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Abstract

Segmentation of objects from still images has many practical applications. In
the past decade, combinatorial graph cut algorithms have been successfully
applied to get fairly accurate object segmentation, along with considerable
reduction in the amount of user interaction required. In particular, the Grab-
cut algorithm has been found to provide satisfactory results for a wide variety
of images. This work is an extension to the Grabcut algorithm. The Grabcut
algorithm uses Gaussian mixture models to fit the color data. The number of
Gaussian components used in mixture model is however fixed. We apply an
unsupervised algorithm for estimating the number of Gaussian components
to be used for the models. The results obtained show that segmentation
accuracy is increased by estimating the Gaussian components required, prior
to applying the Grabcut algorithm.

Keywords: Interactive image segmentation, Gaussian mixture models, Minimum

description length, Expectation maximization, Mincut/maxflow algorithm
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Chapter 1

Introduction

Image segmentation is a fundamental step in many areas of computer vision
including object recognition, video surveillance, face recognition, fingerprint
recognition,iris recognition, medical analysis etc. It provides additional in-
formation about the contents of an image by identifying edges and regions
of similar color and texture. Although a first step in high level computer
vision tasks, there are many challenges to an ideal image segmentation. Seg-
mentation subdivides an object into its constituent regions or objects. The
level of detail to which the subdivision is carried on depends on the problem
being solved. That is the segmentation should stop when regionns or objects
of interest have been detected. For example, if an image consists of a tree,
the segmentation algorithm may either stop after detecting the entire tree or
further divide the tree into trunk and leaves.

Formally, image segmentation may be defined as follows [21]

Definition 1.0.1. Let R represent entire spatial region occupied by the
image. We may view image segmentation as a process that partitions R into
n subregions, R1, R2, R3...Rn such that

1. ∪ni=1Ri = R

2. Ri is a connected set, i = 1, 2...n

3. Ri ∩Rj = ∅ for all i, j and i 6= j

4. Q (Ri) = TRUE for i = 1, 2, 3...n

5. Q (Ri ∪Rj) = FALSE for any adjacent regions Ri and Rj

Here Q (Rk) is the logical predicate defined over the points in the set Rk.
Two regions are said to be adjacent if their union forms a connected set.
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Condition 1 requires that each pixelshould necessarily be in some region.
Condition 2 requires that all the points in any given region should be con-
nected in some predefined sense. Condition 3 keeps the regions disjoint.
Condition 4 gives the properties that are to be satisfied by the pixels in a
segmented region. Finally, condition 5 requires that two adjacent regions
are different according to the predicate Q. Segementation techniques are
generally classified into

1. Discontinuity based segmentation

2. Similarity based segmentation

1.1 Discontinuity based segmentation

In discontinuity-based approach, abrupt changes in the intensity level of im-
ages are used to partition the image. Derivatives can be used to find local
changes in the intensity levels. First and second derivatives are suited for
the purpose. Derivatives of a digital function are calculated in terms of dif-
ferences. For a one-dimensional function f (x), the first and second order
derivatives are obtained by

Spatial filters are used to calculate first and second order derivatices of
the entire image. Fig. 1.1 shows a general 3 × 3 spatial filter mask.

w1 w2 w3

w4 w5 w6

w7 w8 w9

Figure 1.1: 3 × 3 spatial filter mask

We compute the sum of products of the mask coefficients with the inten-
sity values to calculate the derivatives. The response R of the mask at the
center point is given by

R =
9∑

k=1

wk · zk (1.1)

where zk is the intensity of the pixel whose spatial location corresponds to
the location of the kth coefficient of the mask.

The discontinuity-based segmentation is achieved through: (1) Point de-
tection, (2) Line detection, and (3) Edge detection.
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Figure 1.2: Point detection mask
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−1 2 −1
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−1 2 −1

(c) Vertical

−1 −1 2
−1 2 −1
2 −1 −1

(d) -45°

Figure 1.3: Line detection masks

1.1.1 Point detection

Point detection is based on second derivative. Fig 1.2 shows the Laplacian
mask for point detection. A point is detected at location (x, y) on which
the mask is centered if the absolute values of the response of the mask at
that point exceeds a specified threshold. Such points are given label 1 in the
output while the other points are given a label of 0. This gives us a binary
image. If g is the output image and T is the non-negative threshold, we have

g (x, y) =

{
1, if R (x, y) ≥ T

0, otherwise.
(1.2)

where R is given by equation 1.1

1.1.2 Line detection

For line detection too, second order derivatives are used. Fig 1.3 shows the
masks for lines in different directions. We filter the image independently with
four masks. Let R1, R2, R3 and R4 denote the responses to the four masks.
If at a given point in the image |Rk| > |Rj| for all j 6= k, then that point is
said to be more likely be associated with a line in the direction of mask k.

1.1.3 Edge detection

To find the strength and direction of the edge at location (x, y) of image f ,
the gradient Of is used. Of is defined as

Of =

[
gx
gy

]
=

[
∂f
∂x

∂f
∂y

]
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(b) Vertical

Figure 1.4: Prewitt masks
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0 0 0
1 2 1

(a) Horizontal

−1 0 1
−2 0 2
−1 0 1

(b) Vertical

Figure 1.5: Sobel masks

This vector points in the direction of greatest rate of change at location (x, y).
The magnitude of vector Of is given by M (x, y) where

M (x, y) =
√
g2x + g2y.

