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1 INTRODUCTION AND LITERATURE REVIEW 

In this section, the problem has been introduced by the detailed explanation of the 

phenomena and its occurrence. The practical applications of the phenomena have been 

discussed with the literature review covering the work that has already been done. The gaps 

in the literature have been pointed out and the aims and objectives of the present work, in 

accordance with the gaps found, have been listed. 

1.1 Introduction 

Entrainment is a multiphase phenomenon. It is the process of drawing away of one fluid 

because of the motion of another fluid or body. When one fluid moves through another 

fluid, it tends to drag the other fluid with it. This dragging can be observed when an air 

bubble moving upwards in a fluid tries to break through the surface and it splashes the 

liquid. This happens so because the momentum of the air bubble caused the liquid to 

move upwards with it. The surface tension of the liquid prevents it from breaking off the 

surface. Entrainment of air into liquid is observed when filling a bucket with water from 

a tap. The air around the surface of the water where the stream of the tap is present gets 

sucked into the water with the flow of stream from the tap. 

In this work the stress is laid upon inertial entrainment- entrainment caused by inertia 

forces. When a gas bubble is injected into a liquid, the bubble experiences an upward 

force due to buoyancy. If the bubble is injected into the denser liquid of a two layer 

stratified liquid-liquid system, the bubble tries to move upwards since density of gas is 

lesser than that of both liquids. As the bubble crosses the interface of the two liquids, it 

tries to take some of the denser liquid into the rarer liquid region. Due to momentum, a 

part of the denser liquid which is attached to the bubble separates from the main and 
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travels into the rarer liquid. Soon afterwards, due to weight the detached denser liquid 

separates from the bubble and travels downwards whereas the gas bubble continues to 

move upwards. This dragging of denser liquid into rarer liquid by the gas bubble is called 

inertial entrainment.  

Entrainment process can be seen both in natural and artificial events. Cyclonic winds and 

weather storms include stratified layer of air and water phases. Many turbulent weather 

conditions can be explained on the basis of entrainment. Different artificial purposes also 

utilize the phenomenon of entrainment. One of the examples is an educator pump. These 

pumps are used in ships to extract water in case of water leakage into the ship. The pump 

is used to remove the air and the water inside the ship is entrained out by the suction of 

the pump. Entrainment is used for air bubble entrapment in concrete. This helps to 

strengthen the concrete. Entrainment is also observed in the making of emulsion of one 

fluid in another, such as margarine. As for artificial processes with stratified liquid layers, 

the best examples metal extraction industries and nuclear reactors. In both cases gases 

are formed within liquid layers and cause entrainment. This is unwanted as entrainment 

causes mixing between two liquids. However in case of desalination plants and other 

places where mixing is desired, entrainment is enhanced purposely. The mixing of two 

fluids is generally done by bubbling gas through a tank containing the two fluids. These 

type of systems are called gas bubble stirred tanks. 

1.2 Literature Review 

There is a wealth of literature present for the study of entrainment phenomenon. Much 

work has been done to study the various parameters, effects, and other details of the 

phenomenon. Investigations have been done earlier in all forms- experimental, analytical 

and numerical.  
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Liu and Peng (2014) have studied the entrainment of clay minerals in flotation. The study 

is done for both tap water and saline water. The entrainment of clay minerals in flotation 

is undesired and so the study is done to reduce the entrainment. The result is that saline 

water led to higher entrainment rate than tap water. Of the different types of clay 

minerals, Kalonite Q38 showed higher entrainment. Li et al. (2014) have studied the 

entrainment behavior of sericite in microcrystalline graphite flotation. Here too, the aim 

was to reduce the rate of entrainment. The investigation was carried out during both 

presence and absence of microcrystalline graphite to note its effect. The graphite was 

found to have high impact on the phenomenon. Oka et al. (2014) have worked to find the 

information on the entrainment properties of horizontally spreading ceiling jet. This is 

required as it helps in fire safety and rescue missions. Cristofano et al. (2014) have 

worked on gas entrainment onset conditions in unstable free surface vortices. They have 

use a specifically built gas entrainment test section for the same. Tian et al. (2014) have 

studied the liquid entrainment behavior at the nozzle exit in coaxial gas-liquid jets. The 

examination of transitional behavior observed is done. Roy et al. (2013) have 

investigated the visualization of air entrainment by plunging jet. The cause of 

entrainment is found as formation of air sheath. In churn flow, Wang et al. (2013) have 

proposed a mathematical-model for the drop-entrainment. The effect of parameters have 

been investigated and discussed. Wang et al. (2013) have again investigated the wave 

and drop entrainment experimentally. Kulkarni and Patwardhan (2013) have studied the 

phenomenon of gas entrainment in stirred tanks by CFD modelling. The onset conditions 

have been investigated. In a diesel engine, crevice soot entrainment have been 

computationally studied by Tan et al. (2013). The findings have been used to elongate 

the life of engines. Brouilliot and Lubin (2013) have numerically simulated entrainment 

of air in a plunging liquid-jet. They have developed the numerical model for classical 
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VOF- PLIC model. They have also used LES turbulence model. In liquid-liquid systems, 

Shahrokhi and Shaw (1994) have investigated the origination of drops by batch gas 

agitation. Their criteria was to minimize the fine drop formation. The work is 

experimental in nature. Greene et al. (1991) have developed analytical model for 

induction of bubble entrainment between stratified liquid layers. The entrainment 

efficiencies have been calculated. Greene et al. (1988) have also studied the strength of 

the entrainment by measuring the volume of entrained liquid. Different liquid pairs were 

used in experimental runs.  

The summary of the literature review has been presented in a tabular format in Table 

1.1. 

Table 1.1: Summary of Literature Review 

Title of paper Author Publication Results 

Reducing the 

entrainment of 

clay minerals in 

flotation using 

tap and saline 

water 

Di Liu and 

Yongjun 

Peng 

Powder 

Technology, 

Volume 253, 

February 2014, 

pp. 216-222 

 Saline water has higher 

entrainment than tap water. 

 Kaolinite Q38 has higher 

entrainment in flotation. 

 Addition of PEO reduces the 

entrainment of kaolinite Q38 

due to the formation of less 

compact flocs and higher froth 

stability. 

The entrainment 

behaviour of 

sericite in 

microcrystalline 

graphite 

flotation 

Hongqiang 

Li, Qiming 

Feng, 

Siyuan 

Yang, 

Leming Ou 

Int. J. of Mineral 

Processing, 

Volume 127, 

March 2014, pp. 

1-9. 

 

 Investigation of entrainment of 

sericite during presence and 

absence of hydrophobic 

microcrystalline graphite. 

 Entrained sericite had high 

impact on microcrystalline 
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and Ying 

Lu 

graphite during batch formation 

test. 

Decrease of 

carbon dioxide 

concentration 

and entrainment 

of horizontally 

spreading 

ceiling jet 

Yasushi 

Oka, Jun-

ichi 

Yamaguchi  

and Ko 

Muraoka 

Fire Safety 

Journal, Volume 

63, January 2014, 

pp. 37-42. 

 

 Objective of this paper is to find 

the information on the 

entrainment properties of ceiling 

jet spread radially. 

 An empirical formula was 

deduced. 

 Mass flow rate of ceiling jet 

increase with ceiling height. 

Experimental 

study on 

unstable free 

surface vortices 

and gas 

entrainment 

onset conditions 

Luca 

Cristofano, 

Matteo 

Nobili, 

Gianfranco 

Caruso 

Experimental 

Thermal and Fluid 

Science, volume 

52, January 2014, 

pp. 221-229 

 GETS (gas entrainment test 

section) facility is built up and 

different experiment is carried 

out to study free surface 

vortices. 

