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Abstract

Breast cancer is the leading cause of cancer in women. Early detection of breast

cancer through periodic screening improves the chances of recovery. However, the

small and subtle signs of the early disease make the task of accurate diagnosis

particularly arduous for radiologists. Computer aided diagnosis of the mammographic

images is currently very popular as it helps radiologists classify lesions as normal or

abnormal, benign or malignant.

This thesis presents an efficient mammographic lesion classification approach for

the detection of breast cancer. The approach uses the two dimensional discrete

orthonormal S-transform (DOST) method to extract the coefficients from the digital

mammograms. A feature selection algorithm based on statistical two-sample t-test

method is used for the selection of significant coefficients from the high dimensional

DOST coefficients. The selected significant coefficients are used as features for the

classification of mammographic lesions as benign or malignant. This scheme utilizes

a back propagation neural network as the classifier. The scheme is validated using

MIAS database. The result shows an optimal classification accuracy rate of 97.4%

and a performance index value of AUC = 0.97 in receiver operating characteristic

(ROC) curve. These results are very promising in comparison with existing discrete

wavelet transform (DWT).
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Chapter 1

Introduction

Breast cancer is a leading cause of death among women. According to the American

Cancer Society, approximately 232,340 new cases of invasive breast cancer and 39,620

breast cancer deaths are expected to occur among US women in 2013 [1]. One in

eight women in the United States will develop breast cancer in her lifetime.

The situation is no different in India. Breast cancer is set to overtake cervical

cancer as the most common cancer in women in India in 2020. The Lancet reported

an impending cancer epidemic in India: by 2020, 70 percent of those suffering from

cancer worldwide will be located in poor countries, with a fifth located in India [2].

Another study commissioned by GE Healthcare, estimated that by 2030, the

incidence of new cases of breast cancer in India will increase from today’s figure of

115,000 to around 200,000 per year [3].

An analysis of cancer rates between the years 1982 and 2005, as conducted by

The Indian Council of Medical Research, showed that 10 out of every 100,000 women

living in Delhi, Mumbai, Chennai, and Bangalore were diagnosed with breast cancer

about 10 years ago, compared with 23 women per every 100,000 today [4].

A number of well recognized exogenous and endogenous risk factors have been

associated with the genesis of breast cancer. The exogenous factors include high

fat diet, lack of physical activity, alcohol abuse, cigarette smoking, socio-economic
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Introduction

status, environmental exposures to pollutants, pesticides, electromagnetic field and

ionizing radiations. Among the endogenous factors, the duration of exposure to

steroid hormones play a vital role. This is in turn depends on several factors such as

late menopause, late pregnancy, and obesity.

Early detection of breast cancer through periodic screening improves the chance

of recovery. Mammography is currently the most effective method for a reliable early

detection of breast cancer by analyzing the mammograms [5]. The American Cancer

Society recommends women aged 40 and above to have a mammogram every year

and calls it a gold standard for breast cancer detection [1].Mammograms are the

X-ray images of breasts.

(a) (b) (c) (d)

Figure 1.1: Two types of views of mammogram. (a) CC view of left breast, (b) CC
view of right breast, (c) MLO view of left breast, (d) MLO view of right breast.

Interpretation of mammograms is a very important task for radiologists as they

suggest patients for biopsy.

1. However, interpretation of mammograms varies among radiologists as it depends

on training and experience. This leads to different judgments by different

radiologists.

2. Furthermore, differences in image quality, along with the small and subtle signs

of the early disease make the task of diagnosis particularly arduous.

3. There always exists possibility of human error due to a number of factors such
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Introduction

as fatigue, distraction and oversight, leading to interobserver and intraobserver

variations.

4. Computer aided diagnosis of mammographic images helps improve both the

sensitivity and the specificity of the diagnosis.

5. Therefore avoidance of misinterpretation is highly required. It has been observed

that 60− 90% of the biopsies of suspected cancers by radiologists turned out to

be benign [6].

Therefore, computer-aided diagnosis (CAD) is currently a very popular and

efficient method which analyzes the digital mammograms and helps radiologists in

interpreting mammograms for detection of suspicious lesions and classification.

