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Abstract 
 

Correlations are very significant from the earliest days; in some cases, it is 

essential as it is difficult to measure the amount directly, and in other cases it is 

desirable to ascertain the results with other tests through correlations. Soft computing 

techniques are now being used as alternate statistical tool, and new techniques such as 

artificial neural networks (ANN), support vector machine (SVM), multivariate adaptive 

regression splines (MARS) has been employed for developing the predictive models to 

estimate the needed parameters. In this report, four geotechnical problems like 

compaction parameters of sandy soil, compression index of clay, relative density of 

clean sand and side resistance of drilled shaft have been modeled. In the first problem, 

compaction parameters (i.e. MDD and OMC) of sandy soil have been predicted from its 

index properties such as coefficient of uniformity, percentage of sand and fines content 

with reference to compactive effort and MARS shows better predictability. In the 

second problem, the relative density (Dr) of clean sand has been predicted from 

coefficient of uniformity, mean diameter of grain size with reference to four levels of 

compactive effort and predictability of LS-SVM is found to be very accurate. In third 

problem, compression index of clay has been predicted from consistency limits, natural 

moisture content and initial void ratio and the developed ANN shows better prediction. 

In the fourth problem, side resistance of drilled shaft has been predicted from effective 

stress and undrained shear strength and the MARS model performs better than the other 

models. Various error criteria such as mean absolute error (MAE), root mean square 

error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R) 

have been considered for the comparison of different models. Finally different 

sensitivity analysis has been shown to identify the significance of different input 

parameters that affects the developed models. The performance comparison showed that 
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the soft computing system is a good tool for minimizing the uncertainties in the soil 

engineering projects. The use of soft computing may provide new approaches and 

methodologies to minimize the potential inconsistency of correlations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In geotechnical engineering, empirical connections are frequently used to evaluate 

certain engineering properties of soils. By means of data from extensive laboratory or field 

testing, these correlations are generally derived with the help of statistical methods. Artificial 

neural networks (ANNs), support vector machine (SVM) and multivariate adaptive 

regression splines (MARS) are the forms of artificial intelligence. These techniques learn 

from data cases presented to them in order to capture the functional interactions among the 

data even if the fundamental relationships are unknown or the physical meaning is tough to 

explain. This is in contrast to most traditional empirical and statistical methods, which need 

prior information about the nature of the relationships among the data. AI i s  thus well 

suited to model the complex performance of most geotechnical engineering materials which, 

by their very nature, exhibit extreme erraticism. This modeling capability, as well as the 

ability to learn from experience, have given AI superiority over most traditional modeling 

approaches since there is no need for making assumptions about what the primary rules 

that govern the problem in hand could be. 

ANN is still considered as „black box‟ system with poor simplification, though various 

efforts made for modification and explanations. Recently support vector machine (SVM), 

based on statistical learning theory and structural risk minimization is being used as an 

alternate prediction model. The SVM uses constrained minimization, penalizing the error 

margin during training. The error function being a convex function better generalization 

used to observe in SVM compared to ANN. 

Though AI techniques has proved to have the superior predictive capability than 

other traditional methods for modeling complex performance of geotechnical engineering 
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materials, still it is facing some criticism due to the lack of transparency, knowledge 

extraction and model uncertainty. To overcome this there is a development of improvised AI 

techniques. 

1.2 Origin of Project 

• Empirical relationships are frequently used to estimate certain engineering properties 

of soils in geotechnical engineering.  

• Computational techniques learn from data samples presented to them in order to 

capture the functional relationships among the data even if the fundamental relationships are 

unknown or the physical sense is difficult to clarify.  

• Most traditional empirical and statistical methods need prior knowledge about the 

nature of the interactions among the data. 

• Soft-computing techniques are suitable to model the complex behavior of most 

geotechnical engineering materials which exhibit extreme inconsistency.  

1.3 Objective 

 To apply various soft-computing techniques like ANN, MARS and SVM in 

parametric estimation of Geotechnical problems. 

 To model for relative density of granular soil from grain size distribution and 

compaction energy. 

 To model for compaction parameters (Maximum Dry Density and Optimum Moisture 

Content) of granular and c-ϕ soils from index properties and compaction energy. 

 To model for compression Index from various physical properties of clayey soil. 

 To model the side resistance of drilled shaft from effective stress and undrained shear 

strength. 

 To compare the efficiency of different models.. 
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1.4 Applications in Geotechnical Engineering 

Various geotechnical problems where soft computing has been applied are: 

 For forecasting the axial and lateral load capacities in compression and uplift of pile 

foundations.  

 Conventional constitutive modeling based on the elasticity and plasticity theories to 

properly simulate the performance of geomaterials.  

 For estimating several soil properties including the shear strength, stress history, pre-

consolidation pressure, swell pressure, compaction and permeability, soil 

classification and soil density. 

 Predicting liquefaction potential. 

 Bearing capacity and Settlement prediction of shallow foundations.  

 Other applications of Artificial Intelligence in geotechnical engineering include 

retaining walls, dams, blasting, mining, geo-environmental engineering, rock 

mechanics, site characterization, tunnels and underground openings and slope 

stability. 

1.5 Methodology for Soft-Computing 

• Artificial Neural Network (ANN) 

• A universal function approximator and fast to evaluate new examples. 

• Multivariate Adaptive Regression Splines (MARS) 

• Capacity to find complex data mapping and produce simple, easy-to-interpret 

models.  

• Support Vector Machine 

• The quality of generalization and ease of training of SVM is better. 

1.6 Software used  
       For the above modeling MATLAB R2008b has been used. 
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CHAPTER 2 

METHODOLOGY 

2.1 Artificial Neural Network (ANNs) 

2.1.1 An overview of ANNs 

In the last decades, Artificial Intelligence (AI) techniques such as Artificial Neural 

Networks (ANNs) have received a great deal of attention. In essence, ANN is an information 

technology that mimics the human brain and nervous system in learning from experience and 

generalizes from previous examples to generate new outputs by abstracting essential 

characteristics from inputs in the pattern of variable interconnection weights among the 

processing elements. ANNs are more powerful than traditional methods in the situations 

when the problem requires qualitative or complex quantitative reasoning where the 

conventional statistical and mathematical methods are inadequate or the parameters are 

highly interdependent and data is intrinsically noisy, incomplete or error prone (Bailey and 

Thompson, 1990). 

ANNs have many advantages over traditional methods of modeling. Firstly, as 

opposed to the traditional mathematical and statistical methods, ANNs are data-driven self-

adaptive methods, which can capture subtle functional relationships among the data even if 

the underlying relationships are unknown or hard to describe. Secondly, ANNs are able to 

capture complex nonlinear relationship with better accuracy (Rumelhart et al. 1994). Thirdly, 

the most important advantage of ANNs over mathematical and statistical models is their 

adaptability. ANN systems can automatically adjust their weights to optimize their behavior 

(Boussabaine, 1996). Neural networks have been utilized for classification, clustering, vector 

quantification, pattern association, function approximation, control, optimization and search. 
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2.1.2 Basic Concepts of ANNs 

An artificial neural network is a computational model defined by four parameters: 

type of neurons, connection architecture, learning algorithm and recall algorithm (Mehrotra, 

et al., 1997). 

2.1.2.1 Artificial Neural Systems 

ANNs is an information processing technology that simulates the human nervous 

system. It is built on three basic components: processing elements (PE) which are an artificial 

model of human neuron, interconnections whose functions are similar to the axon and 

synapses which are the junctions where an interconnection meets a PE. Each PE receives 

signals from other PEs that constitute an input pattern. This input pattern stimulates the PE to 

reach some level of activity. If the activity is strong enough, the PE generates a single output 

signal that is transmitted to other PEs through an interconnection. 

2.1.2.2 Processing Elements 

Figure 1 describes a typical artificial neuron. The input signals come from either the 

environment or outputs of other PEs and form an input vector: 

                                  ni aaaA ...,..................,,1                     (1.1) 

Where, ia  is the activity level of the ith PE or input. There are weights bound to the 

input connections: nwww ,....,, 21 . The neuron has a bias b. The sum of the weighted inputs 

and the bias form the net input signal, X: 

    

bAWawbX
n

i

iijj  
1

                    (1.2) 

The input signal is then sent to a transfer function, which serves as a non-linear 

threshold. The transfer function calculates output signal of the PE (j) as: 

 
)(XfO j                                 (1.3) 
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Where Oj is the output signal from PE(j); f is a transfer function and X is the net input 

signal to PE(j). 

 

Figure 2.1 Generic processing element of neural network 

2.1.2.3 Threshold functions 

There are many threshold functions adopted in ANNs. The two most commonly used 

transfer functions are linear and sigmoid. 

 The linear threshold function: f(x) = x 

 The sigmoid function: Log-sigmoid transfer function and Tan-Sigmoid transfer 

function is commonly used in backpropagation networks, partly because in backpropagation, 

it is important to be able to calculate the derivatives of any transfer function used (Demuth 

and Beale, 2000). They can be expressed as the following equations:  

Logistic function: 
xe

xf



1

1
)(  

Hyperbolic tangent: 
xx

xx

ee

ee
xf








)(  

2.1.2.4 Architecture of ANNs 

The architecture of an ANN is the organization that assembles PEs into layers and 

links them with weighted interconnections. The architecture determines how computations 

proceed. A common ANN architecture is determined by three distinguishing characteristics: 

connection types, connection schemes and layer configurations. 
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 The most commonly used ANN paradigm is multilayer perceptions (MLPs). A MLP 

consists of an input layer, at least one hidden layer and one output layer. The neurons in each 

layer are usually fully connected to the neurons in another layer. Among them, three-layer 

feed forward network is the most popular. Feed forward network is a type of network in 

which connection is allowed from a node in layer i only to nodes in layer i+1. The three 

layers are input layer, hidden layer and output layer. Input layer is the layer that receives 

input signals from the environment. Output layer is the layer that emits signals to the 

environment. Hidden layers are layers between the input and output layers. 

2.1.2.5 Learning Rules 

Learning makes possible modification of behavior in response to the environment. A 

learning rule is a procedure for modifying the weights of connections between the nodes and 

biases of a network. These are three broad learning categories: supervised learning, 

unsupervised learning and reinforcement learning. 

2.1.3 ANN Model Equation 

A model equation is developed using the weights from trained neural network model 

(Goh et al. 2005). The mathematical equation relating input parameters to output parameter 

can be written as 

  




























  

 

h

k

m

i

iikhknkn Xwbfwbfy
1 1

0

              (1.4)

 

where y = predicted value of output, fn = transfer function, h = no. of neurons in the 

hidden layer, Xi = value of Inputs, m= no of input variables, wik = connection weight between 

ith layer of input and kth neuron of hidden layer, wk = connection weight between kth neuron of 

hidden layer and single output neuron, bhk = bias at the kth neuron of hidden layer and b0 = 

bias at the output layer. 
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2.1.4 Methodology of ANN 

     The sequences of modeling by ANN are given in the flow chart below. 

 

Figure 2.2 Flow chart of neural network modelling 

2.1.4.1 Determination of Model Inputs 

      A subset of input variables can significantly improve model performance. A large 

number of input variables usually increase the network size, resulting in a decrease in 

processing speed and a reduction in the efficiency of the network. Another approach is to 

train with different combinations of input variables and to select the network that has the best 

performance. The network that performs the best is then retained. This process is repeated 

for an increasing number of input variables, until the addition of other variables results in no 

improvement in model performance. 