 Parameters influencing the 

physical phenomenon is 

identified. 

Liquid 

entrainment 

behavior at the 

nozzle exit in 

coaxial gas-

liquid jets 

Xiu-Sahn 

Tian, Hui 

zhao, Hai-

Feng Liu, 

Wei-Feng 

Li and Jian-

Liang Xu 

Chemical 

Engineering 

Science, Volume 

107, April 2014, 

pp. 93-101 

 Experimental study on air-blast 

liquid jet and near-field 

recirculating behavior is 

conducted. 

 Formation of bulge structure 

when the gas velocity is larger 

than selected value. 

 Examination of transition of 

flow behavior. 

 Initial entrainment and full 

entrainment is observed and 

identified. 
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Visualization of 

air entrainment 

by plunging jet 

A.K. Roy, 

B. Maiti 

and P.K. 

Das 

 

Procedia 

Engineering, 

volume 56, 2013, 

pp. 468-473 

 Formation of air-sheath below 

the interface shows the starting 

of entrainment. 

 Air sheath breaks into bubble, 

migrate downward and grow 

bigger due to coalescence. 

 Bigger bubble escape through 

free surface due to upward 

movement of it. 

A model for 

droplet 

entrainment in 

churn flow 

Ke Wang, 

Bofeng Bai 

and 

Weimin Ma 

Chemical 

Engineering 

Science Volume 

104, December 

2013, pp. 1045-

1055 

 In churn flow, establishment of a 

mathematical model for droplet 

entrainment. 

 Analysis of the interface 

stability on the Kelvin–

Helmholtz instability basis. 

 The proposed model is verified 

for a range of experimental data. 

 The influence of parameters on 

entrainment is discussed. 

 A formula for rate of 

entrainment in churn flow is 

proposed. 

Huge wave and 

drop 

entrainment 

mechanism in 

gas-liquid churn 

flow 

Ke Wang, 

Bofeng Bai 

and 

Weimin Ma 

Chemical 

Engineering 

Science, Volume 

104, December 

2013, pp. 638-646 

 In churn flow, huge wave and 

liquid distribution is 

investigated. 

 Discussion of situations for 

transition from churn flow to 

annular flow or slug flow. 

 Flooding is taken as a 

characteristic of churn flow. 
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 Generation of drops due to bag 

breakup and ligament breakup 

mechanism in churn flow. 

CFD Modelling 

of gas 

entrainment in 

stirred tank 

systems 

A.L. 

Kulkarni 

and  A.W 

Patwardhan 

Chemical 

Engineering 

Research and 

Design, October 

2013 

 To study phenomenon of gas 

entrainment, CFD model is used. 

 Predicted velocity in impeller 

and interfacial region shows 

same velocity as in experiment. 

 Onset and non-onset condition 

was distinguished in CFD. 

Computational 

study of crevice 

soot 

entrainment in a 

diesel engine 

Shin Mei 

Tan, Hoon 

Kiat Ng, 

and Suyin 

Gan 

Applied Energy, 

vol. 102, year. 

2013, pp. 898-907 

 Determination of parameters-

effect on soot mass entrainment. 

 Compared to entrainment via 

blowby, formation of soot in 

crevice is insignificant. 

 Near cylinder liner, Soot is 

found higher than in the crevice 

region. 

 Soot entrainment is reduced by 

close-coupled injection. 

 Soot entrainment is increased to 

the greatest level due to delayed 

and split injection with large 

separation. 

Numerical 

simulations of 

air entrainment 

in a plunging jet 

of liquid 

Denis 

Brouilliot 

and Pierre 

Lubin 

Journal of Fluids 

and Structures, 

Volume 43, 

November 2013, 

pp. 428-440 

 Development of numerical 

model for classical VOF-PLIC 

model. 

 Compared to experimental data, 

this model give satisfactory 

results. 

 LES turbulence model is used. 

 VOF-SM is under development. 
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The origin of 

fine drops in 

batch gas-

agitated liquid-

liquid systems 

Shahrokhi, 

H., & 

Shaw, J.M. 

Chemical 

Engineering 

Science, Vol. 49, 

5203-5213 (1994) 

 Investigation of origin of drop. 

 Liquid entrainment as a 

principle source was found. 

 Criteria for the formation of fine 

drop was minimized. 

Bubble induced 

entrainment 

between 

stratified liquid 

layers 

Greene, 

G.A., Chen, 

J.C. & 

Conlin, 

M.T. 

Int. J. Heat Mass 

Transfer, Vol. 34, 

149-157 (1991) 

 An analytical model is 

developed which shows the 

entrainment of liquid. 

 Entrainment efficiency is also 

calculated. 

 Experimental data is used to 

develop this model. 

Onset of 

entrainment 

between 

immiscible 

liquid layers due 

to rising gas 

bubbles 

Greene, 

G.A., Chen, 

J.C. & 

Conlin, 

M.T. 

Int. J. Heat Mass 

Transfer, Vol. 31, 

1309-1317 (1988) 

 Inertial entrainment strength was 

obtained by measuring the 

volume of entrained liquid. 

 Different liquid pairs were used. 

 Experiment was carried to find 

minimum bubble volume to 

cause entrainment. 

 

1.3 Gaps in the Literature 

It can be seen from the literature review that there is a dearth of knowledge for three 

phase (liquid-liquid-gas) inertial entrainment. Also, there has been no attempt yet to 

simulate the three phase inertial entrainment. The strength of entrainment has been 

previously estimated by measuring the volume of entrained fluid. However, it does not 

take into account the height up to which the entrained fluid travels. The previous works 

on three phase entrainment also lay more emphasis on the penetration criteria. Hence, it 
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is clear that more investigation is required in the area of three phase inertial entrainment 

both experimentally as well as numerically. 

1.4 Aims and Objectives 

The present work aims to investigate the inertial entrainment phenomenon in three phase 

system (gas-liquid-liquid). The different objectives of this work are listed as follows: 

 To study experimentally the phenomenon of three phase entrainment induced by a 

gas bubble in a stratified liquid layer. 

 To quantify the strength of entrainment in terms of height achieved by the entrained 

volume. 

 To identify different parameters that effect the phenomenon of entrainment. 

 To observe and discuss the effect of fluid properties such as density, viscosity and 

surface tension, bubble volume and conduit wall proximity on the height of 

entrainment. 

 To identify various stages that occur in inertial entrainment. 

 To numerically simulate the phenomenon and check for the correlation between 

numerical and experimental results. 



B. Tech Thesis 2014 
 

DEPARTMENT OF MECHANICAL ENGINEERING, NIT ROURKELA Page 10 
 

2 PROBLEM STATEMENT 

The schematic of the problem statement is 

shown in Figure 2.1. It consists of a stratified 

layer of liquid. This stratified layer has two 

liquids- fluid 1 and fluid 2. Due to density 

difference and immiscibility, the fluid 1 and 

fluid 2 form the stratified layer with an 

interface. A gas bubble (fluid 3) is released in 

the lower liquid (fluid 1). The gas bubble tries 

to rise upwards because of buoyancy. As it 

moves upwards, it reaches the interface and 

tries to cross over to the upper liquid (fluid 2). When it crosses over, the bubble tries to 

take fluid 1 with it into fluid 2. However, the fluid 1 which is being pulled by the fluid 2, 

tends to remain attached with the bulk of fluid 1. A part of fluid 1 may break off from the 

bulk, and travel with the bubble upwards in fluid 2. After some duration, this part of fluid 

1 travelling with bubble reaches a maximum height, then gets detached from the bubble. 