Regarding this responsibility, one important step is to find out a set of significant

features from the mammography images that can distinguish the benign lesions

from malignant ones. Different techniques and methods have been studied for the

extraction of features and classification of mammograms into benign and malignant

classes.

Figure 1.2: CAD for lesion classification.
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Introduction

This thesis is organized as follows. In Chapter 2, the existing work related

to computer aided classification of mammographic images has been discussed. In

Chapter 3, we introduce the discrete orthonormal S-Transform. We begin with

describing the S-Transform in 3.3, its properties and the advantages of S-Transform

over other multi-resolution techniques. We then discuss the drawbacks of naive

S-Transform and introduce the DOST method in 3.7, which is a faster variant of

S-Transform. In Chapter 4, we describe the proposed method for classification of

mammograms as benign or malignant. Sub-steps such as preprocessing, feature

extraction, subset selection and classification have been elaborated. Results and

Simulation are presented in Chapter 5. Finally, Chapter 6 presents the concluding

remarks, with the scope for further research work.
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Chapter 2

Literature Survey

Liu et al. achieved 84.2% accuracy rate by using a set of statistical features obtained

using linear phase non-separable linear wavelet transform. Detection is performed

from the coarsest resolution to the finest resolution using a binary tree classifier [7].

Pereira et al. proposed a method in which they used spatial gray level dependence

matrix on wavelet transform of mammograms [8]. They used the texture features

to characterize the mammograms as benign or malignant with the help of non

parametric K-NN classifier. They found the performance index value of AUC =

0.617 for masses and 0.607 for microcalcifications in ROC curves which were very poor.

M. Fraschini used discrete wavelet transform and neural network to discriminate

the benign and malignant masses of regions of interest in mammograms [9]. The

performance index value was AUC of 0.91 in the ROC curve.

Talha et al. proposed a method to classify the mammographic lesions into

benign or malignant for the detection of breast cancer through discrete wavelet

transform [10]. They used principal component analysis technique to reduce

the wavelet based features and obtained more than 90% classification accuracy.

Mammographic Institute Society Analysis dataset has been used for experimentation.

Pratibha et al. obtained a classification accuracy of 90.65% for benign and

malignant characterization of mammogram samples [11]. They used the combination
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of wavelet features and spectral features to analyze the mammograms. Support

vector machine was used as the classifier in their approach.

Sertbas et al. proposed a method to classify the mammogram masses as benign

or malignant by using local seed region growing spherical wavelet transform [12].

They obtained 91.67% classification accuracy rate by using SVM classifier.

Kumar et al. proposed a method based on discrete wavelet transform and

stochastic neighbor embedding technique [13]. They achieved 90.10% of classification

accuracy for the classification of benign and malignant mammograms with the help

of support vector machine classifier. In their method the wavelet coefficients of

mammograms are reduced by stochastic neighbor embedding technique.

Ganesan et al. proposed a one-class classification method to classify the

mammographic images as benign or malignant [14]. They used Trace transform,

which is a generalization of the Radon transform, to extract the features from

the mammograms. Classifiers such as the linear discriminant classifier, quadratic

discriminant classifier, nearest mean classifier, support vector machine and Gaussian

mixture model have been used. They achieved a maximum accuracy rate of 92.48%

by using Gaussian mixture model.

In 1996, Dhawan et al. used wavelet transform and gray level image structure

features for classification of mammograms. They obtained receiver operating

characteristic (ROC) index Az of 0.81 [15].

In 1998, Chan et al. used texture morphology features for classification of

mammograms based on gray level co-occurrence matrix (GLCM) and achieved

Az = 0.89 of ROC [16].

Manrique et al. used a genetic algorithm based on radial basis function neural
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network for classification of masses in the year 2006. They achieved 83% classification

accuracy rate [17].

Abdalla et al. used statistical texture features of mammographic images for the

classification purpose in the year 2007. They obtained 82% accuracy with the help

of support vector machine (SVM) classifier [18].

Rashed et al. have used different types of Daubechies wavelets for feature

extraction of mammograms in the year 2007. They achieved 87.06% classification

accuracy [19].

Dong et al. proposed a method using Gabor filter to classify normal and abnormal

in the year 2009. They achieved an average of 80% precision with selected features [20].

