
Iris Localization

using Parallel Computing

Mohammad Aknan

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/80147272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Iris Localization

using Parallel Computing

Dissertation submitted in

May 2014

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Mohammad Aknan

(Roll 212CS1086)

under the supervision of

Dr. Banshidhar Majhi

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Dedicated to my best friend Subhadra Pal...

Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Dr.Banshidhar Majhi

Professor

May 30 , 2014

Certificate

This is to certify that the work in the thesis entitled Iris Localization using Parallel

Computing by Mohammad Aknan, bearing roll number 212CS1086, is a record of

an original research work carried out by him under my supervision and guidance

in partial fulfillment of the requirements for the award of the degree of Master

of Technology in Computer Science and Engineering . Neither this thesis nor any

part of it has been submitted for any degree or academic award elsewhere.

Dr. Banshidhar Majhi

Acknowledgement

This dissertation, though an individual work, has benefited in various ways from

several people. Whilst it would be simple to name them all, it would not be easy

to thank them enough.

The enthusiastic guidance and support of Dr. Banshidhar Majhi inspired

me to stretch beyond my limits. His profound insight has guided my thinking to

improve the final product. My solemnest gratefulness to him.

It is indeed a privilege to be associated with people like Prof. S.K.Jena, Prof. S.

K. Rath, Prof. D. P. Mohapatra, Prof. Sujata Mohanty, Prof. A. K. Turuk, Prof.

S.Chinara, Prof. Pankaj Sa and Prof. B. D. Sahoo, Prof Ratnakar Dash. They

have made available their support in a number of ways.

Many thanks to my comrades and fellow research colleagues. It gives me a

sense of happiness to be with you all. Special thanks to Lokendra, Rajkamal,

Anshuman, Nilay, Vijay, Abhishek, Dilip, Sandeep and Ankur whose support

gave a new breath to my research.

My Special thanks to Subhadra Pal for inspiring me in my odd days and moral

support when i need. Her help can never be penned with words.

Words fail me to express my gratitude to my beloved parents who sacrificed their

comfort for my betterment.

Mohammad Aknan

Abstract

In this thesis, we have proposed a parallel iris localization technique

by implementing canny edge detection in parallel on Graphical Processing

Units(GPU) with the help of Compute Unified Device Architecture(CUDA)

plateform. The output of canny edge detector which is binary image transfer

from GPU/Device to CPU/Host and it is given to serial circular hough transform

as input that locate the iris region from image.

In this thesis, we follow the Wilde’s approach of iris recognition in which he

used the edge detector, and Circular Hough Transform for detecting iris region

from an eye image.We processed canny edge detection part of iris localization on

GPU in parallel manner and Hough transform serially on CPU. In edge detection,

we processed a number of pixels in parallel that execute on cores of GPU in block

and thread manner, that reduces the execution time.

The outcome of canny edge detector given to serial hough transform that locate

the iris region from image. Then we compare the execution time of our parallel

technique with existing serial one. In our case, execution time is reduced by 10 to

12 percent in comparison of serial approach. We use the 96 core NVidia GeForce

GT 630 GPU for implementation.

Keywords: GPU, Grid, Block, Thread, CUDA, Canny Edge Detector, SMP,

CHT

Contents

Certificate iii

Acknowledgement iv

Abstract v

List of Figures viii

List of Tables ix

1 Inroduction 1

1.1 Basics of Parallel Computing . 3

1.1.1 Why Parallel Computing . 3

1.1.2 Architectural classification Scheme 4

1.1.3 Parallel Programming Communication Models 5

1.2 Iris Recognition . 6

1.2.1 Steps in Iris Recognition . 7

1.3 Motivation . 9

1.4 Thesis Layout . 9

2 Graphical Processing Unit and CUDA Architecture 11

2.1 Basic of GPU hardware . 12

2.1.1 Processor . 12

2.1.2 Thread . 13

2.1.3 Memory . 13

vi

2.1.4 Limitation . 15

2.2 Basic of CUDA Architecture . 15

2.2.1 CUDA Program Structure 15

3 Literature Review 18

3.1 Iris Localization . 19

3.1.1 Iris localization using Integro differential operator 20

3.1.2 Iris Localization using Circular Hough Transform 21

3.1.3 Essams Approach . 22

3.1.4 Other Approaches . 22

3.2 Parallel techniques for Iris Localization 22

3.3 Summary . 24

4 Parallel Iris Localization 25

4.1 Objective . 25

4.1.1 Serial Canny Edge Detection and Circular Hough Transform 25

4.1.2 Parallel Approach . 28

4.1.3 Time Complexity Analysis 31

5 Implementation and Result 33

5.1 Result . 33

6 Conclusion 35

List of Figures

1.1 Anatomy of eye image . 7

1.2 Steps in Iris Recognition . 8

2.1 GPU Memory Architecture . 14

2.2 GPU in Grid, Block and Thread manner 16

3.1 An Eye image before and after localization 20

List of Tables

5.1 Comparison of Serial and Parallel Iris Localization with a image

size of 320 ∗ 280 pixel . 34

Chapter 1

Inroduction

Nowadays, as computing becoming more and more fast, problems are also

becoming more complex and people demand a better result in lesser time. Most

of the problems are data intensive and require a lot of computations on large

data set. Parallel Programming is an emerging computer science field that studies

the opportunity of splitting data into small chucks and then processes them on

multiple processors simultaneously, which provides a faster execution time.

In computational problem, initially we measure time and space complexity for

program and try for making program more efficient in both ways. Now space

complexity is generally not a big issue, due to availability of a lot of memory

space. Nevertheless, the time constraint is continuing, working and becoming

more important. So a lot of research is continuing for doing program in the

efficient manner with an intense of getting the result in less time. So for getting

the faster results, we use high-performance computing. However, the computing

speed is constrained by serial execution of the program; that’s become the main

reason behind a lot of research in parallel computing from last few years on data

intensive task.