Now, it starts falling back and rejoins the bulk (fluid 1). This process of drawing in of one 

fluid into another is called entrainment. The output that we are interested in is the strength 

of such entrainment and the parameters that affect it. Different stages of entrainment are 

to be observed. 

3 METHODOLOGY 

In this chapter, the methodology to tackle the problem have been discussed. The given 

problem can be solved in different ways. Here, experimental and numerical methods have 

been used to deduce useful data. Experiments have been conducted for a range of 

Figure 2.1 : Schematic of problem 

statement 
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parameters and numerical simulation has been shown for a particular parameter set. To 

measure the strength of entrainment, the maximum height attained by the fluid 1 is taken 

as an indicator (output). 

3.1 Experiment 

Many different methods can be adopted while conducting experiment to study a certain 

physical phenomenon. The methodology adopted here to carry our experiment is given 

below. 

3.1.1 Setup 

The schematic of the setup is shown alongside in Figure 3.1. The conduit is made of 

square cross section. The material is Perspex, also called acrylic resin. The sheets are 

joined using chloroform and powdered Perspex. The conduit is made leak proof by 

using Araldite. A syringe is fitted in the lower part of the conduit. This is used to inject 

the gas (fluid 3) to make the bubble. Since the syringe is capable of giving only small 

non-uniform bubbles with undesired volume, a bubble holding arrangement is also 

provided. This ensures that the bubble being released is of uniform size and required 

volume. The bubble 

holding arrangement 

consists of a piston. A 

hemispherical plastic cap 

is attached to this piston 

by means of a metal wire. 

The piston is used to 

exactly place the bubble 

at the centre of the 

Figure 3.1: Schematic of experimental setup 
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conduit. The fluid 1 is filled in such a manner that the bubble holding arrangement 

occurs at exact midway of this fluid. The fluid 2 is filled above this layer of fluid 1. To 

record the phenomenon, a camera (mounted on a tripod) is placed in front of the setup. 

The camera height can be adjusted according to the requirement by use of the tripod. 

Behind the setup, a fluorescent tube lamp is provided to enable the camera to capture 

the interfaces clearly. Since diffused light is required, a sheet of butter paper is kept in 

front of the tube lamp. Also, for visibility, the water is colored green using dye. 

Kerosene is decolorized for the same reason.  

Specification of the setup: 

 Thickness of Perspex sheet: 5 mm 

 Conduit cross-section: square of various dimensions 

 Camera specification: 16MP Fujifilm S6800 

 Video resolution: 1280p × 720p @ 30fps 

 Light source: 40W @ 50 Hz 

 

3.1.2 Parameters 

Different parameters have been varied to study their effect on the strength of 

entrainment. The various parameters that have been considered here are fluid property 

parameters (density, viscosity, surface tension, and interfacial tension), wall effect 

(conduit dimensions) and bubble size (volume of fluid 3 in bubble). The fluid properties 

are varied by using three different pairs of fluid: kerosene-water, diesel-water, and 

petrol-water. The wall effect is studied by varying the conduit dimensions. Three 

dimensions taken were: 70 mm × 70 mm, 110 mm × 110 mm and 150 mm × 150 mm. 

The bubble sizes were varied from the minimum to maximum possible in the given 
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setup. This range depends on both the conduit dimension and fluid pair being used. The 

material properties are listed in Table 3.1. 

Table 3.1: Material properties 

Fluids 
Density 

(kg/m3) 

Viscosity 

(cP) 

Interfacial 

tension 

(with water) 

(dynes/cm) 

Water 1000.00 1.0 N/A 

Kerosene 817.15 2.1 48 

Petrol  737.22 0.6 10-4 to 10-5 

Diesel 820.00 76.2 29 

 

3.1.3 Working 

For the experimental runs to be carried out, the light arrangement is switched on. The 

fluid 1 is filled first up to required level (300 mm). Then fluid 2 is filled over fluid 1 

carefully to avoid mixing. The stratified layer is allowed to settle down and the interface 

is formed clearly. Now, the camera arrangement is set to capture the required area. To 

know the required arrangement, a test run is made as follows. The bubble of required 

volume is injected by one person from the lower syringe. The small bubbles are allowed 

to form a single bubble in the bubble holding arrangement placed just above the lower 

syringe. After the settling process, the upper syringe (piston arrangement) which is 

attached to the bubble holding mechanism is pushed to centre. This piston arrangement 

is then turned by the first person to release the bubble. At the same time the second 

person starts the recording of the camera to capture the whole phenomenon. Any 

required zoom adjustments is made by the second person. This first run is done as a test 

run to set the zoom levels, camera position and height correctly. After this, the 
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experimental runs are made as above, but now with the already set camera arrangement. 

The second person takes care of the video recording duration while the first person has 

the responsibility of releasing the bubble at the centre. The recording is done for the 

whole process, i.e., till the detached volume reaches its maximum height and then falls 

back to the original bulk of fluid 1. 

To conduct different sets of experiments, the bubble volume is varied for a given 

combination of conduit size and fluid pair. The range of bubble size depends on these 

two itself and varies accordingly. For each combination of conduit size, fluid pair and 

bubble volume, five experimental runs are made. The arithmetic average of the five is 

taken as the accepted output.  

3.1.4 Post-processing 

The recorded videos are in .MP4 format. The image extraction is required for height 

measurement. It is not possible to extract frame by frame images from MP4 format 

files. Hence, the first step is conversion of MP4 format to AVI format. This conversion 

is done by means of an encoder-decoder called FFMPEG. FFMPEG is a command line 

based conversion tool. Now, the converted video has to split into frames. To do this, 

another software VirtualDub is used. This software takes AVI files as input and allows 

video frame by frame manipulation. The frame containing the fluid 1 reaching its 

maximum height is extracted manually using VirtualDub. Now, this frame is imported 

into GIMP (GNU Image Manipulation Program). This is done to measure the maximum 

height reached by fluid 1. The height is measured in pixels by using the Measure tool. 

To convert the height into physical measurement, we need a reference. The width of 

the conduit is known in physical measurement. Hence, the width is also measured in 

pixels. These two data are then input into an MS Excel workbook. The physical 

measurement of height is calculated by Equation 3.1. 
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𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑚𝑚

𝑊𝑖𝑑𝑡ℎ 𝑖𝑛 𝑚𝑚
=

𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙

𝑊𝑖𝑑𝑡ℎ 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙
 

Equation 3.1: Conversion of height in pixels to height in mm 

The only unknown is height in mm. Thus, height is calculated. 

3.2 Numerical 

Numerical method has been used to simulate the phenomenon of inertial entrainment. 

The commercial solver ANSYS has been used for the same. Simulations have been 

carried out for both 2-dimensional and 3-dimensional cases.  

3.2.1 Grid 

The grid has been generated in ANSYS workbench. The grid for 2-dimensional case 

consists of 63000 cells while the grid for 3-dimensional case consists of 125000 cells. 

Both grids have been made on a mapped scheme.  

3.2.2 Boundary conditions 

The boundary conditions for the 2-dimensional case includes giving the left wall, right 

wall and bottom base as WALL, while the top edge is given the PRESSURE OUTLET 

condition.  The boundary condition for 3-dimensional case follows the same: the four 

side walls and the bottom base are given WALL condition, while the top face is given 

the PRESSURE OUTLET condition. At the pressure outlet, the turbulence parameters 

are given as intensity and hydraulic diameter, with intensity set to 5%. 

