
Exploitation

of

Task Level Parallelism

Mayank Mangal

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Exploitation of

Task Level Parallelism

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Mayank Mangal
(Roll No. 212CS3375)

under the supervision of

Prof. A. K. Turuk

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Exploitation of Task

Level Parallelism by Mayank Mangal is a record of an original research

work carried out by her under my supervision and guidance in partial fulfillment

of the requirements for the award of the degree of Master of Technology with

the specialization of Software Engineering in the department of Computer Science

and Engineering, National Institute of Technology Rourkela. Neither this thesis

nor any part of it has been submitted for any degree or academic award elsewhere.

Place: NIT Rourkela Dr. A. K. Turuk
Date: June 1, 2014 Associate Professor, CSE Department

NIT Rourkela, Odisha

Author’s Declaration

I, Mayank Mangal (Roll No. 212CS3375) understand that plagiarism is

defined as any one or the combination of the following

1. Un-credited verbatim copying of individual sentences, paragraphs or illus-

trations (such as graphs, diagrams, etc.) from any source, published or

unpublished, including the Internet sources.

2. Un-credited improper paraphrasing of pages or paragraphs (changing a few

words or phrases, or rearranging the original sentence order).

3. Credited verbatim copying of a major portion of a paper (or thesis chapter)

without clear delineation of who did or wrote what.

I have made sure that all the ideas, expressions, graphs, diagrams, etc., that

are not a result of my work, are properly credited. Long phrases or sentences that

had to be used verbatim from published literature have been clearly identified

using quotation marks.

I affirm that no portion of my work can be considered as plagiarism and I

take full responsibility if such a complaint occurs. I understand fully well that the

guide of the thesis may not be in a position to check for the possibility of such

incidences of plagiarism in this body of work.

Place: NIT Rourkela Mayank Mangal
Date: June 1, 2014 Roll: 212CS3375

CSE Department(S/W Engg)
NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks

to Prof. A. K. Turuk for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction of the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I extend my thanks to our HOD, Prof. S. K. Rath for his valuable advices and

encouragement.

I am really thankful to my all friends Shakya S Das, Nipun Madan, Pallavi

Thummala, Apoorva Sachhan, Lov Kumar, Manish Sachdeva, Amit Pal (SD

Group). My sincere thanks to everyone who has provided me with kind words,

a welcome ear, new ideas, useful criticism, or their invaluable time, I am truly

indebted.

I would also like to thank specially Priyanka Bansal and Deepak Pal(Friend)

for standing besides me all the time and support me morally and ethically.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Mayank Mangal

Roll: 212CS3375

Abstract

Existing many systems were supporting task level parallelism usually involving

the process of task creation and synchronization. The synchronization of task

requires the clear definition about existing dependencies in a program or data-flow

restraints among functions(tasks), or data usable information of the tasks. This

thesis describes a method called Symbol-Table method which will used to exploits

and detects the task level parallelism at inner level of sequential C-programs.

This method is made up of two levels: a normal symbol table and an extended

symbol table. A sequential program of C language is the input to the normal

gcc compiler in which the procedures are defines as functions(tasks). Than we

generate a normal symbol table with specific command by gcc compiler in linux

as an output.Then we use the information of that symbol table for generating

the extended symbol table with additional information about variable’s extended

scopes and inner level function dependency. This extended symbol table is gen-

erated by the use of previously generated normal symbol table on the basis of

variable’s scope and L-value/R-value attributes. By that table we can identify the

functions and variables those who are sharing the common variables and those

who are accessing the different functions with extended scopes respectively. Then

we can generate the program dependency graph by the using of that extended

symbol table’s information with a specific java program. A simple program for

using this method has been implemented on a 64-bits linux based multiproces-

sor.Finally we can generate the Function graph for every variable in the program

with the help of table’s info and dependency graph’s states.From that graph we

can get the info about extended scoping of variables to identify and exploit the

task level parallelism in the program. Then we can apply the parallelism with

MPI or other parallel platforms to get optimized and error free parallelism.

Keywords: Task synchronization; Function dependencies; Symbol table; Program

Dpendency graph;

Contents

Certificate i

Author’s Declaration ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 2

1.1 Motivation . 2

1.2 Thesis Contribution . 3

1.3 Project Overview . 3

1.4 Thesis Organization . 4

2 Theoretical Background about parallelism 6

2.1 Types of Data dependence . 6

2.2 Loop level Parallelism . 9

2.3 Task level Parallelism . 11

2.4 Summary . 13

3 Literature Review 15

3.1 Review of Related Work . 15

3.1.1 SCHEDULE . 15

3.1.2 TDFL and LGDF2 . 16

3.1.3 COOL . 16

3.1.4 jade . 17

v

3.1.5 pTask . 18

3.1.6 Other Systems and Languages 18

3.2 Summary . 19

4 Proposed method and implementation 21

4.1 Introducton . 21

4.2 Our Proposal . 21

4.2.1 Basic concepts behind the proposed method 23

4.2.2 Design and implementation of the proposed method 28

4.3 Results . 33

4.4 Summary . 39

5 Conclusion and Future work 41

5.1 Conclusion . 41

5.2 Limitations and Future Work . 42

Bibliography 43

List of Figures

2.1 Execution graph for above parallel loops program 10

2.2 An example type of task graph . 11

4.1 The structure of a Compiler. 24

4.2 A sample of Function graph. 27

4.3 Dependency graph based on Table’s info 33

4.4 Function graph of g var. 35

4.5 Function graph of var i. 36

4.6 Function graph of var h. 36

4.7 Function graph of var x. 37

4.8 Function graph of var y. 37

vii

List of Tables

4.1 Generalized Symbol-table with Main Function 30

4.2 Symbol-table for add() Function 30

4.3 Symbol-table for sub() Function 31

4.4 Symbol-table for mul() Function 31

4.5 Symbol-table for div() Function 31

4.6 Extended Symbol-table for whole program 32

viii

Introduction

Motivation

Thesis Contribution

Project Overview

Thesis Organization

Chapter 1

Introduction

1.1 Motivation

Parallel programming is much more difficulties and erroneous than sequential pro-

gramming. It has much more complex outcomes from the requirement to control

the interactions among the concurrent tasks or processes. So, More intension is

required to confirm that the parallel source programs give the correct outcomes. A

currently working parallel source program is not a correct source program always.

