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ABSTRACT 

 
Now a day the human life and the environment have frequently been endangered by the 

natural hazards like earthquake, tsunami, flood, cyclone and landslides. As a consequence of 

which the human society and the nation‟s economy get hampered immediately after the 

occurrence of a natural disaster. In developing countries like India, where the population is 

very large and is increasing day by day, the social and economic factors force the people to 

live in vulnerable areas, due to which the effects of these natural disasters are catastrophic. 

Among all these threats, liquefaction of soil can be pointed out as one of the most disastrous 

seismic hazards. Hence evaluation of liquefaction susceptibility is an important aspect of 

geotechnical engineering. The widely used procedures for evaluation of liquefaction potential 

of soil are the simplified procedure. This procedure was developed from empirical evaluation 

of field observations and field and laboratory test data. For evaluation of liquefaction potential 

of soil generally two variables are required, such as: (i) the seismic demand on a soil layer 

expressed in terms of CSR, (ii) the capacity of the soil to resist liquefaction expressed in terms 

of CRR. The method for evaluation of CRR is to test undisturbed soil specimens in the 

laboratory. To avoid the difficulties associated with sampling and laboratory testing, field 

tests have become the state-of–exercise for routine liquefaction inquiries. The various field 

tests used for the liquefaction resistance of the soil are (i) Standard Penetration Test(SPT), (ii) 

Cone Penetration Test (CPT) , (iii) Shear Wave velocity Measurements and (iv) Becker 

Penetration test(BPT).       

Artificial intelligent techniques such as artificial neural network (ANN), support vector 

machine (SVM), relevance vector machine (RVM) are used to develop liquefaction prediction 

models based on in-situ database , which are found to be more efficient as compared to 

statistical methods. However, the ANN has poor generalization, attributed to attainment of 
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local minima during training and needs iterative learning steps to obtain better learning 

performances. The SVM has a better generalization compared to ANN, but the parameters „C‟ 

and insensitive loss function (ε) needs to be fine-tuned by the user. Moreover, these 

techniques will not produce a comprehensive relationship between the inputs and output, and 

are also called as „black box‟ system. 

     In the present study an attempt has been made to predict the liquefaction potential of soil 

based post liquefaction cone penetration test (CPT) , standard penetration test (SPT) and shear 

wave velocity (  ) data using multivariate adaptive regression splines (MARS) and genetic 

programming (GP). A comparative analysis is made among the existing methods and the 

proposed MARS and GP model for prediction of liquefied and non-liquefied cases in terms of 

percentage success rate with respect to the field manifestations. It is observed that the 

prediction as per MARS and GP model is more accurate towards field manifestation in 

comparison to other existing methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Now a days the human life and the environment have frequently been threatened by the 

natural calamities like earthquake, tsunami, flood, cyclone and landslides. As a consequence 

of which the human society and the nation‟s economy get hampered immediately after the 

occurrence of a natural disaster. In developing countries like India, where the population is 

very large and is increasing day by day, the effects of these natural disasters are catastrophic 

and the social and economic factors force the people to live in vulnerable areas. Among all 

these threats, liquefaction of soil can be pointed out as one of the most disastrous seismic 

hazards. During the last century, it has been estimated that these seismic hazard accounts 

around 30% of total casualties and 60% of the total property loss (Das and Muduli 2011). 

Though, soil liquefaction phenomena have been recognized since long, it was more 

comprehensively brought to the attention of engineers, seismologists and scientific 

community of the world by several devastating earthquakes around the world; Niigata and 

Alaska (1964), Loma Prieta (1989), Kobe (1995),Kocaeli (1999) and Chi-Chi (1999) 

earthquakes (Baziar and Jafarian 2007). Since then, a numerous investigations on field and 

laboratory revealed that soil liquefaction may be better described as a disastrous failure 

phenomenon in which saturated soil losses strength due to increase in pore water pressure and 

reduction in effective stress under rapid loading and the failed soil acquires a degree of 

mobility sufficient to permit movement from meters to kilometres. Soil liquefaction can cause 

ground failure in the way of sand boils, major landslides, surface settlement, lateral spreading, 

lateral movement of bridge supports, settling and tilting of buildings, failure of water front 

structure and severe damage to the lifeline systems etc. 
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The liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction (i.e., the extent of ground failure 

caused by liquefaction) and study of response of various foundations in liquefied soil. These 

are the major concern of geotechnical engineers. In the present study, the focus is on 

liquefaction potential evaluation, which determines the likelihood of liquefaction triggering in 

a particular soil in a given earthquake. Evaluation of the liquefaction potential of a soil 

subjected to a given seismic loading is an important first step towards mitigating liquefaction-

induced damage. Though, different approaches like cyclic strain-based, energy based and 

cyclic stress-based approaches are in use, the stress based approach is the most widely used 

method for evaluation of liquefaction potential of soil (Krammer, 1996). Thus, the focus in 

present study is on the evaluation of liquefaction potential on the basis of the cyclic stress-

based approach. There are two types of cyclic stress based-approach available for assessing 

liquefaction potential. One is by means of laboratory testing (e.g., cyclic tri-axial test and 

cyclic simple shear test) of undisturbed samples, and the other involves use of empirical 

relationships that relate observed field behaviour with in-situ tests such as standard 

penetration test (SPT), cone penetration test (CPT), shear wave velocity measurement (Vs) 

and the Becker penetration test (BPT). 

The widely used procedures for evaluation of liquefaction resistance are simplified procedure. 

This simplified procedure was originally developed by Seed and Idriss (1971). Various in-situ 

tests are also there for evaluation of liquefaction potential of soil such as Standard Penetration 

Test(SPT) which were developed by Seed and Idriss (1971), Tokimatsu andYoshimi (1983), 

Seed et al. (1985), Berrill and Davis (1985),and Law et al. (1990), Cone Penetration test(CPT) 

developed by Robertson and Campanella (1985), Seed and De Alba(1986), Shibata and 

Teparaksa (1988), and Stark and Olson(1995).Other in-situ test methods for evaluation of 

liquefaction potential of soil are Dilatometer test (Marchetti 1982) and Shear wave velocity 
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Test (Andrus and Stokoe,1997). However, there are several limitations in using these methods 

to determine the liquefaction resistance of saturated sandy soils. Because of the difficulty and 

the cost constraint of obtaining high-quality undisturbed samples of saturated sandy soils, 

there is a need for simple, economic procedures for evaluation of earthquake induced 

liquefaction resistance of these soils. 

With the rapid increases in processing speed and memory of low-cost computers, it is not 

surprising that various advanced computational learning tools such as neural networks have 

been increasingly used for analyzing or modeling highly nonlinear multivariate engineering 

problems. These algorithms are useful for analyzing many geotechnical problems, particularly 

those that lack a precise analytical theory or understanding of the phenomena involved. To 

take care of such problems Soft computing have been developed. There are various methods 

of soft computing which are shown in the Figure 1.1 

 

 

 

 

 

 

 

 

 

Figure 1.1 Methods of Soft Computing 
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In situations where measured or numerical data are available, neural networks have been 

shown to offer great promise for mapping the nonlinear interactions (dependency) between 

the system‟s inputs and outputs. Unlike most computational tools, in neural networks no 

predefined mathematical relationship between the dependent and independent variables is 

required. Although this is successful in many regards, a major disadvantage, compared to 

other statistical models is that they provide no information about the relative importance of 

the various parameters involved, as also implied by some previous studies. It has also been 

noted that as the knowledge acquired during training is stored in an implicit manner in the 

ANN, it is very difficult to come up with a reasonable interpretation of the overall structure of 

the network. These inherent limitations wherein the information or the intervening steps are 

not available have earned ANN, the reputation of being a “black box” approach. In addition, 

ANN has several inherent drawbacks such as over fitting, slow convergence speed, poor 

generalizing performance, and arriving at local minimum. Recently support vector machine 

(SVM), based on statistical learning theory and structural risk minimization is being used as 

an alternate prediction model. The SVM developed by Vapnik (1998) , uses structural 

constrained minimization penalizing the error margin during training. The error function 

being a convex function better generalization used to observe in SVM as compared to ANN. 

However, neural networks have been criticized for its long training process since the optimal 

configuration is not self-evident. Another technique, called the Genetic Programming (GP), 

developed by Koza, in 1992, mimics biological evolution of living organisms and makes use 

of principle of genetic algorithm (GA). It is also called as „grey box‟ model. Various attempts 

have been made in the recent past to use GP to some Geotechnical engineering problems. GP 

helps in achieving greatly simplified model formula compared to ANN model, but a trade-off 

is made between the complexity of the formula and accuracy of the model.  
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Another class of model may be termed as „white box‟ model is the multivariate adaptive 

regression spline (MARS) developed based on statistical model developed by Friedman 

(1991). MARS is a fairly simple nonparametric regression algorithm known as multivariate 

adaptive regression splines, which has the ability to approximate the relationship between the 

inputs and outputs, and express the relationship mathematically. The main advantages of 

MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the 

contributions of the input variables, and its computational efficiency.  MARS can adjust any 

functional form, hence suitable for exploratory data analysis. Samui et al. (2011) observed 

that the MARS model for uplift capacity of suction caisson has better statistical performance 

comparable to ANN and FEM model.  It may be mentioned here that, though above AI 

techniques are based on sound mathematical/numerical background, its application to 

different problems is an art. 

 In the present study liquefaction index is predicted by using Multivariate Adaptive 

Regression splines (MARS) and Genetic Programming (GP) based on post Liquefaction CPT, 

SPT and Shear wave velocity data. Then a comparison is made between the developed MARS 

and GP model and the existing methods. 

 

 

 

 

 

 

 

 

 



6 

 

 

1.2 OBJECTIVE AND SCOPE 

The objective of the project work is to develop liquefaction susceptibility analysis of soils 

using AI techniques; GP and MARS.  

SCOPE: 

 Evaluation of liquefaction potential of  soil from CPT data by using MARS and GP. 

 Evaluation of liquefaction potential of soil from SPT data by using MARS and GP. 

 Evaluation of liquefaction potential of soil from Shear Wave velocity by using MARS 

and GP. 

 

1.3 THESIS OUTLINE 

This thesis consists of seven chapters and the chapters has been organised in the following 

order. 

After a brief introduction in Chapter 1 the Literature review and the methodology are 

described in the Chapter 3 and 4 respectively. 

Chapter 4,5, 6, describes the application of MARS and GP for evaluation of Liquefaction 

potential of soil from post liquefaction CPT, SPT  and shear wave velocity data. A 

comparison is made between the existing methods and the developed MARS and GP model. 

In Chapter 7 conclusions drawn from above chapters and scope for the future studies are 

presented. The general layout of the thesis work based on each chapter is presented in a flow 

diagram as shown below. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction and study of response of various 

foundations in liquefied soil. These are the major concerns of Geotechnical engineers. In 

the present study the focus is on liquefaction potential evaluation for determination of the 

likelihood of liquefaction triggering in a particular soil in a given earthquake. A review of 

the various liquefaction potential evaluation methods are presented in this chapter. In the 

present section, application of various methods for liquefaction susceptibility analysis is only 

discussed in International and natural scenario.  

2.2 LITERATURE REVIEW  

 
Once a particular soil is found to be susceptible to liquefaction on the basis of various 

susceptibility criteria as mentioned in Kramer (1996) the next step in the liquefaction hazard 

evaluation process is the evaluation of liquefaction potential, which is the main topic of the 

present study. The major factors controlling the liquefaction potential of a saturated cohesion 

less soil in level ground are the intensity and duration of earthquake shaking and the density 

and effective confining pressure of the soil. Several approaches are used for evaluating 

liquefaction potential, including (i) the cyclic stress-based approach, (ii) the cyclic strain-

based approach, and (iii) the energy-based approach.  

2.2.1 INTERNATIONAL STATUS  

 
Ishihara (1993) suggested that in case of liquefaction resistance evaluated by using CPT 

value for silty sands ( > 5%fines), the effects of fines could be estimated by adding some 
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tip resistance increments to the measured tip resistance to obtain an equivalent clean sand 

tip resistance. 

Goh (1994), studied the feasibility of using neural networks to model the complex 

relationship between the seismic and soil parameters, and the liquefaction potential. He used a 

simple back propagation neural-network algorithm. He concluded that, the performance of the 

neural-network models improved as more input variables are provided. The model consisting 

of eight input variables was the most successful. Out of which the standard penetration test 

(SPT) value and the fines content were the most important variables. Comparisons indicate 

that the neural-network model is more reliable than the conventional dynamic stress method 

by Seed et al.  

Goh (1996), examined the feasibility of neural-network to assess liquefaction potential from 

the actual CPT field test data. In comparison to other conventional deterministic methods, the 

proposed neural-network method precludes a probabilistic assessment of the risk of 

liquefaction. 

Juang et al. (2002), investigated the data‟s collected from the largest earthquake of the century 

in Taiwan, They examined the Three CPT- based simplified methods, the Olsen method, the 

Robertson method and the Juang method, using the case histories derived from the Chi-Chi 

earthquake. As per them, the comparison shows that the Juang method is more accurate than 

the other two methods in predicting the liquefaction potential of soils based on the cases 

derived from the Chi-Chi earthquake. 

Juang et al. (2003) also developed an ANN-based simplified method using soil type index (Ic) 

for evaluation of CRR of soil using post liquefaction CPT database and also used Bayesian 

mapping function approach to relate Fs with PL. 

Moss (2003) and Moss et al. (2005) presented a CPT-based probabilistic model for evaluation 

of liquefaction potential using reliability approach and a Bayesian updating technique. 
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Juang et al. (2006) used first order reliability method (FORM) for probabilistic assessment of 

soil liquefaction. 

