions are adapted by Gentry [4]. The encryption method

is homomorphic with respect to the boolean circuits with the addition and mul-

tiplication mod 2. The scheme S consists of four algorithms as Key Generation,

Encryption, Decryption and Evaluate. The Evaluate algorithm inputs parameters

public key pk, circuit C and tuple of ciphertext {c1, . . . , ct} as input and gives

another ciphertext c as output.

Definition 1 (Homomorphic Encryption).The scheme S=(KeyGen, Encrypt,

Decrypt, Evaluate) is homomorphic for a problems P of circuits if it is satisfy for

all circuits C ∈ C. ε is fully homomorphic if it is satisfy for all boolean circuits.

Circuit-privacy and compactness are two important properties of the homomor-

phic encryption scheme.

Circuit privacy communicates the property that the ciphertext transformed by

Evaluate should not give any thought regarding the plaintext or the circuit that

evaluate beyond the output value of that circuit even the client who have the

learning of the private key. Compactness communicates the property that the

ciphertext prepared by Evaluate ought not rely on the circuit C.

12

3.3 A Somewhat Homomorphic Encryption Scheme

3.2 Bootstrappble Encryption

The definition adapted from the Gentry [4] described that circuit of any depth

is able to evaluate the perform arithmetic operation as well as the decryption

circuit.

Definition 2 (Augmented Decryption Circuit.) Let ε=(KeyGen, Encrypt,

Decrypt, Evaluate) be an encryption scheme, circuit C is used to implement the

decryption algorithm and it is depend upon the security parameter λ. We denote

this set by Dε(λ).

3.3 A Somewhat Homomorphic Encryption Scheme

Parameters. A somewhat homomorphic encryption has many parameters which is

calculated based on the constraints to avoide various attacks. It controls the num-

ber of bits in public key, secret key and other other variables. Specifically, there

are four parameters which are suggested by Dijk, Gentry, Halevi, and Vaikun-

tanathan [7] in the DGHV scheme are as follows:

λ is the bit-length of the integers in the public key,

η is the bit-length of the secret key (which is the hidden approximate-gcd of

all the public-key integers),

ρ is the bit-length of the noise (i.e., the distance between the public key ele-

ments and the nearest multiples of the secret key), and

τ is the number of integers in the public key.

The former parameters are having the following constraints:

� ρ = ω(logλ), to protect against brute-force attacks on the noise;

� η ≥ ρ.θ(λlog2λ) , in order to support homomorphism for deep enough circuits

to evaluate the “squashed decryption circuit”.

� γ = ω(η2logλ), to thwart various lattice-based attacks on the underlying

approximate-gcd problem.

13

3.3 A Somewhat Homomorphic Encryption Scheme

� τ ≥ γ+ω(logλ), in order to use the leftover hash lemma in the reduction to

approximate gcd.

We also use a secondary noise parameter ρ′ = ρ + ω(logλ). For a specific η-bit

odd positive integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) = {choose q $← Z ∪ [0, 2γ/p), r
$← Z ∪ (−2ρ, 2ρ) : x = pq + r}

This distribution is clearly efficiently sampleable.

Construction. The construction of the scheme is given as follows:

KeyGen(1λ): The public key is p which is random prime number of η bits.

We have to sample Dγ,η(p) to sample the values of xi for i = 0, 1, . . . , τ .

Recalculate xi so that x0 is the largest. and [x0] mod p is even. Now

{x0, x1, . . . , xτ} is public key called pk and p is the secret key called sk.

Encrypt(pk,m ∈ {0, 1}): The output c for encryption of the plaintext bit

m ∈ {0, 1} is

c = [m+ 2r + 2
∑
i∈S

xi]x0 (3.1)

where S ∈ {1, 2, . . . , τ} and r ∈ (−2ρ
′
, 2ρ

′
) is a random integer.

Evaluate(pk,C,c1, c2, . . . , ct): The public key and the tuple of ciphertext are

given to the circuit C to perform the arithmetic operations such as addition

and multiplication on the integers. The circuit-privacy and compactness

property of circuit are maintained.