Likewise, a error-free parallel source program does not always compulsorily results

in a good performance.So, to achieve the good performance and good efficiency,

a parallel program must have load balance,low overhead and the good data lo-

cality. In general, parallel programs are much complex and difficult to maintain

because they implement complex type of parallel behavior algorithms, and hold

platform-specific optimized source code.

The uninvited difficulties of parallel programming have energized research in

the range of parallelizing and rebuilding compilers. These parallelizing compil-

ers consequently discover parallelism in successive projects and rebuild them into

parallel projects. The lion’s share of parallelizing compilers [1] [2] [3] have con-

centrated on parallelism inside loops, where this parallelism gives outcome from

executing free cycles of a loop in a parallel way. That is usually called as loop level

parallelism. In spite of the fact that these type of parallelizing compilers take out

the requirement for parallel programming and are for the most part compelling,

later studies [4] [5] have indicated that they have some constraints, and that this

2

1.3 Project Overview

parallelism is not sufficient to use the all resources of the parallel computers.

So we finally came to task-level parallelism which provides a task(function)

as a procedure invocation,a program block or an arithmetic operation. A few

provisions are all the more characteristically communicated as an accumulation of

related tasks [6] [5]. Besides, for extensive provisions, it is important to exploit

the loop level parallelism and task level parallelisms [5]. On the other hand,

not like as parallel compilers, existing frameworks that using task level parallelism

interest programming exertion, which extends from needing to physically make and

synchronize of tasks to needing to program in diverse dialects and ideal models.

So because of this there is a requirement for frameworks that can exploit task level

parallelism with the sequential type of programs.

1.2 Thesis Contribution

This thesis describes a method called Symbol-Table method which will exploits and

identify task level parallelism at inner level of sequential C programs.The input to

the normal gcc compiler is a sequential C program in which the procedures taken as

functions(tasks). Than we generate a normal symbol table with specific command

by gcc compiler in linux and an extended Symbol-table to get the additional

info about the variables and functions as an data output.This method identify

and detect the tasks to exploit the parallelism while maintaining the programs

sequential steps. With this method we can identify the inner level dependencies

between tasks and results in good performance improvements. This method is not

much more applicable because of available compiler analysis, like by dependencies

that occurs within the sequential C programs.

1.3 Project Overview

This method is mainly composed of two levels: a normal symbol table and an ex-

tended symbol table. The input given to the normal gcc compiler is a sequential

C program in which the procedures taken as functions(tasks) with declarations.

For generate a normal symbol table we provide a specific command to gcc com-

3

1.4 Thesis Organization

piler in linux. Then we use the information of that symbol table for generating

the extended symbol table with additional information about variable’s extended

scopes, L/R-value attributes and inner level function dependency. This extended

symbol table is generated by the use of previously generated normal symbol ta-

ble on the basis of variable’s scope, Declared line and referenced line of variables

and functions with in the program. By that table we can identify the functions

and variables those who are sharing the common variables and those who are ac-

cessing the different functions with extended scopes respectively. Then we can

generate dependency graph based on that table’s information to get the clear un-

derstandings about the dependencies which are exists in the program. Finally

we can generate the Function graph for every variable in the program with the

help of table’s info and dependency graph’s states.From that graph we can get

the info about extended scoping of variables to identify and exploit the task level

parallelism in the program. Then we can apply the parallelism with MPI or other

parallel platforms to get optimized and error free parallelism.

1.4 Thesis Organization

The thesis is organized as follows: Chapter 2 discusses the Theoretical Background

about parallelism. Chapter 3 describes the Literature review done for this thesis.

Chapter 4 describes our proposed method design, implementation and results.

This method is implemented on a simple C source program for exploiting the task

level parallelism. Finally chapter 5 concludes with the summary of work done.

4

Theoretical Background
about parallelism

Types of Data dependence

Loop level Parallelism

Task level Parallelism

Summary

Chapter 2

Theoretical Background about
parallelism

This chapter gives an idea about many types of data dependence, loop level and

task level parallelism.

2.1 Types of Data dependence

This part describes about data dependence and its types. That data about de-

pendence is covered in literature [7] [8] [9] and presented here.

Data dependencies are occurs when two or more iterations, statements or op-

erations of a loop cycle can be executed in parallel.Basically four types of data-

dependencies are there:

� 1. True dependency: (also known as Flow Dependency) it occurs between

the two statements of a program, if the first statement write the data and

the second other statement read it later.

For example, in this program

St1: c = a + b

St2: d = c * 2

So from these statements it is clearly shown that here is a true dependency

exists between these statements St1 and St2, denoted as St1 St2, because

St1 writes var c and St2 reads var c.

6

2.1 Types of Data dependence

� 2. Anti Dependency: it occurs between the two statements in a program

segment if the first statement reads the data and the second other statement

writes it later.

For example, in the program

St1: c = a + b

St2: a = d * 2

So from these statements it is clearly shown that here is an anti dependency

between St1 and St2, denoted by St1 a St2, caused by variable a.

� 3. Output Dependency: it occurs between the two statements in a program

segment if the first statement writes the data and the second other statement

again writes it later.

For example, in the program

St1: c = a + b

St2: c = d * 2

So from these statements it is clearly shown that here is an output depen-

dency between St1 and St2, denoted by St1 o St2, because of variable c.

� 4. Input Dependency: it occurs between the two statements in a program

segment if the first statement reads the data and the second other statement

again reads it later.

For example, in the program

St1: c = a + b

St2: d = a * 2

So from these statements it is clearly shown that here is an input dependency

between St1 and St2, denoted St1 i St2, caused by variable a.

So these types of dependencies can be overcomes by variable renaming technique

[9]. The only actual dependency is true dependency.

7

2.1 Types of Data dependence

Dependencies can be occur between parts or instances of statements in a loop

cycle, when the same element(variable) of an array can accessed by two instances

of statements. If these having dependencies related to the same loop cycle then

the dependency is known as a loop independent dependency , and without syn-

chronization they can be executed parallel in a concurrent way .

For example, in the program

for i = 0 to N-1

St1: p[i] = q[i] + r[i]

St2: s[i] = p[i] + 1

endfor

Here it is clearly shown that the dependency that is exist here among the

instances of St1 and St2 are loop independent dependency; so, without synchro-

nization they can be executed parallel in a concurrent way. In such type of cases,

that loop is called as a parallel loop. however, if the instances relate to different-

different loop cycles, then that type of dependency is called as a loop carried

dependency, and without synchronization they can not be executed parallel in a

concurrent way.