The main reason for parallelization of most of the problem is getting

speedup. Many different fields like Financial modeling, scientific computation,

weather forecasting, biometrics, Statistics, Image processing, Medical imaging and

diagnosis etc are application of parallel computing with nonlinear processing and

1

Inroduction

massive data input.

Generally software written for serial computation and they run on a single

computer having a single processor, a problem is divided into a discrete series of

instructions and instructions are executed one by one and only one instruction

may execute at a time.

Parallel computing is an area where we solve a computational problem, that

run using multiple CPUs A problem is dividing into discrete parts that can be

solved concurrently; each part is further broken into a series of instructions;

instructions from each part execute simultaneously on different processors and

an overall coordination mechanism is employed.

The basic motive behind the popular trend of parallel computing is speed up.

Speedup is a measure that captures the relative benefit of solving a problem in

parallel. Speedup is a basic unit of measurement that shows how much the parallel

program is faster than the serial program. In a single Program, speedup depends

on the number of processors used.

According to Amdahl’s law, Speed up is defined as following:

S = Ts/Tp =
1

(

(1− f) + f

n

) (1.1)

where,

S is speedup,

Ts is execution time when program execute on a single processor sequentially and

Tp is execution time when program execute on p processors in parallel.

The law assumes a program in which a fraction (1− f) of the execution time

involves code that is inherently serial and a fraction f that involves code that is

infinitely parallel with no scheduling overhead.

Ideal Speed up = p

2

Chapter 1 Inroduction

Ideal speedup is obtained when time reduces by number of processors used

means if we use p processor then execution time is also p time lesser than serial

time. Speedup of 1
p
on using p processor is not possible and it is ideal situation.

Parallelism is affected by number of factors that are following:

1. Synchronization

2. Communication Latency

3. Data dependency

4. Load balancing

The main reason behind getting less speedup in parallel execution of a program

is due to Communication between the task executed concurrently and control of

parallel activities including scheduling of the task. Another factor of inefficiency

is the synchronization between tasks that executed concurrently. In case of

synchronized execution, it is required that all tasks execute concurrently completed

before the next set of activities can proceed. Hence synchronization also leads to

increase in computation time.

We can maximize the speedup by balancing load on processor and minimizing

the cost of communication and other overhead.

1.1 Basics of Parallel Computing

1.1.1 Why Parallel Computing

The main reasons behind the preference of parallel processing in respect of serial

processing are following:

1. Resource Sharing In parallel computing, we give more resources to a

problem then less time required in completion and also save money.

2. Solve Bigger Problems Nowadays, various kind of program are either

large in size or complicated that make it is difficult to solve them on a single

computer due to space constraint and processing capacity.

3

Chapter 1 Inroduction

3. Limits of Serial Computing physical and practical reasons show

significant restrictions to simply making better and faster serial computers.

Main constraints in building faster serial computers are following:

(a) Transmission speed

(b) Economic limitations

1.1.2 Architectural classification Scheme

There are three main architectural classification schemes:

1. Flynn’s Classification:It is classifying on the basis of instruction sets and

data sets in a computer architecture.

2. Feng’s classification: It is classifying on the basis of serial and parallel

processing.

3. handler’s classification: It check the degree of pipelining and parallelism

in a subsystem.

Flynn’s classification is most popular in all classification scheme. Flynns

Classification divides the computer system into following four categories on the

basis of instruction streams and data streams in system.

1. Single instruction stream single data stream:A single sequential

processor executes a single instruction set to operate on data stored in a

single memory. Generally, instructions execute sequentially but they may

be overlapped in the execution stages means we use pipelining in such a

kind of system for getting speedup. These types of the system shown very

low or no parallelism.

2. Single instruction stream multiple data stream :Many processors

execute single machine instruction concurrently, and each processor has its

own memory and its own data stream. Each processor has an associated

data memory, so that each instruction is executed on a different set of data

4

Chapter 1 Inroduction

by the different processors. Thats why its become the most important class

of parallel architecture. [1]

3. Multiple instruction stream single data stream:A sequence of data

stream is transmitted to a set of processors one by one, each of which executes

a different instruction stream. The output of one processor work as a input

for next processor. This kind of structure is not implemented commercially

and do not exist in physical world.

4. Multiple instruction stream multiple data stream:A set of processors

simultaneously execute different instruction streams on different data

streams. Multiprocessor system belongs from this category. This

organization can also be classified into two categories. One is tightly coupled

systems when degree of interactions among processor is high and second is

tightly coupled systems. Symmetric Multiprocessors (SMP), clusters and

NUMA systems fit into this category.

1.1.3 Parallel Programming Communication Models

Inter processor communication is required for data exchange between different

node of a parallel system. The speed up of a parallel program is greatly affected by

inter processor communication. In some cases when inter processor communication

is more than the computation then system performance is degraded even after

parallelization. There are two primary kind of data exchange between parallel

tasks accessing a shared memory space and exchanging messages between systems.

MessagePassing Platforms

Message passing system consists of p processors where each machine has its own

exclusive address space. Every processor can be either a single processor or a

sharedaddressspace multiprocessor. The interactions between processes running in

different processors must be accomplished using messages; hence, the interaction is

5

Chapter 1 Inroduction

termed as messagepassing. Messagepassing paradigms support execution on each

of the p processors.

SharedAddressSpace Platforms

A common memory space that is accessible to all processors who are working

together for executing tasks in parallel is supported by shared Address space of

a parallel platform. This shared memory space is interacted by processors to

modify data objects. Memory in these platforms can be either local (exclusive to

a processor) or global (common to all processors). The time taken by a processor

to access any memory location in the system is equal is called the Uniform Memory

Access (UMA. If the time taken to access different memory location varies, then

the platform is called Non-Uniform Memory Access (NUMA).

1.2 Iris Recognition

Iris recognition is an automated method of biometric identification that uses

mathematical pattern recognition techniques on image of an individuals eyes,

whose complex random patterns are unique and can be seen from some distance.

Iris recognition is a biological characteristic and considered as a form of biometric

verification.

The iris generally has a form of circular ring surrounding the pupil of the eye

with black, brown, blue, greenish or gray color that contained complex patterns

that are in form of coronas, freckles, furrows, stripes, crypts and so on. The

patterns of iris are visible to close inspecting.