2.1.4.2 Division of Data 

ANNs accomplish best when they do not generalize beyond the range of the data used 

for standardization. Therefore, the purpose of ANNs is to non-linearly introduce (generalize) 

DETERMINATION OF MODEL INPUTS 

DIVISION OF DATA 

DATA PRE-PROCESSING 

DETERMINATION OF MODEL ARCHITECTURE 

MODEL OPTIMIZATION  

STOPPING CRITERIA 

MODEL VALIDATION 
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in high-dimensional space between the data used for calibration. A discrete validation set is 

needed to ensure that the model can generalize within the range of the data used for 

calibration. It is common practice to split the existing data into two subsets; a training set, to 

construct the neural network model, and an independent validation set to evaluate the model 

performance. Usually, two-thirds of the data are suggested for model training and one-third 

for validation. 

2.1.4.3 Data Pre-processing 

Once the presented data have been divided into their subsets (i.e. training, testing 

and validation), it is significant to pre-process the data in a appropriate form. Data pre-

processing is necessary to ensure all variables obtain equal attention during the training  

process and it usually speeds up the learning process. Pre-processing can be in the form of 

data scaling, normalization and transformation. Scaling the output data is essential, as they 

have to be equal with the limits of the transfer functions used in the output layer (e.g. 

between –1.0 to 1.0 for the tanh transfer function and 0.0 to 1.0 for the sigmoid transfer 

function). In some cases, the input data need to be normally distributed in order to obtain 

optimal results. To improve the performance, transformation of the input data can be done to 

some known forms (i.e. linear, log, exponential, etc.).  

2.1.4.4 Determination of model architecture 

Determining the network architecture is most essential and difficult job in ANN 

model development. It needs selection of the ideal number of layers and the number of 

nodes. It is usually achieved by fixing the number of layers and choosing the number of 

nodes in each layer. For MLPs, there are always two layers signifying the input and output 

variables in any neural network.  

2.1.4.5 Model optimization 

The process of improving the connection weights is known as training or learning. 
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The aim is to find a global solution to what is usually a highly non-linear optimization 

problem. The technique most commonly used for finding the optimum weight grouping of 

feed-forward MLP neural networks is the back-propagation algorithm. 

2.1.4.6 Stopping criteria 

Stopping criteria are used to adopt when to break the training process. They 

determine whether the model has been optimally or sub-optimally trained. Training can be 

stopped: after the performance of a fixed number of training records; when the training error 

reaches an effectively small value; or when no or minor changes in the training error 

occur. 

2.1.4.7 Model Validation 

Once the training segment of the model has been effectively accomplished, the 

performance of the trained model should be validated. The purpose of the model validation 

phase is to confirm that the model has the ability to simplify within the limits set by the 

training data.  The error criteria such as coefficient of correlation (R), the root mean squared 

error (RMSE), and the mean absolute error (MAE) are often used to evaluate the 

performance of models. The coefficient of correlation is a measure that is used to determine 

the relative correlation and the goodness-of-fit between the expected and experimental 

data. 

2.2 Details of Support Vector Machine (SVM) 

2.2.1 Support Vector Machine (SVM) 

SVM has been utilized to solve a regression problem. Let us consider a training set 

(x1 , y1), (x2, y2).....(xN , yN ) from a vector, xi  ∈ Rn  with corresponding targets yi, i = 1, 2, . . . 

, N . ε-SVR determines a linear function defined on xi  as, 

                                f (x) = (w, x) + b                              (1.5) 

where w is a high-dimensional weight vector and b ∈ R as the bias such that there is 
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at most ε distance from the actual data and f (X ) should be flat. (.) denotes the dot product. 

No care is taken as long as errors are less than ε. But, any deviation more than ε is not 

accepted. Flatness means the value of w should be as small as possible. This can be written as 

convex optimization problem: 

2

2

1
wMinimize  

Subjected to {
    〈    〉       

 〈    〉         
 

In this case it is assumed that a function f exists which approximates the data set 

(xi, yi) with ε precision. Introducing slack variables ξi,   
  the problem can be stated as, 

Minimize   )(
2

1 *2

iiCw                                (1.6) 

                                          Subjected to {

    〈    〉           
〈    〉               

     
    

         

 

The parameter C controls the trade-off between the flatness of f and tolerance level 

of error ε. This deals with a ε-insensitive loss function expressed as, 

| |   {
      | |    

| |              
 

The graphical presentation of the ε-insensitive loss function is shown in the Figure 

2.3. The optimization problem  defined in (6) is easily solved in its dual formulation. 

The dual optimization problem can be written as , 



12 
 

 

Figure 2.3 Soft margin loss setting for a linear SVM 

Maximize 

{
 
 

 
   jijjii xx ,)()(

2

1 ** 

   )()( **

iiiii y 

     (1.7) 

                                 Subjected to    Cand iiii ,0,0)( **   

where are      
  Lagrange multipliers. In the above equations xi  and xj   are input 

vector spaces.   

To address nonl inear regression problems, the linear SVR i s  prolonged to 

nonlinear SVR by mapping the input space into a high dimensional feature space through a 

kernel function φ(x). In such case, (x, xt) is replaced by k(x, xt).  Distinctive kernel functions 

used in the SVR are RBF, polynomial , linear and defined as, 

Polynomial Kernel 

  In machine learning, the polynomial kernel is a kernel function commonly used 

with support vector machines (SVMs) and other kernelized models, that represents the 

similarity of vectors (training samples) in a feature space over polynomials of the original 

variables, allowing learning of non-linear models. Intuitively, the polynomial kernel looks not 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Kernel_function
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Kernel_trick
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only at the given features of input samples to determine their similarity, but also 

combinations of these. 

For degree-d polynomials, the polynomial kernel is defined as 

                                                 
dT cyxyxK )(),(                    (1.8) 

where x and y are vectors in the input space, i.e. vectors of features computed from 

training or test samples. 0c is a constant trading off the influence of higher-order versus 

lower order terms in the polynomial. When c = 0, the kernel is called homogenous. (A further 

generalized poly-kernel divides x
T
y by a user-specified scalar parameter a.) 

As a kernel, K corresponds an inner product in a feature space based on some 

mapping φ: 

                                                  )(),(, yxyxK   

The nature of φ can be glanced from an example. Let d = 2, so we get the special case 

of the quadratic kernel. Then 
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Radial Basis Function Kernel 

In machine learning, the (Gaussian) radial basis function kernel, or RBF kernel, is a 

popular kernel function used in support vector machine classification.  

The RBF kernel on two samples x and x', represented as feature vectors in some input 

space, is defined as 
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where 
2

2
'xx  may be recognized as the squared Euclidean distance between the two feature 

vectors. σ is a free parameter. The parameter σ in represents the spread of Gaussian kernel. 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Radial_basis_function
http://en.wikipedia.org/wiki/Positive-definite_kernel
http://en.wikipedia.org/wiki/Support_vector_machine
http://en.wikipedia.org/wiki/Statistical_classification
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An equivalent, but simpler definition involves a parameter :
2

1
2
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Since the value of the RBF kernel decreases with distance and ranges between zero 

(in the limit) and one (when x = x'), it has a ready interpretation as a similarity 

measure. The feature space of the kernel has an infinite number of dimensions; for 1 , its 

expansion is:
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2.2.2 Least Square Support Vector Machine (LS SVM) 

              LSSVM models are an alternate formulation of SVM regression (Vapnik and Lerner, 

1963) proposed by Suykens et al. (2002). Consider a given training set of N data points 

 N

kkk yx
1

,


with input data N

k Rx  and output ryk where NR the N-dimensional vector space 

is and r is the one-dimensional vector space. For prediction of output using multiple parameters, 

 inputsx  and  outputy . 

              In feature space LSSVM models take the form 

  bxwxy T  )()(                                                                   (1.13) 

               Where the non-linear mapping (.)  maps the input data into a higher dimensional 

feature space; wrbRw n ;;  = an adjustable weight vector; b = the scalar threshold. In LSSVM 

for function estimation the following optimization problem is formulated: 

   Minimize: 
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1
  

   Subjected to: Nkebxwxy kk

T .,,.........1,)()(                       (1.14) 

                Where ke = error variable and  = regularization parameter. The following equation 

http://en.wikipedia.org/wiki/Similarity_measure
http://en.wikipedia.org/wiki/Similarity_measure
http://en.wikipedia.org/wiki/Feature_space
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for output prediction has been obtained by solving the above optimization problem (Scholkopf 

and Smola, 2002; Vapnik, 1988). 
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Where  
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k   , k = 1,…………………..,N           (1.16) 

σ is the width of radial basis function and αk is the Lagrange multiplier. 

In LS-SVM regression algorithm, the regularization parameter γ and RBF kernel 

parameter σ
2
 have to be tuned in order to achieve an accurate solution. An integrated 

parameter optimization approach via simplex i.e. multidimensional unconstrained non-linear 

optimization (Nelder and Mead 1965) and 10 fold cross-validation is used to minimize 

generalization error. The optimum values of parameters [γ, σ
2
] and bias values have been 

used for the models developed herein.  

2.3 Multivariate Adaptive Regression Splines (MARS) 

MARS is a non-parametric regression technique introduced by Friedman (1991). It 

essentially detects relation between a dependent variable and a set of predictors by fitting 

piecewise linear regressions. In particular, MARS builds flexible models by dividing the 

whole space of each covariate into various subsets and then defining a different regression 

equation for each area. In this way, separate regression slopes in distinct intervals of the 

predictors space are individuated (Hastie et al. 2009). A key concept is the notion of knots 

that are the points that bound each interval of data in which a distinct regression equation is 

calculated, i.e. where the behavior of the modelled function changes. 

In this way, the space of predictors is split into several regions in which truncated 

spline functions or basis functions (BFs) are fit. A truncated BF consists of a left-sided (1.17) 

and a right-sided (1.18) segments defined by a knot t: 
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where )tx(bq 
 and )tx(bq 

are the BFs describing the regions to the left and the right 

of the knot t, q indicates the power (>0) to which the BFs are raised in order to manipulate the 

degree of smoothness of the resultant regression models. The general MARS model equation 

is given as 

∑
M

0m
mm0p (x)Bααy





                                                          (1.19)

 

where yp is the dependent variable predicted through the MARS model, M is the 

number of BFs included into the model, α0 is the constant term, αm is the coefficient of the 

m
th

 truncated BF and Bm(x) is the m
th

 truncated BF that may be a single spline function or a 

product (interaction) of two or more spline functions. 

The optimal MARS model is built by a two-stage process: a forward selection 

procedure followed by a backward-pruning procedure. The forward procedure starts with just 

the constant term in the model and then, by an iterative way, selects the best pairs of BFs that 

improves the global model. This forward stepwise selection of BFs leads to a very complex 

and over fitted model that has poor predictive abilities for new data. So, in the backward 

stage, the “lack of fit” criterion is used to evaluate the contribution of each BF to the 

descriptive abilities of the model and the BFs with the lowest contribution are removed one at 

a time. 

The “lack of fit” criterion used by MARS is the generalized cross-validation (GCV) 

criterion, i.e. the mean square error divided by a penalty dependent on the model complexity. 

It is given by: 



17 
 

 
 

  2

2

1

1

1


















n

MC

yy

n
MGCV

n

i
pi                                                                       (1.20) 

Where n is the number of observations in the data set, M is the number of non-

constant BFs, and C(M) is the cost-complexity measure of the model containing M BFs. 

C(M) increases with the number of BFs and has the purpose to penalize model complexity in 

order to avoid over-fitting. It is defined as: 

 C(M) = M +d x M                                                                      (1.21) 

Where d is a cost penalty factor for adding a BF. The higher value of d reduces the 

number of BFs in the final model.  

2.4 Performance criteria 

The present study uses various statistical error measure criterions like R, MAPE and 

RMSE to compare different developed models. A good model should have; R value 

(expresses degree of similarity between predicted and actual values) close to 1 and low 

MAPE and RMSE values (indicate high confidence in model-predicted values).  