Baziar and Jafarian (2007), developed an artificial neural network (ANN) model to establish a 

correlation between soils initial parameters and the strain energy required to trigger 

liquefaction in sands and silty sands. A relatively large database, presenting laboratory cyclic 

data of clean and silty sands, and also data of several centrifuge liquefaction tests were 

utilized to develop an ANN model to predict the amount of strain energy required up to 

liquefaction triggering. A subsequent parametric study was carried out and the trends of the 

results have been confirmed via some previous laboratory studies. In addition, the data 

recorded during some real earthquakes at Wildlife, Lotung and Port Island Kobe sites plus 

some available centrifuge tests data have been utilized in order to validate the proposed ANN-

based liquefaction energy model. The results clearly demonstrate the capability of the 

proposed model and the strain energy concept to assess liquefaction resistance (capacity 

energy) of soils. 

2.2.2 NATIONAL STATUS 

 
Das and Samui (2007), proposed and investigated with the use of the Relevance 

Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone 

penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with 

an appropriate prior that results in a sparse representation. He compared the results with 

widely used artificial neural network (ANN) model. Overall, the RVM shows good 

performance and is proven to be more accurate than the ANN model. It also provides 

probabilistic output. The model provides a viable tool for earthquake engineers to assess 

seismic conditions for sites that are susceptible to liquefaction. 

Pal (2006) examined the potential of Support Vector Machines(SVMs) for accessing 

the liquefaction potential from the actual SPT and CPT field data. The data were taken from 
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Goh (1994) and Goh (1996).SPT field data consists of a total of 85 records out of which there 

were 42 liquefied sites and the remaining 43 are non-liquefied sites after earthquakes. CPT 

field data sets consists of a total of 109 data sets out of which 74 are liquefied sites and 35 are 

non-liquefied sites. The advantage of SVMs approach is the use of SPT(N1 )value which was 

changed to SPT(N1)60 value in Goh (1994).SVMs method showed better result than Neural 

network method and SVMs requires small training time. The number of data used to provide 

the results is smaller than the neural network approach. 

     Samui(2011), proposed Least Square Support Vector Machine(LSSVM) and Relevance 

Vector Machine(RVM) for evaluation of seismic  liquefaction potential of soil from actual 

Standard Penetration Test(SPT) data. He collected datas from Goh (1994). He proposed that 

LSSVM and RVM method suggest the standardized SPT {(N1)60} value is not required for the 

determination of liquefaction potential of soil. A comparison were made between the two 

developed model and ANN model developed by Goh(1994).The comparison indicated that 

the RVM model is more reliable than the ANN and LSSVM model. 

 

Das and Muduli, (2011), analysed the liquefaction potential of soil based on cone 

penetration test (CPT) data obtained after 1999 Chi-Chi, Taiwan, earthquake using genetic 

programming (GP), and made a comparative study among the three CPT based statistical 

methods, i.e. ANN, SVM and GP, for prediction of liquefied and non-liquefied cases in terms 

of liquefaction index, and found that the developed GP model is more efficient as compared 

to the other two statistical methods. 
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CHAPTER 3 

 METHODOLOGY 

 

3.1 INTRODUCTION 

 
In the present study, two artificial intelligence techniques, GP and MARS have been used to   

to separate liquefaction and non-liquefaction cases in terms of liquefaction index(LI).   As 

Genetic programming and its variant MGGP and MARS have been used in very limited 

geotechnical engineering problems, and are not very common to geotechnical engineering 

professionals, hence are discussed in brief as follows. 

3.2 MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) 

 
MARS is basically a nonparametric regression procedure that does not assume any functional 

relationship between independent and dependent variables. Instead, MARS uses the 

regression data to construct this relation and forms, some sets of coefficients and basis 

functions. In other word, it can be said that this method is based on “divide and conquer” 

strategy, which divides the input parameters into groups or say regions, each having its own 

regression equation. So this makes MARS particularly suitable for problems with higher input 

dimensions (i.e., with more number of variables), whereas other techniques face problem of 

dimensionality with large number of input variables. MARS  is  an  adaptive  procedure  

because  the  selection  of  basis  functions  is  data-based  and specific to the problem at hand. 

It  is  very  useful  for  high  dimensional  problems  and shows  a  great  promise  for  fitting  

nonlinear  multivariate  functions.  A  special  advantage  of MARS  lies  in  its  ability  to  

estimate  the  contributions  of  the  basis  functions  so  that  both  the additive  and  the  

interactive  effects  of  the  predictors  are  allowed  to  determine  the  response variable. For 

this model an algorithm was proposed by Friedman (1991)  as a flexible approach to high  
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dimensional  nonparametric  regression,  based  on  a  modified  recursive  partitioning 

methodology. The general form of a MARS predictor is as follows: 

 

 ( )    ∑    

 

   

                          (   ) 

Where 

 =Intercept,   = Basis functions,  =Coefficient of Basis function I, n= no of basis functions. 

The  MARS  algorithm  for  estimating  the  model  function F(x) consists  of  two  algorithms 

Friedman (1991) 

 

(i) The forward stepwise algorithm:  Here, forward stepwise search for the basis function 

takes place with the constant basis function, the only one present initially. At  each  step, the 

split that  minimized  some “lack  of  fit”  criterion  from  all  the  possible  splits  on each  

basis function is chosen. The process stops when a user-specified value max M is reached. At 

the end of this process, there will be a large expression. This model typically over fits the data 

and so a backward deletion procedure is applied. 

 

(ii)  The backward stepwise algorithm: The purpose of this algorithm is to prevent from over-

fitting  by  decreasing  the  complexity  of  the  model  without  degrading  the  fit  to  the  

data. 

Therefore,  the  backward  stepwise  algorithm  involves  removing  from  the  model  basis 

functions  that  contribute  to  the  smallest  increase in  the  residual  squared  error  at  each  

stage, producing an optimally estimated model f
α
 with respect to each number of terms, called 

α. We note that α expresses some complexity of our estimation. To estimate the optimal value 
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of α,  generalized  cross-validation  can  be  used  which  shows  the  lack  of  fit  when  using 

MARS.  

 

Here in the present study „EARTH‟ package of R to predict the model of some geotechnical 

problems. R is a system for statistical computation and graphics. Nowadays it is used in 

various statistical problems related to engineering, medical, economics etc. Moreover it can 

also be used for regression problems such as linear, nonlinear, and single or multivariate. The 

advantage of using R is that, it is very easy to work on R. We don‟t have to write long syntax, 

each and every function of R consists of small syntax. Also data from excel can be directly 

entered into R from clipboard. 

 

3.3 GENETIC PROGRAMMING 

 
Genetic programming (GP) is a pattern recognition technique where the model is developed 

on the basis of adaptive learning over a number of cases of provided data, developed by[8]. It 

mimics biological evolution of living organisms and makes use of the principle of genetic 

algorithm (GA). In traditional regression analysis, the user has to specify the structure of the 

model whereas in GP both structure and the parameters of the mathematical model are 

evolved automatically. It provides a solution in the form of tree structure or in the form of 

compact equation using the given dataset. A brief description about GP is presented for the 

completeness, but the details can be found in [9].   

Genetic programming model is composed of nodes, which resembles a tree structure and, 

thus, it is also known as a GP tree. Nodes are the elements either from a functional set or 

terminal set. A functional set may include arithmetic operators (+, ×, ÷, or –), mathematical 

functions (sin (.), cos (.), tanh (.) or ln(.)), Boolean operators (AND, OR, NOT, etc.), logical  

expressions (IF, or THEN) or any other  suitable  functions defined by the user. The terminal 
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set includes variables (like x1, x2, x3, etc.) or constants (like 3, 5, 6, 9, etc.) or both. The 

functions and terminals are randomly chosen to form a GP tree with a root node and the 

branches extending from each function nodes to end in terminal nodes.  

Initially, a set of GP trees, as per user defined population size, are randomly generated using 

various functions and terminals assigned by the user. The fitness criterion is calculated by the 

objective function and it determines the quality of the each individual in the population 

competing with rest. At each generation a new population is created by selecting individuals 

as per the merit of their fitness from the initial population and then implementing various 

evolutionary mechanisms like reproduction, crossover and mutation to the functions and 

terminals of the selected GP trees. The new population then replaces the existing population. 

This process is iterated until the termination criterion, which can be either a threshold fitness 

value or maximum number of generations, is satisfied. The best GP model, based on its fitness 

value that appeared in any generation, is selected as the result of genetic programming. A 

brief description of various evolutionary mechanisms in GP is presented below.  

Initial population:-  In the first step of genetic programming, a number of GP trees are 

generated by randomly selecting user defined functions and terminals. These GP trees form 

initial population.  

Reproduction:- . In the second stage of the GP, a proportion of the initial population is 

selected and copied to the next generation and this procedure is called reproduction. Roulette 

wheel selection, tournament selection, ranking selection, etc., are the methods generally 

followed.   

Crossover:- In crossover operation, two trees are selected randomly from the population in 

the mating pool. One node from each tree is selected randomly, the sub-trees under the 

selected nodes are swapped and two offspring are generated.  
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Mutation:- A genetic programming tree is first selected randomly from the population in 

the mating pool and any node of the tree is replaced by any other node from the same function 

or terminal set. A function node can replace only a function node and the same principle is 

applicable for the terminal nodes.   

3.3.1 MULTI-GENE GENETIC PROGRAMMING 

 
Multi-gene genetic programming (MGGP) is a variant of GP and is designed to develop input 

output relationship of a system in terms of empirical mathematical model which is weighted 

linear combination of outputs from a number of GP trees. It is also referred as symbolic 

regression. Each tree represents lower order nonlinear transformations of input variables 

termed as “gene” and the linear combination of these genes are termed as “multi gene”.  

Figure 3.1 shows an example of MGGP model where the output is represented as linear 

combination of two genes (Gene-1 and Gene-2) that are  developed using four input variables 

(x1, x2, x3, x4). Each gene is a nonlinear model as it contains nonlinear terms (sin (.) / log(.)). In 

the MGGP model development it is important to make a tradeoff between accuracy and 

complexity in terms of maximum allowable number of genes (Gmax) and maximum depth of 

GP tree (dmax). The user specifies the values of Gmax and dmax  to have a control over the 

complexity of MGGP based models. Thus, there are optimum values of Gmax and dmax , which 

produces a relatively compact  model (Searson et al, 2010).  The linear coefficients termed as 

weights of Gene-1 and Gene-2 (c1 and c2) and the bias (c0) of the model are obtained from the 

training data using statistical regression analysis (ordinary least square method). 
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Figure 3.1 An Example of typical Multi-Gene Genetic Programming (MGGP) model. 
 

In MGGP procedure the user defined initial population is generated by creating individuals 

that contain randomly evolved genes varying from 1 to Gmax. In addition to the standard GP 

evolution mechanisms as discussed earlier, there are some special MGGP crossover 

mechanisms (Searson et al ,2010) which allow the exchange of genes between individuals. 

Similarly, MGGP also provides six methods of mutation of genes (Gandomi and Alavi, 

2012b). The probabilities of the various evolutionary mechanisms can be set by the user for 

achieving the best MGGP model. These mechanisms are grouped into categories referred as 

events. Therefore, the probability of crossover event, mutation event and direct reproduction 

event are to be specified by the user in such a way that the sum of these probabilities is 1.   

The general form of MGGP based model of the present study can be presented as:  

    ∑ [   ( )   ]    

 

   

            (   ) 

where LI is the predicted value of liquefaction index (LI),  F is the function created by the 

MGGP process referred herein as liquefaction index function,  X is the vector of input 

variables = {(N1)60, CSR7.5}, where (N1)60 is the corrected blow count and CSR7.5 is the cyclic 

stress ratio adjusted to the benchmark earthquake (moment magnitude, Mw, of 7.5) as 
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presented by Juang et al. (2000) ,bi is constant,  f  is the MGGP function defined by the user, 

and  n  is the number of terms of model equation. The MGGP as per Searson et al (2010) is 

used and the present model is developed and implemented using MatLab (2010). 
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CHAPTER 4 

EVALUATION OF LIQUEFACTION POTENTIAL OF SOIL FROM CPT DATA 

USING MULTIVARIATE ADAPTIVE REGRESSION SPLINES AND GENETIC 

PROGRAMMING 

4.1 INTRODUCTION 

Simplified methods based on standard penetration test (SPT), cone penetration test (CPT), 

shear wave velocity test, Becker penetration test (BPT) are most commonly used for the 

assessment of liquefaction potential of soils, due to difficulty in obtaining high quality 

undisturbed samples and cost involved therein. Simplified methods pioneered by Seed and 

Idris (1971) , mostly depend on a boundary curve, which presents a limit sate and separates 

liquefaction cases from the non-liquefaction cases basing on field observations of soil in 

earthquakes at the sites where in situ data are available. Though SPT is most widely used soil 

exploration method used worldwide, CPT is becoming more acceptable due to consistent, 

repeatable and identification of continuous soil profile (Mayne ,2007) . Hence, recently CPT 

is being widely used for liquefaction susceptibility analysis of soil using various statistical and 

regression analysis techniques (Robertson and Campanella (1985) ,Seed and Alba (1986) , 

Stark and Olson(1995) ) . Artificial intelligence (AI) techniques such as; artificial neural 

network (ANN) (Goh (1994), Juang et al.(2002), Samui and Sitharam (2011)) , support vector 

machine (SVM)(Pal (2006) , Goh and Goh (2007), Samui and Sitharam (2011)) ,  and 

relevance vector machine (RVM) (Samui , 2007) have been used to develop liquefaction 

prediction models based on an in-situ test database, which are found to be more efficient 

compared to statistical methods.  However, the ANN has poor generalization, attributed to 

attainment of local minima during training and needs iterative learning steps to obtain better 

learning performances. The SVM has a better generalization compared to ANN, but the 
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parameters „C‟ and insensitive loss function (ε) needs to be fine-tuned by the user. Moreover, 

these techniques will not produce a comprehensive relationship between the inputs and 

output, and are also called as „black box‟ system. In the present  study an attempt has been 

made to predict the liquefaction potential of soil based on CPT data obtained after  Chi-Chi 

earthquake, Taiwan, 1999 (Ku et al., 2004)  using MARS. A comparative evaluation is made 

among the existing CPT based statistical method. 

