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Abstract

Cloud computing infrastructures are designed to support the accessibility and de-

ployment of various service oriented applications by the users. Cloud computing

services are made available through the server firms or data centers. These re-

sources are the major source of the power consumption in data centers along with

air conditioning and cooling equipment. Moreover the energy consumption in the

cloud is proportional to the resource utilization and data centers are almost the

worlds highest consumers of electricity. The resource allocation problem in a na-

ture of NP-complete, which requiring the development of heuristic techniques to

solve the resource allocation problem in a cloud computing environment. The

complexity of the resource allocation problem increases with the size of cloud in-

frastructure and becomes difficult to solve effectively. The exponential solution

space for the resource allocation problem can search using heuristic techniques

to obtain a sub-optimal solution at the acceptable time. This thesis presents the

resource allocation problem in cloud computing as a linear programming problem,

with the objective to minimize energy consumed in computation. This resource

allocation problem has been treated using heuristic and meta-heuristic approach.

Some heuristic techniques are adopted, implemented, and analyzed under one set

of common assumptions considering Expected time to compute (ETC) task model

for resource allocation. These heuristic algorithms operate in two phases, selec-

tion of task from the task pool, followed by selection of cloud resource. A set of

ten greedy heuristics for resource allocation using the greedy paradigm has been

used, that operates in two stages. At each stage a particular input is selected

through a selection procedure. Then a decision is made regarding the selected

input, whether to include it into the partially constructed optimal solution. The

selection procedure can be realized using a 2-phase heuristic. In particular, we have

used ’FcfsRand’, ’FcfsRr’,’FcfsMin’,’FcfsMax’, ’MinMin’, ’MedianMin’, ’MaxMin’,

’MinMax’, ’MedianMax’, and ’MaxMax’. The simulation results indicate in the

favor of MaxMax. The novel genetic algorithm framework has been proposed for

task scheduling to minimize the energy consumption in cloud computing infras-

tructure. The performance of the proposed GA resource allocation strategy has

been compared Random and Round Robin scheduling using in house simulator.

The experimental results show that the GA based scheduling model outperforms

the existing Rondom and Round Robin scheduling models.
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Chapter 1

Introduction

1.1 Cloud Computing

The cloud computing is based on the concept of dynamic provisioning, which is

applied to services, computing capability, storage, networking, and information

technology infrastructure to meet user requirements. The resources are made

available for the users through the Internet and offered on a pay-as-use basis from

different Cloud computing vendors.

1.2 Energy Efficient Cloud Computing

Cloud computing infrastructures are designed to support the accessibility and

deployment of various services oriented applications by the users[12],[21]. Cloud

computing services are made available through the server firms or data centers. To

meet the growing demand for computations and large volume of data, the cloud

computing environments provides high performance servers and high speed mass

storage devices [2]. These resources are the major source of the power consumption

in data centers along with air conditioning and cooling equipment [27]. Moreover

the energy consumption in the cloud is proportional to the resource utilization and

data centers are almost the world’s highest consumers of electricity [5]. Due to the

2
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high energy consumption by data centers, it requires efficient technology to design

green data center [19]. On the other hand, Cloud data center can reduce the the

total energy consumed through task consolidation and server consolidation using

the virtualization by workloads can share the same server and unused servers can

be switched off. The total computing power of the Cloud data center is the sum

of the computing power of the individual physical machine.

Clouds uses virtualization technology in data centers to allocate resources for the

services as per need. Clouds gives three levels of access to the customers: SaaS,

PaaS , and IaaS. The task originated by the customer can differ greatly from cus-

tomer to the customer. Entities in the Cloud are autonomous and self-interested;

however, they are willing to share their resources and services to achieve their indi-

vidual and collective goals. In such an open environment, the scheduling decision

is a challenge given the decentralized nature of the environment. Each entity has

specific requirements and objectives that need to achieve. Server consolidation are

allowing the multiple servers running on a single physical server simultaneously

to minimize the energy consumed in a data center [38]. Running the multiple

servers on a single physical server are realized through virtual machine concept.

The task consolidation also know as server/workload consolidation problem [18].

Task consolidation problem addressed in this thesis is to assign n task to a set of

r resources in cloud computing environment. This energy efficient resource allo-

cation maintains the utilization of all computing resources and distributes virtual

machines in a way that the energy consumption can minimize. The goal of these

algorithms is to maintain availability to compute nodes while reducing the total

energy consumed by the cloud infrastructure.

1.3 Resource Allocation

Cloud computing resources are managed through the centralized resource manager.

The centralized resource manager assigned the tasks to the required VMs. The
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resources of cloud data center are available to the users/applications through Vir-

tual Machines (VMs). Virtual Machines are used to meet the resource requirement

and run time support for the applications. In particular executing an application

for required resource can be made available through two steps: creating an in-

stance of the virtual machine as required by the application (VMs provisioning)

and scheduling the request to the physical resources otherwise known as resource

provisioning [27]. The VM here is to describe the operating system concept: a

software abstraction with the looks of a computer system’s hardware (real ma-

chine) [28]. A virtual machine is sufficiently similar to the underlying physical

machine running existing software unmodified. The VM technology has become

popular in recent years in data centers and cloud computing environments be-

cause it has a number of benefits including server consolidation, live migration,

and security isolation. Cloud computing is based on the concept of virtualization

that encapsulates various services that can meet the user requirement in a cloud

computing environment [13]. Virtual machines (VMs) are designed to run on a

server to provide a multiple OS environment with the support of various appli-

cations. One or more VM(s) can be placed or deployed on a physical machine

that meet the requirement for the VM. The task can be scheduled dynamic load

balancing between the host in cloud computing environments are achieved using

visualization technology.

Task consolidation is a method to maximize utilization of cloud computing re-

sources. Maximizing resource utilization improves the various benefits such as the

rationalization of QoS, IT service customization, maintenance, and reliable ser-

vices, etc. Improvements in physical hosts hardware [35], such as solid state drives,

low power CPUs, and energy efficient computer monitors can helped to reduce the

energy consumption issue to a certain degree. There have been a considerable

amount of research conducted using resource allocation and software approaches,

such as scheduling and server consolidation [18] and task consolidation [32].
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1.4 Related Works

Galloway et al. [9] has proposed a load balancing techniques for infrastructure as

a service (IaaS) for cloud computing. There are many proposed resource utilizing

market-based resource management for various computing areas[39, 5] Kusic et al.