Root mean-squared error (RMSE) is used to compute the square error of the prediction 

compared to actual values as well as the square root of the summation value. Thus the RMSE 

is expressed using the following equation: 
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                                                      (1.22) 

Mean Absolute Percentage Error (MAPE) is a measure of closeness of predictions to 

actual values. The mean absolute error is given by  
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The Coefficient of correlation (R) value is a measure of linear relationship between 

the predictions and the actual values. The R value is calculated using the following formula: 

])([])([

)()().(
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R                             (1.24)                                                                                                                                                                                                                  

Mean of the observed data = 
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where y and yp are the actual and the predicted values; y and py  are average of the 

actual and the predicted values respectively; n is the sample size.  

2.5 Sensitivity analysis 

 Different methods have been adopted for knowing the importance of the input 

parameters for the developed models. 

2.5.1 Variance based sensitivity analysis 

Iman and Hora (1990) investigate the performance of a sensitivity measure based on 

the percentage variance in f explained by any variable Xi. This technique is known as 

measure of importance, and its use is associated with the estimation of the quantity 

    
 fVar

X|fEVar
S ixi

i 
                                                       (1.25) 
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where )X|f(E i indicates the expectation value of f when the i
th

 variable is fixed to the 

value Xi ,  xiVar stands for the variance of the argument over all the possible values of Xi 

and Var(f) is the unconditional (total) variance of f. In the present paper, the outcomes in the f 

are observed by keeping mean of the Xi value fixed for other arguments varying.  

2.5.2 Rate of change of input  

The sensitivity tests are carried out to determine the relative significance of each of 

the inputs and to find the inputs that affect the models performance. The sensitivity test is 

carried out on the all data by varying each of the input, one at a time, at a constant rate of 

20%. For every input, the percentage change in the output is observed. The sensitivity (S) of 

each input is calculated by the following: 

 







 100

inputinchange%

outputinchange%1

N
S

                                               (1.26)

 

where N = number of datasets used in the study. 

2.5.3 Connection weight approach 

Calculates the product of the raw input-hidden and hidden-output connection weights 

between each input neuron and output neuron and sums the products across all hidden 

neurons (Olden and Jackson, 2002b). 

2.5.4 Garson’s algorithm 

Partitions hidden-output connection weights into components associated with each 

input neuron using absolute values of connection weights (Garson, 1991). 
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Figure 2.4 Steps for connection weight approach and Garson’s algorithm               

(Olden, Joy and Death, 2004) 

Sensitivity analysis is performed for choice of important input variables. Different 

methodologies have been recommended to select the important input variables. Goh (1994) 

and Shahin et al. (2002) have used Garson‟s algorithm (Garson, 1991) in which  the  input  

hidden and  hidden output weights of trained ANN model are segregated and the absolute 

values of the weights are taken to select the significant input variables, and the details with 
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example have been presented in Goh (1994). It does not provide evidence on the effect of 

input variables in terms of direct or inverse relation to the output. Olden et al. (2004) 

suggested a connection weight approach based on the Neural Interpretation Diagram (NID), 

in which the actual values of input hidden and hidden output weights are taken. It sums the 

products across all the hidden neurons, which is defined as Si. The relative inputs are 

corresponding to absolute Si values, where the most important input corresponds to highest Si 

value. The details of connection weight approach are presented in Olden et al. (2004).  
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CHAPTER 3 

PREDICTION OF COMPACTION PARAMETERS OF SANDY SOIL 

3.1 Introduction 

Compacted soils are used in many projects such as highway embankments, railway 

subgrades, airfield pavements, earth dams and landfill liners. The granular materials are 

generally used as fill material in earth work. In the field, soils are usually compacted using 

rollers and other various equipments. To evaluate compaction in the field, laboratory 

compaction parameters are required using the Standard Proctor and Modified Proctor 

compaction which requires large efforts and time. A standard amount of compactive effort is 

applied to produce soil density with which site values can be compared. The compaction 

parameters of soils are influenced by many factors such as water content, compactive effort, 

and index properties. For a certain compactive effort, a typical compaction curve that relates 

the water content of the soil to its dry unit weight is usually obtained. The most important 

point on the compaction curve is the optimum compaction point in which two important 

parameters, maximum dry unit weight (MDD) and optimum water content (OMC), are 

obtained, and they represent compaction behavior. 

In recent years attempts have been made to correlate Index properties of soil and 

gradation to obtain MDD and OMC of compacted sandy soils. Several researches have been 

done to correlate compaction parameters with index properties of fine-grained soils (Wang 

and Huang1984; Blotz et al.1999; Nagaraj et al. 2006; Sivrikaya et al. 2008; Sivrikaya 2008). 

On the other hand, prediction models of coarse-grained soils are rare (Korfiatis and 

Manikopoulos 1982; Omar et al. 2003). In recent years, Artificial Intelligence (AI) has been 

applied successfully to several problems in geotechnical engineering. Several soft-computing 

methods like Artificial Neural Network (ANN), Support Vector Machine (SVM), Genetic 

Programming (GP), Adaptive Neuro Fuzzy Inference System (ANFIS), Regression Tree, 
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Multivariate Adaptive Regression Splines (MARS) are continuously used in modeling of 

geotechnical problems. These techniques have been used for predicting the bearing capacity 

of piles, permeability of compacted clay liners, settlement prediction of shallow foundations 

on granular soils, swelling pressures of soil, compaction parameters of soils, slope reliability 

analysis, ultimate capacity of driven piles in cohesionless soils, OCR prediction of clay. 

This study investigates the capability of ANN, MARS and LSSVM for determination 

of compaction parameters of coarse-grained soils with an emphasis on the influence of soil 

properties and compaction effort. MARS is a flexible, more accurate, and faster simulation 

method for both regression and classification problems (Friedman, 1991). Different models 

has been developed and observed that MARS gives a better predictability as compared to 

regression equation and other non-linear models from ANN and MARS. 

The laboratory experiment was conducted by Mujtaba et al. (2013) for the 

determination of compaction parameters, grain size distribution and Index properties of sandy 

soil. The compaction parameters were determined at different compaction energy (CE) level 

(592 kN-m/m
3
 & 2696 kN-m/m

3
) and performing regression analysis, the potential input 

parameters were identified which affect the output parameters. Based on the analysis a 

regression model equation was developed for MDD and OMC. The model equations were as 

follows: 

)log(153.0)log(193.067.1(%))log(

2.10)log(51.1)log(49.4)/( 3

CECuOMC

CECmkNMDD u



                                  (3.1) 

where Cu = coefficient of uniformity 

From the cross-correlation matrix, it is observed that two other parameters also affect 

the compaction parameters i.e. fines (%) and Sand (%) along with Cu and CE. In the present 

study, two models were taken into consideration consisting of the index properties and 

compaction energy. The inputs of the two models are as follows: 
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Model – I Cu, CE  

Model – II Fines (%), Sand (%), Cu, CE  

Model-III: Fines (%), Sand (%), D50, Cu, CE  

The data available in literature (Mujtaba et al., 2013) are taken with input and output 

parameters. The total number of data points considered is 220 out of which 160 are taken for 

training and 60 are taken for testing. Some of the data base of the experiment has been shown 

in Table 3.1 and the maximum, minimum, average, and standard deviation for the data used 

are shown in Table 3.2 and it can be seen that it covers a wide range of values. The successful 

application of a method depends upon the identification of suitable input parameters. Table 

3.2 shows the cross correlation between the inputs and output; it can be seen that fines (%), 

sand (%), D50, Cu and CE are found to be important input parameters for predicting MDD and 

OMC. 

Table 3.1. some of the compaction of test data and index properties of soil 

Sample 

No. 

Gravel      

(%) 

Sand            

(%) 

Fines        

(%) 

D60 

(mm) 

D50 

(mm) 

D30 

(mm) 

D10 

(mm) 

MDD (m) 

(kN/m
3
) 

OMC (m)   

(%) 

MDD (s) 

(kN/m
3
) 

OMC (s)   

(%) 

1 0 67 33 0.12 0.1 0.06 0.0319 18.2 11 17.2 14 

2 3 64 33 0.15 0.11 0.06 0.014 20.1 9 19.1 12 

3 0 91 9 0.11 0.1 0.09 0.075 16.3 13 15.4 16.5 

4 0 92 8 0.11 0.1 0.09 0.075 16.0 13.5 15.2 16.5 

5 2 82 16 0.2 0.17 0.1 0.06 17.9 12 17.0 16 

6 0 84 16 0.2 0.17 0.1 0.04 18.1 11.5 17.1 15 

7 4 68 28 0.27 0.2 0.08 0.024 20.0 8 18.9 11 

8 0 70 30 0.21 0.19 0.08 0.02 20.0 9 18.9 11.5 

9 2 70 28 0.22 0.19 0.08 0.019 20.4 9.5 19.3 12 

10 0 57 43 0.16 0.1 0.055 0.021 20.0 9.5 18.9 12 

11 0 96 4 0.12 0.11 0.1 0.08 16.3 14.5 15.4 18 

12 0 94 6 0.11 0.1 0.09 0.08 16.2 15.5 15.4 18 

13 0 92 8 0.7 0.58 0.27 0.085 19.8 11 18.8 12.5 

14 0 92 8 0.17 0.14 0.1 0.075 16.3 14 15.6 17.5 

15 3 52 45 0.16 0.09 0.04 0.017 20.4 9.5 19.5 10.5 

16 2 79 19 0.21 0.19 0.1 0.05 18.2 10 17.3 12.5 

17 2 72 26 0.2 0.18 0.09 0.045 18.9 11 18.1 14 

18 0 83 17 0.21 0.2 0.15 0.05 17.9 11 17.0 14 

19 0 54 46 0.15 0.095 0.058 0.027 19.0 9 18.1 12 

20 0 71 29 0.2 0.16 0.08 0.021 19.2 9 18.2 12 

21 2 74 24 0.2 0.16 0.09 0.038 18.5 9 17.6 11 

22 3 77 20 0.195 0.15 0.092 0.05 17.6 11 16.7 14 

23 2 60 38 0.15 0.11 0.06 0.026 18.8 9.5 17.9 12 
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24 5 50 45 0.12 0.09 0.05 0.026 19.0 9 18.1 11 