4.2 DATABASE AND PROCESSING 

In the present study database of CPT-based liquefaction case histories in 1999, Chi-Chi, 

Taiwan, earthquake is used (Juang et al.,2002). The database consists of total 125 total cases, 

41 out of them are liquefied cases and other 84 are non-liquefied cases. out of 125 cases 91 

data are selected for training and 34 data are selected for testing. Out of 91 training cases 31 

sites are liquefied and 60 sites are non-liquefied and out of 34 testing cases 10 sites are 

liquefied and 24 sites are non-liquefied. 

 

Table 4.1 Data for prediction of liquefaction Index (Training data) 

CPT ID 

Depth 

(m) qc (MPa) 

fs 

(kPa) 

Pw 

(kPa) Rf (%) 

σv 

(kPa) 

σ' 

(kPa) 

amax 

(g) Liq? 

C-K1-NT 12.5 7.52 30.9 38.1 0.42 231.3 121.3 0.21 No 

C-K1-NT 13.5 7.02 24.3 -2 0.36 249.8 129.8 0.19 No 

C-22-YL 14.5 16.89 44 -35.8 0.27 268.3 138.3 0.19 No 

C-24-YL 3.5 1.5 24.4 -85.5 2.16 66.6 43 0.12 Yes 

C-15-NT 7.5 7.04 30 45.6 0.43 138.6 75 0.12 No 

C-LW-A3 5 6.61 41.5 11 0.62 93.6 55 0.12 No 

C-36-YL 3.5 2.45 17.1 -18.7 0.72 64.8 44.8 0.19 Yes 

C-44-YL 14.5 17.08 69.1 -22.5 0.37 268.3 138.3 0.19 No 

C-LW-D2 7.4 5.46 45.9 28 0.84 136.8 74.2 0.12 No 

C-36-YL 5 2.96 21.1 -0.2 0.71 92.5 57.5 0.19 Yes 

C-LW-A2 3.5 2.09 8.2 -33.2 0.39 64.8 39.8 0.19 Yes 

C-LW-D2 3.2 2.66 19.2 -10.4 0.73 59.2 42.2 0.19 Yes 

C-LW-A7 8 5.77 25 -45.1 0.45 148 83 0.43 Yes 

C-LW-A2 16.5 13.65 17.6 -21.5 0.13 305.3 150.3 0.19 No 

C-LW-D1 7.5 7.57 41.4 45.5 0.55 142.5 78.8 0.12 No 
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C-K2-YL 13.5 14.67 9.8 -30.6 0.07 249.8 124.8 0.19 No 

C-43-YL 3.1 1.41 4.9 -40.4 0.39 57.4 46.4 0.43 Yes 

C-LW-A3 10.1 7.72 15.5 19.9 0.2 186.9 100.9 0.19 No 

C-LW-A5 10.5 6.08 31.7 71.6 0.52 192.6 99 0.12 No 

C-LW-A7 6.5 7.03 36.1 10.8 0.51 120.6 67 0.12 No 

C-44-YL 14.5 8.01 20.9 23.6 0.26 268.3 138.3 0.19 No 

C-LW-A5 18.5 10.05 46.1 2.1 0.45 346 172.3 0.19 No 

C-LW-C1 12.5 9.19 33 -63.6 0.4 231.3 121.3 0.19 No 

C-LW-A9 12.5 8.3 12.7 -0.1 0.15 231.3 121.3 0.19 No 

C-LW-A5 6.5 7.12 50.7 23.1 0.71 120.6 67 0.12 No 

C-25-YL 2.5 3.26 9.5 -10.2 0.29 48.6 35 0.12 Yes 

C-LW-D2 2.5 2.54 23 -31.2 0.97 46.3 36.3 0.19 Yes 

C-K2-YL 6.5 2.69 28.8 11.8 1.09 120.3 65.3 0.19 Yes 

C-K2-YL 2.5 3 7.4 -13.8 0.25 46.3 31.3 0.19 Yes 

C-24-YL 8.5 7.47 34.8 45.2 0.47 156.6 83 0.12 No 

C-LW-D2 4.05 2.61 23.5 -26.5 0.95 74.9 49.4 0.19 Yes 

C-LW-A1 12.5 5.47 63.3 16.8 1.17 228.6 115 0.12 No 

C-19-YL 3.1 2.54 11.9 -40.9 0.57 57.4 41.4 0.19 Yes 

C-LW-

A10 12.5 7.38 42.9 52.6 0.57 228.6 115 0.12 No 

C-42-ST 14 13.65 21.8 -13.8 0.16 259 134 0.19 No 

C-5-YL 2.5 0.23 0.9 76.2 0.42 50 36.3 0.12 Yes 

C-22-YL 6.5 7.94 45.1 31.2 0.57 124 70.3 0.12 No 

C-LW-

A10 17 7.68 60.8 -19.9 0.81 314.5 159.5 0.19 No 

C-LW-A2 3.5 2.49 10 3.9 0.41 68.5 44.8 0.12 Yes 

C-LW-C2 11.8 8.15 37 -35.9 0.46 218.3 115.3 0.19 No 

C-24-YL 18.5 9.48 86.1 48.2 0.79 336.6 163 0.12 No 

C-24-YL 2.5 0.92 18.9 -90.2 2.54 48.6 35 0.12 Yes 

C-LW-A1 9 6.67 14.2 4.8 0.21 166.5 91.5 0.19 No 

C-32-YL 10.35 11.32 114 -79.9 0.73 191.5 108 0.43 No 

C-K2-YL 9.5 6.76 64.9 27.2 0.96 174.6 91 0.12 No 

C-25-YL 15.5 8.74 41 -48.1 0.46 286.8 146.8 0.19 No 

C-15-NT 11.6 7.72 62.6 22.1 0.81 218.3 113.6 0.12 No 

C-K2-YL 8.5 5.38 26.1 48.6 0.48 156.6 83 0.12 No 

C-LW-D1 8.5 6.73 49.2 37.7 0.73 156.6 83 0.12 No 

C-K2-YL 10.5 7.46 35.8 -40 0.48 189 99 0.19 No 

C-7-NT 10 11.96 162.2 -55 1.35 185 105 0.43 No 

C-9-YL 4.5 6.01 27.2 -30.6 0.46 83.3 58.3 0.43 Yes 

C-LW-C2 10.5 8.25 70.6 -39.7 0.86 194.3 104.3 0.19 No 

C-LW-A9 3.5 2.65 9.3 13.5 0.36 66.6 43 0.12 Yes 

C-36-YL 3.5 11.56 170 -20.8 1.51 68.5 49.8 0.43 No 

C-36-YL 12.5 8.27 0.2 0.2 0.24 231.3 121.3 0.19 No 

C-24-YL 4.5 1.73 25.8 -15.7 1.59 83.3 53.3 0.21 Yes 



22 

 

C-31-YL 5 2.22 23.4 31.1 1.06 92.5 57.5 0.19 Yes 

C-LW-C2 5.5 1.89 6.7 38 0.37 105.5 61.8 0.12 Yes 

C-LW-A2 4.5 0.64 9.9 -14.7 1.91 84.6 51 0.12 Yes 

C-22-YL 3.7 2.7 32.4 -43.8 1.24 68.5 46.5 0.19 Yes 

C-K2-YL 11.5 7.62 27.9 -27.1 0.36 207 107 0.19 No 

C-K2-YL 11.5 6.83 24.5 36.6 0.35 212.8 112.8 0.21 No 

C-LW-A2 3.5 3.86 24.3 -35.5 0.78 64.8 49.8 0.43 Yes 

C-43-YL 3.5 2.62 11 -2.2 0.41 64.8 44.8 0.19 Yes 

C-LW-A9 14 12.77 22.8 -0.6 0.18 259 134 0.19 No 

C-2-DC 9.5 7.43 57.7 11.7 0.77 179.5 95.8 0.12 No 

C-LW-A7 14.5 10.61 19.2 -26.3 0.18 268.3 133.3 0.19 No 

C-24-YL 2.6 1.18 11.4 -48.6 0.79 48.1 37.1 0.19 Yes 

C-LW-D2 7.5 6.23 1.7 -0.9 0.27 138.8 78.8 0.19 No 

C-LW-D1 6.5 7.4 30.3 32.3 0.4 120.6 67 0.12 No 

C-10-YL 3.5 0.2 3.7 100.8 1.96 68.5 44.8 0.12 Yes 

C-LW-C1 10.5 6.49 55.2 17.3 0.86 192.6 99 0.12 No 

C-22-YL 9.5 6.62 37 54.8 0.57 174.6 91 0.12 No 

C-LW-C2 9 12.89 138.8 -93 1.08 170.2 96.5 0.43 No 

C-LW-

A10 5 2.54 13.8 -30.8 0.54 92.5 57.5 0.19 Yes 

C-7-YL 12.5 6.8 37.2 -23.6 0.55 231.3 121.3 0.19 No 

C-K1-NT 13.5 6.85 59.1 55.3 0.87 246.6 123 0.12 No 

C-LW-

A10 13.5 16.3 130.1 11.8 0.8 249.8 134.8 0.43 No 

C-36-YL 7.9 6.05 43.3 26 0.71 145.8 78.2 0.12 No 

C-LW-C1 7.5 8.03 2.6 -5.3 0.32 138.8 78.8 0.19 No 

C-LW-A7 11.5 7.41 55.5 23.4 0.76 212.8 112.8 0.19 No 

C-LW-A9 6.5 1.54 5.8 53.4 0.41 124 70.3 0.12 Yes 

C-3-DC 12.5 7.76 53.9 46.5 0.7 228.6 115 0.12 No 

C-7-NT 13.5 8.3 43.3 -8.3 0.53 249.8 129.8 0.19 No 

C-2-NT 4.1 0.9 9 8.9 0.59 75.9 54.9 0.43 Yes 

C-25-YL 14 12.43 28.2 -28.5 0.23 259 134 0.19 No 

C-LW-A2 3.5 1.28 8.8 3.6 1 63 43 0.12 Yes 

C-K5-NT 6.5 6.68 41.2 25.4 0.62 124 70.3 0.12 No 

C-1-DC 7.5 5.91 28 44.2 0.47 138.6 75 0.12 No 

C-35-ST 6 6.64 36.9 40.8 0.55 111.6 63 0.12 No 

 

Table 4.2 Data table for prediction of Liquefaction (Testing Data). 

CPT ID 
Depth 

(m) 

qc 

(MPa) 

Fs 

(kPa) 

Pw 

(kPa) 

Rf 

(%) 

σv 

(kPa) 

σ' 

(kPa) 

amax 

(g) 
Liq? 

C-19-YL 2.5 0.94 22.4 -27.5 2.54 46.3 41.3 0.43 Yes 

C-LW-C1 3.5 1.47 24.6 -40.9 1.94 64.8 49.8 0.43 Yes 

C-LW-A1 12.5 10.08 22 -27.1 0.23 231.3 121.3 0.19 No 



23 

 

C-4-DC 2.5 1.62 15.5 -42.9 1 46.3 36.3 0.19 Yes 

C-3-DC 4 1.87 23.6 -19 1.3 74 49 0.43 Yes 

C-42-ST 12.5 7.58 44.6 77 0.6 228.6 115 0.12 No 

C-2-NT 13.5 8 26.8 -65.7 0.36 249.8 129.8 0.19 No 

C-22-YL 11.5 8.32 27.1 11.1 0.34 216.5 112.8 0.19 No 

C-31-YL 3.5 0.18 0.6 110.5 0.37 68.5 44.8 0.12 Yes 

C-LW-C1 19.5 11.26 35.5 -31 0.32 364.5 180.8 0.19 No 

C-K2-YL 12.5 7.68 58.7 41.5 0.77 228.6 115 0.12 No 

C-32-YL 6.1 7.24 41.4 18.1 0.57 116.6 66.9 0.12 No 

C-19-YL 11.5 7.99 43.3 28 0.54 210.6 107 0.12 No 

C-LW-A2 13.5 6.54 49.8 26.7 0.76 246.6 123 0.12 No 

C-LW-D1 5 5.93 54.4 14.9 0.92 96.2 57.5 0.12 No 

C-LW-A9 4.5 2.78 20.7 -15.4 0.74 96.2 48.3 0.19 Yes 

C-LW-A7 8 6.61 26 3.6 0.4 148 83 0.19 No 

C-K5-NT 7.5 5.59 21.8 52.3 0.4 138.6 75 0.12 No 

C-31-YL 8.5 6.12 30.6 47.9 0.51 161 87.3 0.12 No 

C-5-YL 13.5 7.41 58.9 37.9 0.79 246.6 123 0.12 No 

C-LW-A3 13.9 11.58 29.5 -9.4 0.28 257.2 133.2 0.19 No 

C-2-NT 9.5 7.18 45.5 40.7 0.64 179.5 95.8 0.12 No 

C-LW-

A10 
4.5 2.01 5.1 23.7 0.25 87 53.3 0.12 Yes 

C-5-YL 13.5 6.32 61.5 -7.9 0.98 246.6 123 0.12 No 

C-25-YL 7.5 5.21 28.8 44 0.55 142.5 78.8 0.12 No 

C-LW-C1 4.5 1.82 22.8 -31 1.25 83.3 53.3 0.19 Yes 

C-LW-C2 8.5 6.21 24.8 47.3 0.4 161 87.3 0.12 No 

C-43-YL 15.5 14.74 26.2 -28.3 0.2 286.8 141.8 0.19 No 

C-7-NT 7.5 3.05 32.5 4.6 1.07 138.8 73.8 0.19 Yes 

C-22-YL 11.1 6.7 46.9 -54.2 0.72 205.4 109.4 0.19 No 

C-LW-A1 12.5 8.83 57.7 37.1 0.66 235 121.3 0.12 No 

C-LW-A5 13 5.16 62 19.8 1.21 237.6 119 0.12 No 

C-LW-A7 14 12.15 0.3 -0.7 0.25 259 134 0.19 No 

C-LW-A3 4.5 0.64 27.5 -78.9 4.2 84.6 51 0.12 Yes 

 

4.3 RESULTS AND DISCUSSION. 

4.3.1 MARS MODELLING FOR LIQUEFACTION INDEX 

The MARS model is developed taking PL =1 for liquefaction and PL =0 for the non - 

liquefaction case. The probability of liquefaction/non-liquefaction of the total 125 cases as 

obtained using the statistical CPT based method (Juang et al.,2002) , and the liquefaction 

index (LI) determined for the same 125 cases by the proposed MARS model are evaluated.  
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The assessed probability is used to judge whether the prediction of occurrence of 

liquefaction/non-liquefaction by a particular method is correct or not on the basis of the field 

manifestation as obtained from the database. In this study the success rate is measured based 

on three criteria from stringent to liberal (A to C) i.e. PL = 0.85-1.0 is the most stringent 

consideration and in the range 0.5-1.0 is the least stringent consideration for liquified cases 

and similarly for a non-liquefied cases a prediction is considered to be successful and most 

stringent if PL in the range [0, 0.15]; if PL is within the range 0 to 0.5 then considered to be 

least stringent criterion as per Juang et al. (2002). 