Direction of the gradient vector is given by

α (x, y) = tan−1
[
gx
gy

]
The angle is measured with respect to the X-axis. The direction of edge

at any arbitrary point (x, y) is orthogonal to the direction α (x, y) of the
gradient vector at that point.

A simple approximation to the partial derivatives using masks of size 3
× 3 is given by Prewitt. The Prewitt masks are shown in Fig 1.4. A slight
variation of the Prewitt masks are the Sobel masks shown in Fig 1.5. The
advantage of using Sobel masks is that they have better noise-suppression
characteristics as compared to Prewitt masks.

A widely used algorithm for edge detection is the one proposed by Canny
[13]. The algorithm involves five steps [1]

• Smoothing: The image is smoothed with the Gaussian filter. Due to
this noise will not be detected as edge.

• Finding gradients: Gradients at each pixel in the smoothed image are
determined by applying Sobel masks shown in Fig 1.5.

• Non-maximum suppression: The blurred edges in the image of the
gradient magnitude are converted to sharp edges. This is done by pre-
serving all local maxima in the gradient image,and deleting everything
else. The steps for each pixel in the gradient image are:
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Figure 1.6: Illustration of non-maximum suppression . The edge strengths
are indicated by numbers, while the gradient directions are shown as arrows.
The resulting edge pixels are marked with white borders. Figure taken from
[1].

1. Round the gradient direction α to nearest 45°. This corresponds
to the use of 8-connected neighbourhood.

2. The edge strength of the current pixel is compared with the edge
strength of the pixel in the positive and negative gradient direc-
tion.

3. If the current pixel has maximum strength, we preserve the value
of the edge strength. Otherwise we remove the edge.

Fig 1.6 illustrates the non maximum suppression.

• Double thresholding: We mark the potential edge points by thresh-
olding. The Canny edge detection algorithm uses double thresholding.
Those edge pixels that are stronger than the high threshold are marked
as strong; edge pixels weaker than the low threshold are suppressed and
edge pixels between the two thresholds are marked as weak.

• Edge tracking: Strong edges are included in the final edges set. We
include the weak edges only if they are connected to the strong edges.

1.2 Similarity based segmentation

Similarity based methods put pixels that are similar i.e those who satisfy
some predefined predicate Q, in the same region. They can be classified into
(1) Region growing ,(2) Region splitting and merging.
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1.2.1 Region growing

For region growing we have a predefined criteria for growth. We group pixels
into larger gropus if they satisfy the predefined criteria. We start with a set
of seed points. To these seed points we append those pixels to the seed points
that are similar to the seed points.

Let f (x, y) denote an input array. S (x, y) denotes a seed array containing
1 at the location of seed points and 0 elsewhere and Q denote the predicate
to be applied at each location (x, y). Following steps are involved in a basic
region-growing algorithm: [21]

1. Search for all connected compoments in S (x, y) and erode each con-
nected component to one pixel. All such pixels are labelled as 1 while
other pixels are labelled as 0.

2. Form an image fQ such that at a pair of coordinates (x, y), let
fQ (x, y) = 1 if the input image satisfies the given predicate, other-
wise 0.

3. Let g be an image formed by appending to each seed point in S all the
1-valued pixels in fQ that are 8-connected to the seed point

4. Label each connected component in g with a different region label. This
is the segmented image obtained by region growing.

1.2.2 Region splitting and merging

Let R represent the entire image region and Q be the predicate. To segment
R we successively divide R into smaller regions Ri so that, for any region
Ri, Q (Ri) = TRUE. The splitting technique has a convenient representation
in the form of quad trees, that is, trees in which each node has exactly
four descendants. We start with the entire region. If Q (R) = FALSE,
we divide the region into quadrants and so on. If no further splitting is
possible the merging stage begins. In this stage those adjacent regions whose
combined pixels satisfy the constraint Q are merged i.e Rj and Rk are merged
iff Q (Rj ∪Rk) = TRUE.
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Chapter 2

Literature Review

2.1 Intelligent scissors

Intelligient scissors is one of the earlier approaches used for interactive image
segmentation. Segmentation using intelligient scissors or the live-wire tool
[26] requires the user to enter seed points through mouse around the object
to be segmented. The intelligent scissors selects the boundary as an optimal
path between the current mouse position and previously entered seed point.

Let p and q be two neighboring pixels in the image. l (p, q) is the cost
on the link directed from p to q. We compute the cost function as weighted
sum of image features: Laplacian Zero-Crossing cz, Gradient Direction cd,
Gradient Magnitude cg, Inside-Pixel Value ci and Outside-Pixel Value co,
Edge Pixel Value cp.

l (p, q) = wz ·cz (q)+wg ·cg (q)+wd ·cd (p, q)+wp ·cp (q)+wi ·ci (q)+wo ·co (q)
(2.1)

Laplacian zero crossing cz provides for edge localization around the object.
It creates a binary cost feature. If the pixel is on the zero crossing then
Laplacian component cost from all links to that pixel is zero. Also, from a
pair of neighbouring pixels which have opposite signs for their Laplacians,
the pixel which is closer to zero is treated as having zero-crossing at that
pixel. The gradient magnitude feature cg distinguishes betweneen strong
and weak edges. A smoothness constraints is added to the boundary by
gradient direction cd. It assigns a high cost for sharp changes in gradient
direction at neighboring pixels, while the cost is low if the direction of the
gradient at the two pixels is similar to each other.