Buciu et al. used Gabor wavelets to extract directional features from

mammographic images in the year 2011 [21]. They used Principal component

analysis technique to reduce the feature dimension and achieved 78.26% recognition

rate in classification of benign and malignant lesions with the help of SVM.

Mutaz et al. used second order statistics and artificial neural network for

detection of masses in digital mammograms and obtained an accuracy of 87.92% in

the year 2011 [22].

Ramos et al. used wavelet transform method for feature extraction of

mammograms in the year 2012 [23] The used the genetic algorithm for feature

selection and random forest as classifier. They obtained Az = 0.90 as performance

index value of ROC.

It has been observed from literature that different feature extraction and selection

methods are used for the classification of lesion. Still there is a scope to improve the
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classification accuracy. The feature extraction and selection are key steps in lesion

classification since these influence the performance of CAD.

So there is a need to develop some new feature extraction and selection method as

well as classifiers to increase the accuracy of classification and reduce the complexity.

In this thesis, two dimensional discrete orthonormal S-transform (DOST) method

is applied for the extraction of features from mammographic images. From the

available set of extracted features, some effective set of features are selected and

provided to a back propagation neural network classifier to predict the mammographic

lesion as benign or malignant.
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Chapter 3

Discrete Orthonormal S-Transform

3.1 Signals and their types

In image processing, a signal is a physical quantity which varies with space and

contains information about space.

Signals may broadly be classified into the following two types:

1. Stationary Signals- Stationary signal are the signals which have all the frequency

components present at all times of the signal.

2. Non-Stationary Signals- Non-stationary signals are the signals in which all the

frequency components are not present at all the times in the signal.

An image is a non-stationary signal. Image consists of edges which divide it into

regions. Smooth regions in the image have dominant low frequency components while

edges have dominant high frequency components. Since, an image neither consists

only of smooth regions, nor only of edges, but a mixture of both, an image is essentially

a non-stationary signal.

To analyze a non-stationary signal such as image, we need multi-resolution

techniques. Multi-resolution techniques give us time-frequency representation (TFR).

Many multi-resolution techniques exist. Some of them are :

1. Short Time Fourier Transform

2. Wavelet Transform

3. S-Transform

9



3.2 Wavelet Transform Discrete Orthonormal S-Transform

S-Transform has many advantages over Short Time Fourier Transform and Wavelet

Transform. A detailed discussion on this is presented in Section 3.6.

3.2 Wavelet Transform

The Continuous Wavelet Transform can be defined as a series of correlations of the

time series with a function called a wavelet:

W (τ, d) =

∫ ∞
−∞

h(t)w(t− τ, d)dt (3.1)

Wavelet transform has been widely used in the extraction of features from

mammograms. A two dimensional discrete wavelet transform (DWT) is a

multi-resolution decomposition method in which an original imageA2j+1f at resolution

2j+1 is decomposed to three detail images Dh
2j f , Dv

2j f , Dd
2j f at resolution 2j

in horizontal, vertical, and diagonal directions respectively. It also gives one

approximation image A2j f at coarse resolution. The detail and approximation images

are the wavelet coefficient matrices in which each coefficient is considered as a feature

of the original image.

10



3.2 Wavelet Transform Discrete Orthonormal S-Transform

(a)

(b) (c)

Figure 3.1: Decomposition of the ROI into subcomponents using 2D-DWT. (a)
Wavelet decomposition at two resolution level, (b) Original ROI (mdb015), (d)
Subcomponents of ROI (wavelet coefficients).
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3.3 S-Transform Discrete Orthonormal S-Transform

3.3 S-Transform

The S-Transform for continuous 1-dimensional signal h(t) is given by :

S(τ, f) =

∫ ∞
−∞

h(t)
| f |√

2π
e−

(τ−t)2f2
2 e−2iπftdt (3.2)

3.4 Discrete S-Transform

The S-Transform of a discrete 2-dimensional signal f(x, y) is given by:

S(x, y, kx, ky) =
M−1∑
α=0

N−1∑
β=0

F (α + kx, β + ky)e
−2π2(α

2

k2x
+β2

k2y
)
e2πi(αx+βy) (3.3)

Here,

� x corresponds to x-coordinate in space.

� y corresponds to y-coordinate in space.

� kx corresponds to frequency along x-axis.