Decrypt(sk, c): m is the output and can be obtained as follows:

m← [c]p mod 2 (3.2)

This gives the idea of the DGHV scheme [7]. The scheme is somewhat ho-

momorphic encryption and it is limited to few operations such as addition and

multiplication only a few times. According to the DGHV scheme, ciphertext’s

noise must remain less than p for accurate decryption of the ciphertext so that

the scheme roughly follows η/ρ′ multiplications on the cipheretxt.

14

3.5 The new DGHV scheme

3.4 Limitations of DGHV scheme

The DGHV scheme [7] is over the integers. But still it has many limitations such

as the large memory requirement for storing the public key. We have to improve

the efficiency of the scheme as well as preserving the hardness of the approximate-

GCD problem.

3.5 The new DGHV scheme

Compression of Public Key The main aim of our scheme to reduce the public

key and ciphertext for better space complexity [5]. In DGHV scheme, public key

is the set of 1, 2, . . . , τ tuples as follows:

xi = p.qi + ri

In new DGHV scheme [5], we store the small set of η- bit integers instead of

storing γ-bit integers which is comprised of set of xi elements. The scheme can

also described as generating x′is of γ − η bits. The overall reduction of memory

requirement is 4.6 MB from 802 MB. During the encryption process, again we can

use private key p to obtain the remaining bits from the η-bits. We also maintain

the constraint that xi mod p is small to avoid the noise.

Higher degrees of Ciphertext The efficiency of the scheme can be improved

by the computing the ciphertext in quadratic form rather than linear form for

masking the message. So, the ciphertext can be computed as

c = m+ 2r + 2
∑

1≤i,j≤β

bij.xi,0.xj,1 mod x0 (3.3)

The resulting ciphertext is quadratic than linear. The given scheme is semantically

secure. The main implementation is to reduce the size of the public key. The

complexity is reduced to O(λ1.5) from O(λ3). There is also the number of elements

τ = xi down to 2β = xi,b. It is also proved by the DGHV [5] authors that by

increasing the degree of the public key elements to the cubic or more of degree

arbitrary fixed size d than the quadratic degree is semantically secure and further

reduce the size of public key size.

15

3.6 Fully Homomorphic Scheme using DGHV scheme

Construction of new DGHV scheme: There are few modifications are done

in DGHV scheme to reduce the size of the ciphertext and to improve the efficiency

of the DGHV scheme. The scheme is as follows:

KeyGen((1λ)). Choose a random prime number p and random odd integer

q0 ∈ [0, 2γ/p).

Then x0 = p.q0. Initialize the pseudo random number number generator f

with seed se. f(se) is used to generate the set of integers χi ∈ [0, 2γ) for

i = 1, 2, . . . , τ .

For i = 1, 2, . . . , τ compute,

δi = 〈χi〉p + ξi.p− ri (3.4)

where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p). By storing the values of

δi and the knowledge of seed se we can easily again compute the xi. Then,

xi = χi − δi (3.5)

Encrypt(pk,m ∈ {0, 1}): The xi is recovered by knowing the value of the seed

se and δi. Choose a random integer b = (bi)1≤i≤τ ∈ [0, 2α) and a random

integer r ∈ (−2ρ
′
, 2ρ

′
). Then output of the ciphertext as follows:

c = m+ 2r + 2
τ∑
i=1

bi.xi mod x0 (3.6)

Evaluate(pk,C,c1, c2, . . . , ct) and Decrypt(sk, c): The algorithm for Evaluate

and Decrypt is following the DGHV scheme except that modulo is x0 for the

ciphertext.

3.6 Fully Homomorphic Scheme using DGHV

scheme

The scheme does not include the “bootstrapping” technique. The parameters are

evaluated polynomially on the basis of depth of the circuit.

SwitchKeyGen This algorithm defines the compression technique of the ciphertext

and keys. The input parameters are pk, sk, pk′, sk′. The two secret keys p and p′

are taken of size η and η′.

16

3.6 Fully Homomorphic Scheme using DGHV scheme

1. Let k = 2γ + η where γ is size of public key integers.

2. Compute a vector Y of θ random numbers modulo 2η
′+1 with k bits of

precision after the binary point, and a random vector S of θ bits. Then

calculate the expanded secret-key S ′ = Powerof2(S, η′)

3. Calculate the encryption of d of S ′ under sk′. d can be computed as

d = p′.q + r + bS ′. p′

2η′+1
e (3.7)

4. Output τpk→pk′ = (Y, d)

Fully Homomorphic Scheme

The depth of the circuit is defined as L and security parameter is defined as λ.