Continuous training is performed while the boundary detection is per-
formed i.e. the algorithm learns the characteristics of already detected
boundary and uses them to make decision about current boundary. This
allows the algoritihm to select edges which are similar to the already sam-
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pled edges rather than just selecting the strong edges. Training features are
updated interactively as the object boundary is being defined. The train-
ing considers pixels fron the most recently defined object boundary, which
allows the algorithm to adapt to gradual changes in edge charcacteristics.
The image features cp, ci and co are used for training. Edge pixel values cp
are simply the scaled source image pixel values directly beneath the portion
of the object boundary used for training. The inside pixel value ci for pixel
p is sampled a distance k from p in the gradient direction and the outside
pixel value is sampled at an equal distance in the opposite direction. Fol-
lowing values are generally set for the weight coefficients wz = 0.3, wg = 0.3,
wd = 0.1, wp = 0.1, wi = 0.1, and wo = 0.1.

We assign weights to the edges and compute an optimal path from each
pixel. This creates an optimal spanning tree. A varaint of Dijkstra’s algo-
rithm is used for the purpose. The limitation of this approach is that multiple
minimal paths may exists between the current cursor position and the pre-
vious seed point which increases the amount of user interaction required to
get a satisfactory result.

2.2 Graph-cut for image segmentation

Y.Boykov and M-P Jolly in [9] and [12] proposed an interactive technique
for segmentation of N-dimensional image. The user specifies a set of object
and background pixels which form the hard constraints on the segmentation
problem i.e. a segmentation is valid only if it correctly classifies the seed
points as per user input. The soft constraints are specified such that both
the region and boundary properties of the image are considered. These soft
constraints define a cost function. The goal is to find the global minimum
of the cost function that satisfies the hard constraints. To achieve this we
define the graph structure for the image in a manner that minimum graph
cut corresponds to the optimal solution.

Let P be set of pixels. Let N be the neighbourhood system. N consists of
all unordered pairs {p, q} of neighboring elements in P . Let (A1, A2, A3...A|P |)
be a binary vector. Each Ap can either be “obj” or “bkg” , specifying that
the pixel p belongs to object or background respectively. The cost function
is then defined as

E (A) = λR (A) +B (A) (2.2)

where
R (A) =

∑
pεP

Rp (Ap) (2.3)

B (A) =
∑

(p,q)εN

B{p,q} · δ (Ap, Aq) (2.4)
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and

δ (Ap, Aq) =

{
1, ifAp 6= Aq.

0, otherwise.
(2.5)

R (A) is the regional term and B (A) is the boundary term in the cost function
E (A). λ represents the relative importance of the regional term and the
boundary term. Rp (Ap) is the penalty of assigning the pixel p to Ap where
Ap can either be “obj” or “bkg” as mentioned before. Boundary term is the
summation of the the edge weights between those pixels p, q such that p and
q belong to different classes.

In order to calculate the regional term the object and background seeds
are used. Let O and B denote the set of object and background pixels re-
spectively. Two histograms are created, one each for object and background,
from the seeds entered by the user. These histograms are used to calculate
the object and background intensity distributions Pr(I/O) and Pr(I/B).
The regional penalities are then set to the negative log-likelihoods of the
probabilities.

Rp (“obj”) = − ln Pr(Ip/O) (2.6)

Rp (“bkg”) = − ln Pr(Ip/B) (2.7)

Bp,q represents the penalty for discontinuity between neighboring pixels.
Bp,q must be large when the pixels are similar to each other and close to zero
when the pixels are dissimilar. The penalty also decreses with increase in
distance between the pixels. Bp,q is thus given by,

Bp,q ∝ exp

(
− (Ip − Iq)2

2σ2

)
· 1

dist (p, q)
(2.8)

This equation sets a high value for Bp,q if |Ip−Iq| < σ while the value is small
when |Ip − Iq| > σ, where σ is the expected value of the intensity difference
between neighboring pixels over the entire image.

To segment the image, graph G (V,E) is created. The set V of vertices in-
cludes two types of nodes. Every pixel p belonging to P is a node in graph.In
addition two more nodes, object terminal S and background terminal T are
created. Therefore

V = P ∪ (S ∪ T )

Graph consists of edges of two types known as t-links and n-links. The edges
between neighboring pixels of the image are known as n-links. The edges
between each pixel and the two terminals S and T are known as t-links.
Denoting the n-links by the neighbourhood set N and the t-links for pixel p
by {p, S} , {p, T}, the set E of edges is

E = N ∪
pεP
{p, S} ∪ {p, T}

9



Figure 2.1: Graph structure of the image. Figure taken from [12]

. Figure 2.1 shows such a graph.
Weights are assigned to the edges in E according to the Table 2.1