In iris recognition, the identification is carried out by taking one or more

detailed images of the eye with a sophisticated, high-resolution digital camera

at infrared wavelengths, and then using a specialized computer program that

also known as matching engine to compare the subject’s iris pattern with images

stored in a database. The matching engine can match tens of thousands of images

per second with a level of precision comparable to other conventional biometric

6

Chapter 1 Inroduction

Figure 1.1: Anatomy of eye image

recognition like fingerprinting or digital finger scanning.

1.2.1 Steps in Iris Recognition

Iris Recognition system consists of several steps that shown in figure 2. First, we

acquire an image of iris with the help of an infrared camera, then in next step we

do some preprocessing on image and Iris Localization. After localization of the

interested region from image, next step is feature extraction.

In features extraction step, we extract features from image that are different

for every single individual. On the basis of extracted feature, in next step

template are generated and stored in a database. For identification or verification

of an individual, we compare generated template with all templates that are

stored in database and verify or identify to him.

A number of biometrics are used for verification or identification of an

individual, but iris is considered as a most accurate biometric in respect of other.

Irisrecognition is entered very late in the group of biometric based recognition,

but attracted a lot of attention from academia, government and industries.

7

Chapter 1 Inroduction

Figure 1.2: Steps in Iris Recognition

Iris patterns are unique in nature due to richness of texture details in iris

images. Iris texture is stable throughout the life and after death, they deteriorate

too fast so no extra attention required to check a person is alive or not. Another

main quality of iris is a difficulty of live iris forgery because we required near

infrared illumination to capture detailed iris texture in most cases. Iris is also well

protected against damage because it is an internal organ. All these properties

make iris to most suitable and secure biometric.

Many millions of people from different countries around the world are enrolled

8

Chapter 1 Inroduction

for iris recognition system, and it is used by several nations in various big projects.

Iris recognition system is use in so many different areas like national border

controls, computer login, secure access to a bank account at cash machines,

ticket less travel, premises access control, tracing missing or wanted person, anti

terrorism, biometric key cryptography and so many more.

Most of the Iris recognition systems are sequential in nature and processed

on CPU. In an iris recognition system also like other biometric systems different

stages (Localization, Feature extraction, template matching, etc.) are processed in

sequence. However, each of the stage is computation intensive task, the efficiency

of which can be improved using parallel algorithm and architecture. Low cost

GPUs that have dozens to hundreds cores in respect of few core CPU are used

extensively in dealing with a task of heavy computation.

1.3 Motivation

In last few years, so many algorithms developed on GPU architecture for Iris

recognition with a motive of improvement in execution time. GPUs are becoming

more programmers friendly day by day and also more capable in storage and

processing power so it is used extensively by researchers for getting more speedup

for computation intensive task that took a lot of time on serial computer. Iris

recognition is a computation intensive task that fall in the SIMD category of

Flynn’s architecture and suitable for parallel computing. Iris localization is the

first step of iris recognition and take a considerable amount of time, so for getting

more speedup it is necessary to parallel iris localization.

1.4 Thesis Layout

Rest of the thesis is organized as follows:

Chapter 2 give basic information about the GPU and CUDA architecture that

help in understand thesis in easy way. This chapter give basic detail about memory

concept of GPU and thread, block structure.

9

Chapter 1 Inroduction

Chapter 3 give the information about different technique of iris recognition that

proposed and implemented on serial computers. It also show the parallel algorithm

that recently developed for existing iris recognition technique.

Chapter 4 give the information about serial canny edge detector and proposed

parallel iris localization with parallel canny edge detector.

Chapter 5 show the implementation of proposed algorithm in CUDA and also

show output for serial and parallel algorithm.

Chapter 6 show conclusion.

10

Chapter 2

Graphical Processing Unit and

CUDA Architecture

In this chapter we discuss about Basic concept of CUDA Architecture and GPU.

In last two decade, Graphic cards capacity grown exponentially with a motivation

of handling large amount of data in minimum time. Graphics cards are capable

in handling large number of frames of a video in fast and efficient manner. Since

a lot of work done in past years, that make graphic cards more powerful and they

emerge with a name of Graphical Processing Unit.

GPU come with high computation capacity and visual rendering capabilities.

They are capable in doing complex problem so quickly due to high speed data

transfer, fast memory alteration and better computation capabilities in real time

manner. These properties of Graphics Processing Units make them very popular

in research and academic fields for solving complex problem efficiently and in high

speed manner with the intention of getting better result for data intensive tasks.

Researchers around the world start developing new algorithm with the intention

of running them on GPU in parallel for existing algorithm that developed for CPU

based system.

CPUs are general purpose devices with a single core to few cores but GPUs

are specialized processor that available in hundreds of core that make solving

problems easier in parallel. GPUs are used in different kind of electronic gadgets

11

Chapter 2 Graphical Processing Unit and CUDA Architecture

like Personal Computers, Mobile devices and devices that are developed for playing

video games. GPUs due to such properties make a big space in market and now

very popular in customer.

GPUs are able in handling at a time up to thousand threads due to more

number of core or processor.

2.1 Basic of GPU hardware

GPU is consist of a large set of memory with few dozens to up to thousand cores

or processor. So, the basic information about GPU hardware as following:

2.1.1 Processor

Another name for GPU is Multi Multi-Processor system due to nested structure

of processor. First a number of core or processor are grouped and this group is

known as a Symmetric Processor.Generally the number of core in a SMP are 8,

but upto 512 core are possible. The basic unit for computation is thread that run

on a core. Then the basic question that arises is what the meaning of Streaming

Multiprocessor at all.

Streaming Multiprocessor are work as a barrier for threads that running on

core of it. Threads that execute on a core of particular Streaming Multiprocessor

cannot synchronize with threads those execute on other streaming multiprocessors

core in a GPU. In basic it is looking like a disadvantage and we think at this stage

that if synchronization is possible between all threads then we get more parallelism

and speedup, but it is not true in real.

