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ABSTRACT

In this report, we applied Exp-function method to some nonlinear evolution equations to obtain its
exact solution. The solution procedure of this method, by the help of symbolic computation of
mathematical software, is of utter simplicity. The prominent merit of this method is to facilitate
the process of solving systems of partial differential equations. These methods are straightforward
and concise by themselves; moreover their applications are promising to obtain exact solutions of
various partial differential equations. The obtained results show that Exp-function method is very
powerful and convenient mathematical tool for nonlinear evolution equations in science and

engineering.
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INTRODUCTION

Recently a variety of powerful methods has been proposed and analyzed to obtain the exact
solutions to nonlinear evolution equations such as the homogeneous balance principle, F-
expansion method, tanh method, auxiliary equation method, the coupled Riccati equations, the
Jacobi elliptic equations, etc. Among these methods, the Exp-function method introduced by He
and Wu in 2006, is successfully applied to many kind of nonlinear problems. Up to now, the Exp-
function method has been applied to find the solutions of a class of nonlinear evolution equations,
such as the nonlinear Schrodinger equation, KdV equation with variable coefficient, the discrete
(2 + 1) — dimensional Toda lattice equation and the Maccari’s system. So it is easy to see that the
Exp-function method is very powerful technique and can be used to study the exact solutions of
the high-dimensional system, the discrete system and the system with variable coefficients. All
applications verified that Exp-function method is straightforward, concise and effective in
obtaining generalized solitary solutions and periodic solutions of nonlinear evolution equations.
The main merits of this method over other method are that it gives more general solutions with
some free parameters. Also this method can be applied to a wide class of nonlinear evolution

equations including those in which the odd and even order derivative terms coexist.



CHAPTER 1

1.1 Basic idea of Exp-Function Method:

In order to illustrate the basic idea of the Exp-function method, consider a given nonlinear

dispersive equation of the form:
U, +u’u, +u,, =0 (1.1.1)

This equation is called modified KdV equation, which arises in the process of understanding the
role of nonlinear dispersion and in the formation of structure like liquid drops, and it exhibits

compactors: solitons with compact support.

Introducing a complex variation 7 defined as
n =kx+ ot (1.1.2)

We have
au’ +ku?u’ +k3u” =0 (1.1.3)
where prime denotes the differential with respect to 1.

The Exp-function method is very simple and straightforward, it is based on the assumption that

the travelling wave solution can be expressed in the following form:

i:ane"’7

u(y) =5 (1.1.4)

Zq:bmem’7

m=-p

Where ¢, d, p and g are positive integers which are unknown to be further determined, @, and b,

are unknown constants.



We suppose that the solution of eq. (1.1.3) can be expressed as

_a exp(cn)+---+a_; exp(—dn)
b, exp(p7) +:-+b_, exp(=q)

u(n) (1.1.5)

To determine values of Cand p, we balance the linear term of highest order in eq. (1.1.3) with

the highest order nonlinear term. By simple calculation, we have

u" = C exp[(7 p+ C)77] t+ee-

(1.1.6)
c, exp[8pn]+---

and

s’ < % expl(p+3c)y]+--- _ c,exp[(Sp+3c)n]+-- (L17)

c,expld4pn]+-- c,exp[8pn]+---

where C; are known coefficients.
Balancing highest order of Exp-function in egs. (1.1.6) and (1.1.7), we have

7p+c=5p+3c
which yields p=c (1.1.8)

Similarly, to determine values of d and g, we balance the linear term of lowest order in eq. (1.1.3)

with the lowest order nonlinear term.

u" = et dl exp[_(7q + d)77]
-+ d, exp[-8q7]

(1.1.9)

and



U2’ = -+ d; exp[—(q +3d)7] _ot d, exp[—(5q + 3d)7] (1.1.10)
--+d, exp[-4qn] ~-+d, exp[-8q7]

where d; are known coefficients.

Balancing lowest order of Exp-function in egs. (1.1.9) and (1.1.10), we have
—(7g+d)=—(5q+3d)

which yield q=d (1.1.11)

For simplicity, we set p=c =1 and q=d =1, so eq. (1.1.5) reduces to

s = 2200+ 2, 3p(1) w112
exp(n7) + by +b_; exp(-77)

Substituting eg. (1.1.12) into eq. (1.1.3), and by the help of Mathematical software, we have
%(C3 exp(3n) + C, exp(2n) + C, exp(n7) + C, + C_; exp(—n) + C_, exp(—27) +
C ,exp(-37)) =0 (1.1.13)
where,
A= (exp(17) +b_; exp(-77) +1;)*
C, =wayb, +ka’b, —k’a, —awa, —kala, +k3ah,
C, =8kab, +2ka’b , —4k3a,b? —2wa , —2kaal +2wab , +4k*a b, —2ka’a ,
+2ka/a b, + 2wa,b? —2wa b, —8k’a_,,
C, = wa,b} +6wa,b,b_, —wa,b? —k’a,b; —18k°*a,b,b_, —6ka,a,a_, +kaa’b, —ka
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+23k%a,b, —wa,b, —5ma b, +k*a,bd —5k’*a b, +ka’a b, +5ka’a,b ,,