KeyGen(1λ,1L) For each level of L in the circuit compute L decreasing moduli of size

ηi. For each ηi = (i+ 1)µ from L to 1, compute KeyGen(1λ) from DGHV scheme.

From j = 1, . . . , 2 compute SwitchKeyGen(pkj, pkj−1, pk
′
j, pkj−1) for τpkj→pkj−1

.

Now the public key for the full scheme is pk = (pkL, τpkL→pkL−1
, . . . , τpk2→pk1)

and secret key is sk = (p1, . . . , pL).

Encrypt(pk,m ∈ {0, 1}) Apply Encrypt(pkL,m) for a level L.

Decrypt(sk,c) Suppose the moduli for that level is pj. Then ciphertext is calculated

as m← [c]pj mod 2.

Add(pk, c1, c2) Suppose that two ciphertexts c1 and c2 are encrypted under pj then

apply the add operation otherwise apply the Refresh function below to make it so.

Refresh(τpkj→pkj−1), c unless both the ciphertexts are encrypted are under pj and if

it so then it simply output ciphertext c.

Mult(pk, c1, c2) Suppose that two ciphertexts c1 and c2 are encrypted under pj then

apply the multiply operation otherwise apply the Refresh function below to make

it so.

Refresh(τpkj→pkj−1), c unless both the ciphertexts are encrypted are under pj and if

it so then it simply output ciphertext c.

Refresh(τpkj+1→pkj), c output c′ ← SwitchKey(τpkj+1→pkj , c)

17

Attacks on
Homomorphic Encryption Technique

Chapter 4

Attacks on Homomorphic
Encryption Technique

The Dijk, Gentry, Halevi and Vaikuntanathan presented FHE scheme based on

the hardness of the approximate integer common divisor problems. There are two

versions of this problems: the partial version(PACD) and general version(GACD).

The hardness of the PACD and GACD depends upon the q′is and the r′is are

generated.

4.1 New Square Root Algorithm for PACD

In this section, we describe the new square-root algorithm for the PACD problem,

which is based on the univariate polynomials at many points.

4.1.1 Overview

Consider x0 = pq0 and xi = pqi + ri where 0 ≤ ri ≤ 2ρ, 1 ≤ i ≤ m. We start with

the following:

p = gcd(x0,
2ρ−1∏
i=0

(x1 − i)(mod x0) (4.1)

This allows 2ρ gcd computations with essentially 2ρ modular multiplications. We

define the polynomial fi(x) of degree j, with coefficients modulo x0 :

fi(x) =

j−1∏
i=0

(x1 − (x+ i))(mod x0) (4.2)

19

4.1 New Square Root Algorithm for PACD

Letting ρ′ = bρ/2c,we notice that :

2ρ−1∏
i=0

(x1 − 1) ≡
2ρ
′+(ρmod2)−1∏

k=0

f2ρ′ (2
ρ′k)(mod x0)

We can thus write(4.1) as :

p = gcd(x0,
2ρ
′+(ρmod2)−1∏

k=0

f2ρ′ (2
ρ′k)(mod x0)) (4.3)

Clearly, (4.3) allows to solve PACD using one gcd, 2ρ
′+(ρmod 2) − 1 modular mul-

tiplications, and multi-evaluation of the polynomial of degree 2ρ
′

at 2ρ
′+(ρ mod 2)

points, where ρ′+(ρ mod 2) = ρ−ρ′. It claims at the cost of the O(2ρ
′
) = O(

√
2ρ)

operations modulo x0, which is essentially the square root of gcd exhaustive search.

4.1.2 Description

The following algorithm to solve PACD, given as Algo 1 :

Algorithm 4.1 Solving PACD by multipoint evaluation of univariate polynomials

1: Input: An instance (x0, x1) of the PACD problem with noise size ρ.
2: Output: The secret number p such that x0 = pq0 and x1 = pq1 with appro-

priate sizes.
3: set ρ′ ← bρ/2c
4: Compute the polynomial f2ρ′ (x) defined by 4.2, using Alg.2.
5: Compute the evaluation of f2ρ′ (x) at the 2ρ

′+(ρ mod 2) points,
0, 2ρ

′
, · · · , 2ρ′(2ρ′+(ρ mod 2) − 1), using 2ρ mod 2 times.