Main motive behind grouping of cores into SMPs for running different part

of program that have no dependency at a similar time on different SMPs. This

property make to GPU more parallel and scalable.

12

Chapter 2 Graphical Processing Unit and CUDA Architecture

2.1.2 Thread

It is the minimum part of a program up to which we break to program for executing

to it at same time on different processor.With a proper understanding of hardware

and thread management, system give better result in respect of time. If we do not

handle to thread in proper way on cores of a GPU, then expected speed up may

not come.

Thread divergence is another big issue in parallelization of an application which

includes some conditional statement. Like if a program included If -else condition

then we do not run to them on different cores of a single streaming multiprocessor.

This part run as serial and it is known as Thread Divergence.

2.1.3 Memory

GPU have different kind of memory with following main parameter for each kind

of memory that are differentiate to them from each other.

- Memory Size

- Access time

- Scope

- Location

GPU memories are classified into following categories −

1. Global Memory: It is common for all SMP of GPU. All cores of GPU

fetch the data from it or write on it. Also , global memory used for data

transfer between GPU and Host/CPU. Global memory is available with a

capacity of several GB. In size it is clearly bigger than shared memory but

speed is slow in respect of shared memory.

2. Shared memory: It is available for each SMP of a GPU separately. Only

threads that run on cores of this SMP access to it. They are better in speed

but size is limited to few KBs.It is not accessible by CPU.

13

Chapter 2 Graphical Processing Unit and CUDA Architecture

Figure 2.1: GPU Memory Architecture

3. Register: Each core also have its own local small size, high speed memory.

Size of register are only few bytes.

4. Constant Memory: It is available for all threads that run on GPU at a

time. It is read only and GPU code just access to it but not modified. CPU

also access to it and modify data.

5. Local Memory: Each core have its own local memory and only thread that

run on this core can access to it.

When we run a program on a GPU, then memory which we used for store/load

data also give impact on the speed of program.

14

Chapter 2 Graphical Processing Unit and CUDA Architecture

2.1.4 Limitation

GPU accelerate to those problems in excellence manner that are sequential in

nature. But if a problem have inter-dependent and conditional code, then GPU

is not able in parallelize and execute it in serial manner. Communication latency

also another limitation of GPU. Sometimes we get degradation in speed if problem

have more data transfer and less computation.

2.2 Basic of CUDA Architecture

CUDA or Compute Unified Device Architecture is a programming methodology

developed by NVIDIA that solve problems in parallel with the help of GPUs.

Problems those have a big amount of independent data and computation

intensive provide better better result when programmed in CUDA. For such kind

of problems, GPUs based implementation with the help of CUDA show several

times speedup in execution time in respect of serial CPU based implementation.

In general, CUDA is just an extension of C. CUDA support various

computational interfaces, like DirectCompute and OPENCL. MATLAB,

OPENCV, Python etc used thirdparty wrappers for running CUDA program.

2.2.1 CUDA Program Structure

Parallel program consist of serial and parallel part. Serial part is run on CPU

that also known as a Host and parallel part is run on GPU/Device in parrallel

manner. In CUDA, a part of program that run on GPU arranged in grid, block

and thread manner. A grid have a number of blocks and a block have a number

of threads. Threads are distributed between block in equal manner means each

block have equal number of threads. Blocks are also grouped in similar manner

and make grid. Total number of block in a GPU are calculated by dividing total

number of threads by threads per block.

In GPU, threads are generally arranged in a group of 8. Maximum possible

threads per block and blocks per grid are 1024. A streaming Multiprocessor does

15

Chapter 2 Graphical Processing Unit and CUDA Architecture

not hold more than 1024 threads due to limited size of Shared memory.

CUDA program are run on different GPUs that may be have different number

of core. Thread scheduling in CUDA not done by programmer and Compute

Engine of GPU automatically schedule to them on cores. If we have a program

with 16 threads, it is automatically run on 4 core, 8 core or 16 core SMPs without

any modification. This scheduling property of CUDA give more freedom to a

programmer.

Figure 2.2: GPU in Grid, Block and Thread manner

CUDA program are generally included in a high level language to make a

parallel program. If we used C, then CUDA program is same as C program with

some additional code [21]. This additional code represent the kernel and when

it run then define number of thread run in parallel on availbale core of GPU.If

number on cores in GPU lesser than the number of threads for an application, then

16

Chapter 2 Graphical Processing Unit and CUDA Architecture

first number of threads equal to available cores run then later remaining cores run.

In CUDA C program, a kernel is defined in following way [21]

This line is included in each CUDA C program, where global shown that it is run

on device code globally, not on host. In CUDA program, with the help of following

line we define the number of threads that execute in parallel.

Where X represent number of block and Y represent number of threads per block.

If a GPU have X∗Y number of core then X block each with Y number of threads

execute in parallel. A block is executed on a single Streaming Multiprocessor and

the threads that run on this SMP not coordinate with threads of other block.

Each thread have its unique ID that represent to it om GPU. Thread ID is may

be one, two or three dimensional. If it is one dimensional then it’s represented by

a single array and shown by threadIdx.x. Two dimensional thread id represented

by threadIdx.x and threadx.y in two dimensional array and three dimensional

represented by threadIdx.x, threadIdx.y and threadIdx.z [21]. In same way, CUDA

arrange to block on GPU.

17

Chapter 3

Literature Review

The concept of automated Iris recognition system was proposed in 1987 by Leonard

Flom and Aran Safir [2]. The eye of individual is first illuminated until the

pupil reaches a predefined size, at which an image of the eye is captured. To

account for variation in size of iris due to maximization and minimization of

pupil, the illumination has been changed for make the pupil of predetermined

size. Then captured image is compared with stored templates after doing some

preprocessing. The stored templates were previously captured images of people

that captured after the pupil reaches a same predefined size with the help of

illumination. They also proposed pattern recognition tools to extract iris features

and an initial method for detecting pupil using the static threshold. However, they

don’t make an operational Iris recognition system and then contact to Daugman.