For example,

for i = 0 to N-1

St1: p[i] = q[i] + r[i]

St2: s[i] = p[i-1] + 1

endfor

So it is clearly shown that a loop carried true dependency is here between the

St1 in iteration i and the St2 in iteration i + 1 where i = 0 to N - 1.

8

2.2 Loop level Parallelism

2.2 Loop level Parallelism

In light of the fact that this parallelism is obtained by having processors simulta-

neously operate the same type of operations over a same set of data thats by this

type of parallelism is also called data parallelism

So here is a parallel loops example:

St1:

Loop1: for i = 1 to M

x[i] = i

end for

St2:

Loop2: for j = 1 to N

y[j] = x[j]

end for

This parallelism is normally actualized on shared memory frameworks utilizing a

fork-join model.Above example shows that a program has two parallel type loops.

This source might execute like it takes after. St1 will be executed by solitary

thread called master thread. When Loop1 is arrived at, M-1 worker threads are

made, and every freely executes a cycle of Loop1 together with the master thread.

At the end of the Loop1 and before it returns to execute St2 the master thread

holds up the things till the worker thread finish their operations, . Likely, when

the Loop2 is reached, N-1 worker threads are made to execute the cycles of the

loop in the parallel way. Figure 2.1 illustrate the execution process of the above

program with an graph, where nodes shows the threads execution and edges shows

the threads dependencies.

In most of the parallel processors, a thread is to be assigned by more than one

iteration typically, since one emphasis for every thread may prompt inadmissible

overhead. The task

9

2.2 Loop level Parallelism

Figure 2.1: Execution graph for above parallel loops program

of emphases to threads is defined as scheduling the loop cycles. This schedul-

ing may be carried out statically or dynamically [10] [3].

The Loop level parallelism’s main point of focus is parallelizing compiler re-

search [1] [2] [3], After all, it is not without the limitations [4].

1. If a loop is able to be parallel then a parallelizing compiler system must be

able to determine statically. In some of the cases, the way in which the loop is

coded, like that,suppose dependency exists when it is not able to prove rather

then; otherwise such type of dependency may not be occur.

2. the appearance of these procedures in a loop of program causes the analysis to

be stable. Therefore, in the modular programs the parallelism may not be totally

exploited.

3. Data-parallelism may be useful when the data size is fit to the parallel machine’s

size. A literature [5] shows that the physical demands of the issue frequently make

it difficult to subjectively build the data set’s size for some of applications, and

the parallel machine’s resources doesn’t completely use by data parallelism alone.

Additionally, synchronization and communication overhead is developed with ma-

chine size with data parallelism; to make it less beneficial, apply more no of

processors to a single data parallel computation [11].

10

2.3 Task level Parallelism

2.3 Task level Parallelism

It is an another type of parallelism which is a group of co-operating tasks. A unit

of computation as task or procedure which can be as coarse-grain as a procedure

invocation or as fine-grain as an arithmetic operation that executes more and more

number of instructions. When the independent tasks are executing concurrently

then This type of Parallelism occurs. Tasks which are executing concurrently are

not in limited range to operating same type of set of operations in comparison to

data-parallelism.

Figure 2.2: An example type of task graph

The thought of data dependence could be reached out to tasks. In frameworks

where tasks are indicated by the data stream stipulations around the tasks, when

a task P generates some data worth which is needed by another task Q then it

is said that task Q is dependent on task P. Subsequently, task Q can’t begin its

execution until task P has finished its execution about the data. In frameworks

where the tasks are well synchronized to concurring a particular order, for example,

the successive order of data-access of the tasks, at that point when task P goes in

execution before task Q in execution then it is also said that task Q is dependent on

task P, furthermore the same data is written by either P or Q. For that situation,

task Q can’t begin its execution until the task P has completed its execution of the

data.In both of the situations, we are referring the task P as the pre-requisite task

and task Q referred as the dependent type task on P. A graph i.e. which is used to

represent the dependencies among the tasks is called task graph. The task graph

11

2.3 Task level Parallelism

is a directed type acyclic graph in which the nodes are representing the tasks and

the edges are showing the dependencies between the tasks. The source and sink

of a dependency edge is a pre-requisite task and a dependent task respectively. In

general, when a pre-requisite task completes its execution then only a dependent

task can execute.

For example, A task graph is represented in figure 2.2 of a program. In this the

task is taken as a procedure invocation. The program execution would be follows

like as. First of all Task ’init’ will execute because of no pre-requisite tasks it has.

After the completion of the task ’init’ three ’comp’ type tasks will be execute in

parallel. Another task ’sum’ will begin its execution when the first two ’comp’

tasks will finish their executions, and the another task ’collect’ will executes when

the last two ’comp’ tasks will finish their execution. So it is clearly shown in

example that the results of parallelism occurs from executing the 3 ’comp’ tasks

in parallel, and the tasks ’sum’ and ’collect’ are executing concurrently.

In general the Task-level parallelism is much more flexible than the Loop-level

parallelism. Because as example, the tasks can be executed concurrently which

are performing the same set of operations across the same set of data, compare

to as data parallelism. Furthermore,the tasks can be executed concurrently which

are performing different type of operations on the different type of sets of data also.

Nonetheless, the adaptable behavior of this task-level parallelism prompts a

few drawbacks. As opposed to building parallelizing tools concentrating on a par-

ticular programming developed loop, different languages or frameworks have been

made to help diverse kinds of task-level parallelism. According to their mean-

ing of the task the frameworks changes; according to the time on which tasks

are made;according to the systems which is used to help in task synchronization

and communication between tasks; and additionally according to the program-

ming languages and standards used to exploit the parallelism. Hence, to exploit

the task-level parallelism, a developer should first pick a framework, and either

12

2.4 Summary

broadly adjust the sequential type of C-programs or modify them in the standard

or programming languages needed by the framework.

2.4 Summary

This chapter gave a conceptual background on data dependencies, loop level and

task level parallelism. It likewise discussed about a few points of interest or ad-

vantages of task level over loop level parallelism.