Edge Weight Pixel description
{p, q} Bp,q {p, q} ∈ N

{p, S}
λ.Rp (“bkg”) p ∈ P, p 6∈ O ∪B

K p ∈ O
0 p ∈ B

{p, T}
λ.Rp (“obj”) p ∈ P, p 6∈ O ∪B

0 p ∈ O
K p ∈ B

where

K = 1 +max
p∈P

∑
q:{p,q}∈N

Bp,q

Table 2.1: Assignment of weights to the edges of the graph

The final step involves applying the maxflow/mincut algorithm. This
algorithm is described in section 2.5.3
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2.3 Grabcut algorithm

Rother et al. [28] extended the image segmentation technique described in
[12] for color images. Their technique reduced the user interaction to drawing
a rectangle around the object to be segmented. Further additions include
iterative estimation and incomplete labelling, using the Gaussian Mixture
Models(GMMs) for color data modelling.

The cost function, regional term and the boundary term are the same as
in equation 2.2, 2.3 and 2.4 respectively. Calculations for coefficients Bp,q

and Rp (Ap) are updated as described below.
The modified equation for the boundary coeffiecients Bp,q considering

color pixels is,

Bp,q = γ · exp

(
− (zp − zq)2

2σ2

)
· 1

dist (p, q)
(2.9)

where zp and zq are the colors of pixels p and q respectively. The constant γ
was set to 50, which was found to be a versatile setting for a wide variety of
images [6].

The regional coefficients Rp (Ap) are estimated using GMMs for object
and background regions. A trimap is considered for the pixels . The value
of the trimap for each pixel can either be TrimapObject, TrimapBackground
or TrimapUnknown. User creates an initial trimap by drawing a rectan-
gle around the object. Pixels inside the rectangle are marked as Trima-
pUnknown. Pixels outside of rectangle are marked as TrimapBackground.
TrimapObject is initially an empty set. The TrimapUnknown pixels are
then used to learn the initial object GMM while the TripmapBackground
pixels are used to learn background GMM. The number of components in
each GMM is set to 5.

Each pixel in the TrimapUnknown is assigned to the most likely Gaussian
component in the object GMM. Similarly, each pixel in the TrimapBack-
ground is assigned to the most likely Gaussian component in background
GMM.

The GMMs are discarded and new GMMs are learned from the pixel
assignments to Gaussian components done in the previous step. These new
GMMs are used to calculate the regional coefficients Rp (Ap). Rp (“obj”) and
Rp (“bkg”) are the likelihoods that the pixel p belongs to the background and
object GMM respectively.

11



(2.10)
Rp (Ap) = − ln

K∑
i=1

[
π (Ap, i) ·

1

detΣ (Ap, i)

× exp

(
1

2
[zp − µ (Ap, i)]

T Σ−1 [zp − µ (Ap, i)]

)]
where µ (Ap, i), Σ (Ap, i) and π (Ap, i) are the mean, covariance matrix

and weight of component i of object GMM if Ap = “obj” and background
GMM if Ap = “bkg”

After calculating the boundary and regional coefficients, weights are as-
signed to the edges of the graph as per Table 2.1. TrimapObject and
TripmapBackground represent the set O and B in the table. This is fol-
lowed by the mincut/maxflow algorithm which separates the object and the
background pixels.

After the initial segmentation result is displayed, the user can mark cer-
tain pixels as object pixels or background pixels, which get added to the
set TrimapObject and TrimapBackground respectively, and reestimate the
segmentation.

2.4 Maximum likelihood estimation

The maximum likelihood estimation is a method of estimating the parameters
of a model. It selects the model parameters that maximize the agreement of
the selected model with the observed data.

2.4.1 Expectation maximization algorithm

The Expectation Maximization(EM) algorithm [16] [5] allows to find the
maximim likelihood solutions to problems with latent variables. Let X de-
note the set of all observed data, while Z represent the set of latent variables.
The set of model parameters is denoted by θ. Thus the log likelihood function
is given by

ln p (X|θ) = ln

{∑
Z

p (X,Z|θ)

}
(2.11)

The set {X,Z} is the complete data set while the observed set {X}
is the incomplete data set. The likelihood function for the complete data
set is given by p (X,Z| θ). The EM algorithm makes the assumption that
maximization of the complete data log likelihood is straightforward. We have
the posterior distribution of the latent variables p (Z|X, θ). Since we do not
have the complete data log-likelihood we consider its expected value under
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the posterior distribution of the latent variable. This is the E-step of the
EM algorithm. In the M step we maximize this expectation. If the current
estimate for the parameters is θold then a pair of E and M step gives rise to
the revised estimate θnew. θ0 is the initial setting for the parameter.

In the E step, we use the current parameter values θold to find the poste-
rior distribution of the latent variables given by p

(
Z|X, θold

)
. We then use

this posterior distribution to find the expectation of the complete-data log
likelihood evaluated for some general parameter value θ. This expectation,
denoted Q

(
θ, θold

)
, is given by

Q
(
θ, θold

)
= p

(
Z|X, θold

)
ln p (X,Z|θ) (2.12)

In the M step, we determine the revised parameter estimate θnew by
maximizing this function.