The first operational iris recognition system has been developed at University

of Cambridge by Daugman [2]. The digital image of an eye has been acquired using

near-infrared light source so that illumination could be controlled for maximization

or minimization of pupil, that remains unaffected to users. The next step is

detection of iris in the image or iris localization. A deformable template is trained

with some parameters and properties of the eye to improve the detection process

[3]. Daugman suggests for getting the rich information of iris for making template;

an imaging system should have at least of 70 pixels in radius of it.

After localization of iris region in captured image, next step is feature

18

Chapter 3 Literature Review

extraction in which we take the unique feature from localized iris region that

is circular in shape and make a template. Daugman used multi−scale quadrature

2D Gabor wavelets for extracting texture information from iris a total of 2048 bit

iris code. Many other iris recognition algorithms used different size template of

iris. Then in matching step he compares, this iris code or template with stored

templates of same size for identifying or verifying to an individual by applying

logical X−OR operator who finds the Hamming Distance between them.

HammingDistance =
‖ (CodeA⊕ CodeB) ∩MaskA ∩MaskB ‖

‖ MaskA ∩MaskB ‖
(3.1)

In the formula of hamming distance, denominator ensures that just significant

bits give impact on Hamming distance. If the value of hamming distance is near

to 0.5, then two templates that we are comparing are generated from different iris,

but if both templates are generated from the iris of single person, then HD must

be near to 0 since both are mostly correlated.

3.1 Iris Localization

Iris localization means to locate the inner and outer boundary of the iris. The

image captured by the image acquisition system contains a larger portion of Image

that includes data from immediately surrounding eye region [5]. Iris’s image

preprocessing is one of the most important steps in iris recognition system, and it

also determines the accuracy of matching.

An eye is composed of three main components−sclera, iris and pupil. Sclera

is white and biggest and out of the iris. Pupil is in the center of an iris, and

its diameter is constantly changing, even under constant illumination. The iris,

which contains texture information, is between pupil and sclera. The obtained eye

image has to be preprocessed and localized to detect the iris and pupil.

The important steps in iris localization are outer boundary detection and inner

boundary detection. Therefore, prior to calculating the features of iris and iris

matching, it is very important to accurately segment and localize the iris from the

acquired eye image because the overall performance of the iris recognition system

19

Chapter 3 Literature Review

Figure 3.1: An Eye image before and after localization

is decided, firstly by the fact that how accurate iris is segmented and localized

from an eye image and secondly by the resolution of an image [6].

Main methods of iris localization are following:

3.1.1 Iris localization using Integro differential operator

Daugman [2, 6–8] use Integro differential operator for detecting the circle shape

iris and pupil region of captured image as well as the arcs of upper and lower

eyelids. IDO is given in following equation:

Max(r, x0, y0) | Gσ(r) ∗ (
δ

δr
)

∫

(r,x0,y0

I(x, y)

2πr
ds | (3.2)

The operator is applied continuously on image with the intention of finding a

maximum contour integral derivative with increasing radius at successively finer

scales of analyzing through the three parameters, center coordinates and radius

(x0, y0, r). Eyelids are also localized in the same way. Daugmans algorithm seems

like a variation of Hough transformation for circle because it used first derivative

of the picture and also search for geometric variable. It does not face a threshold

problem of Hough transform because it works with raw derivative information.

However, sometimes it may be failed if noise in the captured eye image present

due to reflection because it works on the local scale. After localization of Iris, a

2048 bit code is calculated and then compared with templates that present in the

20

Chapter 3 Literature Review

database. These patterns are encoded with the help of 2D Gabor demodulation.

The IrisCode consists of 2048 bits or 256 byte of data plus 2048 masking bits

producing an Iris Code of 512 bytes.

3.1.2 Iris Localization using Circular Hough Transform

Hough transform used in iris localization due to its property of isolating features

of a particular shape from an image. Wildes [5] use the Hough transform for circle

on image of an iris.

The equation of Hough transform for circle is:

H(xc, yc, r) =

n
∑

j=1

h(xj , yj, xc, yc, r) (3.3)

where

h(xj , yj, xc, yc, r) =











1 if g(xj, yj, xc, yc, r) = 0

0 otherwise
(3.4)

with

g(xj , yj, xc, yc, r) = (xj − xc)
2 + (yj − yc)

2 − r2 (3.5)

Where xc, yc are the center coordinates of circle and r is the radius.

The process of identifying circle from an image using Circular Hough Transform

is:

1. First we find all edges in an image by applying edge detector like Canny,

Sobel or Morphological operation.

2. 2. After applying edge detector, at each edge point draw a circle with defined

radius. We find Maximum intersected point by applying voting procedure

and then this point become the possible center of circle.

21

Chapter 3 Literature Review

3.1.3 Essams Approach

Essams [10] proposed three level morphological and threshold computation for

quick processing of iris segmentation process with acceptable accuracy. They

perform localization in two stages:

1. Coarse stage

2. Fine stage

In Coarse stage, acquired Iris image is processed with three level thresholding

after converting to it in gray image. Then they apply morphological processing

for detecting pupil after filling small holes and probable center of the pupil also

detect. In fine refinement stage, they first reduce the image size to one-fourth.

Then they applied Daugmans IDO for locating iris and pupil boundaries.

3.1.4 Other Approaches

El-Bakry [11] give a Neural Network based approach for iris localization. Bonney

[12] detect the pupil in eye image by using LSB plane of image. Then they apply

erosion and dilation operations for locating pupil. When they locate pupil region,

then they compute the standard deviation in the horizontal and vertical direction

for detecting limbic boundary. J. Cooper et.al [13] localize pupil by using active

contour model.

3.2 Parallel techniques for Iris Localization

All the approaches that we discuss so far in this chapter are sequential in nature

and implemented on CPU in serial manner. Main stages of Iris recognition is fall

in Single Instruction Multiple Data (SIMD) category of Flynn architecture that

is most suitable for parallelization [24]. However Iris recognition is computation

intensive task but not so much work is done for parallelization of it and a lot of

research is going on in this field.

