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Abstract

This research project paper, the problem of laminar nanofluid flow in a semi-porous chan-

nel is investigated analytically using Homotopy Perturbation Method (HPM), Least Square

Method (LSM) and Differential Transformation Method (DTM). This problem is in the

presence of transverse magnetic field. Due to existence some shortcomings in each method,

a novel and efficient method named LS-DTM is introduced which omitted those defects

and has an excellent agreement with numerical solution. Here, it has been attempted to

show the capabilities and wide-range applications of the Homotopy Perturbation Method

in comparison with the numerical method used for solving problems. Then, we consider

the influence of the three dimensionless numbers: the nanofluid volume friction, Hartmann

number for the description of the magnetic forces and the Reynolds number for the dy-

namic forces.

Keywords:- Nanofluid, Laminar Flow, Semi-porous Channel, Magnetohydrodynam-

ics, Homotopy Perturbation Method (HPM), Least Square Method (LSM), Differential

Transformation Method (DTM).
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Nomenclature

A∗, B∗ Constant parameter

P Fluid Pressure

q Mass transfer parameter

Xk General coordinates

f Velocity function

k− Fluid thermal conductivity

n Power law index in temperature distribution

Re Reynolds number

Ha Hartmann number

u, v Dimensionless components velocity in x and y directions, respectively

u∗, v∗ Velocity components in x and y directions, respectively

x, y Dimensionless horizontal, vertical coordinates respectively

x∗, y∗ Distance in x,y directions parallel to the plates

Greek symbols

υ Kinematic viscosity

σ Electrical conductivity

ε Aspect ratio h/Lx
ρ Fluid density

subscripts

∞ Condition at infinity

nf Nanofluid

f Base fluid

s Nano-solid-particles
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Chapter 1

1 Introduction

1.1 Magnetohydrodynamics:

Magnetohydrodynamics (MHD) (magneto fluid dynamics or hydromagnetics) is the

study of the dynamics of electrically conducting fluids. Examples of such fluids include

plasmas, liquid metals, and salt water or electrolytes. The word magnetohydrodynamics

(MHD) is derived from magneto- meaning magnetic field, hydro- meaning liquid, and dy-

namics meaning movement. The field of MHD was initiated by Hannes Alfvn, for which

he received the Nobel Prize in Physics in 1970. The fundamental concept behind MHD is

that magnetic fields can induce currents in a moving conductive fluid, which in turn creates

forces on the fluid and also changes the magnetic field itself. The set of equations which

describe MHD are a combination of the Navier-Stokes equations of fluid dynamics and

Maxwell’s equations of electromagnetism. These differential equations have to be solved

simultaneously, either analytically or numerically.

1.2 Nanofluids

Now, there is an increasing interest of the researchers in the analysis of nanofluids. The

word nanofluid was introduced by Choi. In fact a nanofluid is a dilute suspension of solid

nanoparticles with the average size below 100 nm in a base fluid, such as: water, oil and

ethylene glycol. Nano comes from the Greek word for dwarf. The prefix nano means a

factor of one billionth(10−9) and can be applied, e.g., to time(nano second), volume(nano

liter), weight(nano gram)or length(nano meter or nm). In its popular use nano refers to

length, and the nanoscale usually refers to a length from the atomic level of around 1nm

upto 100nm.

• A sheet of paper is about 100,000 nanometers thick.

• A human hair is approximately 80,000-100,000 nanometers wide.

• Your finger nails grow about one nanometer per second.

• A single gold atom is about a third of a nanometer in diameter.

• On a comparativescale, if the diameter of a marble was one nanometer, then diameter

of the Earth would be about one meter.

Nanofluids exhibit thermal properties superior to those of the base fluids of the conventional

particlefluid suspensions. The nanoparticles can be made of metal, metal oxide, carbide,

nitride and even immiscible nanoscale liquid droplets. Some advantages of nanofluids which

make them useful are: a tiny size, along with a large specific surface area, high effective

thermal conductivity and high stability and less clogging and abrasion. The materials

1



with sizes of nanometers possess unique physical and chemical properties. They can flow

smoothly through microchannels without clogging them because it is small enough to be-

have similar to liquid molecules.