Table 4.3 Results for prediction of occurrence of Liquefaction by MARS. 

CRITERIA 

FOR PL 

PRESENT STUDY BY MARS 

TRAINING TESTING 

NO OF 

SUCCESSFUL 

PREDICTION 

RATE 

(%) 

NO OF 

SUCCESSFUL 

PREDICTION 

RATE (%) 

BASED ON  31 

LIQUEFIED CASES 

BASED ON 10 LIQUEFIED 

CASES 

A (PL > 0.85) 28 90 8 80 

B (PL > 0.65) 28 90 10 100 

C (PL > 0.5) 30 97 10 100 

 

BASED ON 60 NON-

LIQUEFIED CASES 

BASED ON 24 NON-LIQUEFIED 

CASES 

A (PL < 0.15) 60 100 22 92 

B (PL< 0.35) 60 100 24 100 

C (PL< 0.5) 60 100 24 100 

BASED ON ALL 91 CASES BASED ON ALL 34 CASES 

A 88 97 30 88 

B 88 97 34 100 

C 90 99 34 100 
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Figure 4.1 Model selection graphs 

The model selection graph shows that the RSq and GRSq lines do not run together at all, this 

is due to more number of terms. The graph indicates that the best model has 7 terms and uses 

all 5 predictors. The cumulative distribution graph (Figure 4.1) shows the cumulative 

distribution of the absolute values of residuals. In this graph, the median absolute residual is 

about 0.03 and it is observed that the absolute value of residuals are less than about 0.27, i.e. 

in the training data‟s 95% of the time the predicted value is within 0.27 units of the observed 

values. The important variables are also identified and is shown in Table 4.4. It can be seen 

that σ' is the most important input followed by fs and amax. 
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Table 4.4 Variables and their importance in MARS model. 

VARIABLES N 

SUBSETS 

GCV RSS 

qc 6 100 100 

amax 4 17.8 20 

fs 3 12.4 14.7 

σ' 2 6.7 9.7 

 

The residual vs fitted graph is for showing the residual for each value of the predicted 

response. The case 52 has the largest residual while case 13 and 17 have the smallest residual, 

and they appear suspiciously in separate clusters. The Q-Q graph compares the distribution of 

the residuals to a normal distribution. The normally distributed residuals will lie on the line. In 

this case, the divergence is observed from the normality in the left as well as right tail. 

MARS model includes 6 Basis functions and the basis functions are listed in Table 4.5. 

 

Table 4.5 Basis functions considered in MARS model and their corresponding 

Equations. 

Basis functions(Bi) Equations Coefficients(ai) 

B1 Max(0,       ) -0.2205 

B2 Max(0,        ) 0.3069 

B3 Max(0,        ) -0.0908 

B4 Max(0,       ) -0.0043 

B5 Max(0,     ) 0.0051 

B6 Max(0,         ) 1.5110 
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The final equation for prediction of liquefaction index based on MARS model is given below 

LI=0.8218+∑      
 
                 (4.1) 

 

4.3.2 GP MODELING FOR PREDICTION OF LIQUEFACTION INDEX. 

 
The GP model is developed taking PL =1 for liquefaction and PL =0 for the non - liquefaction 

case. The probability of liquefaction/non-liquefaction of the total 125 cases as obtained using 

the statistical CPT based method (Juang et al.,2002), and the liquefaction index (LI) 

determined for the same 125 cases by the proposed GP model are evaluated.  The assessed 

probability is used to judge whether the prediction of occurrence of liquefaction/non-

liquefaction by a particular method is correct or not on the basis of the field manifestation as 

obtained from the database. In this study the success rate is measured based on three criteria 

from stringent to liberal (A to C) i.e. PL = 0.85-1.0 is the most stringent consideration and in 

the range 0.5-1.0 is the least stringent consideration for liquefied cases and similarly for a 

non-liquefied cases a prediction is considered to be successful and most stringent if PL in the 

range [0, 0.15]; if PL is within the range 0 to 0.5 then considered to be least stringent criterion 

as per Juang et al. (2002) 

Table 4.6 Results for prediction of occurrence of Liquefaction by GP. 

CRITERIA FOR 

LI 

PRESENT STUDY BY GP 

TRAINING TESTING 

NO OF 

SUCCESSFUL 

PREDICTION 

RATE (%) 

NO OF 

SUCCESSFUL 

PREDICTION 

RATE (%) 

BASED ON  31 LIQUEFIED 

CASES 

BASED ON 10 LIQUEFIED 

CASES 

A (PL > 0.85) 28 90 10 100 

B  (PL > 0.65) 28 90 10 100 
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C  (PL > 0.5) 30 97 10 100 

 

BASED ON 60 NON-LIQUEFIED 

CASES 

BASED ON 24 NON-

LIQUEFIED CASES 

A (PL < 0.15) 
60 100 23 96 

B  (PL< 0.35) 
60 100 23 96 

C  (PL< 0.5) 60 100 23 96 

BASED ON ALL 91 CASES BASED ON ALL 34 CASES 

A 88 97 33 97 

B 88 97 33 97 

C 90 99 33 97 

 

The performance of a GP model depends upon the population size, number of generation, 

reproduction, crossover and mutation probability, tree depth(    ),number of 

Genes(    ).In the present study the Liquefaction Index is obtained with population size 

1000 indivisuals at 100 generations with reproduction probability of 0.05,crossover 

probability 0.85, mutation probability of 0.1 and with tournament size of 7.The best result was 

obtained with      as 4 and      as 4. 

The develop model is presented below as follows 

   
     

   (
     

  
)
 

    

   (
     

       
)
 

    

   (
     

       
)
 

          (    ) (       )

   (
     

  )
          (4.2) 
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Criteria 

for LI 

PRESENT STUDY BY MARS 

Criteria 

for LI 

PRESENT STUDY BY GP 

Criteria 

for LI 

RESULT BY ANN 

TRAINING TESTING TRAINING TESTING TRAINING TESTING 

No of 

successful 

prediction 

No of 

successful 

prediction 

Rate (%) 

No of 

successful 

prediction 

Rate (%) 

No of 

successful 

prediction 

Rate (%) 

No of 

successful 

prediction 

Rate 

(%) 

No of 

successful 

prediction 

Rate (%) 

Based on  

31 liquefied 

cases 

Based on 10 liquefied 

cases 

Based on  31 liquefied 

cases 

Based on 10 liquefied 

cases 

Based on  31 

liquefied cases 

Based on 10 liquefied 

cases 

A                          

(PL > 

0.85) 

28 8 80 

A                          

(PL > 

0.85) 

28 90 10 100 

A                          

(PL > 

0.85) 

22 71 9 90 

B                      

(PL > 

0.65) 

28 10 100 

B                      

(PL > 

0.65) 

28 90 10 100 

B                     

(PL > 

0.65) 

28 90 9 90 

C                  

(PL > 

0.5) 

30 10 100 

C                         

(PL > 

0.5) 

30 97 10 100 
C                        

(PL > 0.5) 
30 97 9 90 

  

Based on 

60 non-

liquefied 

cases 

Based on 24 non-

liquefied cases 
  

Based on 60 non-

liquefied cases 

Based on 24 non-

liquefied cases 
  

Based on 60 non-

liquefied cases 

Based on 24 non-

liquefied cases 

A                          

(PL < 

0.15) 

60 22 92 

A                          

(PL < 

0.15) 

60 100 23 96 

A                          

(PL > 

0.85) 

4 7 0 0 

B                

(PL< 

0.35) 

60 24 100 

B                          

(PL< 

0.35) 

60 100 23 96 

B                     

(PL > 

0.65) 

24 40 11 46 

C                       

(PL< 

0.5) 

60 24 100 

C                       

(PL< 

0.5) 

60 100 23 96 
C                        

(PL > 0.5) 
33 55 17 71 

  
Based on 

all 91 cases 
Based on all 34 cases 

 
Based on all 91 cases Based on all 34 cases 

 
Based on all 91 cases Based on all 34 cases 

A 88 30 88 A 88 97 33 97 A 26 29 9 26 

B 88 34 100 B 88 97 33 97 B 52 57 19 79 

C 90 34 100 C 90 99 33 97 C 63 69 26 76 
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4.3.3 COMPARISON OF THE DEVELOPED MARS AND GP MODEL WITH THE 

EXISTING METHOD. 

 
The present study discussed about the evaluation of liquefaction susceptibility of soil using a non-

parametric regression technique, based on statistical methods MARS and GP , and post liquefaction 

CPT database. In the case of MARS model the probability of liquefaction based on 91 liquefied 

cases are 88%, 88% and 90% for A,B and C respectively where as for GP it is 97%,97% and 99% 

for cases A, B and C respectively.The probability of liquefaction for MARS model based on 34 

non-liquefied cases are 88%,100% and 100% for A,B and C respectively and for GP model it is 

97%,97% and 97% fo the cases A,B and C respectively.It was observed that the prediction as per 

MARS model is more accurate towards field manifestation in comparison to the developed GP 

model and the exsisting ANN method. Based on sensitivity analysis ‟ is the most important input 

followed by qc and Rf. 



31 

 

CHAPTER 5 

EVALUATION OF LIQUEFACTION POTENTIAL OF SOIL BASED ON STANDARD 

PENETRATION TEST USING MULTIVARIATE ADAPTIVE REGRESSION SPLINES 

AND MULTI-GENE GENETIC PROGRAMMING 

 

5.1 INTRODUCTION 

 
When a saturated or partially saturated soil substantially loses its strength and stiffness in 

response to an applied stress, such as ground shaking due to earthquake or sudden change in stress 

condition, causes the soil to behave like a liquid. This phenomenon is known as liquefaction of soil. 

This phenomenon is most often observed in saturated, loose (low density or un-compacted), sandy 

soils. The pressures generated during large earthquakes with many cycles of shaking can cause the 

liquefied sand and excess water to force its way to the ground surface from several meters below 

the ground. This is often observed as sand boils at the ground surface. Liquefaction is classified in 

two groups as flow liquefaction and cyclic liquefaction. Flow liquefaction can occur when the shear 

stress required for static equilibrium of a soil is greater than the shear strength of soil in its liquefied 

state. Cyclic liquefaction occurs when static shear stress is less than the shear strength of liquefied 

soil. Liquefaction of saturated sandy soils during earthquakes causes building settlement or tipping, 

sand blows, lateral spreading, ground cracks, landslides, dam instability, high embankment failures 

and other hazards. Prediction of liquefaction of saturated sandy soils due to an earthquake is an 

important task in earthquake geotechnical engineering. Since it is very difficult to get high-quality 

undisturbed samples of sandy soils, in situ tests have been used to determine the liquefaction 

resistance of saturated sandy soils. The method of liquefaction resistance based on standard 

penetration test (SPT) data has been developed by Seed and Alba (1986) . However, there are 
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several limitations in using their methodology to determine the liquefaction resistance of saturated 

sandy soils. Because of its reliability, speed, economy and continuity of profiling, the CPT test is 

considered a superior technique for determination of liquefaction resistance. Liquefaction analysis 

based on probabilistic and statistical methods have been done by many researchers. But all of the 

above methods have been developed based on some empirical formulae, which are associated with 

some inherent uncertainties. More recently artificial neural network (ANN) ( Goh (1994), Juang et 

al (2000) , Hanna et al (2007), Samui and Sitharam (2011) ) model, Support Vector Machine 

(SVM) Pal (2006) , Gog and Gog (2007), Samui and Sitharam (2011) )  model has been used for 

prediction of liquefaction potential as a classification problem. It has also been noted that as the 

knowledge acquired during training is stored in an implicit manner in the ANN, it is very difficult to 

come up with a reasonable interpretation of the overall structure of the network. These inherent 

limitations wherein the information or the intervening steps are not available have earned ANN, the 

reputation of being a “black box” approach. In addition, ANN has several inherent drawbacks such 

as over fitting, slow convergence speed, poor generalizing performance, and arriving at local 

minimum. Recently support vector machine (SVM), based on statistical learning theory and 

structural risk minimization is being used as an alternate prediction model. Another technique, 

called the Genetic Programming (GP), developed by (Koza,1992) , mimics biological evolution of 

living organisms and makes use of principle of genetic algorithm (GA). It is also called as „grey 

box‟ model. Various attempts have been made in the recent past to use GP to some Geotechnical 

engineering problems. GP helps in achieving greatly simplified model formula compared to ANN 

model, but a trade-off is made between the complexity of the formula and accuracy of the model. 

Another class of model may be termed as „white box‟ model is the multivariate adaptive regression 

spline (MARS) developed based on statistical model developed by Friedman (1991) MARS can 

adjust any functional form, hence suitable for exploratory data analysis. Samui et al.(2011) 
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observed that the MARS model for uplift capacity of suction caisson has better statistical 

performance comparable to ANN and FEM model. 

In the present study an attempt has been made to present MARS and GP models based on post 

liquefaction SPT database. These models are used to evaluate liquefaction potential of soil. A 

comparative study among the developed MARS model, MGGP model and the available ANN 

model are made in terms of rate of successful liquefaction and non-liquefaction cases. 