θnew = argmax
θ

Q
(
θ, θold

)
(2.13)

After the M step we check for convergence of either the log likelihood or
the parameter values. If the convergence is not achieved we assign θnew ← θold

and repeat the E and M steps.

2.4.2 EM for Gaussian Mixture Models

We now describe the EM equations obtained when it is applied to GMMs.
For a D-dimensional vector x,the multivariate Gaussian distribution takes
the form

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
(2.14)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix,
and |Σ| denotes the determinant of Σ. The K-component GMM can then be
written as linear superposition of the K Gaussians in the form

p (x) =
K∑
k=1

πkN (x|µk,Σk) (2.15)

Let z be a K-dimensional binary variable such that at any time only one

of zk = 1 (0 ≤ k < K). Thus we have zk ∈ {0, 1} and
K∑
k=1

zk = 1. By using
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Baye’s theorem, we can calculate the conditional probability of z given x.We
denote this γ (zk).

γ (zk) ≡ p (zk = 1|x) =
p (zk = 1) p (x|zk = 1)
K∑
j=1

p (zj = 1) p (x|zj = 1)

=
πkN (X|µk,Σk)
n∑
j=1

πjN (X|µj,Σj)

(2.16)

γ (zk) is generally known as the responsibilty that component k takes for
observation x.

Let N be the number of observed data samples denoted by
{x1, x2, x3...xN}. The data set is represented by a N × D matrix X where
nth row is xTn . Z is the N × K latent variable set with rows zTn . Assuming
that the data points are drawn independently, the log likelihood function is
given by,

ln p (X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(2.17)

Setting the derivative in equation 2.17 with respect to mean vector µk equal
to zero, we get

0 = −
N∑
n=1

πkN (xn|µk,Σk)
n∑
j=1

πjN (xn|µj,Σj)

(2.18)

Multiplying by Σ−1k , assuming that it is non-singular, we get

µk =
1

Nk

N∑
n=1

γ (znk)xn (2.19)

where

Nk =
N∑
n=1

γ (znk) (2.20)

Similarly, setting the derivative the derivative in equation 2.17 with respect
to covariance matrix Σk equal to zero, we get

Σk =
1

Nk

N∑
n=1

γ (znk) (xn − µk) (xn − µk)T (2.21)
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While maximizing equation 2.17 with respect to πk, we have to consider the

constraint on πk that it must sum to one
K∑
k=1

πk = 1. Using the Lagrange’s

method we incorporate this constraint and get resulting equation as

ln p (X|π, µ,Σ) + λ

(
K∑
k=1

πk − 1

)
(2.22)

Setting the derivative of above equation with respect to πk equal to zero, we
get

0 =
N∑
n=1

N (xn|µk,Σk)
n∑
j=1

πjN (xn|µj,Σj)

+ λ (2.23)

Multiplying both sides by πk and sum over k, we find that Nk = −N . Using
this we get,

πk =
NK

N
(2.24)

Thus the EM equations for Gaussian mixture models can be summarized
as follows:

1. Initialize the parameters (π, µ,Σ) of the GMM and evaluate the initial
value of the log likelihood.

2. E-step: Evaluate the responsibilities using the current parameter values

γ (znk) =
πkN (xn|µk,Σk)
n∑
j=1

πjN (xn|µj,Σj)

3. M-step: Re-estimate the parameters using the current responsibities

µnewk =
1

Nk

N∑
n=1

γ (znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ (znk) (xn − µk) (xn − µk)T

πnewk =
NK

N
where

Nk =
N∑
n=1

γ (znk)

15



4. Evaluate the log likelihood

ln p (X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
If the change in the likelihood is greater than threshold, return to step
2.

2.5 Minimum cut algorithms

2.5.1 Flow Network [15]

Flow networks can be used to express a variety of problems. Formally, it can
be defined as follows :

Definition 2.5.1. A flow network G = (V,E) can be defined as a di-
rected graph in which each edge (u, v) ∈ E is assigned non-negative capacity
c (u, v) ≥ 0. We distinguish two vertices in a flow network, source S and
target T . The number of in-coming edges for S and the number of out-going
edges for T are zero. Each vertex v ∈ V lies on some path from S to T . Such
networks are also known as s-t networks.

Definition 2.5.2. We can define a flow in flow network G (V,E) by a real-
valued function f : V × V → R that satisfies the following two properties

• Capacity constraint: For all u, v ∈ V , we require 0 ≤ f (u, v) ≤ c (u, v)

• Flow constraint: For all u ∈ V − {s, t}, we require∑
v∈V

f (v, u) =
∑
v∈V

f (u, v)

If (u, v) 6∈ V, f (u, v) = 0

The maximum flow problem aims to find the flow that has maximum
value between two vertices S and T .

One of the important theorems related to flow networks is the
maxflow/mincut theorem.

Theorem 2.5.1. Max-flow min-cut theorem Let N = (V,E, s, t) be an
st-network with vertex set V and edge set E, and with distinguished vertices
S and T. Then for any capacity function c : E → R≥0 on the edges of N , the
maximum value of an st-flow is equal to the minimum value of an st-cut.

The max-flow min-cut theorem allows us to find the minimum cut seprat-
ing the vertices S and T in a st-network by finding the maximum flow between
vertices S and T .
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2.5.2 Augmenting path algorithms

Different approaches have been used to solve the maxflow problem. In this
section we describe the augmenting path algorithm for getting the maximum
flow.