22

Chapter 3 Literature Review

Ryan N. rakvic et. al. [17] present a parallel implementation of iris

recognition system using Field Programmable Gate Arrays (FGPAs) and provide

an alternative in respect of CPU based system. A FGPA is an integrated circuit

that configured by a designer after manufacturing. They deconstructed and

directly parallelized the time taking steps of an iris recognition system. They

parallelized the parts of iris localization, template generation and matching step

and gain speed up of 9, 320 and 19 times in comparison of CPU based system.

In 2010, Nicholas A. Vandal [14] parallelized the template matching step of

Iris recognition on Graphics Processing Units with CUDA programming model to

achieve higher matching rates and they got 14X speedup in comparison of serial

implementation.

. In 2011, Fatma Z. Sakr et. al. [15] parallelized the template matching and

identification step of Iris recognition system using GPU. They gain speedup of

around 16 and 11 times in template matching and identification step and get

overall 1.3 times speedup. They parallelized the Hamming Distance approach

of template matching step and also suggest that if GPU is able in holding 2048

bit Iriscode in shared memory then we achieve more speedup. Fatma Z. Sakr et.

al. [16] parallelized the first two stages of Iris recognition system on GPU and gain

speedup of 9.6 and 15 times in Localization and feature extraction respectively

and total speedup of 12.4 times after merging it previous work [15].

In 2013, A. Sinha [15] come with the parallel iris localization and parallelize

the Hough transform part of iris localization. This parallel iris localization shown,

good performance even on low capacity GPU and he shown sppedup of more than

5 times that even more on high capacity GPUs.

In 2013, M Askari et. al. [23], come with two different algorithm for

parallelization of hough transform part of iris localization and show 60 times

more speedup for fully parallel hough transform algorithm in comparison of serial

algorithm that implemented on CPU. They also used the CUDA architecture for

implementation with GPU and also implement parallel algorithm on a several

GPUs that have different number of core and show the impact of number of core

on speedup.

23

Chapter 3 Literature Review

3.3 Summary

Significant research has been done in field of iris recognition but most of the work is

based on sequential system. As we seen iris recognition is a computation intensive

task and research is continue from last few year in GPU based parallelization of

such kind of task. So there is a lot of scope remain in full parallelization of different

stages of iris recognition system.

24

Chapter 4

Parallel Iris Localization

4.1 Objective

Iris recognition is a computational intensive task that involves a lot of processing

in various stages. After image acquisition, iris localization is the first step in which

we locate the interested area that is used for extracting required information in

later stages of iris recognition. So, in iris localization we work on every single

pixel of image for tracing iris region. Most of the techniques for iris localization

are sequential in nature. The main objective of our work is to parallel the existing

iris localization techniques over GPU with the help of CUDA and compare with

it with serial one. In Wildes approach, iris localization is consisted of two steps,

edge detection in iris image and apply the circular Hough transform technique for

locating iris. We parallelize the first step of iris localization technique and examine

the result that we get from it.

4.1.1 Serial Canny Edge Detection and Circular Hough

Transform

Iris Localization is used for locating the region of interest for further processing in

Iris recognition system. We take the Wildes approach for Iris localization that is

work in the serial manner. Canny edge detector is a step by step process that used

25

Chapter 4 Parallel Iris Localization

for reducing the data with preserving the useful structural properties about image

boundaries for further image processing [1]. The output of canny edge detection

is given to Hough transform for circle, and then we get the localized image of iris.

Canny edge detection algorithm consists of five steps that run separately one after

one.

1. Smoothing.

2. Finding gradients.

3. Non maximum suppression.

4. Double thresholding.

5. Edge detection by hysteresis.

In Smoothing, noise is removed from acquired image because it may represent

edge mistakenly. For removing the noise from an image, first image smoothed by

Gaussian filter. Main work of a canny edge detector is to detect edges in an image

where intensity change. In the image, the area where intensity changes sharply

are detected by finding gradients of the image for each pixel. Gradients find out

by applying Sobel operator. In sobel operator, first find the gradient in X and

Y direction respectively by applying following kernels that shown in equation for

horizontal and vertical direction.

Gx =

−1 0 +1

−2 0 +2

−1 0 +1

Gy =

1 2 1

0 0 0

−1 −2 −1

Then next step in sobel operator to find out gradient magnitude by adding

square of both direction kernel and then take square-root of it. In next step, by

26

Chapter 4 Parallel Iris Localization

applying non maximum suppression just convert the blurred edged, that come after

applying sobel operator are changed into sharp edges. It is come after retaining

just local maxima and removing everything else from gradient image.

After applying non maximum suppression, next step in a canny edge detector

is double thresholding. In double thresholding, two thresholds limit as low and

high used. If pixel intensity is lower than the low threshold, then we consider to

such a pixel as black pixel and set the intensity of them to 0. If pixel intensity

is lies between thresholds, then we consider to it as a weak. Those pixels, their

intensity is higher than the upper threshold then they come in a final image as

a white pixel and consider as a strong pixel. Final edge detection is come by

applying hysteresis on the image that came after double thresholding step. In

final image, Weak pixels come in the final edge image only if they are connected

to edges that consist by strong pixels.

The image that we gain after applying a canny edge detector is a binary image

where all edge pixels are shown in white color and remaining in black. This

binary image, give as an input image to Hough transformation for circle. Hough

transformation is used for detecting edges, which are in linear or circular shape

from an image. In eye image, shape of both iris and pupil are circular. So for

locating iris, Hough transformation for circle[chapter 3] is applied on image which

we get after applying a canny edge detector.

Hough transformation for circle applied on image from a selected minimum

radius to a maximum radius for each pixel. Then for each radius size, we create

an accumulator array that equal to a total number of this size radius. For each

point, we detect that if the circle boundary represent an edge point, then we

increment to accumulator location by 1. After applying same radius circle on all

points, we find out the maximum value location from accumulator and put into

another array of maxvalue which size is equal to a difference of max radius and

min radius. We also store the radius value, x and y coordinates into three other

array that also have same size as maxvalue. Then we increment the accumulator

array by 1 and also increase the radius size by one and same procedure apply, till

we reach the maximum radius[2].