Alg.3 with 2ρ
′

points. Each application of Alg. 3 requires the computation of
a product tree, using Alg. 2.

Alg. 1 relies on two classical subroutines :

� a subroutine to (efficiently) compute a polynomial given as a product of n

terms, where n is a power of two: Alg. 2 does this in O(n) ring operations,

provided that quasi-linear multiplication of polynomials is available, which

can be achieved in our case using Fast Fourier technique. This subroutine is

used in Step 2. The efficiency of Alg. 2 comes from the fact that when the

algorithm requires a multiplication, it only multiplies polynomials of similar

degree.

20

4.1 New Square Root Algorithm for PACD

� a subroutine to (efficiently) evaluate a univariate degree-n polynomial at n

points, where n is a power of two: Alg. 3 does this in O(n) ring operations,

provided that quasi-linear polynomial remainder is available, which can be

achieved in our case using Fast Fourier techniques. This subroutine is used

in Step 3, and requires the computation of a tree product, which is achieved

by Alg. 2. Alg. 3 is based on the well-known fact that the evaluation of

a univariate polynomial at a point α is the same as its remainder modulo

X − α, which allows to factor computations using a tree.

Figure 4.1: Polynomial Product Tree T = t1, · · · , t2n for a1, · · · , an

21

4.2 Limitations

Algorithm 4.2 [T,D]← TreeProduct(A)

1: Input: A set of n = 2l numbers a1, a2, · · · , an.
2: Output: The polynomial product tree T = t1, t2, · · · , t2n−1, corresponding to

the evaluation of points A = a1, a2, · · · , an as shown in figure 4.1. D =
[d1, · · · , d2n−1] descendant indicates for non-leaf nodes or 0 for leaf nodes.

3: for i = 1 · · ·n do
4: ti ← X − aiInitializing leaf nodes
5: dj ← 0
6: end for
7: i← 1Index of lower level
8: j ← n+ 1Index of upper level
9: while j ≤ 2n− 1do
10: tj ← ti · ti+1

11: dj ← i
12: i← i+ 2
13: j ← j + 1
14: end while

Algorithm 4.3 V ← RecursiveEvaluation(f, ti, D)

1: Input: A polynomial f of degree n. A polynomial product tree rooted at
ti, whose leaves are X − ak, · · · , X − am

2: Output: V = f(ak), · · · , f(am)
3: if di = 0 then
4: return {f(ai)} When ti is a leaf, we apply an evaluation directly.
5: else
6: gi ← f mod tdi {left subtree}
7: Vi ← RecursiveEvaluation(g1, td, D)
8: g2 ← f mod tdi+1

9: V2 ← RecursiveEvaluation(g2, td, D)
10: returnV1 ∪ V2

It is concluded that the running time of Alg. 1 is O(2ρ
′
) = O(

√
2ρ) operations

modulo x0, which is essentially the “square root” of gcd exhaustive search.

4.2 Limitations

The main limitation of implementing Alg 1. is memory. Consider the Large FHE-

challenge from [7] : there, ρ= 40, so the optimal parameter is ρ′= 20, which

implies that f2ρ′ is a polynomial of degree 220 with coefficients of size 19 × 106

bits. In other words, simply storing f2ρ′ already requires 220×19×106 bits, which

22

4.2 Limitations

is more than 2Tb, while we also need to perform various computations. This

means that in practice, we will have to settle for suboptimal parameters. More

precisely, assume that we select an additional parameter d, which is a power of

two less than 2ρ
′
. We rewrite 4.3 as :

p = gcd(x0,

2ρ/d−1∏
k=0

fd(dk)(mod x0)) (4.4)

This gives rise to the another version of Alg. 1, given as

Algorithm 4.4 V ← RecursiveEvaluation(f, ti, D)

1: Input: An instance (x0, x1) of the PACD problem with noise size ρ, and a
polynomial degree d.

2: Output: The secret number p such that x0 = pq0 and x1 = pq1 + r1 with
appropriate sizes.

3: Compute the polynomial fd(x) defined by 4.2, using Algo 2.
4: Compute the evaluation of fd(x) at the 2ρ/d points 0, d, 2d, · · · , d(2ρ/d − 1),

using 2ρ/d2 times Alg. 3 with d points. Each application of Alg. 3 requires
the computation of a product tree, using Alg. 2.