5.2 DATABASE AND PROCESSING  

 
In the present study, database comprising of 288 numbers of Standard Penetration Test (SPT), of 

liquefaction case history of Chi-Chi, Tawain, 1999 earthquake is used (Hwang and Yang,2001) Out 

of these 288 cases, 164 cases are identified as liquefied cases and 124 are non-liquefied cases, based 

on the field test values. Here 202 cases are selected randomly for training and the rest 88 are 

selected for testing. Samui and Sitharam (2011) and Muduli and Das (2013) also have used the 

above stated database with the same number of training and testing data while developing ANN, 

SVM and MGGP based liquefaction models. In case of MARS and MGGP approach, normalization 

or scaling of data sets are not required as in the case of ANN and SVM approach. 

Table 5.1 Data table for prediction of liquefaction Index from post liquefaction SPT data. 

Sl no Depth Nm FC (%) CC (%) D50(mm) amax CSR N1,60 Liquefied? 

1 9 14 17 9 0.13 0.124 0.140 14.290 0 

2 9 21 14 3 0.230 0.124 0.127 20.700 0 

3 5 16 46 5 0.090 0.124 0.127 20.610 0 

4 7.5 12 55 8 0.080 0.428 0.384 12.140 1 

5 8.2 1 42 6 0.111 0.084 0.069 0.970 0 

6 7.8 7 16 4 0.300 0.420 0.363 6.990 1 

7 1.3 1.5 65 23 0.055 0.789 0.741 3.600 1 

8 4.3 9 26 4 0.140 0.211 0.165 10.650 1 

9 3.6 6 11 3 2.000 0.420 0.289 7.530 1 

10 4.5 7 26 4 0.135 0.211 0.222 9.850 1 
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11 9 19 10 1 0.260 0.124 0.113 17.720 0 

12 6.3 11 30 6 0.110 0.420 0.363 12.130 1 

13 8.3 12 13 3 0.560 0.428 0.386 11.620 1 

14 16.2 28 31 9 0.300 0.420 0.374 20.820 0 

15 12.8 5 26 10 0.110 0.211 0.178 7.950 1 

16 7 16 8 1 0.220 0.124 0.131 17.970 0 

17 10.3 14 15 5 0.380 0.211 0.228 13.700 1 

18 13.2 12 61 6.9 0.068 0.055 0.042 8.950 0 

19 6 2 33 7 0.160 0.124 0.130 2.390 1 

20 9 21 12 2 0.200 0.124 0.133 21.090 0 

21 7.3 13 40 11 0.095 0.789 0.644 12.030 1 

22 3.8 6 17 2 0.170 0.211 0.208 8.650 1 

23 2.2 6 23 5 0.150 0.420 0.304 7.510 1 

24 4 5 21 3 0.140 0.124 0.126 7.270 1 

25 13.5 13 14 3 0.160 0.211 0.223 11.530 1 

26 9 16 29 6 0.200 0.124 0.135 16.110 0 

27 10 20 18 4 0.190 0.124 0.125 19.010 0 

28 10 22 15 3 0.180 0.124 0.118 19.910 0 

29 19.5 9 46 18 0.093 0.211 0.196 6.600 1 

30 5 18 14 3 0.200 0.124 0.137 23.860 0 

31 3 2 36 5 0.100 0.124 0.118 3.260 1 

32 5.8 11 22 4 0.130 0.789 0.780 12.790 1 

33 10 25 14 3 0.220 0.124 0.123 23.490 0 

34 5.8 6 10 3 0.280 0.211 0.231 7.460 1 

35 7.3 5 16 2 0.210 0.211 0.244 5.760 1 

36 4.2 7 27 5 0.190 0.428 0.634 8.520 1 

37 10 18 7 1 0.290 0.124 0.126 17.270 0 

38 13.5 7 47 5 0.091 0.211 0.226 6.290 1 

39 15.7 46 29 5 0.100 0.420 0.384 35.340 0 

40 10.9 26 31 8 0.120 0.420 0.355 21.870 1 

41 2.8 3 38 11 0.097 0.789 0.760 4.940 1 

42 9 22 16 3 0.150 0.124 0.139 22.390 0 

43 3.7 9 11 3 0.190 0.165 0.128 11.570 1 

44 8.8 13 40 14 0.100 0.789 0.611 11.010 1 

45 4 8 15 3 0.180 0.124 0.124 11.410 0 

46 13.3 16 11 4 0.340 0.211 0.200 13.290 1 

47 12 8 41 6 0.104 0.211 0.234 7.690 1 

48 5.5 15 17 3 0.700 0.420 0.420 18.660 1 

49 10 20 15 3 0.170 0.124 0.134 19.330 0 

50 8.8 5 31 ± 0.125 0.165 0.193 5.310 1 

51 17.3 13 23 3 0.148 0.181 0.095 7.110 0 
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52 18.8 9 45 10 0.110 0.181 0.123 5.340 0 

53 3.8 3 24 ± 0.138 0.165 0.217 5.040 1 

54 3 7 5 0 0.200 0.124 0.121 11.800 1 

55 8.8 5 24 2 0.400 0.211 0.219 5.130 1 

56 8 20 13 2 0.220 0.124 0.129 20.820 0 

57 7.4 13 25 4 0.180 0.420 0.416 14.340 1 

58 5.3 10 21 4 0.230 0.420 0.294 10.860 1 

59 6.8 8 59 9 0.070 1.000 0.633 7.390 1 

60 4.2 3 62 17 0.100 0.211 0.417 4.050 1 

61 5.8 7 25 7 0.150 0.428 0.283 6.550 1 

62 9.5 27 17 4 1.000 0.420 0.296 23.580 0 

63 6.3 16 15 5 0.270 0.428 0.410 16.590 1 

64 8.8 7 37 11 0.110 0.211 0.228 7.220 1 

65 8 20 13 2 0.170 0.124 0.113 19.550 0 

66 5 15 17 4 0.170 0.124 0.130 19.800 0 

67 3 2 9 1 0.200 0.124 0.118 3.280 1 

68 9.2 12 49 3 0.078 0.211 0.203 11.490 1 

69 16.8 40 39 8 0.100 0.420 0.275 27.730 0 

70 9 7 42 9.4 0.100 0.789 0.714 6.380 1 

71 11.8 10 24 5 0.200 0.211 0.165 7.880 1 

72 9.1 44 32 5 0.150 1.000 0.613 37.490 0 

73 6.5 26 17 4 0.280 0.420 0.353 27.800 0 

74 14.1 36 35 12 0.300 0.420 0.364 27.920 0 

75 14.8 14 17 1 0.170 0.211 0.187 10.810 1 

76 10 18 16 3 0.180 0.124 0.124 17.040 0 

77 14.3 14 14 3 0.500 0.211 0.143 9.570 1 

78 10.3 10 45 14 0.100 0.211 0.176 8.590 1 

79 4.3 4 18 6 0.190 0.211 0.177 5.020 1 

80 6 11 8 0 0.200 0.165 0.142 12.070 0 

81 9 15 18 4 0.180 0.124 0.141 14.680 0 

82 5.8 6 47 7 0.080 0.330 0.325 7.030 1 

83 2.4 6 41 9 0.095 0.789 0.514 8.710 1 

84 6 17 9 2 0.280 0.124 0.108 18.440 0 

85 6.2 6 23 5 0.130 0.420 0.411 7.110 1 

86 10 19 10 2 0.250 0.124 0.124 17.990 0 

87 10.9 30 21 5 0.013 0.420 0.354 25.900 0 

88 5.7 8 16 2 0.170 0.165 0.139 8.820 1 

89 9.8 15 23 3 0.149 0.181 0.128 11.840 0 

90 12.8 12 44 3 0.111 0.181 0.126 8.400 0 

91 6.2 1 42 4.6 0.108 0.084 0.064 1.040 0 

92 7.2 6 13 5 0.140 0.165 0.145 6.050 1 
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93 8 20 18 3 0.180 0.124 0.143 21.570 0 

94 11.8 18 12 1 0.610 0.211 0.213 16.150 1 

95 10.3 6 31 5 0.110 0.211 0.207 5.600 1 

96 2.8 2 55 13 0.060 0.330 0.271 3.020 1 

97 10 17 12 2 0.300 0.124 0.134 16.430 0 

98 3.8 6 13 4 0.500 0.420 0.391 8.750 1 

99 8 20 24 6 0.170 0.124 0.129 20.720 0 

100 5 8 14 2 0.130 0.124 0.104 9.320 0 

101 10 18 28 5 0.130 0.124 0.134 17.430 0 

102 13.5 7 42 3 0.102 0.211 0.228 6.340 1 

103 3 12 33 8 0.160 0.124 0.156 18.830 0 

104 10 16 13 3 0.290 0.124 0.135 14.920 0 

105 5 20 18 4 0.180 0.124 0.119 24.840 0 

106 6 7 11 0 0.167 0.211 0.232 8.820 1 

107 15.4 20 33 10 0.180 1.000 0.663 14.000 1 

108 2.8 4 33 9 0.188 0.428 0.506 5.370 1 

109 5.8 3 47 5 0.078 0.211 0.247 3.850 1 

110 9 17 16 4 0.180 0.124 0.112 15.740 0 

111 4 6 43 3 0.090 0.165 0.124 7.460 0 

112 3 3 38 6 0.110 0.211 0.203 4.940 1 

113 6.8 10 15 7 0.037 0.789 0.790 10.780 1 

114 10 21 21 9 0.150 0.124 0.123 19.620 0 

115 8.8 17 39 9 0.100 1.000 0.606 14.480 1 

116 11.7 10 13 2 1.200 0.165 0.146 8.440 1 

117 7.2 5 30 13 0.024 0.165 0.144 4.990 1 

118 9 17 31 5 0.100 0.124 0.139 17.260 0 

119 10 20 12 3 0.200 0.124 0.124 18.950 0 

120 12 9 39 5 0.108 0.211 0.222 8.330 1 

121 10.8 44 32 5 0.160 1.000 0.670 35.220 0 

122 4 11 11 0 0.120 0.428 0.356 14.340 1 

123 13.2 26 31 8 0.100 0.420 0.352 20.150 1 

124 8.1 17 18 6 0.200 0.420 0.347 16.640 1 

125 9 12 4 3 0.220 0.124 0.127 11.860 1 

126 6 18 19 4 0.190 0.124 0.138 21.970 0 

127 18.8 13 15 1 0.164 0.181 0.142 8.290 0 

128 10.6 40 14 1 0.300 0.420 0.353 33.430 0 

129 2.8 6 22 5 0.180 0.428 0.458 10.620 1 

130 4.8 9 29 ± 0.129 0.165 0.214 13.400 1 

131 3 5 24 6 0.130 0.428 0.300 6.710 1 

132 16 11 20 0 0.300 0.165 0.152 8.790 1 

133 15.4 28 18 6 0.100 0.420 0.337 19.590 0 
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134 5 9 20 6 0.150 0.428 0.296 9.400 1 

135 17.3 22 39 3 0.120 0.181 0.100 12.260 0 

136 7.3 12 18 5 0.210 0.211 0.201 12.540 1 

137 8.8 4 30 4 0.100 0.211 0.208 3.940 1 

138 6 7 61 13.5 0.075 0.428 0.451 8.470 1 

139 7.5 7 47 9 0.091 0.211 0.247 8.140 1 

140 3.7 7 28 1 0.100 0.165 0.148 9.930 1 

141 10 20 14 4 0.180 0.124 0.125 19.040 0 

142 5.3 17 21 3 0.300 0.420 0.339 19.510 1 

143 2.8 4 18 2 0.180 0.211 0.197 6.530 1 

144 12 7 48 10 0.089 0.211 0.232 6.670 1 

145 5.7 5 40 10 0.080 0.165 0.140 5.580 1 

146 9 22 10 1 0.220 0.124 0.128 21.800 0 

147 5.8 12 49 12 0.075 0.428 0.650 12.450 1 

148 8 22 15 4 0.190 0.124 0.138 23.370 0 

149 7.7 7 18 3 0.170 0.165 0.142 6.720 1 

150 2.1 2 18 4 0.130 0.420 0.330 2.690 1 

151 7 17 20 3 0.115 0.124 0.140 19.310 0 

152 5.7 13 34 7 0.150 0.420 0.322 14.400 1 

153 2.3 8 29 6 0.100 0.420 0.336 10.630 1 

154 4.2 5 43 7 0.143 0.428 0.596 5.870 1 

155 5.8 10 30 7 0.970 0.428 0.433 12.040 1 

156 7.2 6 22 15 0.180 0.165 0.148 6.160 1 

157 7.7 11 16 3 0.220 0.165 0.132 10.190 1 

158 12 12 13 3 0.162 0.211 0.231 11.400 1 

159 7.5 26 17 4 0.300 0.420 0.354 26.280 0 

160 9 19 14 3 0.200 0.124 0.127 18.710 0 

161 10.3 11 28 5 0.110 0.211 0.191 9.870 1 

162 18 13 22 0 0.104 0.165 0.142 9.340 0 

163 13.3 10 30 3 0.110 0.211 0.214 8.580 1 

164 8.1 11 19 2 0.170 0.165 0.148 10.710 1 

165 10 21 17 4 0.180 0.124 0.124 19.890 0 

166 9 18 14 3 0.200 0.124 0.139 18.350 0 

167 10 23 15 4 0.220 0.124 0.128 21.980 0 

168 3 6 30 3 0.127 0.211 0.195 9.580 1 

169 5 14 14 3 0.200 0.124 0.138 18.680 0 

170 11.3 15 47 4 0.106 0.181 0.124 10.980 0 

171 16.2 15 43 16 0.113 0.128 0.124 11.810 0 

172 5.8 10 48 12 0.080 0.789 0.822 11.780 1 

173 8.7 6 44 12 0.080 0.165 0.148 5.680 1 

174 12 10 28 3 0.131 0.211 0.238 9.760 1 
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175 10.2 6 13 4 0.140 0.165 0.145 5.320 1 