1.3 Laminar flow

The flow of a fluid is said to be streamline if every particle of the fluid follows exactly

the path of its preceding particle and has the same velocity as that of its preceding particle

when crossing a fixed point of reference. Pipe intake and aerofoil are two good examples of

streamline motion. Laminar flow[2] is a type of streamline flow in which a liquid flows over

a fixed surface, the layer of molecules in the immediate contact of surface is stationary. The

velocity of upper layers increases as the distance of layers from the fixed layer increases.

In this flow liquid layers travel in parallel lines, without affecting the flow of each other.

So the liquid flows in an orderly manner and thus has a smooth appearance. All layers

need not travel with same velocities For example, when honey flows on a fixed surface,

then the layer in immediate contact with the surface has the lowest velocity. As we move

away from the surface, the velocity of subsequent layers increases. Hence the velocity of

the outermost layer is the maximum, while the velocity of innermost layer in contact with

the surface is the least.

1.4 Equation of Continuity

In fluid dynamics[3], the continuity equation states that, in any steady state process, the

rate at which mass enters a system is equal to the rate at which mass leaves the system.

The differential form of the continuity equation is:

∂ρ

∂t
+∇ · (ρu) = 0 (1.4.1)

where ρ is fluid density, t is time, u is the flow velocity vector field. In this equation is also

one of Euler equations (fluid dynamics). If ρ is a constant, as in the case of incompressible

flow, the mass continuity equation simplifies to a volume continuity equation:

∇ · u = 0, (1.4.2)

which means that the divergence of velocity field is zero everywhere. Physically, this is

equivalent to saying that the local volume dilation rate is zero.
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1.5 Reynolds Number

In fluid mechanics[3], the Reynolds number (Re) is a dimensionless quantity that is used

to help predict similar flow patterns in different fluid flow situations. The concept was

introduced by George Gabriel Stokes in 1851, but the Reynolds number is named after

Osborne Reynolds (1842−1912), who popularized its use in 1883. The Reynolds number

is defined as the ratio of inertial forces to viscous forces and consequently quantifies the

relative importance of these two types of forces for given flow conditions. Reynolds numbers

frequently arise when performing scaling of fluid dynamics problems, and as such can be

used to determine dynamic similitude between two different cases of fluid flow. They are

also used to characterize different flow regimes within a similar fluid, such as laminar or

turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous forces are

dominant, and is characterized by smooth, constant fluid motion; turbulent flow occurs at

high Reynolds numbers and is dominated by inertial forces.

The Reynolds number is generally defined as:

Re =
hq

µ
× ρ (1.5.1)

1.6 Hartmann Number

Hartmann number (Ha) is the ratio of electromagnetic force to the viscous force first

introduced by Hartmann[3]. It is defined by:

Ha = Bh

√
σ

ρν
(1.6.1)

or

Ha = Bh

√
σ

µ
(1.6.2)

where

B is the magnetic field

h is the characteristic length scale

σ is the electrical conductivity

µ is the dynamic viscosity

ν is the kinematic viscosity (ν = µ/ρ)

ρ is the density of the fluid

1.7 Homotopy Perturbation Method

In fluid mechanics, many of the problems end up to a complicated set of nonlinear or-

dinary differential equations which can be solved using different analytic method, such as
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homotopy perturbation method, variational iteration method introduced by He [6].

The homotopy perturbation method, proposed first by He in 1998 and was further devel-

oped and improved by He [6]. It yields a very rapid convergence of the solution series in

most cases. Sheikholeslami et al.[10] applied this method to investigate Hydromagnetic flow

between two horizontal plates in a rotating system. They reported that increasing mag-

netic parameter or viscosity parameter leads to decreasing Nu. By increasing the rotation

parameter, blowing velocity parameter and the Nusselt number increases. Sheikholeslami

et al. [10] studied the three-dimensional problem of steady fluid deposition on an inclined

rotating disk using HPM. They concluded that by increasing normalized thickness, Nusselt

number increases. However, this trend is more noticeable in grater Prandtl numbers.

1.8 Least Square Method

Least square method is introduced by A. Aziz and M.N. Bouaziz and is applied for a

predicting the performance of a longitudinal fin. They found that least squares method

is simple compared with other analytical methods. Shaoqin and Huoyuan [9] developed

and analyzed least-squares approximations for the incompressible magneto-hydrodynamic

equations.