If G is the flow network and f represents the flow then the edges in the
residual network Gf represent the amount of additional flow that the edge
can admit. The weight of an edge (u, v) in Gf is known as residual capacity
cf (u, v) along that edge.

Definition 2.5.3. A path p from source S to target T in the residual graph
Gf is known as augmenting path .

The first augmenting path algorithm developed is the Ford-Fulkerson al-
gorithm [20] published in 1956. In each iteration the algorithm finds an
augmenting path and pushes the maximum possible flow through the path.
The algorithm continues as long as there is an augmenting path from source
S to sink T . The steps in the algorithm are:

1. Initialize flow f (u, v)← 0 for all edges (u, v)

2. While there is a path p from S to T in Gf , such that cf (u, v) > 0 for
all edges (u, v) ∈ p

(a) Find cf (p) = min {cf (u, v) : (u, v) ∈ p}
(b) For each edge (u, v) ∈ p

i. f (u, v)← f (u, v) + cf (p)

ii. f (v, u)← f (v, u)− cf (p)

To find an augmenting path time required is O (E). The flow increases by
an amount of atleast 1 in each iteration. Thus the runtime of Ford-Fulkerson
is bounded by O (Ef) where E is the number of edges and f is the maximum
flow in the graph, provided the capacities are integer values.

The Dinic variation of the Ford-Fulkerson algorithm extends the algo-
rithm by specifying that the search for augmenting paths be done with a
breadth first search, finding the shortest augmenting path at every step.
With this method the minimum cut can be found in time O (V 2E) where V
is the number of nodes.

2.5.3 Boykov Kolmogorov mincut/maxflow algorithm

As described above, the augmenting-path algorithm performs a breadth-first
search to find an augmenting path. In computer vision problems this search
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involves scanning majority of the image pixels. This operation is very expen-
sive and performing it multiple times makes the general augmenting-path
algorithm slow for computer vision applications. To overcome this prob-
lem the BK maxflow algorithm [10] builds two non-overlapping search trees,
one rooted at source Tsource and other rooted at target Ttarget. In Tsource all
edges from each parent to its children are non-saturated i.e. have non-zero
residual capacity, while in Ttarget edges from children to their parents are
non-saturated. The nodes that are not in either of these trees are called free
nodes. There are two types of nodes in the trees, active A and passive P .
The nodes along the outer boundary of the tree are known as active nodes,
while the internal nodes are known as passive nodes. The tree can grow along
the active nodes by acquiring new free nodes along the non-saturated paths.
This is not possible with passive nodes as they are surrounded by other nodes
of the same tree. As the tree grows along the non-saturated paths extending
from the active nodes, the tree may come in contact with a node from other
tree. This gives the augmenting path. The algorithm involves three stages
as described below:

1. Growth stage: The growth stage expands the search trees. Active
nodes acquire new children by exploring adjacent non-saturated edges
from the set of free nodes. These nodes that are acquired are now
considered as the active members of the corresponding search tree.
After all the neighbors of the given active node are explored the node
becomes passive. Whenever the active node encounters a neighboring
node that belong to the other tree, the growth stage stops. This means
that a path has detected from the source to the sink.

2. Augmentation stage: In this stage, we push the maximum possible flow
through the augmenting path. Due to this some of the nodes along
the augmenting path will become saturated as their residual capacities
become zero. These edges are then removed from the tree. This creates
“orphan” nodes. At the end of augmenting stage, each tree gets divided
into atleast two trees. The roots of these trees are either orphans or S
or T .

3. Adoption stage: The single tree structure is restores in this stage. This
is done either by finding a new parent for an orphan node or declaring
it as a free node. For each orphan node all the neighbors are scanned
that belong to the same tree as the orphan originally belonged to. The
neighbour is made the parent of the orphan, if we find a non-saturated
edge between orphan and its neighbour. If we do not find any such
edge, we declare the orphan as a free node and all its children are
declared as orphans. The stage terminates when there are no orphan
nodes in the graph.
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Figure 2.2: Search trees Tsource (red nodes) and Ttarget (blue nodes) at the
end of the growth stage. The augmenting path is shown by yellow line. A
and P represent active and passive nodes respectively. Free nodes appear in
black. Figure taken from [10]

The maximum number of augmentations possible for BK algorithm is |C|,
i.e the cost of the minimum cut. Due to this the worst case complexity is
given by O (V 2E |C|). Many standard augmenting path algorithms have less
time complexity than BK algorithm. However, empirically it was shown that
on problems in image processing, BK algorithm performs better as compared
to others.

2.6 MDL based estimation for GMMs

Bouman et.al. [7] developed an algorithm for modelling Gaussian mixtures
based on the Minimum Description Length(MDL) criteria proposed by Ris-
sanen. The algorithm estimates number of Gaussian components required to
best fit the data along with the component parameters. We use this algo-
rithm with a slightly modified MDL criteria to account for mixtures known
as the Mixture MDL criteria [19].