13

Literature Review

Review of Related Work

SCHEDULE

TDFL and LGDF2

COOL

Jade

pTask

Other Systems and Languages

Summary

Chapter 3

Literature Review

The chapter represents and discusses about the related work for exploitation of

task level parallelism. This chapter depicts a few frameworks that supports task-

level parallelism, centering on the system for expressing parallelism and the pro-

gramming exertion. Specifically, it depicts SCHEDULE, LGDF2, TDFL, COOL,

and Jade. Different frameworks, for example, Hypertool, Fortran M, PYRROS,

and Fx are likewise talked about.

3.1 Review of Related Work

3.1.1 SCHEDULE

SCHEDULE [12] is a Fortran language type library package which is used to ex-

press inter-task dependencies. A task as a subroutine call is taken in SCHEDULE

system. The developer supply a remarkable identifier for each one task to un-

equivocally determines its dependence connections, the amount of essential tasks,

and the amount of dependent tasks and identifiers those are related to these tasks.

In actuality, the developer manually produces task graphs.

SCHEDULE system has some advantages like, During the process of task syn-

chronization it has little run time overhead because dependencies between the

tasks are specified explicitly by the programmer. However, The SCHEDULE has

some disadvantages like.

1. From a sequential c program or complex algorithm it is not possible always to

deduce it to correct task graph but here the programmer must have to describe

15

3.1 Review of Related Work

the graph in the form of an algorithm for create a task graph.

2. Mainly in the time of the maintenance the system programmer must have to

specify the existing dependencies between the tasks manually,that is may be er-

roneous process.

3. The task graphs which are used in SCHEDULE system are static in nature

thats by the dependencies can’t be changed among the tasks and once the pro-

gram begins to execute the new tasks cannot be merged to the task graph. So the

programmer must have a priori knowledge about the structure of computation to

generate the task graph.

3.1.2 TDFL and LGDF2

TDFL stands for Task Level Dataflow Language [13] and LGDF2 stands for Large

Grain Data Flow [14] both are the parallel languages that provide the facilities

to programmers to express the synchronization and concurrency with data-flow

graphs. In data-flow graph the node shows task and edge represent the data-

flow between the nodes. In both of languages the task is taken as a procedure.

In a given data-flow graph, the framework executes tasks as per the data-flow

obligations.

TDFL and LGDF2 both are the same type of languages and have some advan-

tages over the SCHEDULE system.

1. They require only specification of data-flow constraints among the tasks, in

place of the explicit specified inter task dependencies.

2. They propose graphical interface to understand the specification about data-

flow graphs.

3. They propose the programming platforms to support the dynamic task cre-

ation. After all, these systems still trouble the developer with the throwing of

algorithms and programs into data-flow diagrams.

3.1.3 COOL

It is a Concurrent Object-Oriented Language (COOL) [15] which is determined

by C++ and using some constructs to point out the concurrency. In COOL a task

16

3.1 Review of Related Work

is taken also as a procedure that is proclaimed as a parallel task. An instance of

task is dynamically made at the point of parallel procedure. COOL executes the

tasks consequently that work on distinctive objects in the parallel way. COOL

uses mutex procedure.

For further exploiting the concurrency inside an object, developer can make

the object from littler objects.

COOL has many advantages compare to others.

it gives to the programmer more commonplace programming ideal model. Further-

more,it gives mutex for the synchronization and creation of the tasks. Moreover,

there is no compelling reason to define the algorithms as task or data-flow graphs.

COOL also has two drawbacks with respect to physically making objects from

littler objects.

1. Created object’s accesses could be prohibitive. Such as, a row wise parallel type

matrix in a program of matrix class can’t be simultaneously accessed as column

wise.

2. If the object is a vector of little base objects,on the other hand, requests

comparative effort to parallel programming utilizing explicit concurrent primitives.

3.1.4 jade

Jade [18] [17]is also a parallel type programming language which is based on

C++. It permits the programmer to specify the dynamic coarse-grain parallelism.

In Jade a task is taken as a program block that is commented by programmer

with data utilization information of that block(side-effects). To define a task as a

program block, the programmer constructs the data being accessed in the block;

such code is referred to as side-effect. The Jade uses Tokens to point out the

side-effects of shared data.

Jade likewise goes to exploit concurrency around objects and inside an object.

Dissimilar to COOL, in which programmer should physically form the objects, a

Jade programmer just need to utilize tokens to logically divide the objects.The

major disadvantage is number of tokens may be large for larger data. Such as,

to exploiting the parallelism around tasks accessing to disjoint different different

17

3.1 Review of Related Work

parts of a vector.

3.1.5 pTask

pTask [16] is a compiler which take a sequential program as input and provide a

parallel program as output, exploiting the task level parallelism with the help of

SIGMA II tool kit. This illustrates the functions of the compile-time module and

run-time module.

Disadvantage is dependency analysis is taking place at run time module so it

has High run-time overhead.

3.1.6 Other Systems and Languages

Pyrros [20] implemented by Yang and Gerasoulis , it allows only static task-

parallelism and estimates of task execution times must be provided by the pro-

grammers. As a output the system produces the program and scheduling of tasks

to the processors.

Fortran M [11] is a language which is subset of Fortran extensions. A pro-

grammer uses its features to define tasks which are like procedures, to explain

that the tasks are to be executed in a concurrent way, and to define communi-

cation around tasks. Tasks communicate with the help of sending and receiving

information individually, i.e., by message passing task synchronization is achieved.

Gross, OHallaron, and Subholk Fx [21] is a compiler which is designed and

implemented based on HPF. To exploit the task parallelism it allows the pro-

grammers to extends HPF. In which task is defined as a procedure invocation,

but in parallel sections of program which are defined by programmer it prevent

the parallelism. So, programmers require to supply directives that can specify the

input and output parameters of each and every task, and the mapping of tasks

onto processors.

18

3.2 Summary

3.2 Summary

This chapter gave a review of related work, with the existing frameworks or sys-

tems, shows more programming efforts are required to gain task level parallelism.

19

Proposed method
and implementation

Introduction

Our Proposal

Results

Summary

Chapter 4

Proposed method and
implementation

4.1 Introducton

The proposed method of this research work motivated by the task level paral-

lelism [16] to exploit the parallelism at inner level of functional dependencies in a

sequential c program. The idea of the proposed method developed here only to

identify the inner level dependencies of tasks(functions) statically at compile time.