25 0 83 17 0.21 0.19 0.11 0.05 17.4 11.5 16.6 15 

26 0 86 14 0.27 0.21 0.17 0.051 17.9 13 16.8 16 

27 0 94 6 0.21 0.2 0.14 0.08 17.7 12 16.7 15.0 

28 0 95 5 0.28 0.21 0.18 0.09 17.4 12 16.6 15.0 

29 2 90 8 0.6 0.425 0.21 0.083 19.4 9.5 18.4 12 

30 2 96 2 0.4 0.3 0.21 0.11 18.7 10.5 17.8 13 

31 1 97 2 0.55 0.4 0.22 0.15 18.5 12 17.6 15.0 

32 1 84 15 0.25 0.19 0.1 0.06 18.7 9.5 17.8 12 

33 1 97 2 0.43 0.35 0.21 0.14 18.4 10.5 17.4 13 

34 2 95 3 0.9 0.78 0.4 0.19 18.3 11 17.4 14 

35 0 94 6 0.19 0.15 0.11 0.08 17.3 12.5 16.4 15.5 

36 0 100 0 0.28 0.25 0.19 0.14 17.5 11 16.6 14 

37 1 96 3 0.425 0.32 0.2 0.1 18.9 10 18.1 12.5 

38 1 96 3 0.26 0.2 0.15 0.09 18.2 12.5 17.3 16 

39 0 100 0 0.8 0.6 0.32 0.15 19.5 8.5 18.5 11 

40 0 95 5 0.24 0.2 0.13 0.082 18.3 10 17.3 13 

41 2 95 3 0.39 0.3 0.18 0.1 17.9 11 16.9 14.5 

42 1 96 3 0.4 0.3 0.19 0.1 17.9 10 17.0 13 

43 2 96 2 0.5 0.39 0.21 0.12 17.9 12 17.0 15.0 

44 2 93 5 0.28 0.2 0.14 0.09 17.3 10 16.4 13 

45 2 96 2 0.5 0.37 0.21 0.15 17.8 9.5 16.8 12 

46 1 95 4 0.29 0.21 0.15 0.09 17.3 11 16.4 14.5 

47 2 94 4 0.31 0.29 0.18 0.1 17.4 12 16.6 15.0 

48 0 95 5 0.21 0.19 0.13 0.081 17.4 13 16.5 16.5 

49 2 96 2 0.7 0.5 0.35 0.17 18.3 10.5 17.4 13.5 

50 2 96 2 0.425 0.31 0.21 0.15 17.9 11 17.0 14 

51 1 93 6 0.28 0.2 0.14 0.08 17.9 9.5 17.1 12 

52 1 94 5 0.3 0.23 0.16 0.09 17.7 10 16.7 12.5 

53 1 93 6 0.3 0.21 0.15 0.085 17.7 10 16.7 12.5 

54 0 91 9 1 0.75 0.3 0.085 20.7 9 19.6 11.5 

55 0 100 0 0.2 0.19 0.12 0.09 16.2 15.5 15.2 18.5 

56 0 95 5 0.22 0.19 0.12 0.08 16.7 14.5 15.5 18 

57 0 91 9 0.28 0.2 0.12 0.079 17.5 9.5 16.7 12 

58 0 86 14 0.3 0.2 0.11 0.06 18.5 10 17.3 12 

59 0 62 38 0.2 0.14 0.054 0.02 19.2 9 18.1 11.5 

60 0 98 2 0.201 0.18 0.11 0.09 16.7 13 15.9 16 

61 0 97 3 0.2 0.19 0.12 0.085 16.9 12 16.0 15 

62 1 97 2 0.7 0.48 0.21 0.1 18.9 11 18.0 14 

63 0 71 29 0.25 0.19 0.08 0.03 19.2 9.5 18.2 11.5 

64 1 83 16 0.3 0.21 0.11 0.05 19.7 9 18.7 12 

65 0 64 36 0.3 0.19 0.062 0.03 20.0 9 19.0 11.5 

66 5 87 8 1 0.8 0.425 0.09 20.2 8.5 19.3 12 

67 1 95 4 1 0.8 0.425 0.11 20.0 10.0 19.0 12.5 

68 1 68 31 0.19 0.14 0.075 0.033 18.6 10.5 17.6 13 

69 0 84 16 0.21 0.2 0.15 0.05 19.2 9.5 18.1 12 

70 0 83 17 0.18 0.17 0.1 0.07 16.9 11.5 15.6 14.5 

71 0 86 14 0.23 0.21 0.16 0.07 16.8 11 15.9 13.5 

72 0 94 6 0.21 0.2 0.11 0.08 16.6 13.5 15.7 17 

73 0 95 5 0.29 0.21 0.18 0.09 16.7 10.5 15.9 13.5 

74 2 90 8 0.6 0.425 0.2 0.08 18.6 9 17.6 11.5 

75 2 96 2 0.4 0.3 0.2 0.13 18.2 10.5 17.3 13.5 

76 1 97 2 0.57 0.4 0.22 0.15 18.4 11 17.4 13.5 

77 1 84 15 0.24 0.19 0.1 0.06 17.3 11.5 16.4 14.5 
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78 1 97 2 0.44 0.35 0.2 0.15 18.3 10.5 17.4 13 

79 2 95 3 0.85 0.7 0.4 0.21 17.3 9 16.3 11 

80 0 94 6 0.2 0.15 0.1 0.08 17.5 10.5 16.7 13 

m: modified Proctor test, s: standard Proctor test 

Table 3.2 Summary of Statistical values of input and output parameters 

 Fines (%) Sand (%) D50 Cu CE MDD OMC 

Maximum 100 46 0.8 11.765 2696 20.75 18.50 

Minimum 50 0 0.09 1.375 592 15.17 8.00 

Average 88.5 10.44 0.274 4.55 1644 17.62 12.19 

Standard 

Deviation 

11.63 11.48 0.166 2.51 1054.4 1.183 2.18 

 

Table 3.3 Cross correlation between the inputs and output 

 
Sand (%) Fines (%) D50 Cu CE MDD 

OMC 

(%) 

Sand (%) 1 

      Fines (%) -0.995 1 

     D50 0.40154 -0.4269 1 

    Cu -0.556 0.5448 0.324 1 

   CE 0 0 0 0 1 

  MDD -0.447 0.431 0.332 0.774 0.42 1 

 OMC (%) 0.309 -0.284 -0.205 -0.455 -0.643 -0.76 1 

 

3.2 Database preprocessing 

 The database has been normalized between 0 to 1 for LS-SVM model by using the 

formula: 

minmax

min

XX

XX
X n




  

 For ANN and MARS modeling, the actual database has been used.  

3.3 Developed model equations 

3.3.1 ANN model equation 

 In the neural network model, Levenberg-Marquartd back-propagation has been used 

for minimization of error for both the models. The hyperbolic tangent sigmoid transfer 

function for input-hidden layer and linear transfer function for hidden layer-output layer has 

been used to construct the model equation which is found to be optimum for both the models. 
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The final ANN model equation can be given as follows: 

A1 = -11.167 a - 13.829 b - 99.4175 Cu + 0.00034 CE + 1363.383 

A2 = 3.808 a - 3.126 b - 7.536 Cu - 0.00003331 CE -328.6133 

A3 = 0.03571 a + 0.0228 b - 0.3913 Cu - 0.000068 CE -1.6421 

A4 = 51.961 a + 39.188 b + 32.941 Cu - 2.336 CE -1.2856 

MDD = -0.8841 tanh(A1) + 0.8931 tanh(A2) - 4.8144 tanh(A3) - 0.8341 tanh(A4) + 20.293   

                                                                                                                                           (3.2) 

  A1 = -11.2872 a + 10.0223 b- 2.7313 Cu - 0.3716 CE + 28.6707 

  A2 = 1.2647 a + 1.1810 b - 2.5487 Cu - 0.0005 CE - 118.8911 

  A3 = -0.0542 a - 0.0574 b + 0.0154 Cu + 0.0149 CE - 37.0904 

   A4 = 3.2903a + 2.9314 b - 3.6901 Cu + 0.0005 CE - 295.7113 

OMC = -3.1872 tanh(A1) +  3.8722 tanh(A2)  -26.9176 tanh(A3) +   1.4801 tanh(A4) + 

11.7996                                                                                                                              (3.3) 

3.3.2 LS-SVM model equation 

 For the LS-SVM model, Radial basis kernel function has been used for transformation 

of the inputs in the prediction of MDD and OMC. The optimum values of bias, regularization 

parameter and with of radial basis function is given below and the values for Lagrange 

multiplier for all the inputs have been represented in Figure 3.1 and 3.2:  

For prediction of MDD 

γ 901.8988 

b 1.967575 

σ
2
 19.42052 
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Figure 3.1 Corresponding α-values in the prediction of MDD 

For prediction of OMC 

b 21.71217 

γ 117744.3 

σ
2 93.74005 

 

Figure 3.2 Corresponding α-values in the prediction of OMC 

3.3.3 MARS model equation 

 For developing the MARS, 19 and 16 basis functions have been introduced in forward 

phase for modeling MDD & OMC respectively and in backward elimination phase, 6 and 5 

basis functions have been removed from the MARS model. So, the final MARS contains 13 
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Table 3.4 Basis functions of MARS model 

Basis 

Functions 
MDD OMC 

BF1 

BF2 

BF3 

BF4 

BF5 

BF6 

BF7 

BF8 

BF9 

BF10 

BF11 

BF12 

BF13 

max(0, Cu -5.33) 

max(0, 5.33 -Cu) 

max(0, 2700 -CE) 

max(0, b -5) 

max(0, 5 -b) 

BF5 × max(0, Cu -2.93) 

BF5 × max(0, 2.93 -Cu) 

BF1 × max(0, b -38) 

BF5 × max(0, a -94) 

BF5 × max(0, 94 -a) 

BF9 × max(0, 2.23 -Cu) 

BF4 × max(0, Cu -4.17) 

BF4 × max(0, 4.17 -Cu) 

max(0, CE -592) 

max(0, Cu -3.29) × max(0, b -2) 

max(0, Cu -3.29) × max(0, 2 -b) 

BF2 × max(0, Cu -3.53) 

BF2 × max(0, 3.53 -Cu) 

max(0, Cu -3.29) × max(0, Cu -3.64) 

max(0, Cu -3.29) × max(0, 3.64 -Cu) 

max(0, 3.29 -Cu) × max(0, b -2) 

max(0, 3.29 -Cu) × max(0, 2 -b) 

max(0, 3.29 -Cu) × max(0, a -95) 

max(0, 3.29 -Cu) × max(0, 95 -a) 

 

 

MDD = 18.2 + 0.438  BF1 - 0.377 BF2 - 0.000473 BF3 + 0.0327 BF4 + 0.19 BF5 - 0.0857 BF6 

- 0.766 BF7 + 0.0411 BF8 + 0.0461 BF9 + 0.603 BF10 + 0.173 BF11 - 0.00906 BF12 - 0.0478 

BF13                                                                                                            (3.4)                      

OMC = 13.6 - 0.00131 BF1 - 0.0203 BF2 - 0.516 BF3 + 0.00271 BF4 + 21.7 BF5 - 0.0304 BF6 

- 41.2 BF7 + 0.743 BF8 - 1.37 BF9 + 0.592 BF10 - 0.858 BF11                                             (3.5)    

Then all the models for the prediction of Maximum Dry density (MDD) were 

compared as per Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE).  

3.4 Performance comparison among all the models 

The error criteria like MAE, MAPE, RMSE, R and R
2
 for all the models in the 

prediction of MDD and OMC are presented in Table 3.5 and 3.6 respectively. The results of 

MARS have been compared with ANN and LS-SVM model developed. The comparisons 

have been done in terms of Mean Absolute Percentage Error (MAPE), and Root Mean Square 

Error (RMSE). Figure 3.7 and 3.8 depict the bar chart of MAPE and RMSE for training 

dataset, respectively. It is observed from Figure 3.7 and 3.8 that the developed MARS 

outperform ANN and LS-SVM models. MARS does not give a generalizing function for the 
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entire dataset, but splits the whole model into linear regions and produces discrete functions 

for each of the produced linear area. Researches emphasized that regression equations 

obtained by the MARS technique make robust and coherent parameter valuations. Figure 3.5 

and 3.6 represents the actual versus predicted value of MDD and OMC respectively and 

Figure 3.3 and 3.4 presents the performance of MARS model in the prediction of MDD and 

OMC respectively. 