1.9 Differential Transformation method

The concept of differential transformation method (DTM) was first introduced by Zhou

[11] in 1986 and it was used to solve both linear and nonlinear initial value problems in

electric circuit analysis. This method can be applied directly for linear and nonlinear

differential equation without requiring linearization, discretization, or perturbation and

this is the main benefit of this method.
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Most scientific problems in fluid mechanics and heat transfer problems are inherently

nonlinear. All these problems and phenomena are modelled by ordinary or partial nonlin-

ear differential equations. Most of these described physical and mechanical problems are

with a system of coupled nonlinear differential equations. For an example heat transfer

by natural convection which frequently occurs in many physical problems and engineer-

ing appli cations such as geothermal systems, heat exchangers, chemical catalytic reactors

and nanofluid flow in a semi-porous channel has a system of coupled nonlinear differential

equations for temperature or velocity distribution equations.

The flow problem in porous tubes or channels has been under considerable attention in

recent years because of its various applications in biomedical engineering, for example, in

the dialysis of blood in artificial kidney, in the flow of blood in the capillaries, in the flow in

blood oxygenators as well as in many other engineering areas such as the design of filters,

in transpiration cooling boundary layer control and gaseous diffusion.

In 1953, Berman[2] described an exact solution of the Navier-Stokes equation for steady

two-dimensional laminar flow of a viscous, incompressible fluid in a channel with parallel,

rigid porous walls driven by uniform, steady suction or injection at the walls. This mass

transfer is paramount in some industrial processes. More recently, Sheikholeslami et al.

[10] analyzed the effects of a magnetic field on the nanofluid flow in a porous channel

through weighted residual methods called Galerkin method. Nanofluid, which is a mixture

of nano-sized particles (nanoparticles) suspended in a base fluid, is used to enhance the

rate of heat transfer via its higher thermal conductivity compared to the base fluid. Nat-

ural convection heat transfer in a semi-annulus enclosure filled with nanofluid using the

Control Volume based Finite Element Method. They found that the angle of turn has an

important effect on the streamlines, isotherms and maximum or minimum values of local

Nusselt number. Natural convection of a non- Newtonian copper-water nanofluid between

two infinite parallel vertical flat plate. They conclude that as the nanoparticle volume

fraction increases, the momentum boundary layer thickness increases, whereas the ther-

mal boundary layer thickness decreases. Sheikholeslami et al.[10] performed a numerical

analysis for natural convection heat transfer of Cu-water nanofluid in a cold outer circular

enclosure containing a hot inner sinusoidal circular cylinder in presence of horizontal mag-

netic field using the Control Volume based Finite Element Method.

Sheikholeslami et al. [10 ] have investigated the flow of nanofluid and heat transfer

characteristics between two horizontal plates in a rotating system. Their results show
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that for suction and injection, the heat transfer rate at the surface increases by increasing

the nanoparticle volume fraction, Reynolds number, and injection/suction parameter and

it decreases with power of rotation parameter. Natural convection of a non- Newtonian

copper-water nanofluid between two infinite parallel vertical flat plates.

They have concluded that as the volume fraction of nanoparticle increases, the mo-

mentum boundary layer thickness increases, while the thermal boundary layer thickness

decreases. Sheikholeslami et al. [10] studied the natural convection in a concentric annulus

between a cold outer square and heated inner circular cylinders in presence of static radial

magnetic field. They have reported that average Nusselt number is an increasing function

of nanoparticle volume fraction as well as Rayleigh number, while it is a decreasing func-

tion of Hartmann number.

Sheikholeslami et al.[10] performed a numerical analysis for natural convection heat

transfer of Cu-water nanofluid in a cold outer circular enclosure containing a hot inner

sinusoidal circular cylinder in presence of horizontal magnetic field using the Control Vol-

ume based Finite Element Method. They have induced that in absence of magnetic field,

enhancement ratio decreases as Rayleigh number increases; while in presence of magnetic

field an opposite trend, was observed. Sheikholeslami et al.[ 10] studied the effects of mag-

netic field and nanoparticle on the Jeffery-Hamel flow by ADM. They have shown that

increasing Hartmann number will lead to backflow reduction. In greater angles or higher

Reynolds numbers, high Hartmann number is needed to reduce the backflow. Also, the

results show that momentum boundary layer thickness causes increase of nanoparticle vol-

ume fraction. The main aim is to investigate the problem of laminar nanofluid flow in

a semi-porous channel in the presence of transverse magnetic field using Homotopy Per-

turbation Method. The effects of the nanofluid volume friction, Hartmann number and

Reynolds number on velocity profile are considered.