176 7.3 5 23 1 0.310 0.211 0.208 5.310 1 

177 13 31 20 5 0.400 0.420 0.331 23.490 0 

178 8 20 13 2 0.200 0.124 0.144 21.720 0 

179 10 21 12 2 0.300 0.124 0.135 20.430 0 

180 7.1 25 15 1 0.800 0.420 0.341 24.340 0 

181 9 21 14 3 0.200 0.124 0.122 20.230 0 

182 14.3 43 39 8 0.080 0.420 0.272 29.280 0 

183 4.5 4 32 6 0.123 0.211 0.221 5.610 1 

184 7.2 10 36 17 0.126 0.128 0.141 11.430 0 

185 4 4 30 4 0.100 0.124 0.124 5.730 1 

186 9 20 9 2 0.200 0.124 0.128 19.860 0 

187 5.7 6 15 4 0.180 0.165 0.143 6.620 1 

188 12.8 15 25 ± 0.138 0.165 0.174 13.110 1 

189 6.9 46 44 12 0.100 1.000 0.715 49.290 0 

190 7.8 7 31 18 0.135 0.128 0.139 7.650 0 

191 5.8 5 19 4 0.500 0.211 0.211 5.940 1 

192 14.3 13 46 8 0.108 0.181 0.120 8.490 0 

193 10 8 45 4 0.080 0.165 0.145 7.250 1 

194 12.6 33 29 6 0.300 0.420 0.368 26.670 0 

195 3 5 12 2 0.190 0.124 0.119 8.220 1 

196 5 14 25 3 0.800 0.420 0.324 15.450 1 

197 2.7 4 22 15 0.180 0.165 0.105 5.520 1 

198 5 18 14 3 0.200 0.124 0.137 23.860 0 

199 2.8 11 33 18 0.155 0.211 0.161 15.950 0 

200 10 18 23 5 0.130 0.124 0.111 16.090 0 

201 14.7 13 25 6.91 0.160 0.055 0.041 9.200 0 

202 9.2 1 39 4.8 0.128 0.084 0.070 0.930 0 

203 3.7 9 17 1 0.160 0.165 0.153 12.630 1 

204 7.3 11 9 0 0.490 0.211 0.199 11.320 1 

205 4.2 7 40 10 0.130 0.428 0.672 8.720 1 

206 4.7 12 29 6 0.250 0.420 0.344 14.740 1 

207 7.8 10 46 ± 0.094 0.165 0.209 11.880 1 

208 6 7 14 1 0.160 0.211 0.193 7.790 1 

209 5.8 9 40 7 0.160 0.428 0.718 9.880 1 

210 10 22 16 3 0.170 0.124 0.122 20.420 0 

211 4.2 8 34 7 0.200 0.428 0.609 9.500 1 

212 7.7 6 13 0 0.180 0.165 0.134 5.700 1 

213 8.8 11 38 12 0.400 0.420 0.308 9.860 1 

214 5.8 4 35 7 0.125 0.428 0.360 4.350 1 

215 10 19 11 2 0.180 0.124 0.124 18.030 0 
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216 4.3 4 10 3 0.250 0.211 0.167 4.870 1 

217 4.3 4 9 2 0.310 0.211 0.193 5.240 1 

218 4.2 3 6 0 0.331 0.084 0.054 3.640 0 

219 15.8 17 39 5 0.120 0.181 0.141 11.550 0 

220 9 22 9 2 0.200 0.124 0.128 21.870 0 

221 10 16 14 2 0.180 0.124 0.123 15.030 0 

222 8.2 8 10 2 0.450 0.211 0.202 7.980 1 

223 8 17 16 3 0.140 0.124 0.139 18.120 0 

224 18 15 32 3 0.100 0.165 0.142 10.770 0 

225 9.8 8 36 14 0.126 0.128 0.136 7.950 0 

226 11.8 11 31 9 0.130 0.211 0.194 9.410 1 

227 8.7 7 42 1 0.080 0.165 0.152 6.860 1 

228 17.1 50 20 5 0.100 0.420 0.339 35.090 0 

229 16.9 28 49 7 0.080 1.000 0.670 19.250 1 

230 7.2 9 29 5 0.185 0.428 0.687 8.930 1 

231 11.8 12 17 3 0.220 0.211 0.194 10.270 1 

232 9 20 12 2 0.220 0.124 0.128 19.920 0 

233 12 12 8 0 0.201 0.165 0.149 10.200 0 

234 14.8 11 12 3 0.210 0.211 0.208 8.940 1 

235 18.1 48 18 5 0.850 0.420 0.367 34.180 0 

236 5.8 3 34 6 0.100 0.211 0.182 3.310 1 

237 9 17 15 4 0.190 0.124 0.128 16.940 0 

238 6.4 11 16 5 0.400 0.420 0.406 12.630 1 

239 14.7 4 39 5.7 0.126 0.084 0.071 3.130 0 

240 8.8 8 25 8 0.120 0.211 0.201 7.760 1 

241 5 3 22 3 0.065 0.428 0.379 3.670 1 

242 10 18 13 3 0.180 0.124 0.110 15.990 0 

243 10.4 33 30 12 0.040 0.420 0.406 30.440 0 

244 8.8 4 46 19 0.110 0.211 0.199 3.860 1 

245 7.7 9 48 5 0.080 0.165 0.150 8.890 1 

246 4.9 9 29 6 0.200 0.420 0.323 10.660 1 

247 7.5 7 13 1 0.162 0.211 0.248 8.140 1 

248 5.8 5 10 4 0.360 0.211 0.217 6.030 1 

249 11.8 12 13 1 0.300 0.211 0.215 10.810 1 

250 6.5 4 17 4 0.300 0.420 0.412 4.580 1 

251 4 2 36 5 0.100 0.124 0.127 2.930 1 

252 9 22 6 1 0.220 0.124 0.128 21.930 0 

253 8.1 9 16 3 0.190 0.165 0.136 8.480 1 

254 3 3 6 3 0.080 0.124 0.120 5.000 1 

255 17.6 19 26 5 0.200 1.000 0.699 13.430 1 

256 7.7 7 19 1 0.170 0.165 0.151 6.960 1 
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257 14.5 28 18 6 0.100 0.420 0.322 25.300 0 

258 3 4 26 2 0.135 0.211 0.235 6.940 1 

259 9 22 7 1 0.280 0.124 0.128 21.930 0 

260 2.3 2 22 6 0.150 0.789 0.641 3.330 1 

261 8.7 3 23 3.5 0.227 0.084 0.070 2.870 0 

262 16 16 18 0 0.140 0.165 0.145 12.080 0 

263 11.8 9 36 14 0.126 0.128 0.131 8.190 0 

264 16 12 18 4 0.140 0.165 0.145 9.060 0 

265 18.1 42 39 8 0.080 0.420 0.274 27.040 0 

266 7.7 4 24 4.7 0.220 0.084 0.068 3.910 0 

267 14.3 16 33 2 0.132 0.181 0.147 11.530 0 

268 15.6 40 39 8 0.100 0.420 0.274 28.470 0 

269 10 12 40 7 0.080 0.124 0.130 11.540 0 

270 18.8 9 45 4 0.110 0.181 0.130 5.500 0 

271 7.3 11 21 7 0.150 0.428 0.306 9.750 1 

272 10 22 11 2 0.190 0.124 0.124 20.780 0 

273 4 12 26 0 0.110 0.428 0.362 15.780 1 

274 7.2 17 18 6 0.200 0.420 0.349 17.390 1 

275 3.3 6 34 8 0.110 1.000 0.673 8.610 1 

276 3 13 45 14 0.090 0.789 0.697 19.240 1 

277 5 16 31 7 0.130 0.124 0.127 20.520 0 

278 5.7 4 30 10 0.024 0.165 0.136 4.310 1 

279 5.8 6 27 5 0.195 0.428 0.659 6.440 1 

280 6.2 5 18 7.9 0.254 0.084 0.065 5.450 0 

281 4.2 3 24 5 0.200 0.789 0.378 3.580 1 

282 11.7 6 48 14 0.075 0.165 0.144 4.960 1 

283 10 22 20 4 0.190 0.124 0.134 21.240 0 

284 8.2 7 17 2 0.180 0.165 0.163 7.040 1 

285 9 14 13 3 0.180 0.124 0.135 14.120 0 

286 10.8 11 20 5 0.130 0.420 0.376 9.770 1 

287 20.3 17 30 2 0.137 0.181 0.098 8.980 0 

288 10 23 15 4 0.220 0.124 0.128 21.980 0 

 

5.3 RESULTS AND DISCUSSION 

 
For MARS modelling of liquefaction index, following assumptions or predictions were made: 

i. For all liquefied cases, the Liquefaction Index (LI) is assumed as 1, i.e. LI= 1 (for 

liquefaction) 
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ii. Similarly for all non-liquefied cases, the Liquefaction Index is assumed to be 0, i.e. LI = 0 

(for non-liquefaction). 

iii. If the LI predicted by the technique is greater than 0.5 then the Liquefaction Index (LI) is 

assumed as 1, i.e.  LI= 1 (for liquefaction) and, 

iv. If the LI predicted by the technique is less than 0.5, then the Liquefaction Index is assumed 

to be 0, i.e. LI = 0 (for non-liquefaction). 

The Training and Testing performance (%) are calculated by using the following formula: 

Training Performance (%) or Testing Performance (%)  

 

=(
                                       

          
)                            (5.1) 

 

The various statistical parameters which are required for determining the best model are as defined 

below:- 

The coefficient of efficiency (E) (Das and Basudhar , 2008) is given by the equation below. A 

model which gives better prediction has always higher value of  E 

 

  
     

  
                                         (   ) 

Where, E1  ∑ (LIm-LIm̅̅ ̅̅ ̅)
2n

1 (5) 

E2  ∑ (LIp LIm)
2

n

1

                             (5.3) 
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The fitness of each model is determined by minimizing the root mean square error (RMSE) 

between the predicted and actual value of the output variable (LI) as the objective function. The 

RMSE is defined as follows 

RMSE √
∑ (LI LIP)2
n
i 1

n
(5.4) 

Where n is the number of cases in the fitness group. If the errors calculated by using equation 

(5.4) for all the models in the existing population do not satisfy the termination criteria, the 

evolution of new generation of population continues till the best model is developed. The average 

absolute error (AAE) for the models are calculated by using the following formulae, 

 

AAE abs(LIm LIp)                                                           (5.5) 

 

5.3.1 MARS Modeling For Liquefaction Index (LI). 

 
For predicting the liquefaction index using MARS modeling, two models were considered, which 

were chosen on the basis of number of input parameters considered for modeling. The successful 

prediction rates for liquefied cases are shown in Table 5.2:- 

Table 5.2 

MARS modeling showing input parameters, overall, training and testing performances. 

Model 

No 

Input 

parameters 

Overall 

Performance 

(%) 

Training 

Performance 

(%) 

Testing 

Performance 

(%) 

1 Depth, Nm, FC, 

CC, a max, CSR, 

N1(60), LIm 

96.53 92.1 90.37 

2 CSR, N1(60) 92.36 91.58 95.35 
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It can be seen from the above table that Model 1 gives better prediction accuracy for the occurrence 

of liquefaction than the Model 2. The various statistical performances of the two models are 

depicted in Table 5.3 

Table 5.3 

Statistical performances obtained by mars modeling. 

Statistical 

Performances 

Model 1 Model 2 

TRAINING TESTING TRAINING TESTING 

Overall 

Performance 

(%) 96.53 92.36 

R 0.93 0.928 .849 .808 

E 0.859 0.855 .699 0.615 

RMSE 0.186 0.187 .273 .305 

AAE 0.035 0.035 0.074 .093 

  

Table 5.4 

Variable importance, n subsets, gcv and rss, obtained for model no 1 

Variables n subsets    Gcv rss 

Nm 6 95 95.4 

CSR 6 95 95.4 

CC 5 27.5 35.6 

a max 3 100 100 

Depth 2 15.7 20.9 

N1(60) 2 15.7 20.9 
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A variable can be designated as important when, it has got maximum number of n subsets value. 

From the above table it is concluded that, based on sensitivity analysis, Nm and CSR are the most 

important variables among all. Model 1 includes 7 basis functions, which are listed in Table 45.5 

together with their corresponding equations. 

 

Table 5.5 Basis function considered in model 1 and their corresponding equations 

Basis functions(Bi) Equations Coefficients(ai) 

B1 Max(0,D-8.1) -0.0334 

B2 Max(0,Nm-6) -0.030 

B3 Max(0, Nm-16) 0.030 

B4 18*CC -0.663 

B5 Max(0,0.221-amax) -3.490 

B6 Max(0,0.208-CSR) -3.445 

B7 Max(0,(N1)60-13.11) -0.040 

The final equation for prediction of Liquefaction Index based on MARS model no 1 is given below: 

 

         ∑     

 

   

                                                         (   ) 

Table 5.6 Variable importance, n subsets, gcv and rss, obtained for model no 2 

Variables n subsets    gcv rss 

CSR 4 100 100 

N1(60) 3 70.8 70.7 
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From the above table it is concluded that, based on sensitivity analysis, CSR is the most important 

variables among all. Model 1 includes 4 basis functions, which are listed in Table 6 together with 

their corresponding equations. 

Table 5.6 Basis function considered in model 1 and their corresponding equations 

Basis functions(Bi) Equations Coefficients(ai) 

B1 Max(0,.194-CSR) -8.591 

B2 Max(0,(N1)60-6.34) -0.0396 

B3 Max(0, (N1)60-21.93) -0.092 

B4 Max(0, (N1)60-25.30) 0.127 

The final equation for prediction of Liquefaction Index based on MARS model no 2 is given below: 

         ∑     

 

   

                                                                  (   ) 

5.3.2 GP Modeling for Liquefaction Index (LI). 

 
For predicting the liquefaction index using GP modeling, only one model was formulated by 

considering all the input variables. The successful prediction rates for liquefied cases are given in 

Table 7:- 

Table 5.7  GP modeling showing input parameters, overall, training and testing 

performances. 