27

Chapter 4 Parallel Iris Localization

After completion of following procedure up to a maximum radius, we find out

the maximum value from maxvalue array and also retrieve the radius value and

respective coordinates from other three arrays and these point show the possible

circle in iris image.

4.1.2 Parallel Approach

In parallel approach, we parallelize the edge detector part and implement to

circular Hough transform part in serial. We create a grid, in which numbers

of blocks are equal to height of image, and in each block number of threads are

equal to image width.

First we load the image data from Host/CPU memory to device/GPU global

memory. Then a gaussian filter kernel fetched the data from global memory,

apply Gaussian filter on each pixel in parallel and stored back output value in

global memory of GPU. Then Synchronize to threads. Then sobel template

applying on the output and result stored on different position in global memory

and free the memory where output of gaussian filter stored. Synchronize to all

threads. Then calculate gradient value and direction and stored back on global

memory and free the memory where sobel template output stored. Synchronize

threads. Then apply double thresholding by applying low threshold and high

threshold value than given in start and divide to pixel based on intensity in three

categories as discussed earlier in this chapter. Now detect edges in the image

by suppression and load the result back to host memory. After that, Circular

Hough transforms part apply on image in serial on CPU. In parallel approach,

we synchronize to threads after each step of canny edge detection because before

in next stage, we also require neighbor pixel for computation.

28

Chapter 4 Parallel Iris Localization

Algorithm 1

Serial Iris Localization (Image)

1. Load image and stored it as Img

2. Apply canny edge detection function on image.

3. Create an array of image size and show 1 where edge point in output image

of step 2 otherwise put 0.

4. Define Iris Max and min radius as Rmx and Rmn

5. Make arrays Mxval, Xcoordinates, Ycoordinates and Radiusval of size

R(mx)−R(mn)

6. n=72

7. j=0

8. for r= R(mn) toR(mx) do

9. m = (height− r) ∗ (width− r)

10. Make an accumulator array Hspacej of size n and set at 0

11. for Circle Ci= C1 to Cm each have radius r do

12. for Pixel Pk= P1 to Pn on Ci

13. If point Pk is an edge point which is on center of circle of radius r

14. Increase Hspacej at edge point

15. end

16. end

17. end

29

Chapter 4 Parallel Iris Localization

18. Detect max(Hspacej) and add in Mxval[j] and update Xcoordinates,

Ycoordinates and Radiusval array also at same location.

19. J++

20. End

21. Max(mxval) show a circle and respective arrays Xcoordinates, Ycoordinates

and radiusval array give the center coordinate and radius value

22. Draw circle

Algorithm 2

Parallel Iris localization (image)

1. Load image and stored as img

2. Set grid size= image height.

3. Set block size=image width.

4. Call Parallel Kernel(Image, lowthrsld, uprthrshld) for each thread.

5. Do step 3 to 22 of serial iris localization

Algorithm 3

Kernel(image,high threshold, Low threshold)

1. Load pixel from host to device global memory

2. Apply 3 * 3 Gaussian fliter and stored result in global memory

3. Synchronize threads

4. Apply horizontal and vertical sobel filter on output of step 2 and store result

on different location in global memory

30

Chapter 4 Parallel Iris Localization

5. Synchronize threads

6. Free memory of step 2

7. Find out gradient from output of step 3 and store to it at different location

8. Synchronize threads

9. Free memory of step 4

10. Apply double threshold on step 7 output and store back on same location

and categorized pixels into nil, weak or strong pixel

11. Remove the weak pixel that not connected to strong pixel of step 10 and set

to them as a nil pixel(black pixel).

12. Transfer output to host memory

4.1.3 Time Complexity Analysis

We analyze the time complexity for an image . Let for smoothing and gradient

checking, kernel size is S and G pixel respectively.

First, we apply smoothing and gradient filter on each pixel of image. We also

detect gradient magnitude and direction on each pixel of image. After that double

thresholding step compares each pixel of image with two thresholds. Then in

hysteresis step of canny edge detector, only weak pixels compared with neighbor

pixel.

For Hough transform part, time complexity in serial algorithm is equal to

multiplication of image size, diagonal of image and number of point that we

calculate for each circle.

So, the overall time complexity of serial iris localization algorithm is,

Ts = O(S ∗ imagesize+2G∗ imagesize+2∗ imagesize+ imagesize+ imagesize+

imagesize ∗ diagonalofimage ∗ numberofpointthatwecalculateforeachcircle)

Where,

31

Chapter 4 Parallel Iris Localization

First and second part shows time complexity of applying Gaussian and sobel

kernel on image, third part shows time complexity of gradient and gradient

direction computation. Fourth and fifth part show time complexity of double

thresholding and hysteresis computation and last part show the time complexity

of circular Hough transform.

Time complexity for parallel algorithm is,

Tp=O(S + 2G + 2 + 1 + 1+ image size∗ diagonal of image ∗ number of

point that we calculate for each circle)

= O(S + 2G+ image size∗ diagonal of image ∗ number of point that we

calculate for each cicle)

In calculation of time complexity for parallel algorithm, we assume that GPU

has an equal or more number of core than image size. If cores are less than image

size, then time complexity is more and in multiple of Tparallel.

32

Chapter 5

Implementation and Result

The parallel algorithm which implemented on GPUs compared with

implementation of CPU based serial algorithm for Iris localization. Serial

algorithm is just an existing algorithm that we implement on CPU.

Then, after parallelization of canny edge detection part of a serial iris

localization algorithm implemented to it GPU and compare the performance of

both. Iris recognition is a computation intensive task with most of the computation

at a pixel level. So, we implement to it on GPUs and reduce the execution time

in comparison of an existing serial algorithm.

5.1 Result

For implemention of our serial algorithm, we used Intel Core i3 CPU, which has

3 GB system memory. Parallel algorithm is implemented on same system’s 96

core NVIDIA GeForce 630 GPU,which has 2 GB device memory and compared

with serial one. The time of execution for both parallel and serial algorithm with

speedup shown in figure 1 for iris images of 320 ∗ 280 size [22].