The main aim of this research project paper is to investigate the problem of laminar

nanofluid flow in a semi-porous channel in the presence of transverse magnetic field us-

ing Homotopy Perturbation Method, Least Square (LSM) and Differential Transformation

Methods (DTM). Also a novel and combined method from these two methods is intro-

duced as LS-DTM which is very accurate and efficient. The effects of the nanofluid volume

friction, Hartmann number and Reynolds number on velocity profile are considered. Fur-

thermore velocity profiles for different structures of nanofluid.
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Chapter 2

2 Problem Issue

Consider the laminar two-dimensional stationary flow of an electrically conducting in-

compressible viscous fluid in a semi-porous channel made by a long rectangular plate with

length of Lx in uniform translation in x∗ direction and an infinite porous plate. The dis-

tance between the two plates is h . We observe a normal velocity q on the porous wall. A

uniform magnetic field B is assumed to be applied towards direction y∗. In the case of a

short circuit to neglect the electrical field and perturbations to the basic normal field and

without any gravity forces, the governing equations are:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.1)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − 1

ρnf

∂P ∗

∂x∗
+
µnf
ρnf

(
∂2u∗

∂x∗2
+
∂2u∗

∂y∗2

)
− u∗σnfB

2

ρnf
, (2.2)

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= − 1

ρnf

∂P ∗

∂x∗
+
µnf
ρnf

(
∂2v∗

∂x∗2
+
∂2v∗

∂y∗2

)
, (2.3)

The appropriate boundary conditions for the velocity are:

y∗ = 0 : u∗ = u∗0, v
∗ = 0, (2.4)

y∗ = h : u∗ = 0, v∗ = −q, (2.5)

Calculating a mean velocity U by the relation:

y∗ = 0 : u∗ = u∗0, v
∗ = 0, (2.6)

We consider the following transformations:

x =
x∗

Lx
; y =

y∗

h
, (2.7)

u =
u∗

U
; v =

v∗

q
;Py =

P ∗

ρfq2
(2.8)

Then, we can consider two dimensionless numbers: the Hartman number Ha for the de-

scription of magnetic forces and the Reynolds number Re for dynamic forces:

Ha = Bh

√
σf
ρfυf

(2.9)
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Re =
hq

µnf
ρnf . (2.10)

where the effective density(ρnf ) is defined as :

ρnf = ρf (1− φ) + ρsφ (2.11)

Where φ is the solid volume fraction of nanoparticles. The dynamic viscosity of the nanoflu-

ids given by Brinkman is

µnf =
µf

(1− φ)2.5
(2.12)

The effective thermal conductivity of the nanofluid can be approximated by the Maxwell-

Garnetts (MG) model as:

knf
kf

=
ks + 2kf − 2φ(kf − ks)
ks + 2kf + φ(kf − ks)

(2.13)

The effective electrical conductivity of nanofluid was presented by Maxwell as

σnf
σf

= 1 +
3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

(2.14)

Introducing Eqs.(2.6) and (2.10) into Eqs. (2.1) and (2.3) leads to the dimensionless

equations:
∂u

∂x
+
∂v

∂y
= 0 (2.15)

u
∂u

∂x
+ v

∂u

∂y
= −ε2∂Py

∂x
+
µnf
ρnf

1

hq

(
ε2
∂2u

∂x2
+
∂2u

∂y2

)
− uHa

2

Re

B∗

A∗
, (2.16)

u
∂v

∂x
+ v

∂v

∂y
= −∂Py

∂x
+
µnf
ρnf

1

hq

(
ε2
∂2v

∂x2
+
∂2v

∂y2

)
, (2.17)

where A∗ and B∗ are constant parameters:

A∗ = (1− φ) +
ρs
ρf
φ, B∗ = 1 +

3
(
σs
σf
− 1
)
φ(

σs
σf

+ 2
)
−
(
σs
σf
− 1
)
φ

(2.18)

Quantity of ε is defined as the aspect ratio between distance h and a characteristic length

Lx of the slider.