For exploiting the concurrency with Task level parallelism we have implemented

a simple sequential c program with four functions on the Linux OS with gcc com-

piler. Here we are targeting the general workings of the compiler about symbol

table creation.From that symbol table we are generating the Extended symbol ta-

ble with additional information about variables and functions of program. From

that table we can identify the inner dependencies of functions in a program and

by the functional graph we can show the relation between functions about the

dependencies. We are using ”NetBeans” tool with java platform for generating

the dependency graph of program by using that Extended symbol table data in

java program.

4.2 Our Proposal

Exploitation of Task level parallelism with Symbol-Table method:

our objective is ”if 2 functions have common variable then they can not execute

21

4.2 Our Proposal

parallel(because they are accessing the same memory location of common vari-

able). How these functions are accessing the same memory location?” For proving

this we are using symbol table analysis.

According to our proposal there are three levels to solve that problem.

� Generalized Symbol-table.

� Extended Symbol-table.

� Dependency and Function graph representation.

first we are taking a simple sequential c program as input to the gcc compiler with

the Linux OS.Then with the specific commands

(i.e. gcc filename.c -o filename

gcc -c filename.c

readelf -a filename.o)

We can generate internal process of execution and compilation of program(Executable

Locate File(ELF)). It has all information about program like ELF Headers, sec-

tion headers, section groups, program headers, key to flags, relocation sections,

unwind section and most important ”Symbol-table”. From that we can generate

the generalized Symbol-table with information like:

1. Name of Variables and Functions

2. Characteristics Class

3. Token id

4. Scope of Variable and Function

5. Declared line

6. Referenced line

7. Other information like parameters used by functions.

Then for getting the Scope information we generate the Symbol-table for every

function which is present in the program.

After generating the generalized Symbol-table with all this information we can

22

4.2 Our Proposal

generate the second level of this method which is called ”Extended Symbol-table”

with the additional information about extended scopes of variables and the L-

value/R-value attributes of the variables as output with the help of previously

generated generalized Symbol-table. In that Symbol-table clear information is

provided about extended scopes of the variables and L-value/R-value attributes

of the variables. For ”Extended Symbol-table” the attributes are:

1. Name of Variables and Functions.

2. Scope of Variables and Functions.

3. Declared Line of Variables and Functions in program.

4. Referenced Line of Variables and Functions.

5. Extended Scope of Variables and Functions.

6. L/R value attributes.

On the basis of Declared line and Referenced line we can draw the dependency

graph with the help of java based program of NetBeans tool. And on the basis

of Extended scope and L-value attribute we can represent the function graphs

manually regarding the information about variables those are changing their scopes

with L-value attribute. From these graphs we can easily identify the dependencies

among functions and which functions can execute parallel to each other.

4.2.1 Basic concepts behind the proposed method

This section will give you the little bit description about working principles of

Symbol-table and scopes. And also little bit about L-value/R-value concept, Bind-

ing and function graph.

Symbol-table and scopes

Basically Symbol-table is a type of data structure which is used by compilers to

store the information about the source program. In figure 4.1 the structure of a

compiler is presented. Basically compiler has two parts:

� 1. Analysis part: (also known as Front end) it consist of Lexical analyzer,

Syntax analyzer and Semantic analyzer. The Analysis part collects all in-

23

4.2 Our Proposal

Figure 4.1: The structure of a Compiler.

formation about the source program and store it in a data structure that is

called Symbol-table. Which is passed to the Synthesis part.

� 1. Synthesis part: (also known as Back end) it consist of Code optimizer

and Code generator phases. The Symbol-table is used by Synthesis part.

A compiler record the variable names and collect the information regarding

various attributes of every name which are used in source program. These at-

tributes provide the information about the its scope, its type, procedure names,

number of its arguments and their types,storage allocated for a name, method of

passing of each argument and the return type.

Symbol-table is created by the compiler from AST just before the byte code

is created. The Symbol-table is very much responsible for calculating the scopes

of each identifier in the source code. Symbol-table typically required to support

more than one declaration of the same identifier in a source program. The portion

of a program to which the declaration applies is called the declaration of a scope.

We shall implement the scopes by generating the separate Symbol-table for each

24

4.2 Our Proposal

and every scope.

In general The names are binded to their associated information then it is

called Symbol-table.

Binding:- Ability to provide name objects such as variables, functions and their

types in the programming languages is an important concept. Each such type of

named objects will have a declaration, where the name is defined as a synonym

for the object, that is called binding. The declaration of a name has limited scope.

In general a pair of a name and its associated information is called binding and

a Symbol-table has a list of such type of binding.For accomplish the Symbol-table

we need to perform a number of operations on Symbol-table. That are:

� 1. Empty

� 2. Binding

� 3. lookup

� 4. Enter

� 5. Exit

L-value and R-value expressions

The expressions that refers to memory locations are known as L-value expres-

sions.An l-value represents a store region called ”locater” value, or a left value,

showing that it can be appear only on the left side of equal sign(=). L-values are

often as identifiers. L-value expressions that are referring to modifiable locations

are called ”modifiable l-values”.For example:

A = 3;

Here, A represent an identifier and name which denotes the storage location. and

3 is denotes what stored at the location.

Any of the following C expressions can be L-value expressions:

25

4.2 Our Proposal

� 1. An identifier of integer,float,pointer,structure or union type.

� 2. A subscript ([]) expression that doesn’t evaluate to an array.

� 3. A member selection expression (−− > or.).

� 4. A unary indirection (*) expressionthat doesn’t refer to an array.

� 5. An L-value expression which is in parentheses.

� 6. A constant object like as a non-modifiable L-value.

The term R-value is used to describe the actual value of an expression and to

differ it from L-value.

An assumption is there that is: ”All L-values are R-values but vise-versa is not

right”.

For example:

int var;

var = 3;

Here it is correct representation but

3 = var;

(var+1) = 3;

it is not a correct representation because assigning to them makes no semantic

means i.e. there’s no where to assign to.

L-value to R-value conversion is possible

For example:

int p = 5;

int q = 6;

int r = p + q;

Here, p and q are L-values in first two lines and in third line these are R-values.

But R-value to L-value conversion is not possible because this would violate

the nature of a L-value.

26

4.2 Our Proposal

Function graph

It is a graph which shows the relationships among the functions like as one to

one, one to many, many to many or self loops. It shows the clear view about

dependencies between functions through the scoping(actual or temporary).