[17] have modeled the problem of consolidation. The complexity of the model is

too high to the optimization of controller even for a small number of nodes, that is

not suitable for large-scale real-world problem. Srikantaiah et al. [32] have studied

the multi-tiered web-applications problem in virtualized heterogeneous systems in

order to minimize energy consumption. To optimization energy consumption, the

authors have proposed a heuristic for the multidimensional bin packing problem

as an algorithm for workload consolidation. Song et al. [31] have proposed pri-

orities based resource allocation to applications in a multi-application virtualized

cluster. The methods requires machine-learning to obtain the optimized results.

Verma et al. [36] have modeled the problem of dynamic placement of services in

virtually HDC as continuous optimization. The authors have proposed a heuristic

approches for the problem. they have used a bin packing problem with variable

bin sizes and costs. Cardosa et al. [7] have discuss the problem of energy effi-

cient allocation of VMs in HDC environments. They have used max, min and

shares parameters of VMM that represent maximum, minimum, CPU allocated

to VMs sharing the same resource. The approach suits only for private Clouds or

enterprise environments. Calheiros et al. [6] have studied the problem of mapping

VMs on PH for optimizing network communication between VMs, however, the

problem has not been to optimize the energy consumption.

A greedy algorithm solving the problem by making the sub-optimal solution at

each with the hope of finding a global optimum stage [3]. A greedy does not

produce an optimal solution in many problems, but a greedy heuristic may produce

a sub-optimal solutions that approximate a global optimal solution in a reasonable

time.
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Genetic Algorithm (GA) is computational models which are inspired by the evo-

lutionary process in nature. A typical genetic algorithm requires: a generic repre-

sentation of the solution domain (chromosome) and a fitness function to evaluate

the solution domain. In a genetic algorithm, a specific problem is encoded into

a chromosome and a population of candidate solutions (called individuals) to an

optimization problem is evolved to get the sub-optimal solutions.

Genetic algorithms can be successfully applied to solve job shop scheduling prob-

lem [20], and it can also apply in heterogeneous System [22], grid computing [24]

and cloud computing [25]. Most of these researches assume that each task has a

fixed amount of execution time (in homogeneous system). Braun et al. [4] com-

pare eleven heuristic and meta-heuristic scheduling methods including of a simple

GA-based scheduler, Min-Min, Min-Max, Minimum Completion Time algorithms.

The experimental study was performed for task scheduler for independent task

in distributed heterogeneous computing environment. The task execution time

instances have defined using the ETC matrix model proposed by [1]. Zomaya

and Teh [40] proposed a dynamic load balancing framework on genetic algorithm

that uses a central scheduler approach to handle all load balancing decisions.

The effectiveness of central server with load-balancing has been demonstrated for

homogeneous distributed computing system. Kang et al. [14] have discussed in

maximizing reliability of distributed computing systems with genetic algorithm

based task allocation and the task have represented in task graph. This compar-

ison of different heuristic through simulations proves the effectiveness of genetic

algorithms on HDCS. Several researchers have used GA for load balancing on cloud

computing systems; however the majority of the papers has no specific represen-

tation of the genetic algorithm.

1.5 Motivation

Energy efficiency is increasingly important for cloud computing, because the in-

creased usage of cloud computing infrastructure, together with increasing energy
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costs. there is a need to reduce the greenhouse gas emissions call for the energy-

efficient technologies that decrease the overall energy consumption of computation,

storage and communication equipment. Optimum utilization of energy is increas-

ingly important in data centers. The power dissipation of the physical servers is

the root cause of power consumption, which leads to the power consumption of

the cooling systems. Many efforts have been made to make data centers more

energy efficient. One of these is to minimize the total power consumption of these

servers in a data center, through task consolidation and virtual machine consol-

idation. The current research trends on energy efficient resource allocation have

identified the following key area for energy-saving techniques in cloud computing

infrastructure:

• Powering down: Switching off the entire system when not in use or in idle

state can be considered a key area of Energy Aware Computing [9].

• Dynamic voltage and frequency scaling (DVFS):

The DVFS technique is used to reduce the heat generated by the chip in

two different way. The power saving can be possible by adjusting automati-

cally the operating frequency of the processor with the help of system clock

available on board. Which also reduces the heat generated by the chip on

operation.

• Task Consolidation: Srikantaiah et al. [32] have discused an approach to

switch off the idle machine by finding the minimum number of appropriate

machine to which the task to be allocated.

• Resource Scaling: In this approche the minimum number of resources are

assigned to the set of tasks to meet the deadline in such a way that the task

will completed before the deadline to minimize the energy.
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1.6 Problem Statements

The problem of resource allocation in cloud computing environments has been

presented as minimization problem, to minimize the total energy consumed for a

set of task. The resource allocation problem in this thesis assumes the centralized

cloud is hosted on a data center that is composed of large number of heterogeneous

servers. Each of server may be assigned to perform different or similar functions.

A cloud computing infrastructure can be model as PM is a set of physical Server-

s/host PM1, PM2, PM3, . PMn. The resources of cloud infrastructure can be

used by the virtualization technology, which allows one to create several VMs on

a physical server/host and therefore, reduces amount of hardware in use and im-

proves the utilization of resources. The computing resource/node in cloud is used

through the virtual machine. A computing resources R is a set of virtual machines

VM1, VM2, VM3, VMm. The tasks to be scheduled in cloud are with three major

three attributes such as task ID, arrival time and expected time to compute(ETC).

In particular the problem addressed in our resource deals with the allocation of

VM to a set of tasks such that the total energy consumption of cloud computing

infrastructure is minimized by maximizing the resource utilization.

1.7 Research Contributions

The research contribution of Energy Efficient Resource Allocation for Cloud Com-

puting are summarized as follows:

1. Formulation of mathematical model for energy efficient resource allocation

for Cloud Computing.

2. Design and analysis of energy efficient greedy heuristic task consolidation

algorithms.