C, = 4wa b’ —4kaa® +32k%a b , +4kaaib , —32k’ab? +k*ab’b , —4wa b,
—4k®a b} —4kaja , —4wa b? +4ka’a b, +4wablb,,

C_, =18k’a jb,b, —6wa jbb , —k®a b: +k’a b b +wa,b’, —5ka,a® +5w0ab,b?
+wayb_b? —wa b} —kaa’b, —23k*a,b’, —kaZa_,b, +5k*abb’ +kalb,
+6ka,a,a ;b ,,

C_, =2wa,b’b, —2wa_,b’, —2k®a_, +2ka,a’b_, +2wa b’ —4k*a,b’b, —2wa_blb_,
+4k’a_b’b_, —8k’a_b% +2kala b —2ka,a’b, +8k%a,b?,

C_, =ka,a’b_, +wa b’ —ka’ b, + k’a,b’, — wa_b,b’ —k’a_b,b?,

Equating the coefficients of exp(nz) to be zero, we have

C,=C,=C,=C,=C,=C,=C,=0 (1.1.14)

Solving the system, eq. (1.14), simultaneously, we obtain

2 2 2 2 2 2 2
o—ap, KD, _BIGKCr2a)) | bEK +2a)

1.1.15
8a, i 8a; ( )

w=-ka’ —k*
where a, and b, are free parameters.

We, therefore, obtain the following solutions:

11



2 2 2 2
a, exp[kx— (ka’ + k*)t]+a,b, + (3k %j + (bo (3k™ + 2a1% jexp[—kx+ (kaf + k)]
1 1

2 2 2
exp[kx— (ka2 + k)] + by +(bo (3k™ + za%zJexp[—kH (ka2 + K3)]
1

5

2 2 2
exp[kx— (ka2 +k*)t]+b, + (bo (3k™ + Za%azjexp[—kwr (ka2 + k)]

1

u(x,t) =

- (1.1.16)

Generallya,, b, and k are real numbers, and the obtained solution, eq. (1.1.16), is a generalized

solitonary solution.

In case k is an imaginary number, the obtained solitionary solution can be converted into periodic

solution or compact like solution. We write
k=iK. (1.1.17)
Using the transformation

exp[kx— (ka7 + k®)t] =exp[iKx —i(Ka? — K*)t]

= cos[Kx — (Ka? — K®)t]+isin[ Kx— (KaZ — K*)t]
and
exp[—kx+ (ka? + k*)t] = exp[—iKx +i(Ka? — K*)t]
= cos[Kx — (KaZ — K®)t] —isin[ Kx— (KaZ — K®)t]

eqd. (1.1.16) becomes

12



_(Bkzb%j

3 . . 3 (1.1.18)
1+ p)cos[Kx — (Ka; — K*)t]+b, +i(1— p)sin[ Kx - (Ka; — K*)t]

u(x,t)=a, +

bZ(=3K 2 + 2a2)
8a’ '

where p =

If we search for a periodic solution or compact-like solution, the imaginary part in the denominator

of eq. (1.1.18) must be zero,

_ b (-3K? +2a/)

0 1.1.19
a7 (1.1.19)

1-p=1

Solving b, from eq. (1.1.19) we obtain

— 8
by =+ \/ %_3}(2 + 280) (1.1.20)

Substituting eg. (1.1.20) into eq. (1.1.18) results a compact-like

—_ 2 8
3K \/%—3K2 1 2a?)

2eosfin-(Kaf ~ K1 (B4 o
1

u(x,t)=a, +

_ 202
3K \/%—3K2 12a2) w120

cos[Kx — (Ka/ — K3)t]4_r\/%_3K2 . 2a2)a1
1

=a +

where a, and K are free parameters and it requires that 2a12 >3K? .

So the suggested Exp-function method can obtain easily the generalized solitionary

solution and compact-like solution for nonlinear equations.
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CHAPTER 2
2.1 Exp-function method for solving nonlinear evolution equations
The two dimensional Bratu-type equation is given as:
Uy +U,, +Aexp(su) =0 (2.1.1)
and the generalized Fisher equation with higher order nonlinearity is given as:
u, =u, +ul-u") (2.1.2)

Two dimensional Bratu model stimulates a thermal reaction process in a rigid material where the
process depends on a balance between chemically generated heat addition and heat transfer by
conduction. The nonlinear reaction-diffusion equation was first introduced by Fisher as a model
for the propagation of a mutual gene. It has wide application in the fields of logistic population
growth, flame propagation, neurophysiology, autocatalytic chemical reactions and nuclear reactor
theory. It is well known that wave phenomena of plasma media and fluid dynamics are modelled

by kink-shaped and tanh solution or bell-shaped sech solutions.