The running time Alg. 4 is
2ρO(d)

d2
elementary operations modulo x0, and the

space requirements is O(d) polynomially many bits.

23

Performance and Optimization

Chapter 5

Performance and Optimization

In this chapter we implemented the compression technique of DGHV’s scheme

given by van Dijk, Gentry, Halevi and Vaikuntanathan. The compression tech-

nique reduces the time complexity from Õ(λ7) to Õ(λ5). We also implemented the

GCD attack on the compression technique of DGHV [5]. We then discuss about

the attacks on RSA and our proposed method.

5.1 Implementation

In this section we described our scheme based on the idea of DGHV scheme in

section 3.5.

Modulus switching technique used to keep the “noise” small is adapted from the

[21]. More precisely, the decryption of the ciphertext c calculated from the plain

text m = {0, 1} is [c]p mod 2. The term [c]pmod2 is refer as “noise” associated with

the ciphertext c. In the leveled DGHV scheme, ciphertext c which is encrypted

under p which can be also be efficiently encrypted ciphertext c′ under p′. The

resulting noise must be multiplied by p/p′ to reduce the size. But for the secure

FHE the value of p and p′ must not reveal. So first we should compute “virtual

ciphertext” as follows c′ = 2k.q′ + r′ with q′ = q mod 2. We use the variant with

x0 = p.q0.

25

5.3 Result

5.2 Parameters

Preliminaries.We use λ as a security parameter.For a real number a, we denote

by dae for rounding up, bac for down and bae for the nearest integer respectively.

All logarithms are base 2 unless otherwise stated.

We use the following variant with x0 = pq0. To prevent the sparse subset sum

problem in lattice based attack, we have the following constraints θ2 = γ ·ω(logλ).

The constraints on other parameters are ρ = λ,α = O(λ2), θ = O(λ3), τ = O(λ3)

and γ = O(λ5)

The concrete parameters are given by [7]. For these parameters, we take θ =15.

We obtain the parameters are as follows :

Parameters λ ρ η γ β θ

Toy 42 16 1088 1.6·105 12 144
Small 52 24 1632 0.86·106 23 153

Medium 62 32 2176 4.2·106 44 1972
Large 72 39 2652 19·106 88 7897

Table 5.1: Concrete parameters as calculated for our implementation to protect
from various attacks.

5.3 Result

We have implemented the scheme of DGHV using the compression technique of

modulus-switching described in section 3.5, with an optimization of ciphertext

expansion procedure. The time complexity resulting after the execution of the

scheme are as follows :

Instance KeyGen Encryption Decryption Evaluate Recryption

Toy 0.042s 0.058s 0.001s 0.01s 0.42s
Small 1.33s 1.12s 0.001s 0.14s 4.58s

Medium 29.5s 20.97s 0.03s 2.69s 55s
Large 10m 2s 7m 13s 0.09s 51s 11m 35s

Table 5.2: Time complexity of the scheme with Sage 6.1.1 [1]
(Desktop system of dual core with an Intel Core2 duo n5100 processor at 3 GHz

each.)

26

5.3 Result

The proposed scheme is better than the DGHV scheme in terms of time com-

plexity. The graph in figure 5.1 is showing the following comparison :

Figure 5.1: Comparison between Our proposed scheme and DGHV scheme

The proposed scheme is better than the DGHV scheme in terms of space

complexity. The graph in figure 5.2 is showing the following comparison :

Figure 5.2: Comparison between Our proposed scheme and DGHV scheme

27

Conclusion and Future Work

Chapter 6

Conclusion & Future Work

6.1 Conclusion

The cloud computing security built on the light of Fully Homomorphic encryption,

will be another thought of security which enables giving conclusions of figurings

on encrypted data without knowing the raw data on which the calculation was

carried out, in profound respect of the data confidentiality. But still there practical

implementation is need to be done in the future.

6.2 Future Work

Our future work is compromised of increasing the efficiency of our proposed scheme

so that the computational time will be reduced.

29

Bibliography

[1] W. Stein, “Sage mathematics software (version 6.1.1).” http://www.

sagemath.org., 2010.