3. Energy efficient task consolidation using genetic algorithm.
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1.8 Layout of the Thesis

In this Thesis, the resource allocation problem in a cloud computing environment

has been addressed as an optimization problem. This thesis has been organized

into five chapters. The Chapter 1 discusses related research outcomes on energy

aware scheduling and resource allocation for cloud computing systems. In Chap-

ter 2 we define the model of cloud computing system, task model and energy

consumption of the system. Based on this system model, we have defined the

problem to minimize the energy in a cloud computing environment. Chapter 3

discusses the heuristic algorithms used in this study with the illustration and Sim-

ulation setup. Chapter 4 discusses the Genetic algorithms to find the solution

of our problem domain. Finally, conclusions and directions for future research are

discussed in Chapter 5.
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Chapter 2

Energy Efficient Cloud

Computing Infrastructure,

System Model and Performance

Parameter

2.1 Introduction

Cloud computing infrastructures are designed to support the accessibility and

deployment of various service oriented applications by the users [12] [21]. Cloud

computing services are made available through the server firms or data centers.

To meet the growing demand for computations and large volume of data, the

data centers hosts high performance servers and large high speed mass storage

devices [2]. These resources are the major source of the power consumption in

data center along with air conditioning and cooling equipment [27]. More over

the energy consumption in cloud are proportional to the resource utilization and

data centers are almost the worlds highest consumers of electricity [5]. Due to

the high energy consumption by data centers, it requires efficient technology to

design green data center [19]. Cloud data center, on the other hand, can reduce

11
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the energy consumed through server consolidation, whereby different workloads

can share the same server using actualization and unused servers can be switched

off.

In general the power management in data centre are related structural constraints

relating to the organization of srever racks and number of servers per rack and

position of the server racks on the floor. The power management of these re-

sources are possible in two different way; Static power management and dynamic

power management. The Static power management deals with fixed power caps

to manage aggregate power. Where as the dynamic power management makes

the use of informations related to resources consuming power so as to reduce the

power requirement dynamically using advanced platform power management tech-

nologies [34]. Clouds uses virtualization technology in distributed data centers to

allocate resources to customers as they need them. The task originated by the

customer can differ greatly from customer to customer. Entities in the Cloud are

autonomous and self-interested; however, they are willing to share their resources

and services to achieve their individual and collective goals. In such open envi-

ronment, the scheduling decision is a challenge given the decentralized nature of

the environment. Each entity has specific requirements and objectives that need

to achieve.

In this thesis, we propose a heuristic algorithm that could be applied to the cen-

tralized controller of a local cloud that is power aware. We capture the Cloud

scheduling model based on the complete requirement of the environment. We

further create a mapping between the Cloud resources and the combinatorial al-

location problem and propose an adequate economic-based optimization model

based on the characteristic and the structure of the Cloud.

Cloud computing is based on the concept of virtualization that encapsulates vari-

ous services that can meet the user requirement in a cloud computing environment

[13]. Virtual machines(VMs) are designed to run on a server to provide multiple

OS environment in the support of various application. Virtual Machines(VMs) are

used to meet the resource requirement and run time support for the applications.
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In particular executing an application on required resource can be made available

through two step: creating instance of virtual machine as required by the applica-

tion( VM provisioning) and scheduling the request to the physical resources other

wise known as resource provisioning [27].

Server consolidation are allowing the multiple servers running on a single physical

server simultaneously to minimize the energy consumed in a data center [38]. Run-

ning the multiple servers on a single physical server are realized through virtual

machine concept. The task consolidation also know as server/workload consolida-

tion problem [18]. Task consolidation problem addressed in this thesis is to assign

n task to a set of r resources in cloud computing environment. This energy efficient

load management maintains the utilization of all compute nodes and distributes

virtual machines in a way that is power efficient. The goal of this algorithm is to

maintain availability to compute nodes while reducing the total power consumed

by the cloud[29], [30].

The remainder of this chapeter is organized as follows. In Section 2 we define

the model of cloud computing system, task model and energy consumption of

the system. Based on this system model, we have defined the problem model to

minimization the energy in cloud computing environment.

2.2 Cloud Computing System Model

The cloud computing system is consists of fully interconnected set of m resources

denoted as R These computing resources are the physical machine in cloud data

center and refered as host computing system or host in this chapter. These re-

sources are to be allocated on demand to run applications time to time. Figure

2.1 depicts the system model of cloud computing system, that has been referred

in this Chapter. We have assumed the centralized cloud is hosted on a data center

that is composed of large number of heterogeneous servers. Each of server may be

assigned to perform different or similar functions.
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The virtualization technologies allow the creation of multiple virtual machine on

any of the available physical host. There for a task can be flexibly assigned to any

server. Servers can be modeled as a system that consumes energy in idle state

to perform maintenance functions and to have all the subsystems ready while it

waits for task to arrive. On arrival of task , a VM processes the task and host may

spend an additional amount of energy, which depends on the number of resources

demanded by the task, it is represented as resource utilization in work load model.

Figure 2.1: Cloud Computing Architecture

Although a cloud can span across multiple geographical locations (i.e., dis-

tributed), the cloud model in our study is assumed to be confined to a particular

physical location.We assume that resources are homogeneous in terms of their

computing capability and capacity; this can be justified by using virtualization

technologies [18]. It is also assumed that a message can be transmitted from one

resource to another while a task is being executed on the recipient resource, which

is possible in many systems[18]. The maximum and minimum energy consumption
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of the server in cloud computing system are denoted as pick load state and idle

state.

2.2.1 Energy Consumption in Cloud

CPU is the main hardware of a physical machine and its consumed upto 35% of

the total energy usages.[8] surveyed a variety of energy models at different levels.

So, the computational energy models helps to understand the energy consumption

in cloud computing and to develop suitable strategies to improve energy efficiency

in cloud computing system.

As formulated in [8], energy consumption is defined as E and characterised for

digital static CMOS circuits can be given by

E ∝ CeffV
2fCLK (2.1)

where Ceff is the effective switching capacitance of the operation, V is the supply

voltage, and fCLK is the clock frequency. Furthermore, fCLK is relevant to supply

voltage as in the equation:

fCLK ∝
(V − Vk)

α

V
(2.2)

Equation 2.1 and 2.2 represents the relationships among the energy, voltage and

frequency lead to a way of dynamically adjusting voltage and frequency according

to the current workloads to conserve energy. However, how much energy can be

saved depends largely on the hardware design. Unfortunately many types of server

CPU do not have as many levels of voltage and frequency as CPUs for embedded

devices, and therefore the power saving acquired by adjusting frequency and volt-

age vary significantly from one CPU type to another. As CPU is responsible for

approximately only one third of the total energy of a typical server, the method of

adjusting frequency and voltage only is not enough to solve the power conservation

problem.
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It is generally believed that the energy consumed by a Physical Machine should be

proportional to workloads running on it. However, this is far from true in reality.