2.2 Exp-Function method and application to two dimensional Bratu type equation

. . . 1
Using a complex variation 7 =kx+wy and the transformation u =(gj Inv, we can convert eq.
(2.1.1) into ordinary differential equation
(k2 + w2 - (k2 + W2 + dsv® =0 (2.2.1)

According to Exp-function method, we assume that the solution of eq. (2.2.1) can be expressed in

the form

14



d
D a,exp(ny)
Vi) =t (2.2.2)

2 by exp(mz7)
m=—p

where ¢, p dand q are positive integers, &,and b, are unknown constants.
For simplicity, we set p=c =1 and q=d =1, then eq. (2.2.2) reduces to

1y = B EP(0) 35+ 2, 00(-1) 223
b, exp(77) +, +b_; exp(-n)

Putting eq. (2.2.3) into eq. (2.2.1), we get

1

K[C“ exp(4n) +---+Crexp(n7) +Cy + C_ exp(—n) +---+ C_, exp(-417)] =0 (2.2.4)
Equating the coefficients of exp(nz) in eq. (2.2.4) to be zero yields a set of algebraic equations:

C,=C,=C,=C,=C,=C,=C,=C_,=C_, =0

Solving the system of algebraic equations given above with the aid of symbolic computation

system of mathematical software, we obtain;

2 2
a,=0, a=a,, blzz—g , by =Dy, w=$\/(lsa0_k b%, (2.2.5)
1

Substituting eg. (2.2.5) into eq. (2.2.3), we obtain the following exact solution

ay

> (2.2.6)
exp(kx+wy) +b, + (b%j exp(—(kx+ wy))

v(x,y)=

So,

15



u(x, y)=lln

g

exp(kx+wy) + by + (b% j exp(—(kx + wy))

Using the properties

exp(kx+ wy) + exp(—(kx+ wy)) = 2 cosh(kx + wy)

When b, =F2, eq. (2.2.7) reduces to travelling wave solution as follows:

Ay

u(x, y):%ln

2.3 The generalized Fisher equation:

The generalized Fisher equation above in eq. (2.1.2) is

u, =u, +u@-u")

Introducing the complex variation 7 defined as 7 = kx+ wt, we have

k?u”—wu'—u™ +u=0
where w and k are real parameter.

Making the transformation
yih

eg. (2.3.1) becomes

2
2cosh(kx$,/(’15a0 — 2k %y}i 2

16
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(2.2.9)
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k2nw” +k?(@1—n)(v'} —wnw' —n?°® +n?? =0 (2.3.3)

We assume that the solution of eq. (2.3.2) can be expressed in the form

V( ) — al eXp(U) + a0 + a—1 exp(_ﬂ) (2 3 4)
exp(77) + by +b_; exp(-7) -

Substituting eq. (2.3.4) into (2.3.3) and by the help of mathematical software, equating the

coefficients of all powers of exp(n#) to be zero, (n=-4,-3,...3,4) yields a set of algebraic equations
for a,, a,, &, b, by, b, k, w solving this system of algebraic equations by using mathematical

software, we obtain the following results,

Case .

bZ _ n n(n +4)
—0,a,=0,a, =1b, =2 b, =b, k= W= 2.3.5
a 3 a, 1= o +\/2(n+2) w 2n+2) ( )

where b, is a free parameter, substituting these results into eq. (2.3.4), from (2.3.2) we obtain the

following exact solution

>

u(x,t) = exp(kx: wi) (2.3.6)
exp(kx+ wt) +b, + (b%J exp(—(kx+ wt))
Using the properties
exp(kx+ wy) + exp(—(kx + wy)) = 2 cosh(kx + wy) (2.3.7)
exp(kx+ wy) —exp(—(kx+ wy)) = 2sinh( kx+ wy) (2.3.8)

when b, =72, eq. (2.3.5) becomes,

17



1

u(x.t) = cosh(i_A(x T Bt)) +_sinh(i‘rA(x¢ Bt)) [n (2.3.9)
F 2+ 2cosh(¥A(x F Bt))
where AzL, __n+4
J2(n+2) J2(n+2)
Case 1.
2
a,=b,a,=0a =0b, =b7°,b0 = by, k :im,W: 2221‘2‘; (2.3.10)

Where b, is a free parameter, substituting these results into eq. (2.3.4), and from (2.32) we obtain

the following exact solution

>

(b‘%] exp(—(kx + wt))

u(x,t) = w (2.3.11)
exp(kx+ wt) + b, +( %j exp(—(kx+ wt))
Using the properties (2.3.7)-(2.3.8), when b, =F2 eq. (2.3.11) becomes
1
Hxt) = [cosh(i_A(x T Bt)) —_sinh( -_TrA(x ¥ Bt))}n (23.12)
F 2+ 2cosh(FA(x ¥ Bt))

where AzL B= n+4

J20+2) " L2(n+2)

18



Conclusion

In this chapter, we applied Exp-function method for obtaining the exact solutions of the two
dimensional Bratu-type equation and the generalized Fisher equation. The result show that this
method is a powerful and effective mathematical tool for solving nonlinear evolution equation in

science and engineering.