The EM algorithm described in section 2.4 gives the maximum likelihood
(ML) estimation of observed data involving latent varibales. In order to use
EM for mixture models, the number of components of the mixture should
be known before hand. However for applications like image segmentation
the number of components are not known. It is observed that the likelihood
obtatined by the EM algorithm increases with the increase in number of
components. This is because increase in the number of components results
in better fitting of the data by the mixture model. However, choosing too
many components, leads to the problem of over-fitting of data. The resulting
mixture model is not very useful for classification purpose.
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In order to overcome this problem, a penalty term is added to the like-
lihood which penalises higher order models. The penalty term acts as a
trade-off between the likelihood of the data and the model complexity. The
algorithm adds the penalty term based on the MDL principle suggested by
Rissanen. Rissanen used the encoding length as a criteria for estimating the
model accuracy. According to the MDL principle, the best model is the one
that requires minimum number of bits to encode the data and parameters of
the model.

A MDL estimate depends on the particular coding technique used. How-
ever, Rissanen developed an approximate estimate based on some assump-
tions which gives th MDL criteria as

MDL (K, θ) = − ln (X|K, θ) +
1

2
L ln (NM) (2.25)

where θ is the parameter set, K is the number of components, X is the data
set containing N M-dimensional elements, L is the number of bits required
to specify parameter θ. For Gaussian mixtures the value of L is given by

L = (K − 1) +K

(
M +

M (M + 1)

2

)
(2.26)

In most cases where MDL is used, all data points have equal importance
in estimating each component of the parameter vector. This is not the case
in mixtures, where each data point has its own weight in estimating different
parameters. Applying this fact, we arrive at the following MDL criteria,

MDL (K, θ) = − ln (X|K, θ) +
1

2
L ln (NM) +

1

2
L

K∑
k=1

ln πk (2.27)

Substituting for the log-likelihood from equation 2.17, the objective is to
minimize the MDL criteria given by

MDL (K, θ) = −
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
+

1

2
L

(
ln (NM) +

K∑
k=1

ln πk

)
(2.28)

Minimization of this expression is not straight forward as it involves latent
variables. The Expectation maximization(EM) algorithm is thus used for this
purpose. We begin with maximum number of clusters K. The value of K is
then sequentially decremented. The EM algorithm is applied at each value of
K. This gives a local minimum of the MDL criteria for a particular K. The
value of K and the corresponding parameters that gave the smallest value of
the MDL criteria is then selected.
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The initial component parameters are chosen to be

πk =
1

K0

, where K0 is the initial number of components (2.29)

µk = xn, where n =
(k − 1) (N − 1)

(K0 − 1)
+ 1 (2.30)

Σk =
1

N

N∑
n=1

xnx
t
n (2.31)

In order to select the components to be merged we find the change in
MDL criteria that occurs due to merging of the components. The upper
bound on the change in the MDL criteria is given by,

d (l,m) =
Nπl

2
log

(
|Σ(l,m)|
|Σl|

)
+
Nπm

2
log

(
|Σ(l,m)|
|Σm|

)
(2.32)

We search over the set of all pairs (l,m) and find the component pair
which minimizes d (l,m). This pair of components is then merged to reduce
the number of components.

(l,m) = arg min
(l,m)

d (l,m) (2.33)

In order to merge two components, we constrain the parameters of two
components to be equal. Thus components l and m, may be effectively
merged in a single subclass by constraining their mean and covariance pa-
rameters to be equal.

µl = µm = µ(l,m) (2.34)

Σl = Σm = Σ(l,m) (2.35)

Here µ(l,m) and Σ(l,m) denote the parameters of the new subclass. Let
θ(l,m) denote the new parameter set formed by combining two classes. We
can obtain the values of parameters µ(l,m) and Σ(l,m) by considering equation
2.28 as a function of θ(l,m) and maximizing it under the constraints given
by equations 2.34 and 2.35. The new mean and covariance matrix obtained
given by,

µ (l,m) =
πlµl + πmµm
πl + πm

(2.36)

Σ (l,m) =
πl

(
Σl +

(
µl − µ(l,m)

) (
µl − µ(l,m)

)t)
+ πm

(
Σm +

(
µm − µ(l,m)

) (
µm − µ(l,m)

)t)
πl + πm

(2.37)
The steps og the algorithm can be summarized as follows:
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1. Initialize GMM with maximum number of Gaussians, Kmax

2. Initialize θ1 with equations 2.29, 2.30 and 2.31

3. Apply the iterative EM algorithm to minimize the MDL criteria for
current K

4. Store the parameter set θ along with the MDL value obtained.

5. If the number of Gaussians is greater than 1, resuce the number of
Gaussians by applying equation 2.33 and go to step 3.

6. Select the value K and corresponding parameters θ which give mini-
mum value of MDL over all the values of K.

2.7 Perceptual color difference

The International Commision of Illumination(CIE) has devised a distance
metric called ∆E that represents the perceptual differnce between two colors
in the L*a*b* colorspace. In 1976, the first color difference formula for two
colors (L∗1, a

∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2) was defined. It is given by ∆E∗ab,

∆E∗ab =
√

(L∗2 − L∗1) + (a∗2 − a∗1) + (b∗2 − b∗1) (2.38)

The 1976 definition was extended in 1994 to address perceptual non-
uniformities. The color difference ∆E∗94 is given by,

∆E∗94 =

√(
∆L∗

kLSL

)
+

(
∆C∗ab
kCSC

)
+

(
∆H∗ab
kHSH

)
(2.39)

where kC and kH are usually taken as unity and kL is application dependent.
kL = 1 for graphic arts and 2 for textiles.