According to the measurement results by [33] as shown in Figure-2.2, even with

nearly zero percentage of CPU utilization, a server can cost up to 50%-60% of the

maximum power consumption [37, 26, 11].

Figure 2.2: Benchmark of power consumption at various CPU utilization[26]

This means that it is better to push up the CPU utilization rate to achieve better

energy efficiency. However, the system performance may degrade significantly if

100% of CPU or memory utilization is sustained. Instead of 100% resource usage,

most servers can handle 70-80% CPU workloads or memory without performance

degradation, and high end servers can push the value up to approximately 90%

[33]. The energy consumption by host varying with CPU workloads for the whole
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machine, the power consumption, which varies with CPU utilization, can be for-

mulated as the equation 2.3 [36, 23, 18]:

E(u) = (Pmax − Pmin) ∗
u

100
+ Pmin (2.3)

In the equation, u is the percent value of the processor utilization, E(u) is the

Energy consumed by CPU at the utilization u%, and Pmax and Pmin are the

power consumption at maximum performance in watt and at idle respectively.

2.3 Problem Model for Energy Efficient Re-

source Allocation

Total Energy E consumed by CPU utilization in time τ by the cloud computing in-

frastructure by an efficient allocation of resources to the set of tasks. The resource

allocation problem on cloud computing are based on following assumptions.

• Virtualization technologies allow the creation of multiple virtual machines

on any of the available host.

• Each host may be assigned to perform different or similar services.

• Hosts consumes energy in an idle state to perform maintenance functions

and denoted as Pmin.

• Hosts consumes more energy as per utilization of the CPU by the tasks.

• Hosts consumes maximum energy at the pick level and denoted as Pmax.

• Hosts put the task in waiting queue, if its CPU utilization is at pick level.

The work load submitted to the cloud is assumed to be in the form of tasks.

These tasks are submitted service scheduler. The service schedular allocates the

tasks to VMs on different computing hosts. We have assumed the task as the
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computational unit to execute on the allocated VM. The task model refered in

this chapter are with following assumption.

• A task represents a users computing or service request.

• A task is an independent scheduling entity and its execution cannot be pre-

empted.

• The tasks can be executed on any node.

• Arriving task tj is associated with a task ID, arrival time, CPU utilization,

and expected time to compute as shown in figure 2.3 for example.

• Tasks arrival rate is Poisson.

• Resource utilization by task is normal distribution between 10% and 100%.

• The resource allocated to a particular task must sufficiently provide the

resource usage for that task. If resources are not sufficient, providing the

resource usage for a particular task, then task putted in waiting queue.

As shown in figure 2.3 one row of the task arrival list contains the task id, task

arrival time, resource utilization by task and estimated execution times for a given

task on each machine.

The ETC(tj,1) indicates the task id, ETC(tj,2) indicates the task arrival time

which is poisson, ETC(tj,3) indicates the resource utilization by the task tj and

ETC(tj,4) indiactes the estimated execution times on VM1, and so on.
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Figure 2.3: Example of arrival tasks list

Energy efficient resource allocation for cloud computing can be reprsented as Lin-

ear programming problem to minimize the total enegy consumed E, and repre-

sented as equation 2.4

Minimize E =
τ∑

τ=1

m∑
i=1

Ei(τ) (2.4)

Subjected to:

Ei(τ) = (Pmax − Pmin) ∗
Ui(τ)

100
+ Pmin (2.5)

Ui(τ) =
n∑

j=1

u(i,j) ≤ peakload at time τ, ∀ Ri ϵ R and ∀ tj ε T (2.6)
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u(i,j) = 0; when the task j is not assigned to node Ri. (2.7)

u(i,j) = uij; when the task j is assigned to node Ri. (2.8)

The above equation 2.4 show that the minimization of energy is subjected to the

utilization of resources by the task for the time τ .

2.4 Conclusions

In this chapter, we formulated the resource allocation problem as Linear Program-

ming Problem to optimize the energy consumption in cloud computing infrastruc-

ture. Heuristics and meta-heuristic technique are preferred by the researchers to

address NP-complete problem. The most common heuristic techniques like greedy

algorithms, genetic algorithm, PSO, ant colony algorithms, SA, etc are preferred

in this researched area. In next chapters, we have used the greedy and genetic

algorithms for resource allocation problem.
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Chapter 3

Energy Efficient Task

Consolidation using Greedy

Approach

3.1 Introduction

Cloud computing infrastructures are designed to support the accessibility and de-

ployment of various service oriented applications by the users. Cloud computing

services are made available through the server firms or data centers. To meet

the growing demand for computations and large volume of data, the data cen-

ters hosts high performance servers and large high speed mass storage devices.

These resources are the major source of the power consumption in data center

along with air conditioning and cooling equipment. More over the energy con-

sumption in cloud are proportional to the resource utilization and data centers

are almost the world’s highest consumers of electricity. The resource allocation

problem in cloud computing environment has been shown, in general, to be NP-

complete, requiring the development of heuristic techniques. The complexity of

resource allocation problem increases with the size of cloud infrastructure and be-

comes difficult to solve effectively. The exponential solution space for the resource

22
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allocation problem can searched using heuristic techniques to obtained subopti-

mal solution in the acceptable time. This chapter formulated resource allocation

problem in cloud computing as a linear programming problem, with the objec-

tive to minimize energy consumed in computation. This chpater uses a set of ten

greedy heuristics for resource allocation. All these heuristics from the literature

have been selected: adapted, implemented, and analyzed under one set of common

assumptions considering ETC task model. These heuristic algorithm operates in

two phase, selection of task from the task pool followed by selection of cloud re-

source. The greedy paradigm provides a framework to design algorithm that work

in stages, considering one input at a time. At each stage a particular input is

selected through a selection procedure. Then a decision is made regarding the se-

lected input, whether to include it into the partially constructed optimal solution.

The selection procedure can be realized using a 2-phase heuristic. In particular

we have used ’FcfsRand’, ’FcfsRr’ ,’FcfsMin’ ,’FcfsMax’, ’MinMin’, ’MedianMin’,

’MaxMin’, ’MinMax’, ’MedianMax’, and ’MaxMax’. The simulation results indi-

cate in favor of MaxMax.

3.2 Heuristic Task Consolidation Algorithms

Heuristic and meta-heuristic algorithms are the effective technology for resource

allocation problem due to their ability to deliver high quality solutions in reason-

able time. The selection procedure can be realized using a 2-phase heuristic. In

this section, we present the greedy heuristic algorithms for task allocation in a data

center. The general form of task allocation algorithm for the resource utilization

of cloud server resources is presented in Algorithm-1.