On the basis of Dependency graph and Extended Symbol-table’s in-

formation we can generate the Function graph. In figure 3.2 a Function graph is

shown.

Figure 4.2: A sample of Function graph.

Here, the circles are representing the different-different scopes of the source

program which is indirectly representing the different functions. The numbers in

the circles representing the line numbers of the source program. The solid line

representing the Actual scoping between functions and the dotted line represent-

ing the Temporary scoping i.e. for printf functions or for R-value expressions.

So, from the dependency graph and this Function graph we can evaluate the

results of our proposed method.

27

4.2 Our Proposal

4.2.2 Design and implementation of the proposed method

Our proposed method is based on Symbol-table design and implementation. Here

Symbol-table designing process is divided in to mainly two parts.

� Generalized Symbol-table.

� Extended Symbol-table.

So for designing and implementing using this Symbol-table analysis method we

have taken a simple and small sequential C-program. The source code of that

program is given here:

Program source code

#include <stdio.h>

#include<conio.h>

int g = 10;

int I = 15;

Int *h;

int add(int a, int b)

{

a = a + b;

g = a + b;

}

int sub(int a, int b)

{

a = g - b;

g = *h - b;

}

int mul(int *a, int *b)

{

*a = *a * *b;

*b = *h * *a;

}

int div(int *a, int *b)

{

*a = *a / *b;

*h = *h / *b;

}

int main ()

{

printf(in main1 I m = %d %u, g,&g);

Int x = 10;

int y = 5;

int sum = 0, minus = 0;

28

4.2 Our Proposal

int multi = 0, divide = 0;

h = &I;

sum = add(x,y);

minus = sub(x,y);

multi = mul(&x , &y);

divide = div(&x , &y);

printf(in main2 I m = %d %u %d %d %u, g,&g,x,I,&i);

return 0;

}

it is a 40 line simple source program which has mainly four functions i.e. add(),

Sub(), mul(), div(). These functions are sharing some common variables.The

variables are used in this program are g,h,i,a,b,x and y in which g,h and i are

global variables and rest are local variables of different functions. Because of the

data inconsistency these functions can’t execute with parallel platform. So, For

finding the inner dependencies among the functions we are using this Symbol-table

method.

So first we generate the Symbol-table by gcc compiler with specific commands

on Linux platform. Than from that table we can generate the ”Generalized

Symbol-table” using unordered-listed data structure on the basis of some impor-

tant attributes like Name, Char class, Token id, Scope, Declared line, Referenced

Line and other info about variables and functions in the program.

29

4.2 Our Proposal

We can generate a separate Symbol-table for each scope(function) which is

used in the source program.The ”Generalized Symbol-table” for that above

program is shown in table 4.1, 4.2, 4.3, 4.4, 4.5:

Table 4.1: Generalized Symbol-table with Main Function
Name Char class Token id Scope Dec. line Ref line others

g var int id < 1 > o(global) 3 9,13,14,28,38 -

i var int id < 2 > o(global) 4 5,14,19,24,38 -

h ptr var int id < 3 > o(global) 5 14,19,24 -

add func. int - 1 6-10 34 two parameters a,b

sub func. int - 2 11-15 35 two parameters a,b

mul func. int - 3 16-20 36 two parameters a,b

div func. int - 4 21-25 37 two parameters a,b

main func. int - 5 26-40 - -

x var int id < 12 > 5 29 34,35,36,37,38 -

y var int id < 13 > 5 30 34,35,36,37 -

sum var int id < 14 > 5 31 34 -

minus var int id < 15 > 5 31 35 -

multi var int id < 16 > 5 32 36 -

div var int id < 17 > 5 32 37 -

Table 4.2: Symbol-table for add() Function

Name Char class Token id Scope Dec. line Ref line others

a var int id < 4 > 1(local) 6 8,9 -

b var int id < 5 > 1(local) 6 8,9 -

30

4.2 Our Proposal

Table 4.3: Symbol-table for sub() Function

Name Char class Token id Scope Dec. line Ref line others

a var int id < 6 > 2(local) 11 13 -

b var int id < 7 > 2(local) 11 13,14 -

Table 4.4: Symbol-table for mul() Function

Name Char class Token id Scope Dec. line Ref line others

a var int id < 8 > 3(local) 16 18,19 -

b var int id < 9 > 3(local) 16 18,19 -

Table 4.5: Symbol-table for div() Function

Name Char class Token id Scope Dec. line Ref line others

a var int id < 10 > 4(local) 21 23 -

b var int id < 11 > 4(local) 21 23,24 -

This is a Generalized Symbol-table for above program which contains the infor-

mation about variables and functions like name,type,token-id,scope,declared line

in program, referenced line in program etc. Now on the basis of scope,declared line

and referenced line we can generate the ”Extended Symbol-table” with additional

information about variables like extended scopes and L/R-values attributes.

The Extended Symbol-table over the Generalized Symbol-table is shown in table

4.6. From this table we can get the additional info about variables like Extended

scopes and L/R-value on the basis of reference lines. We can get the common

variables from this table those are shared by functions.The variables those have

Extended scopes with L-value attributes are comes in focus only.

So with the help of this additional information we can go to generate for inner

dependency graph and Function graphs as result.

31

4.2 Our Proposal

Table 4.6: Extended Symbol-table for whole program
Name Scope Dec. line Ref. line Extended scope Value(L-R)

g 0(global) 3 9 1 L-value

g 0 3 13 2 R-value

g 0 3 14 2 L-value

g 0 3 28 5 -

g 0 3 38 5 -

i 0(global) 4 5 local -

i 0 4 14 2 R-value

i 0 4 19 3 R-value

i 0 4 24 4 L-value

i 0 4 38 5 -

h 0(global) 5 14 2 R-value

h 0 5 19 3 R-value

h 0 5 24 4 L-value

add 1 6-10 34 5 -

a 1(local) 6 8,9 local L-val,R-val

b 1(local) 6 8,9 local R-val,R-val

sub 2 11-15 35 5 -

a 2(local) 11 13 local L-value

b 2(local) 11 13,14 local R-val,R-val

mul 3 16-20 36 5 -

a 3(local) 16 18,19 local L-val,R-val

b 3(local) 16 18,19 local R-val,L-val

div 4 21-25 37 5 -

a 4(local) 21 23 local L-value

b 4(local) 21 23,24 local R-val,R-val

main 5 26-40 - local -

x 5 29 34 local -

x 5 29 35 local -

x 5 29 36 3 L-val,R-val

x 5 29 37 4 L-value

x 5 29 38 local -

y 5 30 34 local -

y 5 30 35 local -

y 5 30 36 3 R-val,L-val

y 5 30 37 4 R-val,R-val

sum 5 31 34 local -

minus 5 31 35 local -

multi 5 32 36 local -

divide 5 32 37 local -

32

4.3 Results

4.3 Results

As we have completed both parts of this Symbol-table analysis method.Now we can

generate the inner-Dependency graph with the help of both tables with Declared

line and Reference line. The figure 4.3 shows the dependency graph on the basis of