This ratio is normally small. Bermans similarity transformation is used to be free from the

aspect ratio of ε :

v = −V (y);u =
u∗

U
= u0U(y) + x

dV

dy
(2.19)

8



Introducing Eq.(2.19) in the second momentum equation (2.17) shows that quantity
∂Py
∂y

does not depend on the longitudinal variable x . With the first momentum equation, we

also observe that
∂2Py
∂x2

is independent of x.

We omit asterisks for simplicity. Then a separation of variables leads to :

V ′2 − V V ′ − 1

Re

1

A∗(1− φ)2.5
V ′′′ +

Ha2

Re

B∗

A∗
V ′ = ε2

∂2Py
∂x2

= ε2
1

x

∂Py
∂x

, (2.20)

UV ′ − V U ′ = 1

Re

1

A∗(1− φ)2.5
×
[
U ′′ −Ha2B∗(1− φ)2.5U

]
. (2.21)

The right-hand side of equation. (2.20) is constant. So, we derive this equation with

respect to x. This gives:

V iv = Ha2B∗(1− φ)2.5V ′′ +ReA∗(1− φ)2.5[V ′V ′′ − V V ′′′], (2.22)

Where primes denote differentiation with respect to y and asterisks have been omitted for

simplicity. The dynamic boundary conditions are:

y = 0 : U = 1;V = 0;V = 0, (2.23)

y = 1 : U = 0;V = 1;V = 0 (2.24)
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CHAPTER 3

3 Analysis And Interpretation

3.1 Homotopy Perturbation Method

3.1.1 Analysis of HPM

To illustrate the basic ideas of this method, we consider the following equation:

A(u)− f(r) = 0 r ∈ Ω (3.1.1.1)

With the boundary condition of:

B(u,
∂u

∂n
) = 0, r ∈ Γ (3.1.1.2)

where A is a general differential operator, B a boundary operator, f(r) a known analytical

function and Γis the boundary of the domain Ω. A can be divided into two parts which

are L and N, where L is linear and N is nonlinear. Equation (3.1.1.1) can therefore be

rewritten as follows:

L(u) +N(u)− f(r) = 0 r ∈ Ω (3.1.1.3)

Homotopy perturbation structure is:

H(v, p) = (1− p)(L(v)− L(u0)] + p[A(v)− f(r)] = 0 (3.1.1.4)

v(r, p) : Ω× [0, 1]→ R (3.1.1.5)

Where p ∈ [0, 1] is an embedding parameter and u0 is the first approximation that satisfies

the boundary condition. We can assume that a power series in p, as following:

v = v0 + pv1 + p2v2 + ... (3.1.1.6)

and the best approximation for solution is:

u = limp→1v = v0 + v1 + v2... (3.1.1.7)

3.1.2 Implemention of the method

According to HPM, we construct a homotopy. Suppose the solution of Equation (3.1.1.4)

has the form:

H(V, p) = (1−p)(V iv−V iv
0 )+p(−V iv+Ha2B∗(1−φ)2.5V ′′+ReA∗(1−φ)2.5[V

′
V

′′−V V ′′′
]) = 0

(3.1.2.1)
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H(U, p) = (1−p)(U ′′−U ′′

0 )+p

(
−UV ′

+ V U
′
+

1

ReA∗(1− φ)2.5
[U

′′ −Ha2B∗(1− φ)2.5U ]

)
(3.1.2.2)

We consider V and U as follows:

V (y) = V0(y) + V1(y) + ... =
n∑
i=0

Vi(y) (3.1.2.3)

U(y) = U0(y) + U1(y) + ... =
n∑
i=0

Ui(y) (3.1.2.4)

By substituting F from Equations (3.1.2.3) and (3.1.2.4) Equations (3.1.2.1) and (3.1.2.2)

into and some simplification and rearranging based on powers of p terms, according to

the boundary conditions, we have:

p0 : V iv
0 = 0, U

′′

0 = 0 (3.1.2.5)

p1 : −Ha2(1− φ)−2.5B∗V
′′

0 + V iv
1 +ReA∗(1− φ)−2.5V

′′′

0 V0 −ReA∗(1− φ)−2.5V
′′

0 V
′

0 = 0

(3.1.2.6)

−Ha2(1− φ)−2.5B∗U
′′

0 +U
′′

1 −ReA∗(1− φ)−2.5V
′

0U0 +ReA∗(1− φ)−2.5V
′′

0 U
′

0 = 0 (3.1.2.7)

Solving Equations (3.1.2.5),(3.1.2.6) and (3.1.2.7) with boundary conditions, we have:

V0(y) = −2y3 + 3y2, U0(y) = −y + 1. (3.1.2.8)

V1(y) = 0.0571428ReA∗(1− φ)−2.5y7

− 0.2ReA∗(1− φ)−2.5y6

− 0.1Ha2(1− φ)−2.5B∗y5

+ 0.3ReA∗1− φ−2.5y4

− 0.385714ReA∗(1− φ)y3

− 0.2Ha2(1− φ)−2.5B∗y3

+ 0.22857142ReA∗(1− φ)−2.5y2

+ 0.5Ha2(1− φ)−2.5B∗y2

(3.1.2.9)
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U1(y) = −0.2ReA∗(1− φ)−2.5y5

− 0.7ReA∗1− φ−2.5y4

− 0.16667Ha2(1− φ)−2.5B∗y3

+ 0.1ReA∗(1− φ)−2.5y3

+ 0.5Ha2(1− φ)−2.5B∗y2

− 0.45ReA∗(1− φ)−2.5y

0.3333Ha2(1− φ)−2.5B∗y

(3.1.2.10)

when i ≥ 2 the terms Vi(y), Ui(y) are too large; that is graphically mentioned. When

p→ 1, we have the following relations:

V (y) = V0(y) + V1(y) + ... =
n∑
i=0

Vi(y) (3.1.2.11)

U(y) = U0(y) + U1(y) + ... =
n∑
i=0

Ui(y) (3.1.2.12)

3.2 Least Square method

3.2.1 Analysis of LSM

Suppose a differential operator D is acted on a function u to produce a function p:

D(u(x)) = p(x) (3.2.1.1)

It is considered that u is approximated by a function ũ, which is a linear combination of

basic functions chosen from a linearly independent set. That is,

u ∼= ũ =
n∑
i=1

ciφi (3.2.1.2)

Now, when substituted into the differential operator,D the result of the operations generally

isn’t p(x) Hence an error or residual will exist:

R(x) = D(ũx)− p(x) 6= 0 (3.2.1.3)

The notion in WRMs is to force the residual to zero in some average sense over the domain.

That is: ∫
x

R(x)Wi(x) = 0 i = 1, 2, 3.... (3.2.1.4)
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Where the number of weight functionsWi is exactly equal the number of unknown constants

ci in u∼ . The result is a set of n algebraic equations for the unknown constants ci. If the

continuous summation of all the squared residuals is minimized, the rationale the name

can be seen. In other words, a minimum of

S =

∫
x

R(x)R(x)dx =

∫
x

R2(x)dx (3.2.1.5)

In order to achieve a minimum of this scalar function, the derivatives of S with respect to

all the unknown parameters must be zero. That is,

∂S

∂ci
= 2

∫
x

R(x)
∂R

∂ci
dx = 0 (3.2.1.6)

Comparing with Eq.(3.2.1.4), the weight functions are seen to be

Wi = 2
∂R

∂ci
(3.2.1.7)

However, the ”2” coefficient can be dropped, since it cancels out in the equation. Therefore

the weight functions for the Least Squares Method are just the derivatives of the residual

with respect to the unknown constants

Wi =
∂R

∂ci
(3.2.1.8)

3.2.2 Implemention of the method

Because trial functions must satisfy the boundary conditions in Eq. (6.23) and (6.24) so

they will be considered as,

U(y) = 1− y + c1(y − y2) + c2(y − y3) (3.2.2.1)

V (y) = c3(
y2

2
− y3

3
) + c4(

y2

2
− y4

4
) + c5(

y2

2
− y5

5
) (3.2.2.2)

In this problem, we have two coupled equations (Eqs.(6.21) and (6.22)), so two residual

functions will be appeared as,

R1(c1, c2, c3, c4, c5, y) = (1−y+c1(y−y2)+c2(y−y3))(c3(y−y2)+c4(y−y3)+c5(y−y4))

− (c3(
y2

2
− y3

3
) + c4(

y2

2
− y4

4
) + c5(

y2

2
− y5

5
)(−1 + c1(1− 2y) + c2(1− 3y2)

−
−2c1 − 6c2y −Ha2(1 +

3( σs
σf

)φ

(( σs
σf

+2)−( σs
σf
−1)φ)(1− φ)2.5(1− y + c1(y − y2) + c2(y − y3))