This algorithm allocate task to the physical resource and maintain the utiliza-

tion matrix. The Algorithm-1 operates by finding the task which uses maximum

resource from the currently available task in task queue.

The function TaskChoosingPolicy() returns the task from the task queue tempQ

and the function ResourceChoosingPolicy() returns the resource for the task tj
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for which maximum threshold value less then or equal to 100%. If no such fit

found it returns null. If resource Ri is found such that utilization is maximum for

task tj and utilization is not exceeding 100%. After allocating task j to resource

Ri, the task is removed from the task queue mainQ and temporary queue tempQ.

If no suitable fit is found then the task j will be removed from temporary queue

but not from main queue, this process proceeds to a new iteration. This heuristic

algorithm are simple to realize with very little computational cost in comparison to

the effort by resource allocation algorithm. The three different heuristic algorithm

used in this chapter are described as follows. The algorithm FCFSMax have been

adapted from heuristic algorithm presented by Lee and Zomaya [18].
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Algorithm 1 General Task Allocation Algorithm

Input: Task Matrix

Output: Utilization Matrix

1: Initialize τ

2: Initialize Utilization Matrix, U∗ ← ϕ.

3: R∗ ← ϕ.

4: while mainQ ̸= ϕ do

5: tempQ← All jobs from main queue(mainQ) where arrival time ≤ τ .

6: while tempQ ̸= ϕ do

7: j ← TaskChoosingPolicy()

8: i← ResourceChoosingPolicy()

9: if i ̸= Null then

10: Assign task tj to Ri

11: Update Utilization Matrix U(τ,i).

12: Remove task tj from mainQ and tempQ.

13: else

14: Remove task tj from tempQ.

15: end if

16: end while

17: Increment τ .

18: end while

19: return U .

3.2.1 FCFS to Random Utilized (FcfsRand)

The first heuristic algorithm is known as FCFSRandomUtil. This algorithm selects

the task in first come first serve (FCFS) basis and the resource is selected in ran-

dom(using uniform distribution) among the available VMs. The task is assigned

to the Virtual Machine Ri, if Ri utilization is not exceeding threshold value 100%

including the current task. Iteration continue till all tasks are allocated to VMs.
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The example in Figure 3.1 shows time required for the allocation of 20 tasks to 10

VMs.

Figure 3.1: Example of FCFS to Random Utilization Tasks allocation Table
for 20 tasks

3.2.2 FCFS to Round-Robin Utilized (FcfsRr)

The FCFSRRUtil heuristic algorithm selects the task in first come first serve

(FCFS) basis and the resource is selected in round-robin(RR) basis among the

available VMs. The task is assigned to the Virtual Machine Ri, if Ri utilization is

not exceeding threshold value 100% including the current task. Iteration continue

till all tasks are allocated to VMs.
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3.2.3 FCFS to Minimum Utilized (FcfsMin)

The task selection process of the FCFSMinUtil algorithm also follows FCFS prin-

ciple. To allocate the selected task, the VM with minimum utilization is selected

among the available VMs. The utilization of selected VM is computed by adding

the assigned task. The task is assigned to the Virtual Machine Ri, if Ri utilization

is not exceeding 100% including the current task.

3.2.4 FCFS to Maximum Utilized (FcfsMax)

The task selection process of the FCFSMaxUtil algorithm also follows FCFS prin-

ciple. To allocate the selected task, the VM with maximum utilization is selected

among the available VMs. The utilization of selected VM is computed by adding

the assigned task. The task is assigned to the Virtual Machine Ri, if Ri utiliza-

tion is not exceeding 100% including the current task. Figure 3.2 the outcome of

MaxUtil algorithm for 20 tasks to 10 VM.
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Figure 3.2: Example of FCFS to Maximum Utilization Tasks allocation Table
for 20 tasks

3.2.5 Minimum to Minimum Utilized (MinMin)

This algorithm allocate task (which required the minimum resource utilization)

to the currently minimum utilizing resources. First the algorithm operated on

task queue, which is the resulted on arrival of task till the time of selection. The

task is selected from the task queue having minimum resource utilization. The

task is assigned to the Virtual Machine Ri, if Ri utilization is not exceeding 100%

including the current task.
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3.2.6 Median to Minimum Utilized (MedianMin)

This algorithm allocate the median task from the sorted task queue to the currently

minimum utilizing resources. The task is assigned to the Virtual Machine Ri, if

Ri utilization is not exceeding 100% including the current task.

3.2.7 Maximum to Minimum Utilized (MaxMin)

This algorithm allocate task (which required the maximum resource utilization)

to the currently minimum utilizing resources. The task is selected from the task

queue having minimum resource utilization.

3.2.8 Minimum to Maximum Utilized (MinMax)

This algorithm allocate task (which required the minimum resource utilization)

to the currently maximum utilizing resources. First the algorithm operated on

task queue, which is the resulted on arrival of task till the time of selection. The

task is selected from the task queue having minimum resource utilization. The

task is assigned to the Virtual Machine Ri, if Ri utilization is not exceeding 100%

including the current task.

3.2.9 Median to Maximum Utilized (MedianMax)

This algorithm allocate the median task from the sorted task queue to the currently

maximum utilizing resources. First the algorithm operated on task queue. The

task is assigned to the Virtual Machine Ri, if Ri utilization is not exceeding 100%

including the current task.
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3.2.10 Maximum to Maximum Utilized (MaxMax)

The pseudo-code for the proposed MaxMaxUtil algorithm for the Maximum

utilization of cloud server resources is presented in Algorithm-2[16]. This al-

gorithm allocate task (which required the maximum resource utilization) to

the currently maximum utilizing resources. First the algorithm operated on

task queue, which is the resulted on arrival of task till the time of selection.

The task is selected from the task queue having maximum resource utilization.

The algorithm 3 MaximumResourceutilizationTask(temQ) return the maxi-

mum resource utilizing task from the task queue tempQ and the algorithm 4

MaximumUtilizingResource(U, τ, j) return the resource which has maximum uti-

lization of resources for task tj, but less then or equal to maximum threshold value

100% if no such fit found it return 0 value. If resource Ri is found such that utiliza-

tion is maximum for task tj and utilization is not exceeding 100%. After allocating

task j to resource Ri, the task is removed from the main queue mainQ and tem-

porary queue tempQ. If no suitable fit is found then the task j will be removed

from temporary queue but not from main queue, the iterative process continue till

the successful allocation of all tasks to VMs.
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Algorithm 2 MaxMax Algorithm

Input: Task Matrix

Output: Utilization Matrix

1: Initialize τ

2: Initialize Utilization Matrix, U∗ ← ϕ.