3.2.3 Governing equations 

The governing equations that are solved in ANSYS are continuity (Equation 3.2), 

momentum (Equation 3.3) and volume fraction (Equation 3.4) equations. Since VOF 

model is used, the momentum equation is the same for all the phases, and a weighted 

average is used for the properties.  
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𝛁. (𝝆𝒗⃗⃗ ) = 𝟎 

Equation 3.2: Continuity equation 

𝝏

𝝏𝒕
(𝝆𝒗⃗⃗ ) + 𝛁. (𝝆𝒗⃗⃗ 𝒗⃗⃗ ) = −𝛁𝒑 + 𝛁. [𝝁(𝛁𝒗⃗⃗ + 𝛁𝒗⃗⃗ 𝑻)] + 𝝆𝒈⃗⃗  

Equation 3.3: Momentum equation 

𝟏

𝝆𝒒

[
𝝏

𝝏𝒕
(𝜶𝒒𝝆𝒒) + 𝛁. (𝜶𝒒𝝆𝒒𝒗⃗⃗ 𝒒) = ∑(𝒎̇𝒑𝒒 − 𝒎̇𝒒𝒑)

𝒏

𝒑=𝟏

 

Equation 3.4: Volume fraction equation 

3.2.4 Solution method 

Transient solution is attempted. The pressure based solver is used. For turbulence, 

standard k-ε model has been applied. Multiphase model has been enabled by using 

Volume of Fluid method with three phases. The primary phase is allotted as fluid 1, 

while secondary phases are fluid 2 and fluid 3. The bubble of fluid 3 and layer of fluid 

2 are assigned before solving by patching respectively. The pressure-velocity coupling 

is done by the PISO scheme. The spatial discretization are done as follows: Green-

Gauss cell based for Gradient, PRESTO for Pressure, Geo-Reconstruct for Volume 

Fraction, and First Order Upwind for Momentum, Turbulent Kinetic Energy and 

Turbulent Dissipation Energy. The transient formulation is first order implicit. The 

convergence criteria for all of the variables (continuity, velocities, k and ε) are set as 

1e-6. The maximum number of iterations allowed per time step is set as 50. The time 

step has been given as 0.0001s, auto-saving every 50 time steps.  

4 RESULTS AND DISCUSSION 

This section is devoted to representation of the results obtained (both from experimental 

and numerical approaches) and list probable causes for the variations observed. 
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4.1 Individual combinations of conduit dimension and fluid pair 

For a given combination of conduit dimension and fluid pair, experimental runs were 

conducted by varying the bubble volume. The data obtained and its graphical 

representation for each combination is given below. The first table in each sub-division 

shows the detailed calculation as well as observation of 5 runs for a particular bubble 

volume. The arithmetic average height thus obtained from the 5 data is shown in the next 

column of the same table. The second table in each sub-division shows the filtered data 

(only bubble volume and average height of entrainment) in SI units. This is followed by 

the graph of height of entrainment versus bubble volume. The discussions are noted at 

the end of each sub-division.  

4.1.1 Conduit Dimension: 70 mm × 70 mm 

The detailed results obtained for conduit dimension 70 mm × 70 mm is shown below 

for each fluid pair. 

4.1.1.1 Fluid pair: Kerosene-Water  

The detailed observation for each experimental run is given in Table 4.1.  

Table 4.1: Detailed observation for experimental runs of conduit dimension 70 mm x 70 

mm and fluid pair kerosene-water 

Bubble 

volume in 

ml 

Run 

No. 

Width in 

px 

Height 

in px 

Width 

in mm 
Height in mm 

Average Height in 

mm 

0.5 

1 190 201 80 84.63157895 

84.29473684 

2 190 195 80 82.10526316 

3 190 198 80 83.36842105 

4 190 200 80 84.21052632 

5 190 207 80 87.15789474 

0.6 

1 169 224 80 106.0355030 

123.9410623 

2 168 303 80 144.2857143 

3 174 258 80 118.6206897 

4 173 244 80 112.8323699 

5 174 300 80 137.9310345 

0.7 1 171 212 80 99.18128655 167.6469286 
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2 166 416 80 200.4819277 

3 168 406 80 193.3333333 

4 168 361 80 171.9047619 

5 168 364 80 173.3333333 

0.8 

1 167 319 80 152.8143713 

181.2119887 

2 169 500 80 236.6863905 

3 170 375 80 176.4705882 

4 172 379 80 176.2790698 

5 168 344 80 163.8095238 

0.9 

1 190 377 80 158.7368421 

190.837033 

2 189 486 80 205.7142857 

3 195 391 80 160.4102564 

4 191 450 80 188.4816754 

5 190 572 80 240.8421053 

1 

1 190 427 80 179.7894737 

217.8004503 

2 186 314 80 135.0537634 

3 190 613 80 258.1052632 

4 190 881 80 370.9473684 

5 188 341 80 145.1063830 

1.1 

1 186 549 80 236.1290323 

230.4221456 

2 188 733 80 311.9148936 

3 188 442 80 188.0851064 

4 185 590 80 255.1351351 

5 189 380 80 160.8465608 

1.2 

1 204 540 80 211.7647059 

214.9422494 

2 204 694 80 272.1568627 

3 205 505 80 197.0731707 

4 207 528 80 204.0579710 

5 205 486 80 189.6585366 

1.3 

1 202 538 80 213.0693069 

273.0915837 

2 202 634 80 251.0891089 

3 200 1103 80 441.2000000 

4 201 713 80 283.7810945 

5 201 443 80 176.3184080 

1.4 

1 201 688 80 273.8308458 

288.4920469 

2 201 816 80 324.7761194 

3 201 813 80 323.5820896 

4 202 644 80 255.0495050 

5 203 673 80 265.2216749 

1.5 

1 203 914 80 360.1970443 

311.3705379 

2 203 799 80 314.8768473 

3 213 714 80 268.1690141 

4 201 908 80 361.3930348 

5 203 640 80 252.2167488 
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1.6 

1 175 700 80 320.0000000 

334.6342906 

2 166 560 80 269.8795181 

3 164 618 80 301.4634146 

4 163 611 80 299.8773006 

5 164 988 80 481.9512195 

1.7 

1 159 581 80 292.3270440 

364.5225682 

2 159 800 80 402.5157233 

3 176 1078 80 490.0000000 

4 171 712 80 333.0994152 

5 167 636 80 304.6706587 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.2. 

 

Table 4.2: Average height of entrainment for conduit dimension 70 mm × 70 mm and 

fluid pair kerosene-water 

Bubble volume in m3 Height of entrainment in m 

5.00E-07 0.084294737 

6.00E-07 0.123941062 

7.00E-07 0.167646929 

8.00E-07 0.181211989 

9.00E-07 0.190837033 

1.00E-06 0.217800450 

1.10E-06 0.230422146 

1.20E-06 0.214942249 

1.30E-06 0.273091584 

1.40E-06 0.288492047 

1.50E-06 0.311370538 

1.60E-06 0.334634291 

1.70E-06 0.364522568 

 

The graph for observing the trend is plot from the data in Table 4.2 and the plot is 

shown in Graph 4.1.  
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Graph 4.1: Graph for height of entrainment versus bubble volume for conduit 

dimension 70 mm × 70 mm and fluid pair kerosene-water 

The trend observed from the above graph is clear. As the bubble volume increases, the 

height of entrainment increases almost linearly. There is a slight dip at bubble volume 

1.2 ml. This may be attributed to random error.  

4.1.1.2 Fluid pair: Diesel-Water  

The detailed observation for each experimental run is given in Table 4.3. 

Table 4.3: Detailed observation for experimental runs of conduit dimension 70 mm × 70 

mm and fluid pair diesel-water 

Bubble 

volume in 

ml 

Run 

No. 