Re(1− φ+ ρsφ
ρf

)(1− φ)2.5

(3.2.2.3)
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R2(c1, c2, c3, c4, c5, y) = −6c4 − 24c5y −Ha2(1 +
3( σs

σf
− 1)φ

(( σs
σf

+ 2)− ( σs
σf
− 1)φ

)(1− φ)2.5

(c3(1− 2y) + c4(1− 3y2) + c5(1− 4y3)) +Re(1− φ+
ρsφ

ρf
)(1− φ)2.5

(c3(y − y2) + c4(y − y3) + c5(y − y4))(c3(1− 2y) + c4(1− 3y2) + c5(1− 4y3))

− (c3(
y2

2
− y3

3
) + c4(

y2

2
− y4

4
) + c5(

y2

2
− y5

5
)(−2c3 − 6c4y − 12c5y

2)

(3.2.2.4)

By substituting the residual functions, R1(c1, c2, c3, c4, c5, y) and R2(c1, c2, c3, c4, c5, y) into

Eq. (7.2.1.6), a set of equation with five equations will appear and by solving this system

of equations, co-efficients c1 − c5 will be determined. For example, Using Least Square

Method for a water-copper nanofluid with Re = 0.5, Ha = 0.5 and φ = 0.05.U(y) and V (y)

are as follows:

U(y) = 1− 1.334953917y + .3461783819y2 − .01122446534y3 (3.2.2.5)

V (y) = 1.8703229y2 + 3.1584693y3 − 6.9279074y4 + 2.8991125y5 (3.2.2.6)

3.3 Differential transformation Method

3.3.1 Analysis of DTM

In this section the fundamental basic of the Differential Transformation Method is intro-

duced. For understanding method′s concept, suppose that x(t) is an analytic function

in domain D, and t = ti represents any point in the domain. The function x(t) is then

represented by one power series whose center is located at ti. The Taylor series expansion

function of x(t) is in form of:

x(t) =
∞∑
k=0

(t− tki )
k!

[
dkx(t)

dtk
]t=i ∀t ∈ D (3.3.1.1)

The Maclaurin series of x(t) can be obtained by taking ti = 0 in Eq. (3.3.1.1) expressed

as:

x(t) =
∞∑
k=0

(tk)

k!
[
dkx(t)

dtk
]t=0 ∀t ∈ D (3.3.1.2)

As explained in [3] the differential transformation of the function x(t) is defined as follows:

X(k) =
∞∑
k=0

(Hk)

k!
[
dkx(t)

dtk
]t=0 (3.3.1.3)
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Where X(k) represents the transformed function and x(t) is the original function. The

differential spectrum of X(k) is confined within the interval t ∈ [0, H], where H is a

constant value. The differential inverse transform of X(k) is defined as follows:

x(t) =
∞∑
k=0

(
t

H
)kX(k) (3.3.1.4)

Theorem 1.

If f(η) = g(η)± h(η), then F (k) = G(k)±H(k).

Theorem 2.

If f(η) = cg(η), then F (k) = cG(k),where c is a constant.

Theorem 3.

If f(η) =
dng(η)

dηn
then F (k) =

(k + n)!

k!
G(k + n).

Theorem 4.

If f(η) = g(η)× h(η), then F (k) =
∑k

l=0G(l)H(k − l).

3.3.2 Implemention of the Method

From above, it is clear that the concept of differential transformation is based upon the

Taylor series expansion. The values of function X(k) at values of argument k are referred

to as discrete, i.e. X(0) is known as the zero discrete, X(1) as the first discrete, etc. The

more discrete available, the more precise it is possible to restore the unknown function.

The function x(t) consists of the T-function X(k), and its value is given by the sum of

the T-function with (t/H)k as its coefficient. In real applications, at the right choice of

constant H, the larger values of argument k the discrete of spectrum reduce rapidly. The

function x(t) is expressed by a finite series and Eq. (3.3.1.4) can be written as:

x(t) =
∞∑
k=0

(
t

H
)kX(k) (3.3.2.1)

Some important mathematical operations performed by differential transform method are

in above theorem. Now we apply Differential Transformation Method (DTM) from above
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theorem in to Eqs. (2.21) and (2.22) for finding U(y) and V (y) .

k∑
l=0

(k + 1− l).Ũ(l).V̄ (k + 1− l)−
k∑
l=0

(k + 1− l).V̄ (l).Ū(k + 1− l)−

1

Re
.