3: R∗ ← ϕ.

4: while mainQ ̸= ϕ do

5: tempQ← All jobs from main queue(mainQ) where arrival time ≤ τ .

6: while tempQ ̸= ϕ do

7: i← 0

8: j ←MaximumResourceUtilizationTask(tempQ)

9: i←MaximumUtilizedResource(U, τ, tj)

10: if i ̸= Null then

11: Assign task tj to Ri

12: U(τ,i) ← U(τ,i) + utilization(tj, i).

13: Remove task tj from mainQ and tempQ.

14: else

15: Remove task tj from tempQ.

16: end if

17: end while

18: Increment τ .

19: end while

20: return U .

Algorithm 3 MaximumResourceUtilizationTask Algorithm

Input: Task Queue, TQ

Output: Task id

1: Sort Task queue by utilization in desending order,T

2: retrun(Task id of T(1))
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Algorithm 4 MaximumUtilizedResource Algorithm

Input: Utilization Matrix,U; τ ; and Task id,j.

Output: Resource id,if fit found otherwise return 0.

1: Temp Utilization Matrix, TempU = ϕ

2: pt=expected time to execute on each machine for task j.

3: for i = 1 to n do

4: for k = 1 to pt(i) do

5: update utilization matrix, tempU(k)= U( τ + k) + utilization(j)

6: end for

7: end for

8: Remove the resource id, if utilization is more then 100% from tempU.

9: find best fit resource id with maximum utilization, [c,i] = max(sum(tempU))

10: return, i

Allocation list on figure 3.3 is obtained by using algorithm 2 on allocating 20 tasks

on 10 VMs in cloud. Figure 3.3 shows the allocation of 20 taks to 10 VMs. The

corresponding utilization at a time for 10 VMs is shown in Figure 3.4.

Example of Maximum to Maximum Utilized allocations and utilization are shown

in figure 3.3 and figure 3.4 for allocation of 20 tasks to 10VMs.
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Figure 3.3: Example of Maximum required to Maximum Utilized, Tasks allo-
cation Table for 20 tasks on 10 VMs

Figure 3.4: Example of Maximum to Maximum Resources Utilized, resource
allocation Table for 20 tasks on 10 VMs
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3.3 Experimental Evaluation

The experimental evaluation done through the inhouse discreate event simulation

in Matlab2012. We have taken two Scenario to observe the result. We have

conducted various experiments on variable number of VMs, and tasks. In first

scenario we have used three heuristic algorithms on 5000 tasks to observer the

resource utilization, energy consumption and percentage of energy saving. In

second scenario, we have observe the results for ten different greedy heuristic

algorithms on 500 tasks to see the outcome for energy consumption and energy

saving.

3.3.1 Simulation Enviourments

• Matlab 2012 tools has been used for creating the Energy Model, Task Model

and implementation of algorithms.

• Power Spec benchmark has been used as power model of server specification.

• All experiments were run on systems with Windows 8 (32 bit) operating

system on Intel Core i3 processor.

3.3.2 Observation Scenario-1: Three Different Heuristic

Algorithms

In this scenario we have used three heuristic algorithms on 1000 to 5000 tasks to

observer the resource utilization, energy consumption and percentage of energy

saving. The following observations are:

• Resource utilization of three heuristic algorithms on 20, 40 and 60 VMS,

arrival interval 1 and arrival rate 60 with 5000 tasks are Observed. The

result of this observation are shown in Figure 3.5, 3.6 and 3.7.
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• Energy Consumption of three heuristic algorithms on 60 VMS, arrival inter-

val 1 and arrival rate 60 with 5000 tasks are Observed. The result of this

observation are shown in Figure 3.8.

• Energy saving of three heuristic algorithms on 60 VMs, arrival interval 1 and

arrival rate 60 with 5000 tasks are Observed. The result of this observation

are shown in Figure 3.9.

3.3.2.1 Observation-01: Resource Utilization of 5000 tasks on 20 ,40

and 60 VMs

Figure 3.5: Utilization Comparison for tasks on 20 VMs
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Figure 3.6: Utilization Comparison for tasks on 40 VMs

Figure 3.7: Utilization Comparison for tasks on 60 VMs
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3.3.2.2 Observation-02: Energy consumption of 5000 tasks on 60 VMs

Figure 3.8: Energy Consumption for 5000 tasks on 60 VMs

3.3.2.3 Observation-03: Energy Saving

Figure 3.9: Energy Saving compared to FCFSRandomUtil for 5000 tasks on
60 VMs
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3.3.3 Observation Scenario-2: Ten Different Heuristic Al-

gorithms

In this scenario, we have observe the results for ten different greedy heuristic

algorithms on 100 to 1000 tasks to see the outcome for energy consumption and

energy saving. We have grouped the 2- stage greedy algorithms based on first

stage and second stage in the group of 4. In first group we have taken FCFS as

Task selection and Rand, RR, Min, Max utilized resource for resource selection.

In second group, the best of first is taken and other three are MinMin, MedianMin

and MaxMin. In group three the best of second group is taken and other three

are MinMax, MedianMax and MaxMax. The group table used in this scenario is

shown in Figure 3.10.

Figure 3.10: Ten different Heuristic for experiment scenario-2

The following experiments have been conducted for ten diffrent heuristic algo-

rithms in group of four.

• Energy consumption with ten different heuristic algorithms on 16, 32, 64,

and 128 VMs, arrival interval 1 and arrival rate 60 with 100 to 1000 tasks

are observed in a group of 4 heuristic algorithms.
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• Energy saving with ten different heuristic algorithms on 16, 32, 64, and 128

VMs, arrival interval 1 and arrival rate 60 with 100 to 1000 tasks are observed

in group of 4 heuristic algorithms.

3.3.3.1 Observation-04

In this section we observe the energy consumption and energy saving of group-1

(see table 3.10) heuristic algorithms on 20, 40 and 60 VMs for 100 to 1000 tasks.

The results are shown in Figure 3.11 to 3.18.