∆L∗ = L∗1 − L∗2

C∗1 =
√
a∗1 + b∗1

C∗2 =
√
a∗2 + b∗2

∆C∗ab = C∗1 − C∗2
∆a∗ = a∗1 − a∗2
∆b∗ = b∗1 − b∗2

∆H∗ab =
√

∆a∗2 + ∆b∗2 −∆C∗2ab
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SL = 1

SC = 1 +K1C
∗
1

SH = 1 +K2C
∗
1

K1 = 0.045 and K2 = 0.014
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Chapter 3

GMM-MDL and Grabcut

The original Grabcut algorithm uses a fixed number of components for both
the object and background GMM. However it is observed that the segmen-
tation results vary considerably for some images with change in the number
of components used to model Gaussian mixtures. Fig 3.1 shows an exam-
ple image and change in segmentation output as the number of components
changes.

Initially, the number of components for the object GMM and background
GMM are estimated separately using the MDL principle as described in 2.6.
The maximum number of components for the GMM is set to 12. Fig 3.2
shows the number of components estimated for 6 input images.

Analysing the parameters of the estimated components, it is seen that
some of the estimated components have considerably low weights. Table 3.1
shows the weights of individual components for object and background GMM
for image in Fig 3.2d.

k = 1 2 3 4 5 6 7 8 9 10
GMMObj πk 0.07 0.15 0.09 0.23 0.10 0.27 0.06
GMMBkg πk 0.19 0.10 0.14 0.04 0.07 0.02 0.02 0.17 0.15 0.06

Table 3.1: Weights of individual components of GMM estimated for Fig 3.2d

The components with low weights do not have significant contribution
while assigning weights to the edges of the graph in Grabcut algorithm.
Increase in the number of components however increases the computation
cost. To reduce the computation cost, a lower threshold value πTH is set on
the weight of a component in GMM. For any component k1,if its weight πk1
is found to be less than πTH , k1 is merged with the component k2 such that
the mean color of k2 is perceptually most similar to mean color of k1. To find
the perceptual similarity between two mean colors, they are first converted
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(a) Input image

(b) K=1 (c) K=3 (d) K=5 (e) K=8

Figure 3.1: Illustration of change in segmentation results with change in
number of components. Number of components in object GMM = Number
of components in background GMM = K

to L*a*b* color space. The difference in the two colors is then calculated
by using equation 2.39 The resulting GMM component parameters are then
used by the Grabcut algorithm to perform segmentation. Fig 3.3 summarizes
the method used.
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(a) KObj=9,KBkg=9 (b) KObj=13,KBkg=13

(c) KObj=11,KBkg=13

(d) KObj=7,KBkg=10
(e) KObj=9,KBkg=14

(f) KObj=6,KBkg=2

Figure 3.2: KObj and KBkg represent number of components estimated for
object and background GMM respectively. KObj is estimated from the pixels
inside rectangle while KBkg is estimated from pixels outside the rectangle.
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User Initialization

• User draws a rectangle around the object to be segmented.

Estimate number of Gaussian components for object and
background Gaussian Mixture Models

1. Using pixels inside the rectangle for object GMM and pixels outside the
rectangle for background GMM, estimte the number of components for
each GMM separately using MDL principle.

2. For all components k, having weight πk less than πTH , merge component
k with component whose mean vector color is perceptually most similar
to mean vector color of component k.

Grabcut segmentation

1. Assign each pixel p to component k which has maximum Gaussian
probability for p. Pixels inside the rectangle are assigned to compo-
nents of object GMM while pixels out the rectangle are assigned to
components background GMM.

2. Learn GMM parameters fron the pixel assignments in the step 1

3. Constuct the graph

4. Estimate segmentation using BK maxflow/mincut algorithm

5. Repeat from step 1, until convergence

Figure 3.3: GMM-MDL and Grabcut
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Chapter 4

Results and Conclusion

Images from the Berkley image segmentation database [2] and the bound-
ing boxes provided by the authors of Grabcut algorithm [3] were used for
evaluation of the segmentation algorithm. F-measure is used as a metric for
comparision of results.

Fig 4.1 shows the output obtained for four input images. The F-measure
comparision for 44 images is plotted in Fig 4.2. There is in increase in F-
measure of 28 out of 44 (about 64%) images.

Thus we see that the performance of the Grabcut algorithm can be im-
proved by applying MDL based estimation to Gaussian mixture models. For
certain images however, the number of Gaussian components is not correctly
estimated. This leads to decrease in segmentation quality. Different meth-
ods for GMM estimation can be applied and tested to make the method
applicable to wider variety of images.
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Figure 4.1: Input images are shown in column 1. Column 2 shows the output
of the Grabcut algorithm while column 3 shows the output when MDL based
estimation is applied to GMMs used in Grabcut algorithm.
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Figure 4.2: Comparision of f-measure of segmentation results
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