1

A(1− φ)2.5
×
(
(k = 1).(k + 2).Ū(k + 2)−Ha2.B.(1− φ)2.5.Ū(k)

)
= 0

(3.3.2.2)

(k + 1)(k + 2)(k + 3)(k + 4)V̄ (k + 4)−Ha2.B.(1− φ)2.5(k + 1)(k + 2)V̄ (k + 2)

−Re.A.(1− φ)2.5 × (
k∑
l=0

(l + 1)V̄ (l + 1)(k − 1)(k + 1− l)

−
k∑
l=0

V̄ (k)(k + 1− l)(k + 2− l)(k + 3− l)) = 0

(3.3.2.3)

Where Ū and V̄ represent the DTM transformed form of U and V respectively. The

transformed form of boundary conditions can be written as:

V̄ (0) = 0, V̄ (1) = 0, V̄ (2) = a, V̄ (3) = b, Ū(0) = 1, Ū(1) = 0, (3.3.2.4)

Using transformed boundary condition and Eq. we have,

Ū(2) = 0.5Ha2B
√

1− φ−Ha2B
√

1− φφ+Ha2B
√

1− φφ2

V̄ (4) = 0.0833Ha2B
√

1− φa− 0.1667Ha2B
√

1− φaφ+ 0.0833Ha2B
√

1− φaφ2

Ū(3) = 0.333aReA
√

1− φ− 0.667aReA
√

1− φφ+ 0.333aReA
√

1− φφ2+

0.1667Ha2B
√

1− φc− 0.0333Ha2B
√

1− φcφ+ 0.1667Ha2B
√

1− φcφ2

V̄ (5) = 0.05Ha2B
√

1− φb− .1Ha2B
√

1− φbφ+ .05Ha2B
√

1− φbφ2

(3.3.2.5)

Where a, b, c are unknown coefficients that after specifying U(y) and V (y) and applying

boundary condition (Eq. (3.3.2.4)) into it, will be determined. For water-copper nanofluid
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with Re = 0.5, Ha = 0.5 and f = 0.05 following values were determined for a, b and c

coefficients.

a = 3.01179150, b = −2.049532443, c = −1.673547080 (3.3.2.6)

Finally, U(y) and V (y) are as follows,

U(y) = 1− 1.673547080y − .01273175011y2 + 0.5462295787y3 (3.3.2.7)

V (y) = 3.011719150y2 − 2.049532443y3 + 0.06390742601y4 − 0.02609413491y5 (3.3.2.8)

3.4 LS−DTM Combined Method

Since LSM and DTM have a little shortcoming in some areas for predicting the V(y)

and U(y) (See results section), we combined these two methods as LS-DTM combined

method which eliminated those defects and for all areas has an excellent agreement with

numerical procedure. For this purpose we selected U(y) from Eq. (3.2.2.5),(3.2.2.6) and

V(y) from Eq. (3.3.2.3). By using these two equations four unknown coefficients will

be existed: a, b, c1,c2. For finding these coefficients, four equations are needed; two of

them are obtained from Eq. (3.2.1.6) for c1 and c2 and other two equations are selected

from boundary condition for V(y) in Eq. (2.23),(6.24). For water-copper nanofluid with

Re = 0.5, Ha = 0.5 and f = 0.05 following formula are calculated for U(y) and V(y) by

this efficient and novel method,

U(y) = 1− 1.332674596y − .3491297634y2 − 0.01645516732y3 (3.4.1)

V (y) = 3.011719150y2 − 2.049532443y3 + 0.06390742601y4 − 0.02609413491y5 (3.4.2)
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Chapter 4

4 Conclusion

In research project paper, Least Square and Differential Transformation Methods are

combined to eliminate the shortcoming of each method for solving the problem of laminar

nanofluid flow in a semi-porous channel in the presence of uniform magnetic field. The

above indicate that velocity boundary layer thickness decrease with increase of Reynolds

number and nanoparticles volume fraction and it increases as Hartmann number increases.

Also it was found that HPM is a powerful approach. The velocity boundary layer thick-

ness decreases with increasing Reynolds number and nanoparticle volume friction and it

increases while Hartmann number increases. Furthermore, it can be seen that for low

Reynolds numbers, as Hartmann number increases.
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