� ky corresponds to frequency along y-axis.

� F is the Fourier transform of original image.

3.5 Properties of S-Transform

1. Absolutely Referenced Phase Information : The phase factor ei2πft

helps to get absolutely referenced phase information. This phase factor

splits the mother wavelet into two parts, Gaussian window and oscillatory

exponential kernel e−i2πft. The kernel remains stationary while Gaussian

window moves. Kernel being stationary, localizes the real and imaginary

components of spectrum independently, thus localizing amplitude and phase

of spectrum independently.

12



3.5 Properties of S-Transform Discrete Orthonormal S-Transform

2. Relation to Fourier Transform : The S-Transform is related to Fourier

transform in the following way:

H(f) =

∫ ∞
−∞

S(τ, f)dτ (3.4)

Thus, this relationship can be used to calculate Inverse S-Transform.

h(t) =

∫ ∞
−∞
{
∫ ∞
−∞

S(τ, f)dτ}ei2πftdf (3.5)

3. Instantaneous Frequency : An extension of instantaneous frequency is

provided by the S-Transform. S-Transform can be written in polar notation

as

S(τ, f) = A(τ, f)eΦ(τ,f) (3.6)

where,

A(τ, f) =
√
Real(S(τ, f)) + Im(S(τ, f)) (3.7)

and

Φ(τ, f) = tan−1{ Im(S(τ, f))

Real(S(τ, f))
} (3.8)

Thus, Instantaneous Frequency (IF) is given by,

IF (τ, f0) =
1

2π

d

dτ
{2πτf0 + Φ(τ, f0)} (3.9)

4. Linearity : S-Transform is a linear operation. Thus,

ST{g(t) + h(t)} = ST{g(t)}+ ST{h(t)} (3.10)

Proof of Linearity :

ST{g(t) + h(t)} = S(τ, f) =
| f |√

2π

∫ ∞
−∞
{g(t) + h(t)}e−

(t−τ)2f2
2 e−i2πftdt (3.11)

which can be rewritten as

ST{g(t) + h(t)} = S(τ, f) = { | f |√
2π

∫ ∞
−∞

g(t)e−
(t−τ)2f2

2 e−i2πftdt}

13
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+ { | f |√
2π

∫ ∞
−∞

h(t)e−
(t−τ)2f2

2 e−i2πftdt}(3.12)

= ST{g(t)}+ ST{h(t)}

Thus,

ST{g(t) + h(t)} = ST{g(t)}+ ST{h(t)} (3.13)

3.6 Advantages of S-Transform

1. The Short Time Fourier Transform (STFT) has a fixed resolution but

S-Transform gives a good time resolution for high frequency components and

good frequency resolution for low frequency components, which is best suited

for images. S-Transform is equivalent to applying several STFT with different

sized windows. Thus, S-Transform is superior to STFT.

2. Wavelet Transform gives phase information local to translated window but

S-Transform gives absolutely referenced phase information, which can be used

for evaluating phase congruency. It has already been explained in Section 3.5,

Property 1.

3. S-Transform can be used for denoising images containing additive noise. For this

purpose, we can use the linearity property of S-Transform described in Section

3.5, Property 4.

4. S-Transform is directly related to Fourier Transform but Wavelet Transforms

are not related to Fourier Transform. Relationship between S-Transform and

Fourier Transform has already been explained in Section 3.5, Property 2. Thus,

S-Transform is invertible but not all Wavelet Transforms are invertible.

5. S-Transform also provides superior time resolution compared to wavelet

resolution.

14



3.7 DOST Discrete Orthonormal S-Transform

3.7 DOST

The S-Transform is more powerful than other multi-resolution techniques like STFT

and Wavelet Transform. The phase of the S transform referenced to the time origin

provides useful and supplementary information about spectra that is not available

from locally referenced phase information in the CWT [24]. The S-transform is

advantageous for the analysis of mammographic images as it preserves the phase

information using linear frequency scaling.

1. However, the major limitation of S-transform is its high time and space

complexity due to its redundant nature, which makes it impractical in many

cases.

2. The 2D-ST of an array of size N × N has a computational complexity of

O (N4 +N4 logN) and storage requirements of O (N4).