declared and referenced line. This dependency graph is generated by the NetBeans

tool which is a java based platform tool. With the help of a java program we are

creating a .txt file. Than we are putting the information about declared line,

referenced line and number of lines from the generated tables into the .txt file.

Than we can execute that java program to get the inner-dependency graph. In this

graph the nodes or circles represent the line number at which the variable declared

or referenced in the program. And the edges represent the data dependencies from

declared line node to referenced line node.

Figure 4.3: Dependency graph based on Table’s info

In this Dependency graph, black color edges representing Data dependencies

between nodes(lines) and blue color edges representing temporary dependencies

and red color edges representing the referential dependencies. With the help of

33

4.3 Results

this dependency graph and Extended Symbol-table’s additional information we

can generate the ”Function graph” finally.

Function graph

On the basis of Dependency graph and Extended Symbol-table’s information like

L-value attribute(only) and extended scope of variables through referenced line

we can get the data to draw the Function graph.

The data is like that:

� g{0,3} −→ [{1,9}{2,14}{5,(28,38)}]

� i{0,4} −→ [{4,24}{5,38}]

� h{0,s} −→ [{4,24}]

� x{5,29} −→ [{3,36,18}{4,37,23}]

� x{5,30} −→ [{3,36,19}{4,37,(23,24)}]

The expressions is written as like: the description of first expression data is:

Here, the left hand side data of an arrow represents the info about variable, for

which we have to generate the Function graph.The info is, g is a variable which is

defined in scope 0 and declared at line 3 in the program.And the right hand side

data of an arrow represents the info about variable g that what are the extended

scopes of g with-in it is used.i.e. in scope 1 on line 9 (which is referenced line of

g) variable g is used.like that it is all the data about var g.

Like that for variables h,i,x and y that data is given by expressions. on the

basis of that data we can generate the graph. From these graphs we can conclude

some assumptions about explot the task level parallelism that:

� 1. 1 to 1 scoping is allowed between scopes.

� 2. self-loop is allowed(local scoping).

34

4.3 Results

� 3. 1 to many scoping is not allowed.

Figure 4.4 shows the Function graph for var g. The Function graph clearly shows

Figure 4.4: Function graph of g var.

that var g is declared in scope 0 at line 3 which is global scope and referenced to

different-different extended scopes, in which in scope 1 which is add() function,

at line number 9 with L-value attribute it is used.Like that in scope 2 it is used

also.In scope 5 it is also used but not with L/R-value attributes, so it is showing

as temporary scoping for printf() function.

By analyzing this particular graph we can say that there are problem for going

to parallel with these referencing scopes (functions). Because both functions are

using the same var g. In these scopes the value of var g can be modified, so they

can’t go parallel to each other.

35

4.3 Results

Like that Figure 4.5 shows Function graph for var i, Figure 4.6 shows Function

graph for var h, Figure 4.7 shows Function graph for var x and Figure 4.8 shows

Function graph for var y.

Figure 4.5: Function graph of var i.

Figure 4.6: Function graph of var h.

36

4.3 Results

Figure 4.7: Function graph of var x.

Figure 4.8: Function graph of var y.

From figure 4.5 which is showing Function graph for var i, we can evaluate

that var i is used by only scope 4 (div() function) with actual scoping(Extended

scope + L-value attribute only). By scope 5 it is used as temporary scoping.So

37

4.3 Results

there are no problem with var i. Like wise figure 4.6 showing function graph for

var h, in which it is clearly shown that var h has only one actual scoping in scope

4. According to assumption 1 to 1 scoping is allowed between scopes so there are

no problem with var h.

Figure 4.7 showing the Function graph for var x, in which because of refer-

encing dependency which is identified by dependency graph var x is referenced

through scope 5 to scope 3. by graph it is clear that there 1 to many actual

scoping is present between scopes for var x. So these specific scoping-functions are

sharing common var x, thats by they can’t execute parallel to each other. Like

wise figure 4.8 showing function graph for var y, in which it is clearly shown that

var y has 1 to 1 actual scoping in scope 3. So there are no problem with variable y.

After analysis of all these graphs finally we can say that:

� add() function and sub() function can’t be execute parallel because of var

g’s 1 to many actual scoping.

� mul() function and div() function also can’t be execute parallel because of

var x’s 1 to many referencing actual scoping.

� add() and mul() or add() and div() may be execute parallel because there

are no dependency or scoping conflict between these functions.

� Also sub() and mul() or sub() and div() may be execute parallel because

there are no dependency or scoping conflict between these functions.

38

4.4 Summary

4.4 Summary

This chapter describes the design,implementation and results of our proposed

method i.e. Symbol-table method. We have implemented this method on a simple

C-program with four simple functions. From the parts of this method we are get-

ting all the information about variables and functions and finally we are getting

the results in form of Dependency graph and Function graph. From these graphs

we can exploit the parallelism as a Task Level Parallelism in the program.

39

Conclusion and Future work

Conclusion

Limitations and Future Work

Chapter 5

Conclusion and Future work

5.1 Conclusion

The Loop level parallelism had some limitations which are solved by the task level

parallelism. After all, with the currently existing frameworks also those support

this type of TLP, a system programmer must make the executable updates to the

sequential C source program to achieve the required level of task parallelism.In

this thesis this work has been done using a method is called Symbol-table method

at the time of compilation. This method has basically two different parts i.e.