[2] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

homomorphisms,” Foundations of secure computation, vol. 4, no. 11, pp. 169–

180, 1978.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digi-

tal signatures and public-key cryptosystems,” Communications of the ACM,

vol. 21, no. 2, pp. 120–126, 1978.

[4] C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford

University, 2009.

[5] J.-S. Coron, D. Naccache, and M. Tibouchi, “Public key compression and

modulus switching for fully homomorphic encryption over the integers,” in

Advances in Cryptology–EUROCRYPT 2012, pp. 446–464, Springer, 2012.

[6] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomor-

phic encryption over the integers,” in Advances in Cryptology–EUROCRYPT

2010, pp. 24–43, Springer, 2010.

[7] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomor-

phic encryption over the integers with shorter public keys,” in Advances in

Cryptology–CRYPTO 2011, pp. 487–504, Springer, 2011.

30

http://www.sagemath.org.
http://www.sagemath.org.

Bibliography

[8] Y. Chen and P. Q. Nguyen, “Faster algorithms for approximate common di-

visors: Breaking fully-homomorphic-encryption challenges over the integers,”

in Advances in Cryptology–EUROCRYPT 2012, pp. 502–519, Springer, 2012.

[9] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play mental

poker keeping secret all partial information,” in Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pp. 365–377, ACM, 1982.

[10] J. Benaloh, Verifiable secret-ballot elections. PhD thesis, PhD thesis, Yale

University, 1987.

[11] D. Naccache and J. Stern, “A new public key cryptosystem based on higher

residues,” in Proceedings of the 5th ACM conference on Computer and com-

munications security, pp. 59–66, ACM, 1998.

[12] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes,” in Advances in cryptologyEUROCRYPT99, pp. 223–238, Springer,

1999.

[13] T. ElGamal, “A public key cryptosystem and a signature scheme based on

discrete logarithms,” in Advances in Cryptology, pp. 10–18, Springer, 1985.

[14] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on cipher-

texts,” in Theory of cryptography, pp. 325–341, Springer, 2005.

[15] M. Fellows and N. Koblitz, “Combinatorial cryptosystems galore!,” Contem-

porary Mathematics, vol. 168, pp. 51–51, 1994.

[16] S. Goldwasser and D. Kharchenko, “Proof of plaintext knowledge for the

ajtai-dwork cryptosystem,” in Theory of Cryptography, pp. 529–555, Springer,

2005.

[17] A. Kawachi, K. Tanaka, and K. Xagawa, “Multi-bit cryptosystems based

on lattice problems,” in Public Key Cryptography–PKC 2007, pp. 315–329,

Springer, 2007.

31

Bibliography

[18] C. A. Melchor, P. Gaborit, and J. Herranz, “Additively homomorphic encryp-

tion with d-operand multiplications,” in Advances in Cryptology–CRYPTO

2010, pp. 138–154, Springer, 2010.

[19] M. van Dijk and S. Devadas, “Interval obfuscation,” as an MIT-CSAIL Tech-

nical Report in, 2009.

[20] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted data,”

in Theory of Cryptography, pp. 575–594, Springer, 2007.

[21] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption

from (standard) lwe,” in Foundations of Computer Science (FOCS), 2011

IEEE 52nd Annual Symposium on, pp. 97–106, IEEE, 2011.

[22] O. Regev, “On lattices, learning with errors, random linear codes, and cryp-

tography,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[23] N. Howgrave-Graham, “Approximate integer common divisors,” in Cryptog-

raphy and Lattices, pp. 51–66, Springer, 2001.

32

	Certificate
	Acknowledgement
	Declaration
	Abstract
	List of Tables
	List of Algorithms
	Introduction
	Homomorphic Encryption in Cloud computing
	Homomorphic Encryption Technique
	Motivation
	Outline of Thesis

	Literature Review
	Fully Homomorphic Encryption over integers
	Introduction
	Bootstrappble Encryption
	A Somewhat Homomorphic Encryption Scheme
	Limitations of DGHV scheme
	The new DGHV scheme
	Fully Homomorphic Scheme using DGHV scheme

	Attacks on Homomorphic Encryption Technique
	New Square Root Algorithm for PACD
	Overview
	Description

	Limitations

	Performance and Optimization
	Implementation
	Parameters
	Result

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