Model 

No 
Input parameters 

Overall 

Performance 

Training 

Performance 

Testing 

Performance 

1 

Depth, Nm, FC, 

CC, a max, CSR, 

N1(60) 

96.88 97.03 96.51 

 

The equation for prediction of Liquefaction Index based on MGGP model 1 is given below: 
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LI 0.03 D50 0.03 D 
2.96

e10.35
 0.02 (D50 (N1)60) (CSR 4.732) 

 0.03 amax(N1
)
60
 

8.769 CSR

(CSR (N
1
)
60
)
 

 
0.0002 (N

1
)
60
 (Nm CC)

amax
 2.425                                            (5.7) 

Table 5.8 Comparison of results of developed mars and GP based LI model with ANN model   

 

Model 

No 

 

Input Variables 

Performance in terms of successful prediction (%) 

MARS MGGP ANN MARS MGGP ANN 

Training data Testing data 

1 Depth, Nm, FC, 

CC, 

 a max, CSR, 

N1(60), LIm 

 

92.1 

 

97.03 

 

----- 

 

90.37 

 

96.51 

 

----- 

2 CSR, N1(60) 91.58 94.55 94.55 95.35 94.19 88.37 

 

Generally the efficiency of different models are compared firstly on testing data then on training 

data (Das and Basudhar,2008) . It is evident from the above table that, for the same database as 

presented by Samui and Sitharam (2011) the accuracy of prediction of liquefaction susceptibility of 

soil based on ANN model were 94.55 and 83.77 % for training and testing respectively. In case of 

MARS the accuracy of prediction by model no 1 were found out to be 92.1 and 90.37 for training 

and testing respectively, whereas in the case of model no 2 the accuracy of prediction obtained were 

91.58 and 95.35 % respectively. Similarly in case of MGGP the accuracy of prediction by model no 

1 were found out to be 97.03 and 96.51 respectively, whereas in case of model no 2, the accuracy of 

prediction were 94.55 and 94.19. Thus, it can be stated that MGGP model in both the cases 

outperforms the MARS and ANN Models. 
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The present paper successfully adopted MARS and GP for prediction of Liquefaction Index of a 

soil. The developed models using MARS and MGGP have shown good predictive abilities than 

ANN, but in comparison between the four above stated methods, the developed MGGP models 

outperforms the MARS and ANN models. The equation developed (Eqn 5.7)  

by MGGP model can be helpful to the geotechnical engineers for predicting liquefaction 

susceptibility of soils.   
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CHAPTER 6 

EVALUATION OF LIQUEFACTION POTENTIAL OF SOIL FROM SHEAR  WAVE 

VELOCITY DATA BY USING MULTIVARIATE ADPTIVE REGRESSION SPLINES AND 

GENETIC PROGRAMMING 

6.1 INTRODUCTION 

 
The commonly used technique for evaluation of liquefaction potential of soil is simplified 

technique which was first developed by Seed and Idriss(1971).Liquefaction evaluation involves 

evaluation of liquefaction susceptibility, evaluation of liquefaction potential and study of the 

response of various foundations in liquefied soils.Various in-situ tests are also there for evaluation 

of liquefaction potential of soil such as Standard Penetration Test(SPT) which were developed by 

Seed and Idriss (1971), Tokimatsu andYoshimi (1983), Seed et al. (1985), Berrill and Davis 

(1985),and Law et al. (1990), Cone Penetration test(CPT) developed by Robertson and Campanella 

(1985), Seed and De Alba(1986), Shibata and Teparaksa (1988), and Stark and Olson(1995).Other 

in-situ test methods for evaluation of liquefaction potential of soil are Dilatometer test (Marchetti 

1982) and Shear wave velocity Test (Andrus and Stokoe,1997).Among all the above discussed 

methods , Andrus and Stokoe(1997) suggested that Shear Wave Velocity method has the following 

advantages over all methods.(1) the measurements are possible in soils that are hard to sample, such 

as gravelly soils where penetration tests may be unreliable (2) measurements can be performed on 

small laboratory specimens(3) Shear wave velocity is a basic mechanical property of soil 

materials,directly related to small-strain shear modulus (    ).(4)Shaer wave velocity is a required 

property in earthquake site response and soil-structure interaction analysis. Liquefaction analysis 

based on probabilistic and statistical methods have been done by many researchers. But all of the 

above methods have been developed based on some empirical formulae, which are associated with 

some inherent uncertainties. More recently artificial neural network (ANN) (Goh(1994),Juang et 
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al(2000),Hanna et al(2007),Samui and Sitharam(2011)) model, Support Vector Machine (SVM) 

(Pal (2006),Goh and Goh (2007) ,Samui and Sitharam(2011))  model has been used for prediction 

of liquefaction potential as a classification problem. It has also been noted that as the knowledge 

acquired during training is stored in an implicit manner in the ANN, it is very difficult to come up 

with a reasonable interpretation of the overall structure of the network. These inherent limitations 

wherein the information or the intervening steps are not available have earned ANN, the reputation 

of being a “black box” approach. In addition, ANN has several inherent drawbacks such as over 

fitting, slow convergence speed, poor generalizing performance, and arriving at local minimum. 

Recently support vector machine (SVM), based on statistical learning theory and structural risk 

minimization is being used as an alternate prediction model. Another technique, called the Genetic 

Programming (GP), developed by (Koza, 1992), mimics biological evolution of living organisms 

and makes use of principle of genetic algorithm (GA). It is also called as „grey box‟ model. Various 

attempts have been made in the recent past to use GP to some Geotechnical engineering problems. 

GP helps in achieving greatly simplified model formula compared to ANN model, but a trade-off is 

made between the complexity of the formula and accuracy of the model. Another class of model 

may be termed as „white box‟ model is the multivariate adaptive regression spline (MARS) 

developed based on statistical model developed by (Friedman, 1991). MARS can adjust any 

functional form, hence suitable for exploratory data analysis. Samui et al. (2011) observed that the 

MARS model for uplift capacity of suction caisson has better statistical performance comparable to 

ANN and FEM model. 

In the present study an attempt has been made to present MARS and GP techniques to separate 

Liquefied and non-liquefied cases based on post liquefaction Shear wave velocity data. These 

models are used to evaluate the liquefaction potential of soil. A comparative study among the 
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developed MARS and GP model and the available Neural Network model are also made in terms 

rate  of successful liquefaction and non- liquefaction cases. 

6.2 DATA BASE AND PROCESSING 

 
In the present study, database comprising of 186 numbers of shear wave velocity tests , of 

liquefaction case history Taken from Andrus and Stokoe (1997). Out of these 186 cases, 89 cases 

are identified as liquefied cases and 97 are non-liquefied cases, based on the field test values. Here 

130 cases are selected randomly for training and the rest 56 are selected for testing.  

 

Table 6.1 data table for prediction of liquefaction index from shear wave velocity data 

SL NO 

σv0 

(kPa) 

σ
′
v0 

(kPa) 

Soil 

type 

Vs 

(m/s) 

amax (g) M LIQ? 

1 104.4 82 2 145 0.16 7.1 0 

2 87.1 75.2 2.5 193 0.27 7.1 0 

3 193.6 111 3 179 0.12 6.9 0 

4 70.4 54.8 2.5 101 0.13 5.9 0 

5 178.2 140.8 1.5 195 0.15 7.1 0 

6 122.9 70 4 144 0.19 8.3 1 

7 85.4 35.4 1.5 127 0.16 7.6 0 

8 142.2 123.5 2.5 168 0.32 7.7 1 

9 63 48 2 131 0.03 5.9 0 

10 85.4 35.4 1.5 127 0.18 6.6 0 

11 85.4 35.4 1.5 133 0.18 6.6 0 

12 117 82.2 2.5 105 0.15 7.1 1 
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13 79.2 55.8 2 90 0.2 6.5 0 

14 142.2 123.5 2.5 149 0.15 7.1 0 

15 147.2 83 2 157 0.14 7.1 1 

16 85.4 35.4 1.5 146 0.22 6.6 0 

17 160.8 98.8 4 197 0.5 6.9 1 

18 60.1 46.6 2.5 173 0.5 6.5 0 

19 178.2 140.8 1.5 177 0.32 7.7 0 

20 74.7 57.8 1 105 0.24 5.9 0 

21 73.8 57.9 3 135 0.2 6.9 1 

22 75.4 58.2 4 161 0.19 7.1 0 

23 70.4 54.8 2.5 101 0.3 5.9 1 

24 74.7 57.8 1 105 0.21 6.5 0 

25 83.8 53.9 1.5 127 0.12 5.9 0 

26 60.1 46.6 2.5 173 0.02 5.9 0 

27 69.9 60.9 2.5 97 0.27 7.1 1 

28 85.4 35.4 1.5 130 0.22 6.6 0 

29 85.4 35.4 1.5 146 0.05 6.2 0 

30 60.1 46.6 2.5 173 0.18 6.5 0 

31 70.4 54.8 2.5 101 0.12 6.5 0 

32 85.4 35.4 1.5 127 0.04 6.2 0 

33 98.6 79.4 2 138 0.16 7.1 1 

34 142.2 123.5 2.5 131 0.32 7.7 1 

35 191.8 101.2 1 143 0.12 7.1 0 
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36 124.9 73.7 1 103 0.12 7.1 1 

37 47.3 36 4 122 0.3 6.9 1 

38 62.1 49.4 4 109 0.36 6.9 1 

39 41 30.5 3 126 0.42 7.1 1 

40 63 48 2 131 0.5 6.5 1 

41 90 54.7 3 115 0.16 7.5 1 

42 109.2 84.3 2 133 0.16 7.1 0 

43 60.5 45.6 4 122 0.36 6.9 1 

44 102.6 71 3 163 0.15 7.1 1 

45 115.8 83.1 3 157 0.24 7.1 1 

46 57.5 46.3 4 134 0.36 6.9 1 

47 90 501 1.5 98 0.12 7.1 1 

48 48.5 38.1 4 154 0.36 6.9 1 

49 113.1 81.7 3 176 0.24 7.1 1 

50 85.4 35.4 1.5 133 0.05 6.2 0 

51 251.6 120.2 2 195 0.08 5.9 0 

52 136.6 92.4 2.5 148 0.24 7.1 1 

53 60.1 48.1 2.5 145 0.42 7.1 1 

54 83.6 62.1 4 136 0.36 7.7 1 

55 75.4 58.2 4 154 0.36 7.7 1 

56 75.2 53.5 4 274 0.46 6.9 0 

57 108.3 78.8 2.5 146 0.24 7.1 1 

58 117 82.2 2.5 120 0.15 7.1 1 
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59 85.4 35.4 1.5 146 0.18 6.2 0 

60 67 59.6 2.5 125 0.27 7.1 1 

61 98.6 79.4 2 121 0.16 7.1 1 

62 110.1 84.7 1.5 143 0.16 7.1 1 

63 67.7 57.8 2 135 0.42 7.1 0 

64 101.3 69.8 3 162 0.25 7.1 1 

65 91.8 57.8 1.5 115 0.27 5.9 1 

66 63 48 2 133 0.5 6.5 1 

67 60.1 46.6 2.5 164 0.02 5.9 0 

68 63.6 46.9 3 116 0.25 7.1 1 

69 52.7 40.5 4 94 0.36 6.9 1 

70 98.9 79.4 1.5 152 0.16 7.1 1 

71 121.6 85.8 3 179 0.24 7.1 1 

72 69.9 59.6 3 120 0.15 7.1 0 

73 83.8 53.9 1.5 127 0.27 5.9 1 

74 251.6 120.2 2 195 0.06 6 0 

75 44.5 36 4 102 0.36 6.9 1 

76 178.2 140.8 1.5 199 0.15 7.1 0 

77 85.6 59.5 3 171 0.25 7.1 1 

78 139.9 78.6 2 148 0.14 7.1 1 

79 45.5 33.4 4 79 0.19 8.3 1 

80 85.4 35.4 1.5 130 0.18 6.6 0 

81 83.8 53.9 1.5 124 0.13 6.5 0 
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82 60.1 46.6 2.5 164 0.18 6.5 0 

83 54.2 42.4 3 130 0.25 7.1 1 

84 85.4 35.4 1.5 130 0.16 7.6 0 

85 142.2 123.5 2.5 158 0.32 7.7 1 

86 63 48 2 133 0.03 5.9 0 

87 178.2 140.8 1.5 200 0.32 7.7 0 

88 154.4 86.4 2 152 0.14 7.1 1 

89 105.4 59.2 2 155 0.06 6 0 

90 118.5 69.2 2 136 0.14 7.1 1 

91 6 48 2 133 0.18 6.5 0 

92 67.8 44.5 3 118 0.16 7.5 1 

93 91.9 77 2.5 204 0.27 7.1 0 

94 85.4 35.4 1.5 146 0.18 6.6 0 

95 69.9 60.9 2.5 116 0.27 7.1 1 

96 54.3 38.1 2 126 0.19 6.5 0 

97 39.4 33.8 4 131 0.36 6.9 1 

98 91.8 57.8 1.5 115 0.2 6.5 0 

99 74.7 57.8 1 105 0.36 5.9 1 

100 79.2 55.8 2 90 0.2 5.9 1 

101 142.2 123.5 2.5 149 0.32 7.7 1 

102 79.2 55.8 2 90 0.11 5.9 0 

103 74.8 53.1 2.5 150 0.25 7.1 1 

104 85.4 35.4 1.5 146 0.16 7.6 0 



55 

 

105 105.4 59.2 2 155 0.08 5.9 0 

106 51 36 4 206 0.46 6.9 0 

107 85.4 35.4 1.5 133 0.04 6.2 0 

108 63 48 2 131 0.02 5.9 0 

109 185.9 110.9 4 174 0.5 6.9 1 

110 85.4 35.4 1.5 146 0.04 6.2 0 

111 163 90.6 2 137 0.14 7.1 1 

112 115.9 82.4 2.5 134 0.24 7.1 1 

113 85.4 35.4 1.5 130 0.05 6.2 0 

114 75.4 58.2 4 161 0.36 7.7 1 

115 74.7 57.8 1 105 0.12 6.5 0 

116 159.4 90.1 1.5 147 0.12 7.1 1 

117 85.4 35.4 1.5 130 0.04 6.2 0 

118 178.2 140.8 1.5 195 0.32 7.7 0 

119 61.9 54.4 3 153 0.15 7.1 1 

120 40.6 28.7 4 106 0.29 6.9 1 

121 178.2 140.8 1.5 199 0.32 7.7 0 

122 918 57.8 1.5 115 0.13 6.5 0 

123 39 27.8 4 105 0.29 6.9 1 

124 54.3 38.1 2 126 0.51 6.5 1 

125 110.9 97.7 3 163 0.16 7.5 0 

126 69.2 49.8 2 158 0.42 7.1 0 

127 63 48 2 131 0.18 6.5 0 
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128 81.7 43.6 1 101 0.12 7.1 1 