19



CHAPTER 3
Application of Exp-function to coupled Boussinesg-Burgers equations

A well-known model is the coupled Boussinesg-Burgers equations [2]
1
u, = —2uu, S Vi (3.1)
1
Vi =2 Uy =2(uv) (3.2)

Using the transformation u=u(n), v=v(n), n=kx+wt egs. (3.1) and (3.2) become the ordinary

differential equations,
Wu’+2kuu'—%kv’:0, (3.3)
' 1 3,,m ’
WV _Ek u”+2k(uv) =0, (3.4)

On integrating egs. (3.3) and (3.4) once with reference to n and assuming that the constant of

integration is zero, we get
, 1
wu + ku —Ekv=0 (3.5)
wv—%k3u”+2kuv:0 (3.6)

According to Exp-function method, we assume that the solution of egs. (3.3) and (3.4) can be

expressed in the form,

20



h
D a,exp(ny)

u(r) == _ :_g exp(=gm) +---+ sh exp(hn) (37)
b, exp(my) o PN+ 4D, 00(p)
m=-g
j
o = n:z—idn exp(nr) ) d_; exp(=in) +---+dj exp(jn) (3.8)
a t - —_— .o )
zcm exp(m7) C_ exp(—sn)+---+c, exp(tn)

Where h, g, p,q, j,i,t and s are positive integers a,, b, , d, and C,, are unknown constants.
For simplicity, we set h=p=1,g=q=1and j=t=1i=s=1, then egs. (3.7) and (3.8) reduced to

u(n) = 21 exp(-77) +a, +a, exp(r) (39)
b_, exp(-n) +b, +exp(n)

V() = d_, exp(-n) +d, +d, exp(n) (3.10)
D= exp(—n) + ¢, +exp(n) |

Substituting egs. (3.9) and (3.10) into egs. (3.5) and (3.6), we have
%{5_3 exp(=31) + J_, exp(=27) + &_y exp(=17) + &, + 6, exp(n) + &, exp(2n)
+8;exp(37)}=0 (3.12)
%{574 exp(—4n) + &_s exp(=3n7) + £_, exp(=2n) + &, exp(-n) + &, + &, exp(n)

+ &, exp(2m7) + &5 exp(3) + &, exp(4n)} =0 (3.12)
where
A=(b_; exp(-17) + b, +exp(17) (¢, exp(—17) + C, +exp(77))

21



B = (b_y exp(—7) +by +exp(7)) (c_y exp(-7) + ¢, +exp(77))
2 1 2
o_3=kajc, +wab,c, - > kb5d_, ,
5, =2ka ,a,c, +wayh_,c, +wa ,b,c_, +ka’c, +wa b ,c, —kbb,d ; — % kb%d,,
5, =ka’ +wa,b , +wa c , +kaic, +2ka,ac , +wab ,c, +wayb,c, +2ka,a,c,

T+ wayb ¢, +wa jbyc, —Kkb,d | — % kb2d , —kb_,b,d, — % kbd,,

O = % (4kaa, +2wayb_, + 2wa_,b, + 2wa,c_, + 4kaya,c_, +2wab,c_, +2wa_;C,

+2kagc, +4ka,a,c, + 2wab_ ¢, + 2wa,b,c, — 2kby,d_, — 2kb_,d, —kbid,
—2kb,byd,),

5, =wa , +ka? +2ka ,a, +wab ; +wayh, +wa,c_, +ka’c_, +wa,C, + 2kaya,c,

+ wayb,Cy —%kd,1 — Kkbyd, — kb, d, —%kbgdl,
5, = wa, + 2kaya, +wa,b, +wa,c, + ka’c, —%kdO —kby,d, ,

5, = wa, +ka? —%kdl,

£, =2ka,bid ,+wb’d_,,

.= —% k3a,b?c , + % k3a b ;b,c , +2ka,b%d , +4ka b ,b,d , +3wb?b,d

22



+2ka ;b3 d, +wb’d,

£, =2k bc, —2k%ab’ic., + % k3ayb_byC., — % Ka_blc., — % k3a,blc, +

% k*a_b_b,c, +4ka_b_d_, +3wb%d_ +2kab’d_, +4ka,b_b,d_ +
2ka ,b2d_, +3wb ,b2d_, + 2ka,b%d, + 4ka ,b_b,d, +3wh3b,d, +
2ka_b’%d, +wb’d,,