3. To eliminate this problem of 2D-ST, in this thesis, we use DOST which is also

a multi resolution technique for extraction of features from the mammographic

images and is based on the S-transform.

4. DOST uses an orthonormal set of basis functions, and therefore, DOST has less

computational and storage complexity in comparison to the S-transform, while

retaining all the advantageous properties of S-Transform.

5. 2D-DOST provides a spatial frequency representation of an image, with

computational and storage complexity as O (N2 +N2 logN) and O (N2)

respectively.

With the dyadic sampling scheme in order 0, 1, 2, ...., log2N−1, DOST of an N×N

mammogram image f(x, y) is performed by the following steps.

1. Two dimensional Fourier transform (FT) is applied to the image f(x, y) to

obtain Fourier samples F (u, v)

15



3.7 DOST Discrete Orthonormal S-Transform

2. Partition the Fourier sample F (u, v) and multiply it by the square root of the

number of points in the partition, and perform an inverse FT. Then the voice

image is calculated as

S (x′, y′, υx, υy) = 1√
2px+py−2

2px−2−1∑
u=−2px−2

2py−2−1∑
v=−2py−2

F (u+ υx, v + υy)

e
2πi

(
ux′

2px−1 + vy′

2py−1

) Here υx = 2px−1+2px−2 and

υy = 2py−1 + 2py−2 are the horizontal and vertical voice frequencies.

3. Thus, the DOST coefficients of mammogram images are obtained after the

transformation.
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Chapter 4

Proposed Method

4.1 Materials and methods

The overall block diagram of the proposed method is shown in Figure. 4.1.

Figure 4.1: Block diagram of proposed scheme for classification of mammographic
images using two dimensional discrete orthonormal S-transform (DOST) and back
propagation neural network (BPNN).

17



4.1 Materials and methods Proposed Method

4.1.1 Mammogram dataset

For the analysis of the schemes, mammographic images are taken from Mammographic

Image Analysis Society (MIAS) database [25]. The database contains 322 images,

which are under seven categories such as calcification, circumscribed masses,

spiculated masses, architectural distortion, asymmetry, other ill-defined masses, and

normal. Out of 322 images, 207 images are normal, 115 images are abnormal; and

again among abnormal images the number of benign and malignant types are 64 and

51 respectively. Each image has the size of 1024× 1024 pixels.

Table 4.1: Distribution of MIAS data set
Type Benign Malignant Total

Microcalcification 12 13 25
Circumscribed masses 19 4 23
Ill-defined masses 7 7 14
Spiculated masses 11 8 19
Architectural distortion 9 10 19
Asymmetry lesion 6 9 15
Normal tissue - - 207
Total 64 51 322

18



4.1 Materials and methods Proposed Method

4.1.2 Image Preprocessing

All the images of the MIAS database are composed of background, different types of

noises, artifacts in the background, and pectoral muscles. All these areas are unwanted

regions for feature extraction and subsequent classification. Therefore, it is necessary

to extract the region of interest (ROI) which contains the lesion of mammogram. This

task is accomplished by manual cropping operation. Figure. 4.2 shows some extracted

ROIs containing benign and malignant types of lesions.

Figure 4.2: Extracted ROIs from different mammographic images (source: MIAS
database). The numbered sub figures indicate the type of lesions; such as: [a, b, c,
d] - benign type (mdb015, mdb081, mdb107, mdb219), [e, f, g, h] - malignant type
(mdb028, mdb117, mdb115, mdb186).
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4.1.3 Feature Extraction

In this thesis, DOST has been used to extract features from mammogram images. And

a comparison has been drawn out with the results obtained when we used discrete

wavelet transform for feature extraction.