Width 

in px 

Height 

in px 

Width 

in mm 
Height in mm 

Average Height in 

mm 

0.6 

1 140 189 80 108.0000000 

105.8824545 

2 141 217 80 123.1205674 

3 138 172 80 99.7101449 

4 141 144 80 81.7021276 

5 141 206 80 116.8794326 

0.7 

1 143 210 80 117.4825175 

129.086178 

2 140 204 80 116.5714286 

3 140 199 80 113.7142857 

4 141 213 80 120.8510638 

5 138 305 80 176.8115942 

0.8 

1 142 226 80 127.3239437 

142.317216 
2 136 326 80 191.7647059 

3 139 181 80 104.1726619 

4 140 285 80 162.8571429 
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5 139 218 80 125.4676259 

0.9 

1 138 306 80 177.3913043 

157.2046969 

2 137 209 80 122.0437956 

3 137 324 80 189.1970803 

4 138 300 80 173.9130435 

5 138 213 80 123.4782609 

1 

1 139 332 80 191.0791367 

182.5129154 

2 140 292 80 166.8571429 

3 139 315 80 181.2949640 

4 138 303 80 175.6521739 

5 138 341 80 197.6811594 

1.1 

1 137 430 80 251.0948905 

211.9422732 

2 139 374 80 215.2517986 

3 133 374 80 224.9624060 

4 137 296 80 172.8467153 

5 135 330 80 195.5555556 

1.2 

1 135 320 80 189.6296296 

224.2513886 

2 137 302 80 176.3503650 

3 135 393 80 232.8888889 

4 134 307 80 183.2835821 

5 134 568 80 339.1044776 

1.3 

1 138 364 80 211.0144928 

228.7542949 

2 136 393 80 231.1764706 

3 138 419 80 242.8985507 

4 137 397 80 231.8248175 

5 140 397 80 226.8571429 

1.4 

1 133 462 80 277.8947368 

299.0265515 

2 133 612 80 368.1203008 

3 135 486 80 288.0000000 

4 133 515 80 309.7744361 

5 134 421 80 251.3432836 

1.5 

1 135 334 80 197.9259259 

317.7980241 

2 133 808 80 486.0150376 

3 135 427 80 253.0370370 

4 133 548 80 329.6240602 

5 134 540 80 322.3880597 

1.6 

1 134 535 80 319.4029851 

334.663726 

2 135 631 80 373.9259259 

3 134 508 80 303.2835821 

4 135 598 80 354.3703704 

5 137 552 80 322.3357664 
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The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.4. 

Table 4.4: Average height of entrainment for conduit dimension 70 mm × 70 mm and 

fluid pair diesel-water 

Bubble volume in m3 Height of entrainment in m 

6.00E-07 0.105882455 

7.00E-07 0.129086178 

8.00E-07 0.142317216 

9.00E-07 0.157204697 

1.00E-06 0.182512915 

1.10E-06 0.211942273 

1.20E-06 0.224251389 

1.30E-06 0.228754295 

1.40E-06 0.299026551 

1.50E-06 0.317798024 

1.60E-06 0.334663726 

 

The graph for observing the trend is plot from the data in Table 4.4 and the plot is 

shown in Graph 4.2. 

 

Graph 4.2: Graph for height of entrainment versus bubble volume for conduit 

dimension 70 mm × 70 mm and fluid pair diesel-water 
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The trend observed from the above graph is that the height of entrainment increases 

as bubble volume increases. The dip at 1.3 ml may be due to random error as the dip 

is very less. 

4.1.1.3 Fluid pair: Petrol-water 

The detailed observation for experimental run is given in Table 4.5. 

Table 4.5: Detailed observation for experimental runs of conduit dimension 70 mm × 70 

mm and fluid pair petrol-water 

Bubble 

volume in 

ml 

Run 

No. 

Width 

in px 

Height 

in px 

Width 

in mm 
Height in mm 

Average Height in 

mm 

1 

1 138 692 80 401.1594203 

387.8386344 

2 144 768 80 426.6666667 

3 139 633 80 364.3165468 

4 136 771 80 453.5294118 

5 142 521 80 293.5211268 

1.1 

1 138 614 80 355.9420290 

311.9673994 

2 141 492 80 279.1489362 

3 144 529 80 293.8888889 

4 140 483 80 276.0000000 

5 140 621 80 354.8571429 

1.2 

1 143 371 80 207.5524476 

241.7016252 

2 147 489 80 266.1224490 

3 139 374 80 215.2517986 

4 146 566 80 310.1369863 

5 144 377 80 209.4444444 

1.3 

1 148 593 80 320.5405405 

285.6707072 

2 144 577 80 320.5555556 

3 146 452 80 247.6712329 

4 145 398 80 219.5862069 

5 139 556 80 320.0000000 

1.4 

1 139 420 80 241.7266187 

261.5204341 

2 144 600 80 333.3333333 

3 143 369 80 206.4335664 

4 140 479 80 273.7142857 

5 142 448 80 252.3943662 

1.5 

1 147 579 80 315.1020408 

253.6490339 
2 144 439 80 243.8888889 

3 145 373 80 205.7931034 

4 152 565 80 297.3684211 
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5 151 389 80 206.0927152 

1.6 

1 148 423 80 228.6486486 

258.3636045 

2 145 538 80 296.8275862 

3 157 521 80 265.4777070 

4 151 478 80 253.2450331 

5 147 455 80 247.6190476 

1.7 

1 140 555 80 317.1428571 

280.1230585 

2 131 440 80 268.7022901 

3 138 659 80 382.0289855 

4 141 460 80 260.9929078 

5 143 307 80 171.7482517 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.6. 

Table 4.6: Average height of entrainment for conduit dimension 70 mm × 70 mm and 

fluid pair petrol-water 

Bubble volume in m3 Height of entrainment in m 

1.00E-06 0.387838634 

1.10E-06 0.311967399 

1.20E-06 0.241701625 

1.30E-06 0.285670707 

1.40E-06 0.261520434 

1.50E-06 0.253649034 

1.60E-06 0.258363605 

1.70E-06 0.280123058 

 

The graph for observing the trend is plot from the data in Table 4.6 and the plot is 

shown in Graph 4.3. 
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Graph 4.3: Graph for height of entrainment versus bubble volume for conduit 

dimension 70 mm × 70 mm and fluid pair petrol-water 

 

Petrol shows a unique behavior. The height first decreases, reaches a minimum and 

then starts to increase slowly. The initial decrease is rapid, while the increase that 

occurs later is slow and gradual. 

4.1.2 Conduit dimension: 110 mm × 110 mm 

The detailed results obtained for conduit dimension 110 mm × 110 mm is shown below 

for each fluid pair. 

4.1.2.1 Fluid pair: Kerosene-water 

The detailed observation for experimental run is given in Table 4.7. 
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Table 4.7: Detailed observation for experimental runs of conduit dimension 110 mm × 

110 mm and fluid pair kerosene-water 

Bubble 

volume in 

ml 

Run 

No. 