£, = —% Ka b2 + % ka,b b, +3k%a,b ,c , — g Kabyc , — g K%a,b b,c , +

ok%a b ,c, — 2kab’c, + % K®a,b_,b,C, — % k®a_,bZc, +4kah d_, +
4ka_b,d_, +6wb_b,d_, +4ka,b b,d_, +2kasbZd_, +wb3d_, +4ka b d,
+3wh2d, + 2kabZ d, + 4kagb_ byd, + 2ka b2d, +3wh ;b2d, + 2ka,b3d,
+4ka_,b ,b,d, +3wb?b,d,,

£, = %(4k‘°’a_lb_l —4k*a,b’ +k3a b b, —k?*a_ bl —4k®a_,c_, +4k*ab c, +
k*a,b,c_, —k®a,bic , +6k3a,b ,c, —3k*a_,b,c, —3k%a,b ,b,c, +4ka,d , +
6wb_,d_, +8kab ,d_, +8kagh,d_, +6wbld_, +4kab2d_, +8ka,b_,d, +
8ka.,b,d, +12wb_,b,d, +8ka,b b, d, + 4ka,bZd, + 2wbid, +8ka b ,d,
+6wb3d, +4kab%d, +8kayb ,b,d, +4ka ,bZd; +6wb bZd,)

23



.3
o 2

3

1 1
& =3k3a b, - Eksa,lb k3a,b ,b, — Ekg’aoc,l +Ek3alb0c,1 —2k%a ¢, +

2k3a,b ., + % k3ayb,c, — % k3a,bZc, + 2ka,d , +3wh,d , + 4kab,d , +
2ka_,d, +3wb_,d, +4ka,b_d, +4ka,b,d, +3wbZd, + 2ka,b2d, + 4ka,b ,d,
+4ka_,b,d, +6wb_,b,d, +4kab_b,d, +2ka,bZd, +wb:d,

&, =—2k®a_, +2k3ab , + % k3a,b, — % k3a,b2 — % k3a,c, +%k3a1boc0 +wd_, +
2ka,d , + 2ka,d, +3wb,d, +4kab,d, +2ka ,d, +3wb_,d, +4kab ,d,
+4kagh,d, +3wb2d, + 2ka,b2d,

&= —% ka, + % k®a,b, +wd, + 2ka,d, + 2ka,d, +3wb,d, + 4ka,b,d,

&, =wd, +2ka,d;

By setting,
03=0,=0,=0,=0,=0,=0;=0, and
5—425—325—2 =< =§o=§1:§2 =§3=§4=0’

and solving these system of algebraic equations simultaneously with the aid of symbolic

computation system of mathematical software, we obtain the following results,
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Case .

a, =0,a, :—%,a1 =0,b,=0,d,=0,d, =-wh,,d,=0,c, =b,
G, = 20, k = /2w,

Substituting these values into egs. (3.9) and (3.10), we get:

NOY R
V2[b, + cosh(kx+ wt) + sinh( kx+ wt)]’

u(x,t)=—

wh,

v(x,t)=—

2b, + cosh(kx + wt) + bZ (cosh(kx + wt) — sinh( kx+ wt)) + sinh( kx + wt) ’

Fig. 3(a). Soliton solutions of egs. (3.9) and (3.10) in case I, whenb, =w=1.

Case Il.
Jwb
a, =04, :To,al =0,b,=0,d,=0,d, =-wh,,d,=0,c, =b?,
C, =2b,, k =—/2w
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Substituting these values into egs. (3.9) and (3.10), we get:

NOY R
J2(b, + cosh(kx + wt) + sinh( kx+ wt))

u(x,t) =

wh,

v(x,t)=—

2b, + cosh(kx + wt) + bZ (cosh(kx + wt) — sinh( kx + wt)) + sinh( kx -+ wt)

Fig. 3(b). Soliton solutions of egs. (3.9) and (3.10) in case I, when b, =w=1.

Case 1.

a,=0a,=0a =—%,b_1 =0,d , =0,d, = -wh,,d, =0,c, =bZ,

c, =20, k=~2w,
Substituting these values into egs. (3.9) and (3.10), we get:

Jw(cosh(kx + wt) + sinh( kx+ wt))
J2(b, + cosh(kx+ wt) + sinh( kx+wt))’

u(x,t)=—

wh,
2b, + cosh(kx + wt) + bZ (cosh(kx + wt) — sinh( kx+ wt)) + sinh( kx + wt) ’

v(x,t)=—
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Fig. 3(c). Soliton solutions of egs. (3.9) and (3.10) in case Ill, when b, =w=1.