129 168.2 140.2 2.5 150 0.1 6.5 0 

130 83.8 53.9 1.5 124 0.27 5.9 1 

131 148.5 87.7 3 209 0.25 7.1 1 

132 85.4 35.4 1.5 127 0.05 6.2 0 

133 38.4 32.4 4 107 0.36 6.9 1 

134 57.2 46.2 4 107 0.36 6.9 1 

135 148.7 83.7 2 157 0.14 7.1 1 

136 142.2 123.5 2.5 131 0.15 7.1 0 

137 60.1 46.6 2.5 173 0.03 5.9 0 

138 83.8 53.9 1.5 127 0.13 6.5 0 

139 106.6 63.5 2 130 0.14 7.1 1 

140 60.1 46.6 2.5 164 0.5 6.5 0 

141 122.5 86.2 3 145 0.24 7.1 1 

142 104.4 82 2 148 0.16 7.1 0 

143 85.4 35.4 1.5 133 0.22 6.6 0 

144 85.4 35.4 1.5 130 0.18 6.2 0 

145 122.5 86.2 3 142 0.24 7.1 1 

146 83.8 53.9 1.5 124 0.12 5.9 0 

147 82.1 63.9 2.5 143 0.15 7.1 1 

148 83.6 62.1 4 136 0.19 7.1 0 

149 178.2 140.8 1.5 177 0.15 7.1 0 

150 85.4 35.4 1.5 127 0.22 6.6 0 
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151 51 41 2 126 0.42 7.1 0 

152 101.3 60.9 2 131 0.14 7.1 1 

153 75.4 58.2 4 173 0.36 7.7 1 

154 87.1 75.2 2.5 212 0.27 7.1 0 

155 54.3 38.1 2 126 0.06 5.9 0 

156 48.1 28.7 2 116 0.42 7.1 1 

157 85.4 35.4 1.5 127 0.18 6.2 0 

158 85.4 35.4 1.5 133 0.18 6.2 0 

159 66.6 57.4 4 271 0.23 6.9 0 

160 133.1 77.5 2.5 178 0.14 7.1 0 

161 142.2 123.5 2.5 158 0.15 7.1 0 

162 142.2 123.5 2.5 168 0.15 7.1 0 

163 140.6 105.7 3 220 0.15 7.1 0 

164 60.1 46.6 2.5 164 0.03 5.9 0 

165 85.4 35.4 1.5 133 0.16 7.6 0 

166 83.8 53.9 1.5 124 0.2 6.5 0 

167 63 48 2 133 0.02 5.9 0 

168 121.6 85.8 3 145 0.24 7.1 1 

169 110.1 84.7 1.5 135 0.16 7.1 1 

170 70.4 54.8 2.5 101 0.2 6.5 0 

171 38.8 32.9 4 128 0.36 6.9 1 

172 60.3 39.6 3 143 0.25 7.1 1 

173 75.4 58.2 4 173 0.19 7.1 0 
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174 75.4 58.2 4 154 0.19 7.1 0 

175 146.3 82.5 2 146 0.14 7.1 1 

176 178.2 140.8 1.5 200 0.15 7.1 0 

177 43.3 38.3 4 122 0.36 6.9 1 

178 158.5 139.1 3 149 0.48 6.9 0 

179 83.8 53.9 1.5 115 0.12 5.9 0 

180 54.3 38.1 2 126 0.06 5.9 0 

181 79.2 55.8 2 90 0.21 6.5 1 

182 83.8 53.9 1.5 127 0.2 6.5 0 

183 41.1 32.7 4 105 0.3 6.9 1 

184 97 78.8 1.5 117 0.16 7.1 1 

185 75.4 48.8 3 154 0.14 7.1 1 

186 54.7 35.3 1 122 0.12 7.1 1 

 

6.3 RESULTS AND DISCUSSION 

 
In the present study, database comprising of 186 numbers of shear wave velocity test, of 

liquefaction case history Taken from Andrus and Stokoe (1997). Out of these 186 cases, 89 cases 

are identified as liquefied cases and 97 are non-liquefied cases, based on the field test values. Here 

130 cases are selected randomly for training and the rest 56 are selected for testing.  

6.3.1 MARS MODELLING FOR LIQUEFACTION INDEX 

 
For MARS modeling of liquefaction index, following assumptions or predictions were made: 

i. For all liquefied cases, the Liquefaction Index (LI) is assumed as 1, i.e. LI= 1 (for 

liquefaction) 
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ii. Similarly for all non-liquefied cases, the Liquefaction Index is assumed to be 0, i.e. LI = 0 

(for non-liquefaction). 

iii. If the LI predicted by the technique is greater than 0.5 then the Liquefaction Index (LI) is 

assumed as 1, i.e.  LI= 1 (for liquefaction) and, 

iv. If the LI predicted by the technique is less than 0.5, then the Liquefaction Index is assumed 

to be 0, i.e. LI = 0 (for non-liquefaction). 

The Training and Testing performance (%) are calculated by using the following formula: 

Training Performance (%) or Testing Performance (%)  

=(
                                       

          
)                                           (   ) 

 

Table 6.2 MARS modelling showing overall training and testing performances 

Criteria 

for LI 

Present study by MARS 

Training Testing 

No of successful 

prediction 
Rate(%) 

No of 

successful 

prediction 

Rate(%) 

Based on  67 liquefied cases 
Based on 22 liquefied 

cases 

61 91 20 91 

Based on  63 non- liquefied 

cases 

Based on  34 non-

liquefied cases 

54 86 29 85 

Based on  all 186  cases Based on  all 186  cases 

164 89 

A sensitivity analysis was made to identify the important input parameters and is shown in Table 

6.3. 
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VARIABLES NSUBSETS GCV RSS 

ST 9 100 100 

   8 80.2 82.6 

     7 69.3 72.2 

   6 61.3 64.1 

  
  4 41.1 45.5 

 

A variable can be designated as important when, it has got maximum number of n subsets value. 

From the above table it is concluded that, based on sensitivity analysis, ST and   are the most 

important variables among all. MARS model   includes 9 basis functions, which are listed in Table 

3 together with their corresponding equations. 

Table 6.4 Basis functions considered in mars model and their corresponding equations 

 

Basis functions(Bi) Equations Coefficients(ai) 

B1 Max(0,        ) -0.0010 

B2 Max(0,          ) -0.0107 

B3 Max(0,   
      ) -0.0143 

B4 Max(0,   
       ) 0.0175 

B5 Max(0,    ) -0.3479 

B6 Max(0,      ) -0.0105 

B7 Max(0,       ) 0.0060 

B8 Max(0,        ) 7.5353 

B9 Max(0,         ) -7.2389 

The final equation for prediction of Liquefaction Index based on MARS model is given below. 
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            ∑     

 

   

                                          (   ) 

 

Figure 6.1 Model selection graphs 

The graph indicates that the best model has 10 terms and uses all 6 predictors.  

The cumulative distribution graph (Figure 6.2) shows the cumulative distribution of the absolute 

values of residuals. In this graph, the median absolute residual is about 0.50 . The residual vs fitted 

graph is for showing the residual for each value of the predicted response. The case 128 has the 

largest residual while case 70 and 62 have the smallest residual, and they appear suspiciously in 

separate clusters. 

The Q-Q graph compares the distribution of the residuals to a normal distribution. The normally 

distributed residuals will lie on the line.  

 

6.3.2 GP MODELLING FOR LIQUEFACTION INDEX 

 
For GP modeling of liquefaction index, following assumptions or predictions were made: 



62 

 

i. For all liquefied cases, the Liquefaction Index (LI) is assumed as 1, i.e. LI= 1 (for 

liquefaction) 

ii. Similarly for all non-liquefied cases, the Liquefaction Index is assumed to be 0, i.e. LI = 0 

(for non-liquefaction). 

iii. If the LI predicted by the technique is greater than 0.5 then the Liquefaction Index (LI) is 

assumed as 1, i.e.  LI= 1 (for liquefaction) and, 

iv. If the LI predicted by the technique is less than 0.5, then the Liquefaction Index is assumed 

to be 0, i.e. LI = 0 (for non-liquefaction). 

The Training and Testing performance (%) are calculated by using equation 6.1 

The overall training and testing performances are shown in the table 6.5. 

Table 6.5 GP modeling showing overall training and testing performances 

Present study by GP 

Training Testing 

No of successful 

prediction 
Rate(%) 

No of successful 

prediction 
Rate(%) 

Based on  67 liquefied cases Based on 22 liquefied cases 

67 100 19 87 

Based on  63 non liquefied cases 
Based on 34 non liquefied 

cases 

54 86 27 80 

Based on  all 186  cases Based on  all 186  cases 

167 90 

 

The equation for prediction of liquefaction index by GP model is given below 
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       (      )

 
 

              
       

 
       (      )

   (             )

 
          

      

  

 
                 (       )

  (  
    )

                        (    ) 

 

Generally the efficiency of different models are compared firstly on testing data then on training 

data (Das and Basudhar, 2008). It is evident from the above table that, for the same database as 

presented by Andrus and Stokoe (1997) the accuracy of prediction of liquefaction susceptibility of 

soil based on Neural Network model was 68% for training and testing respectively. In case of 

MARS the accuracy of prediction were found out to be 91% for both training and testing r, whereas 

in the case of GP the accuracy of prediction obtained were 100 and 87% respectively. Thus, it can 

be stated that MGGP model in both the cases outperforms the MARS and Neural Network Models.
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Table 6.6 Comparison of results of developed MARS and GP based LI model with neural network model (Andrus and 

Stokoe,1997). 

 

 

Criteria 

for LI 

Present study by MARS Present study by GP Comparison with 

existing 

methods(Andrus 

and stokoe,1997) 

Training Testing Training Testing 

No of 

successful 

prediction 

Rate(%) 

No of 

successful 

prediction 

Rate(%) 

No of 

successful 

prediction 

Rate(%) 

No of 

successful 

prediction 

Rate(%) Rate(%) 

Based on  67 liquefied 

cases 

Based on 22 liquefied 

cases 

Based on  67 liquefied 

cases 

Based on 22 liquefied 

cases 

68 

61 91 20 91 67 100 19 87 

Based on  63 non 

liquefied cases 

Based on  34 non  

liquefied cases 

Based on  63 non 

liquefied cases 

Based on 34 non liquefied 

cases 

54 86 29 85 54 86 27 80 

Based on  all 186  cases Based on  all 186  cases Based on  all 186  cases Based on  all 186  cases 

164 89 167 90 



65 

 

The present study successfully adopted MARS and GP for prediction of Liquefaction Index of a 

soil. The developed models using MARS and GP have shown good predictive abilities than Neural 

Network, but in comparison between the three above stated methods, the developed GP model 

outperforms the MARS and Neural Network model. The equation developed (Eqn 6.3) by MGGP 

model can be helpful to the geotechnical engineers for predicting liquefaction susceptibility of soils.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

CHAPTER 7 

CONCLUSIONS AND SCOPE FOR THE FUTURE STUDY 

 

7.1 CONCLUSIONS 

 
         Applications of MARS and GP in geotechnical engineering are very limited. The focus of this 

research work was to explore the applications of MARS and GP in evaluation of liquefaction 

potential of soil. 

Based on above study the following conclusions can be made. 

 Chapter 4, discussed about the evaluation of liquefaction potential of soil from the post 

liquefaction CPT data. It was observed that the In the case of MARS model the probability 

of liquefaction based on 91 liquefied cases are 88%, 88% and 90% for A,B and C 

respectively where as for GP it is 97%,97% and 99% for cases A, B and C respectively.The 

probability of liquefaction for MARS model based on 34 non-liquefied cases are 88%,100% 

and 100% for A,B and C respectively and for GP model it is 97%,97% and 97% fo the cases 

A,B and C respectively.It was observed that the prediction as per MARS model is more 

accurate towards field manifestation in comparison to the developed GP model and the 

exsisting ANN method. Based on sensitivity analysis ‟ is the most important input 

followed by qc and Rf. 

 Chapter 5, discussed about the evaluation of liquefaction potential of soil from the post 

Liquefaction SPT data. The accuracy of prediction of liquefaction susceptibility of soil 

based on ANN model was 94.55 and 83.77 % for training and testing respectively. In case of 

MARS the accuracy of prediction by model no 1 were found out to be 92.1 and 90.37 for 

training and testing respectively, whereas in the case of model no 2 the accuracy of 

prediction obtained were 91.58 and 95.35 % respectively. Similarly in case of MGGP the 

accuracy of prediction by model no 1 were found out to be 97.03 and 96.51 respectively, 
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whereas in case of model no 2, the accuracy of prediction were 94.55 and 94.19. Thus, it can 

be stated that MGGP model in both the cases outperforms the MARS and ANN Models. 

 Chapter 6 discussed about the evaluation of liquefaction potential of soil from the post liquefaction 

Shear wave velocity data. The overall performances for MARS and GP and ANN model are 89% , 

90% and 68%,  respectively  The developed models using MARS and GP have shown good 

predictive abilities than Neural Network, but in comparison between the three above stated 

methods, the developed GP model outperforms the MARS and Neural Network model. 

7.2 SCOPE FOR THE FUTURE STUDIES 

 
The following are the recommendation for further research. 

 There is a scope to improve the developed GP and MARS models using new high quality 

post liquefaction SPT and CPT data. 

 Effort should be made to include pore pressure into the limit state function to study its effect 

on liquefaction triggering. 

 After solving liquefaction potential evaluation part of the liquefaction hazard analysis efforts 

can be focused on developing probabilistic methodology for estimation of seismic soil 

liquefaction induced ground deformation. 
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