Width 

in px 

Height 

in px 

Width 

in mm 

Height in 

mm 

Average Height in 

mm 

0.6 

1 356 284 120 95.73033708 

115.7690433 

2 342 356 120 124.9122807 

3 331 340 120 123.2628399 

4 332 310 120 112.0481928 

5 332 340 120 122.8915663 

0.7 

1 322 361 120 134.5341615 

136.3380157 

2 325 420 120 155.0769231 

3 312 324 120 124.6153846 

4 340 389 120 137.2941176 

5 295 320 120 130.1694915 

0.8 

1 287 428 120 178.9547038 

167.9744644 

2 306 466 120 182.7450980 

3 305 296 120 116.4590164 

4 308 333 120 129.7402597 

5 299 578 120 231.9732441 

0.9 

1 284 427 120 180.4225352 

191.7110842 

2 274 419 120 183.5036496 

3 295 503 120 204.6101695 

4 294 453 120 184.8979592 

5 289 494 120 205.1211073 

1 

1 340 520 120 183.5294118 

210.8058068 

2 335 513 120 183.7611940 

3 334 694 120 249.3413174 

4 356 668 120 225.1685393 

5 350 619 120 212.2285714 

1.1 

1 366 845 120 277.0491803 

238.0253924 

2 356 666 120 224.4943820 

3 358 569 120 190.7262570 

4 336 726 120 259.2857143 

5 336 668 120 238.5714286 

1.2 

1 288 583 120 242.9166667 

248.0316918 

2 321 662 120 247.4766355 

3 288 516 120 215.0000000 

4 287 550 120 229.9651568 

5 300 762 120 304.8000000 

1.3 

1 303 683 120 270.4950495 

259.0225445 
2 302 665 120 264.2384106 

3 310 623 120 241.1612903 

4 301 584 120 232.8239203 
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5 269 642 120 286.3940520 

1.4 

1 297 576 120 232.7272727 

282.8188714 

2 279 652 120 280.4301075 

3 233 702 120 361.5450644 

4 276 512 120 222.6086957 

5 286 755 120 316.7832168 

1.5 

1 300 658 120 263.2000000 

291.9386268 

2 276 731 120 317.8260870 

3 286 634 120 266.0139860 

4 306 918 120 360.0000000 

5 294 619 120 252.6530612 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.8. 

Table 4.8: Average height of entrainment for conduit dimension 110 mm × 110 mm and 

fluid pair kerosene-water 

Bubble volume in m3 Height of entrainment in m 

6.00E-07 0.115769043 

7.00E-07 0.136338016 

8.00E-07 0.167974464 

9.00E-07 0.191711084 

1.00E-06 0.210805807 

1.10E-06 0.238025392 

1.20E-06 0.248031692 

1.30E-06 0.259022545 

1.40E-06 0.282818871 

1.50E-06 0.291938627 

 

The graph for observing the trend is plot from the data in Table 4.8 and the plot is 

shown in Graph 4.4. 
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Graph 4.4: Graph for height of entrainment versus bubble volume for conduit 

dimension 110 mm × 110 mm and fluid pair kerosene-water 

The trend is almost linear in nature. As bubble volume increases, the height of 

entrainment also increases. 

4.1.2.2 Fluid pair: Diesel-water 

The detailed observation for experimental run is given in Table 4.9. 

Table 4.9: Detailed observation for experimental runs of conduit dimension 110 mm × 

110 mm and fluid pair diesel-water 

Bubble 

Volume 

Run 

No. 

Width in 

px 

Height 

in px 

Width in 

mm 

Height in 

mm 

Average Height in 

mm 

0.5 

1 416 823 110 217.6201923 

214.4572893 

2 354 726 110 225.5932203 

3 368 691 110 206.5489130 

4 462 912 110 217.1428571 

5 459 857 110 205.3812636 

0.6 

1 470 929 110 217.4255319 

234.0672143 

2 468 998 110 234.5726496 

3 468 977 110 229.6367521 

4 473 1090 110 253.4883721 

5 470 1005 110 235.2127660 

0.7 1 376 873 110 255.3989362 243.0011 
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2 323 660 110 224.7678019 

3 376 912 110 266.8085106 

4 398 666 110 184.0703518 

5 399 1030 110 283.9598997 

0.8 

1 408 684 110 184.4117647 

219.612318 

2 418 1103 110 290.2631579 

3 417 678 110 178.8489209 

4 419 1155 110 303.2219570 

5 418 537 110 141.3157895 

0.9 

1 445 1119 110 276.6067416 

263.2225873 

2 411 912 110 244.0875912 

3 379 774 110 224.6437995 

4 411 1131 110 302.7007299 

5 405 987 110 268.0740741 

1 

1 376 795 110 232.5797872 

241.9094381 

2 412 962 110 256.8446602 

3 352 751 110 234.6875000 

4 411 770 110 206.0827251 

5 417 1059 110 279.3525180 

1.1 

1 349 822 110 259.0830946 

292.0440632 

2 333 1007 110 332.6426426 

3 371 983 110 291.4555256 

4 343 915 110 293.4402332 

5 339 874 110 283.5988201 

1.2 

1 330 951 110 317.0000000 

339.9637668 

2 304 876 110 316.9736842 

3 304 855 110 309.3750000 

4 309 1013 110 360.6148867 

5 304 1094 110 395.8552632 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.10. 

Table 4.10: Average height of entrainment for conduit dimension 110 mm × 110 mm 

and fluid pair diesel-water 

Bubble volume in m3 Height of entrainment in m 

5.00E-07 0.214457289 

6.00E-07 0.234067214 

7.00E-07 0.243001100 

8.00E-07 0.219612318 

9.00E-07 0.263222587 
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1.00E-06 0.241909438 

1.10E-06 0.292044063 

1.20E-06 0.339963767 

 

The graph for observing the trend is plot from the data in Table 4.10 and the plot is 

shown in Graph 4.5. 

 

Graph 4.5: Graph for height of entrainment versus bubble volume for conduit 

dimension 110 mm × 110 mm and fluid pair diesel-water 

The height of entrainment increases almost linearly with bubble volume. Slight dips 

are observed at bubble volumes 0.8ml and 1ml. 

4.1.2.3 Fluid pair: Petrol-water 

The detailed observation for experimental run is given in Table 4.11. 

Table 4.11: Detailed observation for experimental runs of conduit dimension 110 mm × 

110 mm and fluid pair petrol-water 

Bubble 

Volume 

Run 

No. 

Width in 

px 

Height 

in px 

Width in 

mm 

Height in 

mm 

Average Height 

in mm 

0.8 

1 440 747 110 186.7500000 

178.1371243 
2 408 616 110 166.0784314 

3 371 593 110 175.8221024 

4 405 702 110 190.6666667 
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5 380 592 110 171.3684211 

0.9 

1 288 631 110 241.0069444 

223.0146154 

2 298 672 110 248.0536913 

3 294 440 110 164.6258503 

4 293 638 110 239.5221843 

5 295 595 110 221.8644068 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.12. 

Table 4.12: Average height of entrainment for conduit dimension 110 mm × 110 mm 

and fluid pair petrol-water 

Bubble volume in m3 Height of entrainment in m 

8.00E-07 0.178137124 

9.00E-07 0.223014615 

 

The graph for observing the trend is plot from the data in Table 4.12 and the plot is 

shown in Graph 4.6. 

 

Graph 4.6: Graph for height of entrainment versus bubble volume for conduit 

dimension 110 mm × 110 mm and fluid pair petrol-water 

0

0.05

0.1

0.15

0.2

0.25

H
e

ig
h

t 
o

f 
e

n
tr

ai
n

m
e

n
t 

in
 m

Bubble volume in m3



B. Tech Thesis 2014 
 

DEPARTMENT OF MECHANICAL ENGINEERING, NIT ROURKELA Page 32 
 

Any trend cannot be established here. The range of bubble size allowed by the conduit 

here is too small to establish for certain any trend. However, the height of entrainment 

increases with bubble volume as observed from the two data points given above. 

 

4.1.3 Conduit dimension: 150 mm × 150 mm 

The detailed results obtained for conduit dimension 150 mm × 150 mm is shown below 

for the only fluid pair. 

4.1.3.1 Fluid pair: Kerosene-water 

The detailed observation for experimental run is given in Table 4.13. 

Table 4.13: Detailed observation for experimental runs of conduit dimension 150 mm × 

150 mm and fluid pair kerosene-water 

Bubble 

Volume in 

ml 

Run 

No. 