The DOST of an image gives the rectangular voice image of 2px−1×2py−1 points as

shown in Figure. 4.3(b). The total number of points in the voice image and original

mammogram are same. In DWT, horizontal, vertical and diagonal detail coefficients of

an image are obtained for each order. In DOST, voice frequencies (υx, υy) are obtained

that contain a bandwidth of 2px−1 × 2py−1 frequencies. In DOST, each N × N ROI

gives the N × N number of coefficients in which, each coefficient is considered as a

feature. A high dimensional feature matrix is constructed by using all these extracted

features for all the mammographic ROIs.
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(a)

(b)

Figure 4.3: Partitioning of (a) DWT and (b) DOST for six orders. The squares
indicate the sub-images for each order. Both transforms use a dyadic sampling scheme
but provide different information about the frequency content of the image.
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4.1.4 Feature Selection

In feature selection phase, an optimal set of significant features are selected from the

extracted feature matrix for the classification. In this thesis, a statistical two-sample

t-test method is applied for selection of features. For two classes b (benign) and m

(malignant), a two sample t-test is performed and a test decision is returned for the

null hypothesis that the data in the vectors b and m come from normal distributions

with equal means. The t-test determines whether the data from vectors b and m

are related or not. In the proposed feature selection algorithm, a null hypothesis

value, h = 1 indicates that the null hypothesis is incorrect and rejected. An incorrect

null hypothesis implies that data from vectors b and m are significantly different and

independent. In the t-test method, the t-value is computed as

t =
|µb − µm|√
(σb)

2

Nb
+ (σm)2

Nm

(4.1)

where, Nb and Nm are the numbers of ROIs in class b and m respectively. Here, µb ,

µm are means and σb and σm are standard deviations. A higher t-value indicates more

significant differences between the means of the two vectors. For a certain threshold

t-value, the corresponding p-value defines probability of obtaining a t-value higher

than the threshold. A significance level, α defines the lower threshold for the p-value.

The value of α is in the range 0 and 1. As the α value decreases, the feature reduction

increases.

Algorithm 1 illustrates the selection of features.
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Algorithm 1: Feature Selection

Require: feature[1 : M, 1 : K], target[1 : K]
M : Total number of coefficients obtained from an
image
K: Total number of images in dataset

Ensure: reduced feature[1 : R, 1 : K]
R: Total number of reduced features
Function ttest() computes the null hypothesis value
of two vectors at different significance levels

1: Create two empty vectors b and m
2: for i← 1 to M do
3: Clear contents of vector b and vector m
4: for j ← 1 to K do
5: if target[i] = 1 then
6: Append feature[i, j] to b
7: else
8: Append feature[i, j] to m
9: end if
10: end for
11: h[i] = ttest(b,m,α) {α is the significance level}
12: if h[i] = 1 then
13: Append feature[i, 1 : K] to reduced feature
14: end if
15: end for
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4.1.5 Feature Classification

The back propagation neural network is used to classify the reduced feature set into

different classes. The network is trained by the training set obtained by the feature

selection. The neural network tool is used for this purpose. During training, the

network is adjusted according to its error. During validation of the network, the

validation set is used to measure network generalization. The training is halted when

generalization stops improving. The testing set provides an independent measure of

network performance during and after training period. For maximum classification

accuracy rate and an optimal number of features, the value of α is changed. The

process is repeated with the new feature set and stops when optimum classification

accuracy rate is obtained with an optimized feature set. The scheme is described in

Figure. 4.1.

The performance of the BPNN classifier is evaluated with the help of confusion

matrix [26]. A confusion matrix is a table that shows the predicted and actual

classification accomplished by the classifier. The confusion matrix for two classes

(benign and malignant) and corresponding measures of performance are represented

in TABLES 4.2 and 4.3 respectively. Sensitivity and specificity are two important

measures for performance evaluation which calculate the percentage of true positive

rate and true negative rate respectively. For an ideal performance, both specificity

and sensitivity should be high. The evaluation of a classifier performance can also be

accomplished by means of receiver operating characteristics (ROC) curves [6]. It is a

two dimensional graph which plots sensitivity versus false positive rate (1-specificity).

The area under the ROC curve referred by an index AUC is also an important factor

for evaluating the classifier performance. AUC with value 1.0 is a perfect performance

of the classifier.

Table 4.2: Confusion Matrix for two classes

Actual class Predicted class

Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)
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Table 4.3: Measures of classification performance

Measure Definition

Sensitivity TP/(TP+FN)

Specificity TN/(TN+FP)

Accuracy (TP+TN)/Total number of samples
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Chapter 5

Simulation and Results

To validate the proposed feature extraction and lesion classification schemes,

experiments are carried out in the MATLAB environment.

In 2D-DOST method, each transformed ROI gives 16384 number of coefficients

whereas it is 19648 in case of DWT.