Table 3.5 Results of Different Models for Prediction of MDD of sandy soil 

Model 
Model 

Inputs 
    MAE RMSE MAPE 

Correlation 

coefficient   

( R ) 

Coefficient of 

determination 

(R
2
) 

Mujtaba et 

al. (2013) 
Cu, CE Regression 0.432 0.512 2.46 0.9 0.81 

Model I Cu, CE 

ANN 
Training 0.436 0.52 2.48 0.9 0.81 

Testing 0.4 0.49 2.31 0.9 0.81 

SVM 
Training 0.41 0.494 2.35 0.911 0.829 

Testing 0.45 0.54 2.526 0.89 0.767 

MARS 
Training 0.35 0.43 2 0.936 0.875 

Testing 0.353 0.42 2.2 0.923 0.853 

Model II 
a, b, Cu, 

CE 

ANN 
Training 0.335 0.43 1.89 0.935 0.872 

Testing 0.35 0.43 2.04 0.926 0.858 

SVM 
Training 0.322 0.4 1.845 0.934 0.871 

Testing 0.415 0.486 2.38 0.928 0.853 

MARS 
Training 0.32 0.39 1.82 0.94 0.887 

Testing 0.33 0.4 1.91 0.937 0.877 

Model 

III 

a, b, D50, 

Cu, CE 

ANN 
Training 0.35 0.44 2 0.935 0.87 

Testing 0.39 0.47 2.24 0.92 0.815 

SVM 
Training 0.36 0.45 2.06 0.92 0.848 

Testing 0.369 0.462 2.11 0.93 0.86 

MARS 
Training 0.314 0.4 1.79 0.93 0.877 

Testing 0.3 0.41 1.72 0.94 0.89 

a : Sand (%), b : Fines (%) 
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Table 3.6 Results of Different Models for Prediction of OMC of sandy soil 

Model 
Model 

Inputs 
    MAE RMSE  MAPE 

Correlation 

coefficient   

( R ) 

Coefficient of 

determination 

(R
2
) 

Mujtaba 

et al. 

(2013) 

Cu, CE Regression 0.963 1.21 7.85 0.83 0.69 

Model I Cu, CE 

ANN 
Training 0.91 1.18 7.62 0.855 0.71 

Testing 1.05 1.2 8.9 0.857 0.687 

SVM 
Training 0.94 1.17 7.72 0.84 0.705 

Testing 0.931 1.174 7.44 0.85 0.719 

MARS 
Training 0.81 0.98 6.75 0.89 0.79 

Testing 0.756 0.93 6.24 0.91 0.825 

Model II 
a, b, Cu, 

CE 

ANN 
Training 0.856 1.08 6.93 0.874 0.76 

Testing 0.851 1.05 7.18 0.871 0.745 

SVM 
Training 0.865 1.09 7.06 0.867 0.751 

Testing 0.91 1.12 7.606 0.855 0.72 

MARS 
Training 0.74 0.94 6.17 0.903 0.815 

Testing 0.72 0.95 5.97 0.896 0.8 

Model 

III 

a, b, D50, 

Cu, CE 

ANN 
Training 0.845 1.05 6.92 0.88 0.77 

Testing 0.82 1.01 6.93 0.879 0.764 

SVM 
Training 0.83 1.08 6.71 0.87 0.758 

Testing 0.859 1.05 7.11 0.868 0.753 

MARS 
Training 0.75 0.934 6.15 0.907 0.822 

Testing 0.77 0.93 6.52 0.9 0.8 

 

Figure 3.3 Performances of MARS model for prediction of MDD 
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Figure 3.4 Performances of MARS model for prediction of OMC 

 

Figure 3.5 Comparison between actual and predicted value of MDD using MARS 

 

Figure 3.6 Comparison between actual and predicted value of OMC using MARS 

8

10

12

14

16

18

20

8 10 12 14 16 18 20

P
re

d
ic

te
d

 O
M

C
 f

ro
m

 M
A

R
S 

(%
) 

Observed OMC (%) 

Training dataset ( R = 0.903 )

Testing dataset ( R = 0.896 )

14

15

16

17

18

19

20

21

22

0 20 40 60 80 100 120 140 160

M
D

D
 (

kN
/m

3
) 

No. of observations (training) 

Actual value of MDD

Predicted value of MDD

8

10

12

14

16

18

20

0 20 40 60 80 100 120 140 160

O
M

C
 (

%
) 

No. of observations (Training) 

Actual OMC value

Predicted OMC value



33 
 

 

(a) 

 

(b) 

Figure 3.7 Comparison between different models in terms of (a) MAPE and (b) RMSE 

for the prediction of MDD. 
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(b) 

Figure 3.8 Comparison of different models in terms of (a) MAPE and (b) RMSE for the 

prediction of OMC 

     It is seen that model II and III gives better correlation as reflected by higher R
2
 values 

for both MDD and OMC as compared to model I. When compared in terms of over fitting 

ratio (i.e. ratio of RMSE for testing and training data), the value of over fitting ratio of model 

II is very closer to 1.  Model II has an advantage of having 4 inputs.  The basis functions of 

model are presented in Table 3.5.The MARS model equations for the prediction of MDD and 

OMC are given by Equations 10 & 11. 

3.5 Sensitivity Analysis 

Iman and Hora (1990) have investigated the performance of a sensitivity measure 

based on the percentage variance in f explained by any input variable Xi. This technique is 

known as measure of importance, and its use is associated with the estimation of the quantity 

  
 fVar

X|fEVar
S ixi
i 

                                                          (3.6) 

where )X|f(E i indicates the expectation value of f when the i
th

 variable is fixed to the value 

Xi , .Varxi
stands for the variance of the argument over all the possible values of Xi and 

Var(f) is the unconditional (total) variance of f. In the present paper, the outcomes in the f are 

observed by keeping mean of the Xi value fixed for other arguments varying. From the 

sensitivity analysis, it is found that the value of sand and fines are more sensitive towards the 
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evaluation of MDD (i.e. 89% and 5% respectively) and OMC (25% and 57% respectively) 

followed by Cu and compaction energy. The sensitivity of all the input variables is presented 

in Figure 3.9. Hence for the prediction, the values of sand (%) and fines (%) have to be 

determined very precisely in the laboratory. 

 

Figure 3.9 Sensitivity of the parameters in prediction of MDD and OMC 

3.6 Discussion 

The performances of the developed models are better than other models and gives 

very promising result in prediction. In the present study, model equations has been developed 

and compared with the regression model given by Mujtaba et al. (2013). Based on the 

developed MARS model, the following conclusion may be drawn: 

1. MARS gives a simplified equation for prediction of MDD and OMC. 

2. The predictability of MARS equation is found to be better than the empirical equations. 

3. Based on sensitivity analysis, it is observed that sand (%) affects MDD and both sand and 

fines (%) affects OMC.  
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CHAPTER 4 
PREDICTION OF RELATIVE DENSITY OF CLEAN SAND 

4.1 Introduction 

Field compaction of sands usually involves different equipments with the compaction 

energy varying significantly. The relative density is the better indicator for specifying the 

compaction of granular soil. If the relative density can be correlated simply by any index 

property of the granular soil, it can be more useful in the field. The relative density is defined 

in terms of voids ratio and the minimum and maximum voids ratio depend on the mean grain 

size. Therefore, the effect of mean grain size (D50) on the relative density of sand has been 

studied at different compaction energies (E). Relative density of sand is greatly affected by 

particle shapes, sizes and their packing. 

Several publications have appeared in recent years documenting the prediction of 

compaction parameters of coarse-grained soils (Korfiatis and Manikopoulos 1982; Omar et 

al. 2003). Very limited researches have been done to predict the relative density of sand. 

Present work is an attempt to develop a single empirical correlation for relative density of 

clean sands. In this paper a model is developed to predict the relative density using LS-SVM 

which proves to be very effective. The empirical correlation given by Patra et al. (2010) is 

given by 

-B
50r D A = D                                                               (4.1) 

where A and B are the functions of compaction energy. A = 0.216 ln E – 0.85 and B = – 

0.03 ln E + 0.306.   

4.2 Selection of the input parameters 

The maximum, minimum, average, and standard deviation for the data set used for 

modeling are shown in Table 4.1. The successful application of a method depends upon the 

identification of suitable input parameters. The selection of the input parameters is based on 
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the correlation coefficient (R) with output. This is shown in Table 4.2. The more the absolute 

value of correlation coefficient is close to value 1, the stronger will be the linear correlation 

while closer to 0 will be very poor correlation between the tested variables. From Table 4.2, it 

is observed that Gs, Cu, D50 and E are the important input parameters for predicting Dr having 

cross-correlation values of 0.232, -0.188, -0.196 and 0.846 respectively. Out of these 

variables, two parameters D50 and E are considered for development of model for direct 

comparison with the regression model reported by Patra et al. (2010). The training dataset has 

been reported in Table 4.3. 

Table 4.3 statistical values of parameters 

  Gs Cu D50 E Dr 

Mean 2.633 3.606 0.880 1240 65.7 

Standard Deviation 0.061 2.233 0.614 913 18.1 

Minimum 2.535 1.420 0.340 360 33.7 

Maximum 2.764 9.830 2.600 2700 97.7 

 

          Table 4.4 cross-correlation between different parameters 

  Gs Cu D50 E Dr 

Gs 1.000 

    Cu -0.718 1.000 

   D50 -0.682 0.895 1.000 

  E 0.000 0.000 0.000 1.000 

 Dr 0.232 -0.188 -0.196 0.846 1.000 

 

4.3 Database preprocessing 

 The database has been normalized between 0 to 1 for LS-SVM model by using the 

formula: 

minmax

min

XX

XX
X n
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 For ANN and MARS modeling, the actual database has been used.  

Table 4.3 Training database considered for the model development 

Sl. No. Gs Cu D50 E Dr 
α-

values 

1 2.662 1.88 0.39 360 42.76 -15.05 

2 2.726 1.44 0.35 600 67.88 -5.86 

3 2.668 1.61 0.35 360 43.4 -30.37 

4 2.634 1.82 0.54 360 42.81 29.96 

5 2.662 1.88 0.39 2700 95.16 64.19 

6 2.564 4.39 1.1 600 54.22 -22.54 

7 2.556 3.93 0.8 360 35.97 -0.67 

8 2.705 1.57 0.35 2700 94.53 17.76 

9 2.726 1.44 0.35 2700 87.3 -106.97 

10 2.581 4.55 1 600 54.57 -17.66 

11 2.717 2.09 0.55 2700 80.61 -85.23 

12 2.702 1.77 0.36 360 45.85 21.55 

13 2.692 1.74 0.36 1300 82.01 16.25 

14 2.586 7.27 1.95 2700 81.96 16.56 

15 2.702 1.77 0.36 600 69.67 38.58 

16 2.652 1.94 0.58 2700 80.01 -82.80 

17 2.556 3.93 0.8 2700 77.88 -38.84 

18 2.556 4.68 1.25 2700 78.65 -25.07 

19 2.652 1.94 0.58 600 64.16 38.70 

20 2.697 1.53 0.41 360 41.97 -37.25 

21 2.656 1.65 0.36 1300 83.83 45.68 

22 2.663 1.77 0.36 360 41.22 -55.67 

23 2.764 1.54 0.375 2700 89.09 -58.06 

24 2.564 4.39 1.1 2700 77.08 -43.94 

25 2.696 1.74 0.35 600 68.83 19.36 

26 2.578 9.83 2.4 2700 84.19 2.06 

27 2.554 4 1.25 1300 69.02 10.00 

28 2.649 2.05 0.35 360 42.79 -18.98 

29 2.566 4.38 1.2 1300 71.26 25.83 

30 2.627 2.29 0.7 1300 72.97 2.63 

31 2.589 7.33 1.7 600 58.22 8.20 

32 2.655 2.13 0.58 2700 88.32 58.68 

33 2.554 4 1.25 600 53.3 -26.48 

34 2.717 2.09 0.55 600 58.9 -57.67 

35 2.711 1.67 0.38 2700 91.45 -11.39 

36 2.566 4.38 1.2 360 38.55 45.03 

37 2.688 2.26 0.6 360 37.34 -31.20 
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38 2.711 1.67 0.38 1300 80.42 -2.96 