Width 

in px 

Height 

in px 

Width 

in mm 

Height in 

mm 

Average height 

in mm 

0.5 

1 546 304 160 89.08424908 

91.50799593 

2 475 318 160 107.1157895 

3 474 279 160 94.17721519 

4 526 279 160 84.86692015 

5 453 233 160 82.29580574 

0.6 

1 413 379 160 146.8280872 

133.6268989 

2 414 332 160 128.3091787 

3 413 312 160 120.8716707 

4 415 327 160 126.0722892 

5 413 377 160 146.0532688 

0.7 

1 479 524 160 175.0313152 

166.9765312 

2 474 463 160 156.2869198 

3 476 490 160 164.7058824 

4 456 478 160 167.7192982 

5 474 507 160 171.1392405 

0.8 

1 478 529 160 177.0711297 

177.4673485 

2 477 550 160 184.4863732 

3 38 587 10 154.4736842 

4 40 703 10 175.7500000 

5 36 704 10 195.5555556 

0.9 1 463 450 160 155.5075594 186.6236075 
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2 465 698 160 240.1720430 

3 463 564 160 194.9028078 

4 464 584 160 201.3793103 

5 467 412 160 141.1563169 

1 

1 33 629 10 190.6060606 

195.8450245 

2 549 719 160 209.5446266 

3 543 654 160 192.7071823 

4 553 712 160 206.0036166 

5 550 620 160 180.3636364 

1.1 

1 463 586 160 202.5053996 

211.343262 

2 471 468 160 158.9808917 

3 452 529 160 187.2566372 

4 437 644 160 235.7894737 

5 435 740 160 272.1839080 

1.2 

1 477 688 160 230.7756813 

221.8968242 

2 488 727 160 238.3606557 

3 479 570 160 190.3966597 

4 31 695 10 224.1935484 

5 33 745 10 225.7575758 

1.3 

1 430 591 160 219.9069767 

221.3713352 

2 435 573 160 210.7586207 

3 436 589 160 216.1467890 

4 435 705 160 259.3103448 

5 436 547 160 200.7339450 

1.4 

1 562 854 160 243.1316726 

231.7332423 

2 563 863 160 245.2575488 

3 32 774 10 241.8750000 

4 551 738 160 214.3012704 

5 556 744 160 214.1007194 

1.5 

1 431 758 160 281.3921114 

256.5828411 

2 453 681 160 240.5298013 

3 438 688 160 251.3242009 

4 438 614 160 224.2922374 

5 439 783 160 285.3758542 

1.6 

1 489 697 160 228.0572597 

260.7462271 

2 31 932 10 300.6451613 

3 33 839 10 254.2424242 

4 31 822 10 265.1612903 

5 32 818 10 255.6250000 

 

The average of the five runs per bubble volume is taken as the output. The bubble 

volume with average height of entrainment in SI units is given in Table 4.14. 
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Table 4.14: Average height of entrainment for conduit dimension 150 mm × 150 mm 

and fluid pair kerosene-water 

Bubble Volume in m3 Height of entrainment in m 

5.00E-07 0.091507996 

6.00E-07 0.133626899 

7.00E-07 0.166976531 

8.00E-07 0.177467349 

9.00E-07 0.186623607 

1.00E-06 0.195845025 

1.10E-06 0.211343262 

1.20E-06 0.221896824 

1.30E-06 0.221371335 

1.40E-06 0.231733242 

1.50E-06 0.256582841 

1.60E-06 0.260746227 

 

The graph for observing the trend is plot from the data in Table 4.14 and the plot is 

shown in Graph 4.7. 

 

Graph 4.7: Graph for height of entrainment versus bubble volume for conduit 

dimension 150 mm × 150 mm and fluid pair kerosene-water 

The trend is almost linear. As the bubble volume increases, the height of entrainment 

increases.  

0

0.05

0.1

0.15

0.2

0.25

0.3

H
e

ig
h

t 
o

f 
e

n
tr

ai
n

m
e

n
t 

in
 m

Bubble volume in m3



B. Tech Thesis 2014 
 

DEPARTMENT OF MECHANICAL ENGINEERING, NIT ROURKELA Page 35 
 

4.2 Effect of conduit dimension 

The effect of conduit dimension has been studied by comparing the results for a single 

fluid pair (kerosene-water) in three different conduit dimensions. The data is given in 

Table 4.15. A graph is show below in Graph 4.8. 

Table 4.15: Comparison of average height of entrainment for different conduit 

dimension with fluid pair kerosene-water 

70 mm × 70 mm 110 mm × 110 mm 150 mm × 150 mm 

Bubble 

volume 

in m3 

Height of 

entrainment in 

m 

Bubble 

volume 

in m3 

Height of 

entrainment in 

m 

Bubble 

Volume 

in m3 

Height of 

entrainment in 

m 

5.00E-07 0.084294737 6.00E-07 0.115769043 5.00E-07 0.091507996 

6.00E-07 0.123941062 7.00E-07 0.136338016 6.00E-07 0.133626899 

7.00E-07 0.167646929 8.00E-07 0.167974464 7.00E-07 0.166976531 

8.00E-07 0.181211989 9.00E-07 0.191711084 8.00E-07 0.177467349 

9.00E-07 0.190837033 1.00E-06 0.210805807 9.00E-07 0.186623607 

1.00E-06 0.217800450 1.10E-06 0.238025392 1.00E-06 0.195845025 

1.10E-06 0.230422146 1.20E-06 0.248031692 1.10E-06 0.211343262 

1.20E-06 0.214942249 1.30E-06 0.259022545 1.20E-06 0.221896824 

1.30E-06 0.273091584 1.40E-06 0.282818871 1.30E-06 0.221371335 

1.40E-06 0.288492047 1.50E-06 0.291938627 1.40E-06 0.231733242 

1.50E-06 0.311370538   1.50E-06 0.256582841 

1.60E-06 0.334634291   1.60E-06 0.260746227 

1.70E-06 0.364522568     
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Graph 4.8: Graph showing the effect of conduit dimension for fluid pair kerosene-water 

It can be observed from the graph that when the bubble volume is low (up to 0.8ml) the 

effect of conduit dimension is negligible. However, with increasing bubble volume, 

differences can be clearly observed between the heights attained by bubbles of a given 

volume in conduits of different dimension. The heights attained in conduit dimension 

110 mm × 110 mm are the maximum of the three dimensions. The heights attained in 

conduit dimension 150 mm × 150 mm are the minimum of the three dimensions. The 

heights attained in conduit dimension 70 mm × 70 mm lie in between the other two. 

4.3 Effect of fluid pair combination 

The effect of fluid pair combination is studied by means of comparing the data for three 

different fluid pairs (kerosene-water, petrol-water and diesel-water) in a single conduit 

dimension (70 mm × 70 mm). The data used for comparison is given below in Table 4.16. The 

graph for the data given below is show in Graph 4.9. 
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Table 4.16: Comparison of average height of entrainment for different fluid pair for 

conduit dimension 70 mm × 70 mm 

Kerosene Petrol Diesel 

Bubble 

volume 

in m3 

Height of 

entrainment in 

m 

Bubble 

volume 

in m3 

Height of 

entrainment in 

m 

Bubble 

volume 

in m3 

Height of 

entrainment in 

m 

5.00E-07 0.084294737 1.00E-06 0.387838634 6.00E-07 0.105882455 

6.00E-07 0.123941062 1.10E-06 0.311967399 7.00E-07 0.129086178 

7.00E-07 0.167646929 1.20E-06 0.241701625 8.00E-07 0.142317216 

8.00E-07 0.181211989 1.30E-06 0.285670707 9.00E-07 0.157204697 

9.00E-07 0.190837033 1.40E-06 0.261520434 1.00E-06 0.182512915 

1.00E-06 0.217800450 1.50E-06 0.253649034 1.10E-06 0.211942273 

1.10E-06 0.230422146 1.60E-06 0.258363605 1.20E-06 0.224251389 

1.20E-06 0.214942249 1.70E-06 0.280123058 1.30E-06 0.228754295 

1.30E-06 0.273091584   1.40E-06 0.299026551 

1.40E-06 0.288492047   1.50E-06 0.317798024 

1.50E-06 0.311370538   1.60E-06 0.334663726 

1.60E-06 0.334634291     

1.70E-06 0.364522568     

 

 

Graph 4.9: Graph showing the effect of fluid pair for conduit dimension 70 mm × 70 

mm 

The trend shows differences for all three fluid pairs. The trend for petrol-water 

combination is decreasing first and slightly increasing. The trends for diesel-water 

combination and kerosene-water combination follow each other closely. The unique 
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behavior of petrol-water combination may be attributed to the lower density of petrol as 

compared to diesel and kerosene. Also, the surface tension of petrol is very small while 

that of diesel and kerosene are high.  