In table, we have seen execution time of a parallel algorithm is ten percent less

from serial one. We have seen, most of the time consuming step are the Hough

33

Chapter 5 Implementation and Result

Image no Ts (msec) Tp (msec) Speedup

1 6308 5715 1.10

2 6758 5985 1.12

3 6369 5692 1.11

4 6532 5763 1.13

5 6576 5832 1.12

6 6813 6168 1.10

7 6402 5637 1.13

8 6497 5746 1.13

Table 5.1: Comparison of Serial and Parallel Iris Localization with a image size of

320 ∗ 280 pixel

transform part that we execute in the serial manner but parallel edge detector

take around 600 milliseconds less time than the serial edge detector. In 2013, A.

sinha [20] gain speedup of around 5.5 times by implementing Hough transform

in parallel. Our Parallel iris localization approach reduced the time, and if we

implement to both canny edge detection and circular hough transform in single

parallel algorithm, then it will give much more speed up. .

34

Chapter 6

Conclusion

Iris recognition is emerging as a best biometric for identification and verification

purposes. In iris recognition, hundreds of millions samples are compared for

individual verification in big projects like UIDAI, so time is a critical factor. In

our approach, we implement edge detection part of iris localization in parallel on

GPU using CUDA.

In GPU, computational cores are continuously increased, so in near future

when the core in GPU in a number equals image size, then it gave the tremendous

results. Also, when in future shared memory and SMPs internal memory size

increase then performance of edge detection also improves because we will be able

in doing most of the operation at local memory of SMP and not access to GPU

global memory each time that have more communication latencies in respect of

local memory.

In Iris localization step, edge detection part has less computational complexity

in respect of Hough transform part, but it also shows good improvement. In

our approach, we execute Hough transform in the serial manner on CPU. But

when we consider edge detection and Hough transform part in combine for

parallel implementation, then we get a result that will take so lessor time than

present parallel implementation of iris localization. This parallel implementation

of edge detection part of iris localization will help in making fully parallelized Iris

recognition system.

35

Bibliography

[1] Ananth Grama, Anshul Gupta, George Karypis, and Vipin. Introduction to Parallel

Computing. Pearson Education, second edition, 2007.

[2] L. Flom and A. Safir. Iris recognition system. U.S. Patent 4,641,349, 1987.

[3] J. Daugman. Biometric personal identification system based on iris analysis. U.S. Patent

No. 29160, 1994.

[4] A.L. Yuille, D.S. Cohen, and P.W. Hallinan. Feature extraction from faces using deformable

templates. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 104?109, 1989.

[5] Y. Huang, S. Luo, and E. Chen. An efficient iris recognition system. In International

Conference on Machine Learning and Cybernetics, volume 1, pages 40?44, 2002

[6] R.P. Wildes. Iris recognition: an emerging biometric technology. Proceedings of the IEEE,

8(9):1348?1363, 1997

[7] Rajesh Bodade and Sanjay Talbar, Novel approach of accurate Iris localization form high

resolution eye images suitable for fake iris detection, International Journal of Information

Technology and Knowledge Management July-December 2010, Volume 3, No. 2, pp. 68-690.

[8] J. G. Daugman: High confidence visual recognition of persons by a test of statistical

independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 1,

pages 1148 - 1161, 1993.

[9] J. G. Daugman. How Iris Recognition Works. IEEE Transactions on Circuits and Systems

for Video Technology, Vol 14(1), pp. 21 - 30, 2004.

[10] J. G. Daugman. The importance of being random : statistical principles of iris recognition.

Pattern Recognition, Vol 36(2), pp. 279 - 291, 2003.

[11] EssamM. An Efficient Iris Localization Algorithm. 29th National Radio Science Conference,

Cairo University, Egypt, pages 285-292, 2012.

36

Bibliography

[12] Hazem M. El-Bakry. Fast iris detection for personal identification using modular neural

networks. IEEE ISCS, pages 52-55, 2001.

[13] B Bonney, R Ives, D Etter, and Y Du. Iris pattern extraction using bit planes and standard

deviations. 38th Asilomar Conference on Signals, Systems, and Computers, volume 1, pages

582? 586, Nov 2004.

[14] J. Cooper, Location of the pupil-iris border in slit-lamp images of the cornea. ICIAP, 1999.

[15] N. A. Vandal and M. Savvides, CUDA accelerated iris template matching on graphics

processing units (GPUs), in Proceedings of Fourth IEEE International Conference on

Biometrics: Theory Applications and Systems, pp. 1-7, 2010.

[16] Fatma Z. Sakr, M. Taher, A.M. Wahba. High Performance Iris Recognition System On

GPU, IEEE ICCES, pp. 237- 242, 2011

[17] Fatma Z. Sakr, M. Taher, A.M. Wahba. Accelerating Iris Recognition algorithms on GPUs,

IEEE CIBEC, Cairo, Egypt, 2012.

[18] Ryan N. Rakvic, B. J. Ulis, R. P. Broussard, R. W. Ives and N. Steiner. Parallelizing Iris

Recognition. IEEE transactions on IFS, Vol. 4, No 4, 2009

[19] J. Canny, A computational approach to edge detection, IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-8, NO. 6,

NOVEMBER 1986.

[20] A. Sinha, GPU accelerated iris localization, www.nitrkl.ac.in, 2013

[21] NVIDIA Corporation, CUDA C Programming Guide, www.developer.nvidia.com/cuda,

Version 4.3, 2013.

[22] Biometric Ideal Test, CASIA, www.http://biometrics.idealtest.org/aboutUs.jsp

[23] Meisam Askari, Hossein Ebrahimpour, Azam Asilian Bidgoli and Farahnaz Hosseini,

Parallel GPU Implementation of Hough Transform for Circles, International Journal of

Computer Science Issues, Vol. 10, Issue 6, No 2, November 2013

[24] Frank Willimore, Introduction to Parallel computing, Texas Advance computing center,

2012

37