Generalized Symbol-table generation and Extended Symbol-table generation.By

these parts of the method we can get the additional information like reference

line, declared line, scope, extended scope and L/R-value attributes about the

variables and functions which is used in the source program. With the help of

this information first we can draw the program dependency graph and after that

with whole information about variables we can generate the Function graph for

each variable.From that graph we can clearly evaluate the inner level dependencies

among the functions and extended scoping information about variables. On the

basis of that information we can detect and exploit the task level parallelism.Then

we can apply the parallelism with MPI or other parallel platforms to get optimized

and error free parallelism.

41

5.2 Limitations and Future Work

5.2 Limitations and Future Work

This method has some limitations because of the quality of available compiler’s

analysis, data dependencies that occurs in the sequential C-programs and the

choice of only functions as tasks as units of parallelism.The Symbol table method

we are using to get information about variables and functions, is generated man-

ually. So the correct exploitation of parallelism depends on the correctness of the

symbol table, which totally depends on the programmer. So we suggest some

future work for Symbol-table method to exploit the Task Level parallelism in gen-

eral. To generate the generalized and extended symbol tables with correct and all

additional information for program we have to improve the quality of compiler’s

analysis. The next one is that if we want to implement an analysis module that

provides side-effects of the statements in a program. Then, in place of providing a

wide set of features like as side-effect analysis,code generation and manipulation

and dependency analysis, this will concentrate on the information that would help

systems to support task level parallelism. This module should be able to accu-

rately describe the accesses of Symbol-table to dynamic data structures such as

linked-lists and trees.To identify the recursive procedure’s data accesses is also a

challenge.

42

Bibliography

[1] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M.

Mellor-Crummey, L. Torczon, and S. K. Warren, “The parascope parallel

programming environment,” Proceedings of the IEEE, vol. 81, no. 2, pp. 244–

263, 1993.

[2] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiler optimizations for

fortran d on mimd distributed-memory machines,” in Proceedings of the 1991

ACM/IEEE conference on Supercomputing, pp. 86–100, ACM, 1991.

[3] C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat, C. L. Lee, B. P.

Leung, and D. A. Schouten, “The structure of parafrase-2: An advanced

parallelizing compiler for c and fortran,” in Selected papers of the second

workshop on Languages and compilers for parallel computing, pp. 423–453,

Pitman Publishing, 1990.

[4] R. Eigenmann and W. Blume, “An effectiveness study of parallelizing com-

piler,” in Proceedings 20th International Conference Parallel Processing 1991,

vol. 2, p. 17, CRC Press, 1991.

[5] J. Subhlok, J. M. Stichnoth, D. R. O’hallaron, and T. Gross, “Exploiting

task and data parallelism on a multicomputer,” in ACM SIGPLAN Notices,

vol. 28, pp. 13–22, ACM, 1993.

[6] H. Printz, H. Kung, T. Mummert, and P. Scherer, “Automatic mapping of

large signal processing systems to a parallel machine,” in 33rd Annual Tech-

incal Symposium, pp. 2–16, International Society for Optics and Photonics,

1989.

43

Bibliography

[7] U. K. Banerjee, Dependence analysis for supercomputing. Kluwer Academic

Publishers, 1988.

[8] G. Goff, K. Kennedy, and C.-W. Tseng, Practical dependence testing, vol. 26.

ACM, 1991.

[9] D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for super-

computers,” Communications of the ACM, vol. 29, no. 12, pp. 1184–1201,

1986.

[10] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A method for

scheduling parallel loops,” Communications of the ACM, vol. 35, no. 8,

pp. 90–101, 1992.

[11] M. Chandy, K. Kennedy, C. Koelbel, C.-W. Tseng, et al., “Integrated support

for task and data parallelism,” International Journal of High Performance

Computing Applications, vol. 8, no. 2, pp. 80–98, 1994.

[12] J. J. Dongarra and D. C. Sorensen, “A portable environment for developing

parallel fortran programs,” Parallel Computing, vol. 5, no. 1, pp. 175–186,

1987.

[13] P. A. Suhler, J. Biswas, K. M. Korner, and J. C. Browne, “Tdfl: A task-level

data flow language,” Journal of Parallel and Distributed Computing, vol. 9,

no. 2, pp. 103–115, 1990.

[14] R. G. Babb II and D. C. DiNucci, “Scientific parallel processing with lgdf2,” in

Proceedings of the third SIAM Conference on Parallel Processing for Scientific

Computing, pp. 307–311, Society for Industrial and Applied Mathematics,

1987.

[15] R. Chandra, A. Gupta, and J. L. Hennessy, COOL: A language for parallel

programming. Computer Systems Laboratory, Stanford University, 1989.

[16] S. Huynh, Exploiting task-level parallelism automatically using pTask. Uni-

versity of Toronto, 1996.

44

Bibliography

[17] D. Scales, M. Rinard, M. Lam, and J. Anderson, “Hierarchical concurrency

in jade,” in Languages and Compilers for Parallel Computing, pp. 50–64,

Springer, 1992.

[18] M. S. Lam and M. C. Rinard, “Coarse-grain parallel programming in jade,”

in ACM SIGPLAN Notices, vol. 26, pp. 94–105, ACM, 1991.

[19] M.-Y. Wu and D. D. Gajski, “A programming aid for hypercube architec-

tures,” The journal of Supercomputing, vol. 2, no. 3, pp. 349–372, 1988.

[20] T. Yang and A. Gerasoulis, “Pyrros: static task scheduling and code genera-

tion for message passing multiprocessors,” in Proceedings of the 6th interna-

tional conference on Supercomputing, pp. 428–437, ACM, 1992.

[21] T. Gross, D. R. O’Hallaron, and J. Subhlok, “Task parallelism in a high

performance fortran framework,” IEEE Concurrency, vol. 2, no. 3, pp. 16–

26, 1994.

45

	Certificate
	Author's Declaration
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contribution
	Project Overview
	Thesis Organization

	Theoretical Background about parallelism
	Types of Data dependence
	Loop level Parallelism
	Task level Parallelism
	Summary

	Literature Review
	Review of Related Work
	SCHEDULE
	TDFL and LGDF2
	COOL
	jade
	pTask
	Other Systems and Languages

	Summary

	Proposed method and implementation
	Introducton
	Our Proposal
	Basic concepts behind the proposed method
	Design and implementation of the proposed method

	Results
	Summary

	Conclusion and Future work
	Conclusion
	Limitations and Future Work

	Bibliography