4.4 Recognition of various stages of entrainment 

The different stages of entrainment could be observed during the experimental runs. To 

represent these in a pictorial format, the pictures are provided below. Each picture 

contains frames stitched together showing the rise of bubble through the interface. 

Figure 4.1 is for kerosene-water, Figure 4.2 is for diesel-water and Figure 4.3 is for 

petrol-water. The frame rate is 30 fps, i.e. the time gap between each consecutive frame 

is 1/30th of a second.  

 

Figure 4.1: Frame-by-frame sequence with gap of 1/30th of a second showing stages of 

entrainment for conduit dimension 70 mm × 70 mm and fluid pair kerosene-water 
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Figure 4.2: Frame-by-frame sequence with gap of 1/30th of a second showing stages of 

entrainment for conduit dimension 70 mm × 70 mm and fluid pair diesel-water 

 

 

 

Figure 4.3: Frame-by-frame sequence with gap of 1/30th of a second showing stages of 

entrainment for conduit dimension 70 mm × 70 mm and fluid pair petrol-water 
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The stages can be identified easily. The identified stages are rise of stem [Figure 4.4 

(a)], necking [Figure 4.4 (b)], snapping off of stem [Figure 4.4 (c)] and rise of 

separated drop [Figure 4.4 (d)]. 

                 

(a)                                     (b)                                 (c)                                  (d) 

Figure 4.4: Different stages of entrainment (a) rise of stem, (b) necking, (c) snapping off 

of stem and (d) rise of separated drop. 

4.5 Simulation results 

The phenomenon has been numerically simulated in 2D using commercial software 

Ansys. The mesh and geometry were created in mesher and design modeller inbuilt in 

ANSYS, while the problem was solved by using ANSYS workbench. The different 

stages of entrainment observed by the simulation are shown in Figure 4.5. The gap 

between each consecutive frame is 0.033 second, which is roughly equal to 1/30th of a 

second, the frame rate at which the phenomenon was physically recorded from the 
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experiment. The stages observed from the simulation are the same as that observed from 

experimental runs. 

 

Figure 4.5: Frame-by-frame density contours with gap of 0.033 second obtained from 

simulation showing stages of entrainment for conduit dimension 70 mm × 70 mm and 

fluid pair kerosene-water 

4.6 Comparison of results obtained experimentally and from simulation 

The results from the simulation and experiment can be compared in the following 

Figure 4.6. This figure show the different stages identified in entrainment. The 

comparison is done by showing each of the stages obtained both experimentally via 

video recording and numerically by simulation in ANSYS. The comparison shows that 

the simulation and experimental observations tally with each other. Also, the sequence 

of stages followed is the same in both. 
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Figure 4.6: Comparison of different stages of entrainment as observed in experiment 

with the stages observed via simulation 

4.7 Possible sources of Error 

In each experiment, there are always some sources of error present. These may be 

insignificant, or they may have adverse effect on the results. However, it is advisable to 

be aware of all possible sources of error that may creep in. Some of the sources of error 

that may have occurred in this experiment are explained below. 
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Environment conditions vary. The temperature varies from duration to duration, thus it 

may affect the fluid properties. This change can lead to variations in the results. The 

bubble volume accuracy is limited by the syringe accuracy. The least count of the syringe 

is 0.1ml and hence all bubble volume measurements are accurate to 0.1ml. The bubble 

release mechanism is turned by hand to release the bubble. The speed of turning varied 

slightly from run to run as it is not humanly possible to maintain the exact speed 

repeatedly. This error was avoided by taking 5 experimental runs for each combination 

and then taking the average. This also eliminates random error. The height measurement 

is done by converting the pixel value to physical value. Thus, the accuracy of the height 

depends on the resolution of the camera. Since the video resolution used is sufficiently 

high (1280p × 720p), the occurrence of this error should be negligible. Dust can be 

observed to settle in the interface if the setup is left undisturbed for durations longer than 

24 hours. This dust layer can lead to error and may prevent the bubble from crossing the 

interface. This dust may be undissolved particles in dye. To avoid this, the setup was 

cleaned and reset before continuation of experiment after a long break. 

5 CONCLUSION 

This section concludes the results obtained in this work. All the major observations and 

the conclusion drawn from them are presented here in a condensed form.  

5.1 Increase in entrainment height with increase in bubble volume. 

The different trends have been observed by plotting of graphs. The general trend noted 

is that the entrainment height increases with increase in bubble volume. The only 

exception is petrol-water fluid pair, where the height of entrainment decreases rapidly, 

reaches a minimum and then slowly increases with increase in bubble volume. 
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5.2 Range of bubble volumes. 

The range of bubble volumes available for each combination of fluid pair and conduit 

dimension varies. The lower limit of this range is decided by the minimum bubble 

volume that can cause entrainment. The upper limit of this range is experimental setup 

limitation. The experimental setup cannot be created with much height as the setup tends 

to become unstable soon. The case of kerosene-water and diesel-water are almost similar. 

The variation in properties between kerosene and diesel is less. Hence, the bubble range 

for both are almost same. The properties of petrol are in stark contrast to kerosene and 

diesel, most remarkably in terms of surface tension and density. Thus, the bubble range 

for petrol-water pair is less than that of kerosene-water and diesel-water pairs. This can 

be attributed to the extremely low surface tension and comparatively low density of 

petrol. 

5.3 Comparison of stages for 3 fluid pairs 

The comparison for the different stages for three fluid pairs in a single conduit dimension 

has been shown in Figure 4.1, Figure 4.2 and Figure 4.3 in results section. Each frame 

is in time gap of 1/30th of a second. The stem in kerosene-water pair is thick initially and 

then thins out later. The stem in diesel-water is thicker initially, but is short and then 

thins out quickly. The stem in petrol is thinner and gets longer and thinner before 

breaking off.  

5.4 Petrol bubble oscillation 

One of the observations unique to petrol is the trajectory of the bubble. The bubble rises 

rapidly and oscillates slightly while rising upwards. This again can be attributed to the 

lower density and extremely low surface tension of petrol when compared with kerosene 
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and diesel. Hence, such bubble oscillations are not noticed in cases of kerosene and 

diesel.  

5.5 Diesel entrained water falls slowly 

The entrained volume is observed to fall slowly and with stability in diesel. This may be 

due to the viscosity of diesel. This is not observed in either kerosene or petrol. 

5.6 Simulation results 

The different sequence of stages are shown in time gaps of 0.033 seconds in Figure 4.5 

in results section. Since the assumption of 2D is taken during the simulations, the stages 

follow the real life observation but without the randomness. This comparison is shown 

in Figure 4.6.  
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