Case IV.
Jw
a,=0,a,=0,a =E,b_1 =0,d , =0,d, =-wh,,d, =0,c, =bZ,
CO :2b0,k :_m,

Substituting these values into egs. (3.9) and (3.10), we get:

Jw(cosh(kx -+ wt) + sinh( kx -+ wt))
J2(by + cosh(kx + wt) + sinh( kx + wt))’

u(x,t) =

wh,

V(X,t) =— > , .
2b, + cosh(kx + wt) + bZ (cosh(kx + wt) — sinh( kx + wt)) + sinh( kx -+ wt)
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Fig. 3(d). Soliton solutions of egs. (3.9) and (3.10) in case IV, when b, =w=1.

Case V.

Jwb_ 1
.= L a, =Z[\/ﬂb0 —J2(-4wb , +wb?)],a, =0,d , =0,

—w?b, + W%WIW(—4b_l +bZ)
d, = d

2w t =0,

_ 3wt b, —wEbg —wP (b, —b)-w(db,, b))
= ’
—w’2b, + w2 \Jw(—4b_, +bZ)

5 5
2w 2, — W 2b2 + Wby /- W(Ab_, — b?
Co = [2w 715W o + Wby +/—w(4b_; o)]’k:_m’
- Wéb0 + w2 w(—4b ; +Db?)

Substituting these values into egs. (3.9) and (3.10), we get:

|:2\/Wb_l + (v/Why — /- 4wb_; +whb )(sinh( kx + wt) + cosh(kx + wt))}

u(x,t) = ,
242 (b_, + by (cosh(kx+ wt) + sinh( kx+ wt))+ cosh(2kx -+ 2wt) + sinh( 2kx -+ 2wt))
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v(x,t) = —[\/W{—4bel +2wh? — 2\/Wb0 = 4wb_; +wbZ Hcosh( kx + wt) + sinh( kx+ Wt)}} X

1
(2[— 3uWh 4, + VWb + (b ; —bZ)y/— 4wb ; +wbE + (- 4vwb , + 2/wb? -

2b, /- 4wh_, + wb? ){cosh( kx+ Wt) + sinh( kx + wt)} + {~/wh, —

= 4wb_, + wb? Hcosh(2kx + 2wt) + sinh( 2kx + 2Wt)}D

Fig. 3(e). Soliton solutions of egs. (3.9) and (3.10) in case V, when b, =2,b , =1, w=1.

Case VI.

a, - —&,a0 - %[—\/2wa —J2(~4wb_, +wb?)],a,=0,d_, =0,

J2

L _wh, — w2 Jw(—4b_, +b?)
0 =

2w

1d1 :01
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[— 3w 2b b, + W 2b3 —w? (b_, — b2 )\/— w(db_, — bg)}
Cfl = I
W 2b, +w? Jw(—4b._, +b2)

2[— 2w2b_ +w ?bZ + w2b, /- w(db_, — bé)}
[w% by + WP W(—4b_, +b? )}

,k:'\IZW’

COZ

Substituting these values into egs. (3.9) and (3.10), we get:

[— 2 wh_; — (\Jwhy, + /- 4wb ; +wh? )(sinh( kx -+ wt) + cosh(kx+ Wt))}

242[b_, + by (cosh(kx+ wt) + sinh( kx -+ wt) )+ cosh(2kx+ 2wt) + sinh( 2kx+ 2wt)]’

u(x,t)=

v(x,t) = —[\/W(— AW, +2wh? + 24wy — 4wb_, + wh? j(cosh(kx+ wt) + sinh( kx+ Wt))} y

1
[2(- 3w jby + Vb2 + (~b , +bZ)\/— wh , + wbZ + (- 4vwh , + 2Jwb? +
2by \/— 4wb_, + wb? j{cosh( kx+wt) + sinh( kx+ wt)} + (v/wb, +

J—4wb_, +wb? ]{cosh(zkx + 2Wt) + sinh( 2kx + 2wt)}ﬂ
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Fig. 3(f). Soliton solutions of egs. (3.9) and (3.10) in case VI, when b, =2,b , =1, w=1.

Case VII.

a,= ‘/yg‘l ,8, =%[mb0 +\/2(—4Wb,1 +whj)],a, =0,d_, =0,

—w?b, — w2 Jw(—4b_, +b?)
dO = ldl = 0!
2w

[— 3w 2b b, +w 2b3 —w? (b_ —b2)y— w(db_, — b2 )}
c,= ,
w2b, + w2 lw(—4b_, +b2)

2[— 2w2h_, + W 2bZ + Wby - w(db_, — bg)}
[w%bo w2 fw(—db_, + bg)}

,k:_‘VZWl

Co =

Substituting these values into egs. (3.9) and (3.10), we get:

[2\/%_1 N [\/Wbo = dwb, + wh )(sinh( kx+Wt) + cosh(kx + wt) )}

u(x,t)= ,
24/2[b_; + by{cosh(kx+ wt) + sinh( kx +wt)}+ cosh(2kx+ 2wt) + sinh( 2kx + 2wt)]
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v(x,t) = —[M{—4bel +2wh? + ZMbo = 4wb_, + wbZ HCosh(kx+ wt) + Sinh(kx + vvt)}} X

1
[2(- 34w by + Wh? + (b, +b2)y/— 4wb_, +WhZ + (~4/wh_, + 24/wh? +

20,1/~ 4wb_; +wh? )(cosh(kx + wt) + sinh( kx+ wt)) + (Mb0 +

= 4wb_; +wb? )(cosh(2kx + 2wt) + sinh( 2kx + 2Wt))ﬂ

Fig. 3(g). Soliton solutions of egs. (3.9) and (3.10) in case VII, when b, =0,b , =-1,w=1.