Figure 3.11: Energy consumption on 16 VMs
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Figure 3.12: Energy Saving on 16 VMs

Figure 3.13: Energy consumption on 32 VMs
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Figure 3.14: Energy saving on 32 VMs

Figure 3.15: Energy consumption on 64 VMs
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Figure 3.16: Energy saving on 64 VMs

Figure 3.17: Energy consumption on 128 VMs
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Figure 3.18: Energy saving on 128 VMs

3.3.3.2 Conclusion: Observation-04

It is observed that the energy consumption of FCFSMax scheduling is minimum

in this group.

3.3.3.3 Observation-05

In this section we observe the energy consumption and energy saving of group-2

(see table 3.10) heuristic algorithms on 20, 40 and 60 VMs for 100 to 1000 tasks.

The results are shown in Figure 3.19 to 3.26.
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Figure 3.20: Energy saving on 16 VMs

Figure 3.19: Energy consumption on 16 VMs
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Figure 3.21: Energy consumption on 32 VMs

Figure 3.22: Energy saving on 32 VMs
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Figure 3.23: Energy consumption on 64 VMs

Figure 3.24: Energy saving on 64 VMs
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Figure 3.25: Energy consumption on 128 VMs

Figure 3.26: Energy saving on 128 VMs
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3.3.3.4 Conclusion : Observation-05

It is observed that the energy consumption of MaxMin scheduling is minimum in

this group.

3.3.3.5 Observation-06

In this section we observe the energy consumption and energy saving of group-3

(see table 3.10) heuristic algorithms on 20, 40 and 60 VMs for 100 to 1000 tasks.

The results are shown in Figure 3.27 to 3.34.

Figure 3.27: Energy consumption on 16 VMs
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Figure 3.28: Energy saving on 16 VMs

Figure 3.29: Energy consumption on 32 VMs
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Figure 3.30: Energy saving on 32 VMs

Figure 3.31: Energy consumption on 64 VMs
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Figure 3.32: Energy saving on 64 VMs

Figure 3.33: Energy consumption on 128 VMs
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Figure 3.34: Energy saving on 128 VMs

3.3.3.6 Conclusion: Observation-06

It is observed that the energy consumption of MaxMax scheduling is minimum in

this group.

3.3.4 Observation Scenario-2: Percentage of Energy Sav-

ing

In this section, we have observer the percentage of energy saving of ten different

greedy heuristic algorithms compared to the FcfsRand. The simulation results for

percentage of energy saving for 5000 tasks on 128 VMs are presented in Figure

3.35. The maximum energy saved is 11.5% by MaxMax compared to FcfsRand.
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Figure 3.35: Energy saving comparison

3.4 Conclusions

Simulation experiments were conducted to examine the performance of simple

heuristic based task consolidation algorithms to optimize the energy consumption

in cloud computing system. An average case analysis is presented for ten heuristic

different task consolidation algorithm with inconsistent ETC matrix. Simulation

results proves the most of the time the performance of MaxMax scheduling out-

perform among 2-phase ten different heuristic algorithms. The maximum energy

saved is 11.5% by MaxMax compared to FcfsRand.
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Chapter 4

Energy Efficient Task

Consolidation using Genetic

Algorithm

4.1 Introduction

In cloud, processing loads arrive from many users at random time instants in the

form of task. A proper resource allocation policy attempts to assign this task

to available VMs on different host so to complete the execution of the tasks in

the shortest possible time with minimum power consumption. The complexity

of the resource allocation problem with cloud increases with the number of hosts

and becomes difficult to solve effectively. The resource allocation problem is a

combinatorial problem and known to be NP-complete. The exponential solution

space of the load balancing problem can be searched using heuristic techniques

based on Genetic algorithms to obtain sub-optimal solution in acceptable time [40,

4]. The genetic algorithm is an evolutionary algorithm, that have been proven to

be a successful in generating sub-optimal solutions to many scheduling problems A

genetic algorithm performs a multi-directional search by maintaining a population
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of potential solutions and an objective (evaluation) function which plays the role

of an environmental [10, 22].

4.2 Genetic Algorithm Based Task Scheduling

In this section, we propose the GA-based task scheduling model and introduces

a suitable codification scheme for chromosome. We also explain how making an

optimal task schedule and compose elements of the GA scheduling function. To

generate a new population, we have generated a POP SIZE number of random

initial population and calculating the fitness value of individuals. Then, using

roulette wheel selection method, parents are selected to produce offsprings using

single point crossover with probability 0.8. Some of the individuals are subjected

to the mutation with a probability 0.2. The population for the next generation are

selected again through roulette wheel selection method. The constant population

size has been maintained for a fixed number of iterations. The individual from

the last generation with minimum energy value is selected to allocate the tasks to

VMs.

4.2.1 A Genetic Algorithm

The algorithm 5 described in this section is straightforward with two parts: ini-

tialization and looping. After initialization, it generates the feasible solution ran-

domly, and then find the fitness value for best solutions. In looping parts, it

checks whether the termination condition is met. If looping continues, selection,

crossover (algorithm 8) and mutation (algorithm 9) operators are applied in a se-

quence. Then the better solution is saved during this iteration. At the end of the

program, the saved best solution will be output as the optimized result.
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Algorithm 5 workflow of a Genetic Algorithm

1: Find the fitness value of each chromosome in the population.

2: Reproduce a new population by repeating the following steps.

3: Select two individual chromosomes from a population according to selection

method, roulette wheel selection.

4: Cross over the selected parents if crossover probability met, to produce a new

child. Otherwise, the children are an exact copy of parents.

5: Mutate each new offspring (child) if a mutation probability met, at each locus

(position in the chromosome).

6: Place new child in a reproduced population.

7: Store Best individual solution.

8: If the Maximum number of generation reached, stop, and return the best

solution, else Go to step 2.

4.2.2 Encoding

A chromosome in this GA consists of |C| genes, each represents the allocated

resource ID (VM ID) to the task. The value of a gene is a positive integer between

1 and VM MAX, representing the virtual machine where the task is allocated.

Figure 4.1 shows an example of task scheduling and its corresponding chromosome.

In this example, task t1, t2, t3, t4, t5, t6, t7, t8, t9 and t10 is placed on VM1,

VM1, VM4, VM1, VM4, VM3, VM3, VM2, VM4, and VM4 respectively.

Figure 4.1: Individual Encoding(chromosome)
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4.2.3 Fitness Function

This Fitness function finds the makespan of giving task execution pattern.