39 2.592 7.41 1.6 360 37.43 8.57 

40 2.575 3.27 0.49 2700 87.2 39.14 

41 2.59 6.67 1.1 1300 75.32 14.18 

42 2.729 1.44 0.365 600 69.82 33.23 

43 2.589 7.33 1.7 2700 80.88 -11.69 

44 2.729 1.44 0.365 2700 94.73 26.69 

45 2.697 2.05 0.35 1300 82.11 19.47 

46 2.574 4.39 1.25 2700 78.29 -20.52 

47 2.684 2.05 0.38 600 66.69 8.40 

48 2.697 1.53 0.41 600 63.23 -54.61 

49 2.586 7.27 1.95 1300 73.5 -3.48 

50 2.576 4.44 0.78 600 54.66 -16.34 

51 2.535 3.8 1.3 2700 76.54 -23.30 

52 2.574 5 1.1 1300 76.52 83.90 

53 2.702 1.77 0.36 1300 74.07 -115.79 

54 2.662 1.88 0.39 600 63.34 -50.83 

55 2.584 8.08 1.4 600 59.96 6.57 

56 2.711 1.67 0.38 600 65.59 -24.61 

57 2.707 1.61 0.34 360 46.17 12.38 

58 2.59 4.55 0.93 1300 68.44 -40.51 

59 2.649 2.05 0.35 600 63.75 -51.64 

60 2.668 1.61 0.35 600 63.92 -67.08 

61 2.576 4.44 0.78 360 36.1 0.53 

62 2.668 1.61 0.35 2700 96.45 51.18 

63 2.663 1.77 0.36 1300 79.39 -27.07 

64 2.556 3.93 0.8 1300 69.5 -25.66 

65 2.679 1.8 0.35 600 65.86 -27.83 

66 2.584 7.37 2.4 1300 73.63 11.90 

67 2.655 2.13 0.58 600 63.82 36.01 

68 2.554 4 1.25 360 34.31 -15.62 

69 2.649 2.05 0.35 2700 89.46 -46.50 

70 2.574 5 1.1 600 61.26 90.84 

71 2.584 7.37 2.4 360 36.27 11.38 

72 2.696 1.74 0.35 360 45.14 4.93 

73 2.679 1.8 0.35 360 43.42 -20.82 

74 2.576 4.44 0.78 1300 69.59 -30.43 

75 2.601 3 0.41 360 39.76 -9.04 

76 2.589 6.67 2.6 2700 81.67 -0.36 

77 2.592 7.41 1.6 1300 73.16 -21.56 

78 2.566 4.38 1.2 2700 86.09 108.90 

79 2.592 7.41 1.6 2700 80.63 -22.21 
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80 2.764 1.54 0.375 1300 78.33 -40.68 

81 2.726 1.42 0.75 2700 79.84 0.00 

82 2.581 4.24 1 600 53.14 -41.74 

83 2.652 1.94 0.58 1300 74.83 -13.47 

84 2.652 1.94 0.58 360 41.58 24.94 

85 2.584 7.37 2.4 2700 82.97 17.12 

86 2.607 4.86 1.4 1300 71.52 9.71 

87 2.589 6.67 2.6 360 36.48 -4.96 

88 2.617 7.69 1.15 360 36.9 -11.93 

89 2.578 9.83 2.4 1300 71.23 1.73 

90 2.627 2.29 0.7 360 41.03 54.77 

91 2.656 1.65 0.36 360 44.48 -7.03 

92 2.537 3.66 1.3 360 34.49 -1.94 

93 2.586 7.27 1.95 360 34.94 -15.77 

94 2.729 1.44 0.365 1300 80.76 -4.44 

95 2.587 7.37 2.4 2700 81 -15.73 

96 2.587 7.37 2.4 600 56.15 -16.62 

97 2.7 1.85 0.34 2700 95.34 36.21 

98 2.662 1.88 0.39 1300 83.03 47.18 

99 2.584 7.37 2.4 600 58.36 20.24 

100 2.59 4.55 0.93 2700 77.64 -43.29 

101 2.581 4.55 1 1300 71.28 10.47 

102 2.697 2.05 0.35 600 69.91 51.10 

103 2.607 4.86 1.4 2700 77.86 -41.76 

104 2.627 2.29 0.7 600 62.49 56.43 

105 2.564 4.39 1.1 1300 68.75 -21.03 

106 2.711 1.67 0.38 360 43.57 -14.51 

107 2.592 7.41 1.6 600 57.53 -9.63 

108 2.688 2.26 0.6 600 60.57 -8.75 

109 2.68 1.57 0.35 2700 96.78 55.28 

110 2.535 3.8 1.3 1300 66.58 -16.76 

111 2.566 4.38 1.2 600 59.56 68.29 

112 2.617 7.69 1.15 2700 84.36 10.56 

113 2.589 6.67 2.6 1300 71.54 -6.45 

114 2.693 1.65 0.35 600 69.94 34.65 

115 2.663 1.77 0.36 2700 91.75 -14.95 

116 2.627 2.29 0.7 2700 85.61 67.05 

117 2.697 2.05 0.35 2700 94.37 35.39 

118 2.764 1.54 0.375 600 68.93 25.26 

119 2.693 1.65 0.35 1300 81.88 9.14 

120 2.584 8.08 1.4 2700 82.83 1.55 

121 2.696 1.74 0.35 2700 94.4 21.93 
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122 2.729 1.44 0.365 360 46.66 21.24 

123 2.68 1.57 0.35 360 48.66 55.43 

124 2.601 3 0.41 2700 85.27 -35.31 

125 2.586 7.27 1.95 600 56.36 -9.90 

126 2.656 1.65 0.36 600 66.78 -13.84 

127 2.693 1.65 0.35 2700 93.4 1.77 

128 2.578 9.83 2.4 360 35.19 -1.39 

129 2.655 2.13 0.58 1300 77.56 34.00 

130 2.7 1.85 0.34 600 69.67 33.85 

131 2.684 2.05 0.38 1300 81.85 26.77 

132 2.68 1.57 0.35 1300 83.86 41.58 

133 2.556 4.68 1.25 1300 68.57 -32.33 

134 2.574 5 1.1 2700 87.3 107.98 

135 2.634 1.82 0.54 600 64.39 25.15 

136 2.557 5.56 1.25 2700 81.13 -9.86 

137 2.668 1.61 0.35 1300 82.43 17.99 

138 2.707 1.61 0.34 2700 97.72 66.04 

139 2.554 4 1.25 2700 80.28 28.38 

140 2.726 1.42 0.75 600 54.63 -45.71 

141 2.684 2.05 0.38 360 44.2 13.78 

142 2.557 5.56 1.25 600 54.26 -36.35 

143 2.726 1.42 0.75 360 36.15 -29.39 

144 2.581 4.55 1 360 34.9 -18.90 

145 2.679 1.8 0.35 1300 83.33 35.08 

146 2.556 4.68 1.25 600 54.53 -19.98 

147 2.575 3.27 0.49 600 59.18 -17.12 

148 2.535 3.8 1.3 360 34.43 -7.07 

149 2.697 2.05 0.35 360 46.98 50.90 

150 2.59 6.67 1.1 360 38.66 17.79 

151 2.589 6.67 2.6 600 58.29 0.70 

152 2.702 1.77 0.36 2700 88.47 -69.65 

153 2.726 1.44 0.35 1300 77.94 -57.56 

154 2.574 4.39 1.25 600 55.91 8.23 

155 2.68 1.57 0.35 600 70.3 38.08 

156 2.59 4.55 0.93 360 35 -17.10 

157 2.764 1.54 0.375 360 45.73 13.83 

158 2.576 4.44 0.78 2700 79.15 -22.98 

159 2.697 1.53 0.41 1300 79.77 -2.41 

160 2.717 2.09 0.55 360 38.72 -26.42 
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4.4 Different developed model equations 

 The different model equations developed from ANN, SVM and MARS are presented 

in the next segments. 

4.4.1 ANN Model equation 

 In the neural network model, Levenberg-Marquartd back-propagation has been used 

for minimization of error. The hyperbolic tangent sigmoid transfer function for input-hidden 

layer and linear transfer function for hidden layer-output layer has been used to construct the 

model equation. The final ANN model equation can be given as follows: 

A1 = 0.02581 Cu – 0.0149 D50 – 0.0052 E + 2.5603 

A2 = - 0.1201 Cu + 0.0784 D50 – 0.0005664 E + 1.608 

A3 = - 9.4862 Cu + 1.7756 D50 – 0.000566 E + 24.5579 

A4 = 0.1203 Cu + 3.5595 D50 – 0.0002435 E – 1.0608 

Dr = 69.4104 – 18.4647 tanh(A1) – 12.1131 tanh(A2) + 1.4698 tanh(A3) – 11.4156 tanh(A4)                                                                                                                          

(4.2) 

4.4.2 LS-SVM Model equation 

 For the LS-SVM model, Radial basis kernel function has been used for transformation 

of the inputs. The optimum values of bias, regularization parameter and with of radial basis 

function is given below and the values for Lagrange multiplier for all the inputs has been 

represented in Figure 4.1: 

b = -0.0896, γ = 299.0974, σ
2
 = 3.2817 
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Figure 4.1 Corresponding α-value for the LS-SVM model for prediction of Dr 

4.4.3 MARS model equation 

 For developing the MARS, 13 basis functions have been introduced in forward phase 

and in backward elimination phase, 4 basis functions have been removed from the MARS 

model. So, the final MARS contains 9 basis functions. The optimal MARS model is given 

below 

  BF1 = max(0, E -600) 

  BF2 = max(0, 600 -E) 

BF3 = max(0, 0.75 –D50) 

BF4 = BF1 × max(0, 2700 -E) 

BF5 = max(0, 3 - Cu) 

BF6 = BF1 × max(0, 0.41 - D50) 

BF7 = BF5 × max(0, Cu -2.26) 

BF8 = BF5 × max(0, 2.26 - Cu) 

BF9 = max(0, 5 - Cu) 

          Dr = 58.1 +0.0114×BF1 -0.0887×BF2 +26.7×BF3 +6.14e-006×BF4 +7.83×BF5 

+0.0247×BF6     +258×BF7 -2.64×BF8 -2.98×BF9                                                     (4.3) 
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4.5 Result comparison and discussion 

The statistical performances i.e. Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Correlation Coefficient (R) and coefficient of efficiency (R
2
) for the model 

are presented in Table 4.4.  

Table 4.4 Results of Different Models for Prediction of Relative density of clean sand 

Model 
Model 

Inputs 
    RMSE MAPE  ( R )  (R

2
) 

Over-fitting 

ratio 

Patra et al. 
(2010) 

D50, E Regression 5.23 7.38 96 0.92   

Model I D50, E 

ANN 
Training 2.45 3.28 0.99 0.98 

1.04 
Testing 2.54 3.07 0.99 0.98 

SVM 
Training 2.48 3.15 0.99 0.98 

0.99 
Testing 2.46 3.18 0.99 0.98 

MARS 
Training 2.27 2.78 0.992 0.984 

0.97 
Testing 2.21 2.94 0.993 0.985 

Model II Cu,D50, E 

ANN 
Training 2.31 2.9 0.992 0.984 

0.91 
Testing 2.1 2.48 0.993 0.985 

SVM 
Training 2.27 2.68 0.992 0.984 

0.88 
Testing 2 2.7 0.994 0.988 

MARS 
Training 2.21 2.64 0.992 0.985 

0.96 
Testing 2.13 2.87 0.993 0.985 

Model III 
Gs,Cu,D50, 

E 

ANN 
Training 2.3 2.9 0.99 0.983 

0.93 
Testing 2.15 2.66 0.993 0.983 

SVM 
Training 2.1 2.44 0.992 0.986 

1.05 
Testing 2.2 2.9 0.993 0.986 

MARS 
Training 2.2 2.8 0.993 0.986 

0.99 
Testing 2.18 2.5 0.992 0.981 

 

The model was compared in terms of correlation coefficient (R) and coefficient of 

efficiency (R
2
) to access the performance of models. The value of R has been determined by 

using the following equation: 

])([])([

)()().(

∑ ∑∑ ∑

∑ ∑ ∑
2222

pp

pp

yynyyn

yyyyn
R

 

where y = observed value, yp = predicted value, n = number of observations 

Smith (1986) suggested that the value of R lies between 0 to 1. He suggested some 
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guidelines for deciding the performance of the model. If |R| ≥ 0.8: a strong correlation exists, 

0.2 < |R| < 0.8: correlation exists and |R| ≤ 0.2: a weak correlation exists. When the value of 

|R| is greater than 0.9, then a very strong correlation exists between the variables. From Table 

4.3, it was observed that the value of |R| is nearly equal to 0.99; hence it shows a very strong 

relation between inputs and outputs. 