Case VIII.

a, = —%,ao = %[—\/ﬂbo +2(~4wb , +wh?)],a, =0,d , =0,

3
d - —w?h, +w? |w(-4b_, +b?) d -0,

o 2w
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[3w% b_iby — W 2b3 — WA (b_, — b2 )\/— w(db_, — bg)}
C,=
— Wb, + w2lw(—4b_, +b?)

Z[ZW% b_, — W’ 2bZ +w?b, /- w(4b_, — bé)}

oy o, 05) |

COZ ,k:'\IZWa

Substituting these values into egs. (3.9) and (3.10), we get:

[— 2Jwb , - (Mbo — - 4wb_, +wb? j(sinh( KX+ Wt) + cosh(kx + Wt))}

2+2[b_, + by (cosh(kx+ wt) + sinh( kx+ wt) )+ cosh(2kx + 2wt) + sinh( 2kx + 2wt)]

u(x,t)=

v(x,t) = —[\/W x (— 4wb_, + 2wb2 — 2v/wby /- 4wb_, + wb? J x (cosh(kx + wt) + sinh( kx + wt))} x

1
[2(— 3Wib_jb, + VWhE + (by —bZ)y— 4wb_, + Wb + (—4wb_, + 24/ Wh? —

2b, +/— 4wb_; + wbZ )(cosh(kx + wt) + sinh( kx + wt)) + (\/Wbo -

= 4wb_; +wb? )(cosh(2kx + 2wt) + sinh( 2kx + 2Wt))ﬂ
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Fig. 3(h). Soliton solutions of egs. (3.9) and (3.10) in case VIII, when by, =2,b , =1, w=1.

Case IX.
a,=0,a,= %(\/Zwbo + \/2(—4Wb,1 +wbl)),a, = %,dl =0,

d4 - —w?b, +W%w/W(—4bfl +b2)
0o~ '

2w

d, =0,

_ (@b —w?bi —wA (b, ~ b))~ w(db, ~bd)
-1 = 1
—w’2b, +w? Jw(—4b_, +b2)

2(2w2h . —w’?b? + Wb, \/— w(4b_. — b2
c, = (2w 715W h + W'D, w(4b_, o))’k:_m’
(—w’2b, +w? Jw(—4b_, +bZ))

Substituting these values into egs. (3.9) and (3.10), we get:

u(x,t) = [{cosh( Kx+ Wt) + sinh( kx -+ wtyH/why + /— 4wb_ + wb2 }+ 2-/w{cosh( kx+ wt)
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1
J2 [b_, +by{cosh(kx+ wt) + sinh( kx+ wt)} +

+sinh( kx + wt)}] x (2

cosh(2kx -+ 2wt) + sinh( 2kx+ 2wt)])

v(x,t) = —[\/W(— 4wb_, + 2wb2 — 2+/wb, /- 4wb_; + wb? ) x (cosh(kx + wt) + sinh( kx + Wt))} x

1
[2(- 34wh_by + Wb + (b, — b2 )/~ dwb_, + Wb +{~4/wh_, + 24/ wh? —

2b, ~/— 4wb_, + wbZ2 }{cosh(kx -+ wt) + sinh( kx+ wt)}+{~/wb, —/— 4wb_, + wb?}

{cosh(2kx+ 2wt) + sinh( 2kx+ 2wt)})]

Fig. 3(i). Soliton solutions of egs. (3.9) and (3.10) in case 1X, when by, =2,b, =1,w=1.

Case X.

=

a, -0a, :%(_\/zw ) —J2(~4wb_, +wb?)),a, == d. =0
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3
d - —w?h, w2 |w(-4b_, +b?) d -0,

o 2w

. _ (3W2b by —W?bg —w? (b, —bZ)\/- w(4b_, — D)
i — Wb, + w2\ w(—4b_, +b?)