For all 115 abnormal ROIs, the feature matrix contains 1884160 and 2259520

coefficients for DOST and DWT methods respectively.

From the high dimensional feature matrix, most significant features are selected

and given to the BPNN classifier for the classification purpose.

In the classifier 70% of the total set is used for the training. From the rest of the

data 15% is used for testing and other 15% is used for validation.

During simulation, the feature sets are selected with different dimensions by

changing the value of α. It has been observed that, the classification accuracy is

maximum for α = 7× 10−4.

This fixes a network structure 88-10-2 to achieve the maximum classification

accuracy. It is found that the maximum classification accuracy rate is 97.4% by using

reduced DOST features at α = 7× 10−4. For the same α, the DWT method gives an

26



Simulation and Results

accuracy rate of 90.4.

The ROC curves for benign and malignant classes of lesion using DOST features

are presented in Figure. 5.1(a). The values of AUC are 0.93 and 0.97 for the

prediction of benign and malignant lesions respectively . For the prediction of

malignant lesion in the mammogram, the DOST method is efficient in comparison

to the DWT method. As shown in Figure. 5.1(b), the values of AUC are 0.97 and

0.92 for DOST and DWT methods respectively. Different classification performance

measures computed during simulations are presented in Table 5.1.
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Figure 5.1: ROC curves. (a) Classification of benign and malignant mammograms
by DOST method, (b) Prediction of malignant mammograms by DOST and DWT
method.
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The best validation performance of DOST method is 0.05376 obtained at epoch 34

with less training mean squared error (mse) at α = 7× 10−4 shown in Figure. 5.2(a).

Mean squared error is the average squared difference between outputs and targets.

Lower values are better.

Figure. 5.2(b) shows the comparison of training error of both DOST and DWT

methods in terms of mse. It is found that the training error of DOST method is

promisingly less than DWT method at the same α = 7× 10−4.

In the simulation, regression values are also studied for the efficiency of

classification performance. Regression (R) value measures the correlation between

outputs and targets. An R value of 1 means a close relationship. The regression

value is 0.9334 at α = 7 × 10−4 in DOST method, which determines less possibility

of mis-classification. Figure. 5.3 shows the corresponding regression values of

optimal performance of the classifier for both DOST and DWT methods. Decreased

regression values are obtained at high dimension of feature sets with higher values of

α as shown in Figure. 5.4.
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Figure 5.2: Classifier performance in terms of mean squared error(mse). (a) By DOST
method, (b) comparison of training error between DOST and DWT method
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Figure 5.3: Regression graph at α = 7× 10−4. (a) For DOST method, (b) for DWT
method.
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Table 5.1: Performance measures for different values of α.

Significance
level (α)

Performance measures (%)

DOST DWT

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

6× 10−3 76.5 85.9 81.7 78.4 81.3 80.0

5× 10−3 70.6 95.3 84.3 82.4 82.8 82.6

4× 10−3 84.1 91.5 88.7 84.3 82.8 83.5

3× 10−3 86.3 92.2 89.6 70.6 92.2 82.6

2× 10−3 88.2 93.8 91.3 66.7 89.1 79.1

1× 10−3 88.4 95.2 92.2 74.5 98.4 87.8

8× 10−4 74.5 98.4 87.0 72.5 93.8 84.3

7× 10−4 94.1 100 97.4 78.4 100 90.4

6× 10−4 72.5 100 87.8 82.4 95.3 89.6

5× 10−4 78.4 87.5 83.5 60.8 96.9 80.9
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DOST method.
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Chapter 6

Conclusion and Future Work

In this thesis, a novel scheme is presented for the classification of mammographic

lesions as benign or malignant to support the decision making of radiologists. The

scheme utilizes DOST method for extracting the features from the mammographic

images. A feature selection algorithm using the two-sample t-test method is applied

for selection of significant features from the high dimensional extracted features.

Finally a BPNN based classifier is used for classification. Simulation experiments

are carried out on MIAS database for the validity of the scheme. The suggested

scheme achieves the AUC of 0.97 from the ROC analysis and a classification accuracy

rate of 97.4%. The simulation results show that the DOST features are more efficient

to distinguish the benign lesions from malignant than its counterparts.
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