 

Figure 4.2 Comparison of MAPE of different models in the prediction of Dr 

 

Figure 4.3 Comparison of RMSE of different models in the prediction of Dr 
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Figure 4.4 Comparison between experimental and predicted value of Dr                   

(Patra et al., 2010). 

The error criteria MAPE and RMSE has been shown in Figure 4.2 and 4.3 for all the 

models and it can be observed that the developed LS-SVM model shows good correlation in 

both training having three inputs which is comparatively the “better model” for the prediction 

of Dr as compared to other models. The optimum values of γ, σ
2
 and b presented in Section 

4.3.2 and the Lagrange multipliers are shown in Figure 4.1. By using these optimum values 

and α, the relative density can be predicted. The comparison of experimental and predicted 

value of Dr by regression model is shown in Figure 4.4 and the performance of the LS-SVM 

model in training and testing is shown in Figure 4.5 for present study. The variation of actual 

and the predicted value have been shown in Figure 4.6.
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Figure 4.5 Performance of the LS-SVM model in training and testing (Present study). 

 

 

Figure 4.6 Variation of the values predicted by LS-SVM model and observed values. 

4.6 Sensitivity Analysis 

The details of the sensitivity analysis have been given in section 3.5.2. From the 

sensitivity analysis, it is found that the mean grain size of the Cu (50%) is more sensitive 
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compaction energy (8%). Hence for the prediction, the value of Cu and mean grain size has to 

be determined very precisely. The sensitivity of different parameters has been shown in 

Figure 4.7. 

 

Figure 4.7 Sensitivity of the parameters 

4.7 Discussion 

This study presents an efficient approach for the prediction of relative density using 

ANN LS-SVM and MARS. The proposed SVM model has shown good agreement with 

experimental results as corresponding correlation coefficients were found to be 0.99. The 

proposed model is valid for the ranges of the experimental database used for the modeling. 

To obtain the main effects of each variable on relative density, sensitivity analysis has been 

performed. As a result, coefficient of uniformity and mean diameter of the sand particles 

affect the model significantly. The proposed model and formulation for relative density is 

quite accurate and hence practically applicable in the field.  
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CHAPTER 5 

PREDICTION OF COMPRESSION INDEX OF CLAY 

5.1 Introduction 

Settlement due to expulsion of pore water is of engineering importance.  Due to 

increase  in  stress  caused  by  the  construction  of foundations  or  other  loads, the soil  

compresses. The various causes of compression are deformation of soil particles, relocation 

of soil particles, and expulsion of water or air from the void spaces. To  calculate  settlement  

in  clayey  soil  layers,  laboratory consolidation  tests  which  depict  one-dimensional 

compression  behavior  need to be performed on samples taken as representative. 

As  the  oedometer  test  in  laboratory  takes  a  much longer  time  than  simpler  

index  property  tests  various attempts have been made to estimate this index to obtain an 

initial estimate and also to cross check the results of the consolidation test.  Empirical 

formulas relating various parameters  to  the  compression  index  have  been presented  by  

many  researchers  (Azzouz  et  al.,  1976; Koppula,  1981;  Herrero,  1980;  Park  and  Lee,  

2011; Nishida,  1956; Cozzolino,  1961;  Sower,  1970;  Ahadiyan  et  al.,  2008;  Al-Khafaji  

and  Andersland, 1992; Yoon and Kim, 2006; Ozer et al., 2008). However,  due  to  fact  that  

the  index  is  affected  by multiple parameters and highly non-linear, simple regression 

analysis is not sufficient and hence non-linear regression such as ANN, SVM and MARS are 

more effective. The advantage of these techniques is the ability of learning complex 

relationships between multi-dimensional data and has been applied in a number of 

geotechnical problems where mathematical models sustain simplifications, lack of robustness 

or are not available at all.  

The data set (Kalantary, 2012) consists of consolidation test data for soil samples 

collected from 125 construction sites in province of Mazandaran, Iran. Different models have 

been developed using this set of data. The results from the developed model have been 
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compared with the results obtained by using various empirical equations available in 

literature. It is found that the ANN model gives better prediction and finally the model 

equation is presented. 

5.2 Data base selection 

In the current paper, 391 experimental results of compression index have been used. The 

data set is subdivided into two groups as training data set (290 data) and testing data set (101 

data). Liquid Limit (LL), Plasticity index (PI), natural water content (wn) and initial void ratio 

(e0) are considered as input and compression index (Cc) as output parameter. From the cross-

correlation matrix (Table 5.1), it is observed that the above inputs wn and e0 with cross-

correlation values of 0.75 and 0.82 respectively affect Cc more than the other input 

parameters (i.e. LL and PI). Hence three models (considering two inputs, three inputs and 

four inputs as shown in Table 5.3) are selected for the prediction of compression index. The 

statistical values of all the input and output parameters are given in Table 5.2. 

Table 5.1 cross-correlation matrix for all data 

 
LL PI wn e0 Cc 

LL 1.00 

    PI 0.97 1.00 

   wn 0.33 0.28 1.00 

  e0 0.31 0.26 0.90 1.00 

 Cc 0.40 0.36 0.75 0.82 1 

 

Table 5.2 statistical value of the parameters 

 
LL PI wn e0 Cc 

Mean 39.8 18.58 28.61 0.767 0.206 

Standard 

Deviation 9.89 8.57 7.79 0.176 0.0774 

Minimum 24 3 10.2 0.357 0.05 

Maximum 81 50 70 1.882 0.628 
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5.3 Database preprocessing 

 The database has been normalized between 0 to 1 for LS-SVM model by using the 

formula: 

minmax

min

XX

XX
X n




  

 For ANN and MARS modeling, the actual database has been used.  

Table 5.3 Database considered for modeling for training. 

Sl. 

No. 
LL PI wn e0 Cc 

α-

values  

Sl. 

No. 
LL PI wn e0 Cc 

α-

values 

1 31 12 24.5 0.748 0.266 48.19 
 

151 44 22 28.8 0.75 0.209 5.83 

2 44 21 14.5 0.476 0.126 0.96 
 

152 56 36 20.2 0.498 0.169 19.04 

3 42 21 20.5 0.601 0.229 48.48 
 

153 32 12 21.6 0.665 0.166 -0.41 

4 34 13 20.5 0.565 0.076 -37.75 
 

154 47 24 37.5 0.915 0.29 18.36 

5 29 7 29.3 0.795 0.186 -5.10 
 

155 44 23 10.2 0.357 0.08 -23.58 

6 35 16 25.6 0.803 0.203 -13.18 
 

156 58 36 34 0.867 0.196 -47.69 

7 29 8 20.5 0.717 0.146 -21.72 
 

157 29 11 24.7 0.71 0.19 8.13 

8 43 21 17.2 0.73 0.206 -7.17 
 

158 32 12 17.7 0.74 0.159 -31.45 

9 41 20 35.3 0.909 0.226 -18.01 
 

159 35 13 30.8 0.825 0.2 -8.06 

10 31 10 12.7 0.63 0.236 40.86 
 

160 52 28 17.6 0.615 0.21 31.81 

11 62 34 36.5 0.959 0.375 43.02 
 

161 34 16 27.6 0.738 0.189 -3.19 

12 31 12 26.1 0.778 0.189 -8.89 
 

162 46 25 23.8 0.647 0.123 -32.44 

13 33 16 34 0.894 0.329 55.46 
 

163 43 22 31.1 0.964 0.365 51.02 

14 43 20 28.1 0.719 0.156 -18.12 
 

164 53 35 23.1 0.642 0.169 -8.04 

15 37 21 16.6 0.507 0.226 53.92 
 

165 36 16 31.8 0.831 0.206 -9.89 

16 52 28 28.9 0.806 0.28 33.59 
 

166 36 20 20 0.562 0.163 6.28 

17 41 18 27.1 0.666 0.116 -29.36 
 

167 39 20 32.1 0.823 0.236 6.54 

18 31 12 23.9 0.621 0.156 5.86 
 

168 34 13 18.7 0.711 0.22 17.73 

19 35 13 35.3 0.841 0.256 27.58 
 

169 28 5 30.8 0.751 0.173 -2.21 

20 40 21 30.9 0.926 0.379 70.88 
 

170 45 21 23.4 0.697 0.176 -3.92 

21 30 8 23.9 0.605 0.133 0.40 
 

171 52 29 70 1.882 0.54 1.21 

22 37 15 30.8 0.784 0.199 0.02 
 

172 43 21 22.1 0.643 0.203 24.19 

23 51 25 19.2 0.586 0.186 27.75 
 

173 28 7 22.8 0.619 0.153 9.43 

24 31 11 25.3 0.723 0.169 -6.89 
 

174 49 25 39.6 0.891 0.26 2.41 

25 39 21 25.3 0.647 0.259 58.58 
 

175 29 11 29.7 0.778 0.196 -0.90 

26 34 12 19.5 0.609 0.189 27.19 
 

176 34 12 28.1 0.824 0.269 36.67 

27 40 18 40.7 1.045 0.259 -21.46 
 

177 33 9 29.5 0.784 0.143 -30.96 

28 26 6 24.8 0.704 0.226 41.06 
 

178 27 9 20 0.63 0.193 26.24 

29 46 25 30.3 0.775 0.173 -28.37 
 

179 40 18 25.2 0.588 0.16 16.21 

30 52 28 19.5 0.517 0.14 7.17 
 

180 29 7 31.4 0.839 0.15 -39.57 
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31 62 34 37.2 0.937 0.345 27.61 
 