L 22w, —w’*b} + wb, - w(4b,, b)) T
i (—w'?b, + w2 Jw(—4b_, +bZ))

Substituting these values into egs. (3.9) and (3.10), we get:
u(x, t) = —[{cosh(kx+ wt) + sinh( kx+ wt) /Wby, +/— 4wb_, + wb? + 2+/w{cosh(kx + wt)

1

inh( k x
+sinh(kx+wi)3] (24/2[b., + by{cosh(kx+wt) + sinh( kx+wt)}+

cosh(2kx + 2wt) + sinh( 2kx+ 2wt)])

v(x,t) = —[\/W{—4Wb,l +2wh? — 2\/Wb0 = 4wb_; +wbZ Hcosh( kx + wt) + sinh( kx+ vvt)}} x

1
[2(— 3vwb_,b, + Wb + (b_, —b)y/— 4w, +whZ +{-4v/wb_, + 2J/wb? -

2b, +/— 4wb_; +wb2 }{cosh(kx+ wt) + sinh( kx + wt)}+{~/wb, —/— 4wb_, +wbZ}

{cosh(2kx + 2wt) + sinh( 2kx+ 2wt)})],
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Fig. 3(j). Soliton solutions of egs. (3.9) and (3.10) in case X, when b, =2,b , =1, w=1.

Case XI.

a,=0a, - %(\/2wa ~ J2(Cawb, +wbR)),a, = %,d =0,

—wb, — w2 Jw(—4b_, +b?
dOZ w 0 w W( —l+ 0),d1:0,

2w

[— 3w72b_b, +w b3 —w? (b_, —bZ)/— w(4b_, — bg)}

C,= ,
W 2b, + w2 Jw(—4b_, +bZ)
2[— 2w2b_, + W 2b? +w2b, — w(db_, — bg)}
Co= Jk==v2w,

[w% by + W2 W(—4b, + bg)}

Substituting these values into egs. (3.9) and (3.10), we get:

u(x,t) = [{cosh( kx -+ wt) + sinh( kx + wt) /Wb, — /- 4wb_, + wbZ }+ 2+/w{cosh( kx+ wt)
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1

inh( k X
(o w3 [2V2(b_, +byfcosh(kx+ wt) +sinh( kx+ wi)} +

cosh(2kx + 2wt) + sinh( 2kx + 2wt))]
v(x,t) = —[\/W{—4wb_1 +2wh? + 2:/why /— 4wb_, + wb2 Hcosh( kx+ wt) + sinh( kx+ Wt)}} x

1
[(2{—3Mb_1bo 4+ JWhZ + (=b_, +b2)\— dwb_, + WhZ +{-4/wb_, +2/whZ +

2b, /— 4wb_, + wb? }{cosh(kx + wt) + sinh( kx+ wt)}+{~/wh, + /— 4wb_, + wb?}

{cosh(2kx + 2wt) + sinh( 2kx -+ 2wt)})],

Fig. 3(k). Soliton solutions of egs. (3.9) and (3.10) in case XI, when b, =0,b, =-Lw=1

Case XII.

a, =0a, :%(—\/2wa + JaCawb , ~wb?)),a, =YW 4 o,

5o

38



[— 3w 2b_ by, +w 2hd —w? (b, —b2)y— w(db_, — bg)}
C,=
w2, + w2\ /w(—4b_, + bZ)

2[— 2w’2b_, + W 2b2 + w2by - w(4b_, —bZ )}

(W 2b, +w? lw(—4b_ +bZ))

,k:VZW!

Co =

Substituting these values into egs. (3.9) and (3.10), we get:
u(x, t) = [{cosh(kx+ wt) + sinh( kx -+ wt)}{—/wb, +/— 4wb_, + wb2 — 2~/w{cosh(kx+ wt)

1
(2«/5 [b_, +b,y{cosh(kx+ wt) + sinh( kx+ wt)} +

+sinh( kx+ wt)}}]x

{cosh(2kx + 2wt) + sinh( 2kx+ 2wt)}])
v(x,t) = —[\/W{—4bel +2wb; + 2\/Wb0 V- 4wb ; +wb? Hcosh( kx + wt) + sinh( kx + Wt)}} X

1

[2(— 34/ wh_ by + JWbE + (=b_, + b2 )= 4w, + WbZ +{-dvWh_, + 24/wb? +

2b, +/— 4wb_; +wb?2 }{cosh(kx+ wt) + sinh( kx+ wt)} +{~/wh, +/— 4wb_, +wbZ}

{cosh(2kx+ 2wt) + sinh( 2kx+ 2wt)})],
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Fig. 3(l). Soliton solutions of egs. (3.9) and (3.10) in case XII, when b, =0,b, =-1,w=1.

CONCLUSION

In this chapter, we have successfully implemented Exp-function method developed by He and Wu
to derive the exact solutions of the coupled Boussinesg-Burgers equation. The results demonstrate
that Exp-function method is straightforward and concise mathematical tool to establish analytical
solutions (both solitary and periodic) on nonlinear evolution equations. Therefore, we hope that
this method can be more effectively used to investigate other nonlinear evolution equations which

are frequently take place in engineering, applied mathematics and physical sciences.
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