Algorithm 6 Fitness Function Algorithm

Input: Task sequence and ETC Matrix

Output: Makespan

1: initialize makespan(R∗) = 0

2: for each resource Rj find the makespan using equation 4.1

makespan(Rj) =
n∑

i=1

ETE(i,j) (4.1)

where Rj is j
th resource and i is task id.

3: return MAX(R∗)

4.2.4 Initial Population

In this thesis, an initial population of individuals is generated randomly using the

algorithm 7

Algorithm 7 Generation of initial population algorithm

Input: population size(popsize), chomosome length(chlength)

Output: initial population,P

1: for j = 1 to popsize do

2: for i = 1 to chlength do

3: p(j,i) = round(random()*VM MAX)

4: end for

5: end for

6: return P
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4.2.5 Selection

In our GA, the roulette wheel selection method is used to select the population

for the reproduction of the next generation.

4.2.6 Crossover

Our GA adopts a midpoint crossover (single point) operator with crossover prob-

ability 0.8, which is described in algorithm 8. In fig 4.2 show the chromosomes of

parents and children before and after crossover respectively.

Algorithm 8 Mid-Point uniform crossover(Single Point) Algorithm

Input: two parent chromosome,C1,C2

Output: two child chromosome,CC1,CC2

1: cl ← length(C1)

2: crossover point, cp = cl/2

3: CC1 ← C1(1 : cp) U C2(cp : cl)

4: CC2 ← C1(cp : cl) U C2(1 : cp)

5: return CC1,CC2

Figure 4.2: Example of mid-point crossover(single point)
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4.2.7 Mutation

The mutation operator randomly picks up a gene in the chromosome and inverts

the value of the chosen gene. Algorithm 4.3 shows how the mutation operator

works. Constraints 1) make sure that each task will be assigned to one and only

one virtual machine; constraints 2) guarantee that the total CPU workload on the

VMj will not exceed the maximum utilization capacity. In fig4.3 show an example,

task t5 initially allocated to VM5, mutated to VM6.

Algorithm 9 Mutation at random point with 0.2 mutation probability

Input: a chromosome,C

Output: a mutated chromosome, CM

1: CM ← C

2: randomly generate a task id i, where 1 ≤ i ≤ |C|

3: randomly generate a real value between 0 and 1, mp

4: if (mp < 0.5) then

5: randomly generate a virtual machine j, where 1 ≤ j ≤ VM MAX

6: replace CM(i) ← j

7: end if

8: output CM

Figure 4.3: Example of mutation at random point with 0.2 mutation proba-
bility
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4.2.8 Stopping condition

We have done the following simulation experiments for 500 tasks on 50 VMs,

initial population size is 500, mutation probability is 0.2 and the single point

crossover with crossover probability 0.8 to decide the stopping criteria. Figure

4.4a, 4.4b, and 4.4c show that the optimal result can be found after the 100

generation. In our GA, the stopping condition is decided by the maximum number

of generations(MAX GEN), which is equal to 100.
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Figure 4.4: No of Generation vs fitness level for deciding optimal stopping
condition

4.3 Simulation Results

In this section, we simulated our experiments using the discrete event system

modeling [22] for the genetic algorithm based task scheduling and conducted the
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various experiments. We have also compared those results with the random and

RR scheduling model. The following parameters are taken in our simulation ex-

periments: initial population size is 500, number of VMs are 50 and 100, stopping

condition is 100 generations. A total 2500 tasks were generated using the ETC

Model proposed by Zomaya [18]. The figure 4.5 and figure 4.6, shows the experi-

mental result of Random scheduling, RR scheduling and GA based scheduling on

50 VMs and 100 VMs respectively.

initial population size = 500

number of VMs =50

generation = 100

stopping condition =100 generations

no of tasks = 2500 (generated using the ETC model)

crossover = single point crossover with 0.8 probalility

mutation = random point mutation with 0.2 probalility

Figure 4.5: Task scheduling on 50 VMs in cloud computing infrastructure.
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initial population size = 500

number of VMs =100

generation = 100

stopping condition =100 generations

no of tasks = 2500 (generated using the ETC model)

crossover = single point crossover with 0.8 probalility

mutation = random point mutation with 0.2 probalility

Figure 4.6: Task scheduling on 100 VMs in cloud computing infrastructure.

4.4 Conclusions

The experimental results (figure 4.5 and figure 4.6) show that the GA based

scheduling model outperforms the existing Rondom and RR scheduling models.
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Conclusions and Future Works

5.1 Conclusions

The resource allocation problem in a cloud computing environment has been ad-

dressed as an optimization problem. We formulated the resource allocation prob-

lem as Linear Programming Problem to optimize the energy consumption in cloud

computing infrastructure. Heuristics and meta-heuristic technique are preferred

by the researchers to address NP-complete problem. We have used the greedy al-

gorithms for resource allocation problem. Simulation experiments were conducted

to examine the performance of ten heuristic based resource allocation algorithms

to optimize the energy consumption in cloud computing system. An average case

analysis is presented for ten heuristic different resource allocation algorithm with

inconsistent ETC matrix. Simulation results prove the MaxMax heuristic algo-

rithm is preferred over others.

We have proposed a new simple genetic algorithm frame work for Energy Effi-

cient Task Consolidation in cloud computing enviourment. The proposed genetic

algorithm uses the fixed number of iteration to obtained the suboptimal solution

for task allocation problem. The same has been compared with existing Rondom

and Round Robin scheduling statgies using in house simulator. The simulation

experimental results indicated in the favour of the GA based resource algorithm.
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5.2 Future Works

More applications and services over the internet are available through the Cloud

computing platforms to meet the user requirement. It becomes a trend to have

an application to be hosted on the cloud. The scalability of a host becoming

essential to provide support to these applications through virtualization. Resource

allocation problem always meets the new challenges to meet the scalability, and

service level agreements. There is a need to study the performance of the proposed

heuristics can be analyzed for scalability and fault tolerance of the hosts. Scope

of using evolutionary algorithms like Particle swarm optimization (PSO), Ant

colony optimization (ACO), and Simulated annealing (SA) may be investigated

in resource allocation in cloud computing. Effective and reliability of services

become a challenge in a cloud computing environment. Autonomic computing

systems are designed to exhibit the ability of self-monitoring, self-repairing, and

self-optimizing. There is a scope to design autonomic resource allocation strategy

to meet the SLA for user requirements[15].
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