181 37 16 27.6 0.748 0.236 28.75 

32 34 13 27.2 0.759 0.163 -19.71 
 

182 44 24 21.9 0.686 0.166 -17.55 

33 34 13 22 0.675 0.216 30.61 
 

183 53 28 23 0.608 0.16 5.27 

34 67 43 39.1 0.939 0.36 30.08 
 

184 48 28 32.4 0.85 0.249 -1.39 

35 35 15 36.6 0.883 0.246 7.84 
 

185 39 20 28.5 0.653 0.186 14.30 

36 53 28 22.4 0.583 0.169 16.50 
 

186 36 14 27.4 0.777 0.229 19.33 

37 37 15 33 0.88 0.209 -16.80 
 

187 44 24 27 0.629 0.166 2.61 

38 62 44 38.4 1.014 0.326 -4.13 
 

188 25 5 22.5 0.595 0.183 34.81 

39 39 21 21.6 0.552 0.11 -22.06 
 

189 43 25 25.1 0.708 0.156 -30.11 

40 42 20 25.2 0.645 0.159 -0.69 
 

190 32 11 28.8 0.703 0.206 26.58 

41 33 8 27.2 0.881 0.266 26.02 
 

191 36 17 28.8 0.759 0.21 6.48 

42 46 24 33.6 0.847 0.296 38.12 
 

192 29 8 26.7 0.663 0.12 -20.25 

43 36 19 27.2 0.678 0.153 -16.91 
 

193 34 14 24.6 0.676 0.226 38.62 

44 43 24 29.8 0.789 0.22 -2.39 
 

194 58 33 36.2 0.894 0.32 27.09 

45 32 11 20.4 0.699 0.173 -4.21 
 

195 53 27 39.8 0.97 0.252 -29.34 

46 37 16 23.5 0.596 0.05 -60.57 
 

196 30 11 26.1 0.752 0.183 -4.82 

47 62 36 34.4 0.806 0.312 43.79 
 

197 30 8 20.3 0.546 0.149 19.36 

48 29 9 26.1 0.786 0.209 7.52 
 

198 36 17 26.5 0.676 0.159 -8.19 

49 49 29 32.1 0.805 0.233 -1.23 
 

199 50 29 31.2 0.74 0.259 33.68 

50 37 17 28.3 0.734 0.159 -20.19 
 

200 36 14 33.7 0.844 0.203 -9.88 

51 31 12 22.9 0.628 0.143 -5.69 
 

201 43 19 29.8 0.828 0.186 -24.93 

52 45 22 11.5 0.537 0.13 -16.00 
 

202 39 21 21.6 0.552 0.11 -22.06 

53 35 13 23.2 0.652 0.206 32.81 
 

203 44 26 32.1 0.761 0.199 -10.71 

54 35 16 25.2 0.663 0.14 -17.94 
 

204 40 21 23.7 0.585 0.22 47.70 

55 40 19 20 0.605 0.196 26.18 
 

205 27 8 25.3 0.661 0.156 1.73 

56 34 10 42.1 1.013 0.355 53.34 
 

206 42 20 30.3 0.755 0.193 -2.40 

57 34 14 22.1 0.573 0.123 -7.93 
 

207 41 24 16.4 0.605 0.173 -5.29 

58 41 20 21.3 0.699 0.14 -35.28 
 

208 34 13 42.2 1.161 0.219 -67.95 

59 46 24 26.2 0.666 0.126 -31.01 
 

209 34 12 25.2 0.675 0.229 45.88 

60 25 5 48.7 1.222 0.41 24.47 
 

210 52 31 45.7 1.132 0.379 10.71 

61 47 29 31.4 0.826 0.179 -44.72 
 

211 45 22 27.1 0.809 0.22 -4.65 

62 29 9 28.4 0.777 0.14 -34.82 
 

212 34 12 24.1 0.668 0.106 -35.58 

63 45 26 34.5 0.808 0.319 59.15 
 

213 45 22 27.1 0.652 0.18 12.61 

64 39 17 41.1 0.993 0.259 -8.31 
 

214 33 12 28 0.703 0.103 -43.34 

65 46 23 18.5 0.611 0.173 7.75 
 

215 49 28 34.4 0.864 0.223 -21.23 

66 37 15 29.6 0.761 0.173 -12.26 
 

216 53 29 39 0.98 0.26 -29.57 

67 29 9 25.5 0.643 0.126 -14.02 
 

217 28 9 19.5 0.73 0.113 -50.62 

68 29 8 24.7 0.763 0.259 47.18 
 

218 57 34 35 0.88 0.256 -11.04 

69 36 16 22.5 0.599 0.149 1.81 
 

219 51 32 32 0.829 0.31 40.25 

70 36 13 25.9 0.762 0.103 -60.26 
 

220 56 35 25.2 0.569 0.146 -6.84 

71 29 11 25.1 0.658 0.149 -6.27 
 

221 44 24 37.8 0.965 0.229 -34.74 

72 34 12 21.6 0.83 0.28 32.83 
 

222 35 15 23.5 0.507 0.11 -1.01 
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73 42 19 40.3 1.04 0.27 -14.86 
 

223 31 11 41.5 1.195 0.259 -47.66 

74 38 19 35.4 0.859 0.249 10.19 
 

224 31 7 27.5 0.738 0.173 0.82 

75 45 22 19.7 0.661 0.149 -19.36 
 

225 30 10 54.3 0.943 0.282 -8.88 

76 30 10 31.1 0.874 0.209 -12.49 
 

226 81 50 37.8 0.966 0.27 -17.03 

77 33 10 22.6 0.632 0.116 -19.19 
 

227 54 31 29.8 0.755 0.149 -42.91 

78 52 31 19.9 0.582 0.166 6.46 
 

228 79 45 57.4 1.587 0.628 2.90 

79 38 17 21.8 0.563 0.103 -20.69 
 

229 32 8 39.4 0.979 0.266 2.58 

80 27 5 11.1 0.519 0.126 -6.52 
 

230 40 20 32.5 0.793 0.186 -17.42 

81 27 8 22.4 1 0.196 -51.57 
 

231 29 7 22.7 0.637 0.183 26.03 

82 31 11 29.8 0.831 0.176 -25.67 
 

232 36 17 26.5 0.676 0.159 -8.19 

83 36 15 28.9 0.711 0.216 27.78 
 

233 40 19 19.4 0.528 0.149 12.50 

84 42 21 47.6 1.135 0.37 32.20 
 

234 58 35 27.3 0.807 0.229 -1.45 

85 55 27 25.3 0.719 0.209 14.85 
 

235 39 19 28.5 0.725 0.183 -3.90 

86 31 11 27.2 0.769 0.176 -12.02 
 

236 39 17 25.8 0.73 0.196 4.67 

87 32 14 24.4 0.824 0.276 30.60 
 

237 60 30 26.3 0.733 0.196 2.59 

88 32 11 29.7 0.822 0.213 1.88 
 

238 37 15 27.6 0.873 0.329 58.20 

89 40 19 26.7 0.669 0.133 -22.94 
 

239 39 17 31.9 0.837 0.2 -14.83 

90 57 34 39.2 1.091 0.302 -39.42 
 

240 46 25 30.3 0.775 0.173 -28.37 

91 39 16 25.1 0.672 0.13 -22.06 
 

241 49 28 32.8 0.797 0.309 53.48 

92 56 28 36.9 0.909 0.27 -3.39 
 

242 47 26 29.8 0.785 0.173 -32.54 

93 36 14 27.7 0.677 0.136 -15.67 
 

243 29 9 25 0.691 0.149 -10.29 

94 31 11 38.2 0.967 0.266 3.39 
 

244 27 7 28.5 0.735 0.173 -1.20 

95 36 12 21.3 0.502 0.11 4.27 
 

245 40 19 19 0.715 0.219 9.25 

96 43 20 26.9 0.732 0.163 -18.41 
 

246 46 24 26.2 0.666 0.126 -31.01 

97 61 37 23.2 0.586 0.159 4.34 
 

247 46 22 13.6 0.407 0.113 3.50 

98 39 19 30.1 1.012 0.4 64.20 
 

248 37 16 25.1 0.738 0.203 6.10 

99 47 25 28.9 1.137 0.402 20.12 
 

249 29 10 30.1 0.75 0.223 25.73 

100 34 14 24.6 0.676 0.225 37.95 
 

250 56 34 36.1 0.983 0.306 -5.70 

101 58 35 39 1.059 0.385 22.53 
 

251 32 14 29.5 0.744 0.173 -11.15 

102 33 10 31.4 0.768 0.252 44.88 
 

252 57 33 22.4 0.697 0.143 -28.13 

103 49 28 36.5 0.97 0.29 -3.87 
 

253 44 25 34.2 0.816 0.239 5.23 

104 29 10 27.2 0.77 0.183 -7.03 
 

254 31 10 46.4 1.232 0.465 78.27 

105 49 25 20.1 0.638 0.09 -51.11 
 

255 47 22 20.5 0.742 0.196 -7.26 

106 50 27 22.2 0.614 0.166 5.09 
 

256 41 17 28.6 0.702 0.146 -15.21 

107 41 17 30.6 0.727 0.173 -2.22 
 

257 62 36 32.7 1.054 0.355 9.24 

108 34 13 22.1 0.66 0.173 6.05 
 

258 32 14 30.8 0.813 0.272 38.31 

109 60 32 55.7 1.357 0.5 11.65 
 

259 31 15 24.4 0.711 0.159 -20.81 

110 57 35 32.7 0.904 0.282 1.88 
 

260 25 5 30.8 0.869 0.2 -12.59 

111 54 30 31.2 0.776 0.183 -24.87 
 

261 36 15 33.7 0.835 0.166 -34.02 

112 24 3 10.6 0.368 0.09 -9.12 
 

262 30 11 25.2 0.681 0.163 -1.44 

113 54 31 29.8 0.755 0.149 -42.91 
 

263 36 15 18.5 0.567 0.106 -23.61 

114 50 26 33.5 0.827 0.296 41.43 
 

264 43 22 46.6 1.127 0.269 -35.41 
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115 39 17 36.2 0.881 0.252 11.78 
 

265 27 6 37.1 0.951 0.25 -3.11 

116 49 24 39.1 0.948 0.32 29.78 
 

266 26 8 28.9 0.824 0.199 -6.51 

117 33 12 36.5 0.934 0.213 -23.71 
 

267 46 22 28.6 0.801 0.153 -44.07 

118 25 9 21 0.643 0.103 -36.30 
 

268 42 24 24.3 0.809 0.199 -30.69 

119 33 12 28 0.703 0.103 -43.34 
 

269 54 30 31.2 0.776 0.183 -24.87 

120 37 17 26 0.723 0.21 13.84 
 

270 36 17 47.6 1.237 0.299 -28.66 

121 34 13 28.3 0.778 0.133 -43.51 
 

271 36 17 28.8 0.759 0.206 3.82 

122 36 15 25 0.697 0.183 5.01 
 

272 68 46 34.4 0.909 0.226 -30.52 

123 36 15 56.9 1.442 0.405 0.60 
 

273 31 11 23.1 0.635 0.146 -3.05 

124 30 10 31.1 0.856 0.25 19.16 
 

274 39 19 29 0.77 0.279 48.33 

125 42 22 21.7 0.658 0.22 27.01 
 

275 42 20 26.9 0.716 0.216 20.09 

126 30 10 22.6 0.602 0.13 -5.66 
 

276 56 36 28.8 0.793 0.246 9.14 

127 37 16 31.2 0.87 0.209 -18.06 
 

277 33 10 27.8 0.707 0.176 7.75 

128 31 14 26.4 0.619 0.14 -6.20 
 

278 35 15 27.9 0.745 0.153 -25.24 

129 48 25 25.6 0.724 0.163 -21.95 
 

279 35 15 27.7 0.73 0.159 -17.50 

130 48 25 29.9 0.756 0.163 -28.03 
 

280 37 14 27.1 0.72 0.176 0.18 

131 33 12 25.9 0.8 0.266 37.74 
 

281 27 17 21.3 0.547 0.103 -32.63 

132 58 35 28.3 0.692 0.159 -21.95 
 

282 30 10 29.7 0.718 0.11 -40.93 

133 37 16 31.8 0.776 0.166 -21.09 
 

283 51 27 34.8 0.854 0.249 1.20 

134 40 19 29 0.8 0.279 41.09 
 

284 40 17 39.3 0.931 0.209 -27.23 

135 36 14 29.7 0.753 0.2 8.96 
 

285 55 30 37.4 0.921 0.246 -25.45 

136 30 8 23.9 0.605 0.133 0.40 
 

286 39 21 25.3 0.647 0.259 58.58 

137 48 25 25.6 0.724 0.163 -21.95 
 

287 42 20 44.4 1.148 0.26 -43.56 

138 43 22 29 0.798 0.209 -8.58 
 

288 41 22 30.2 0.777 0.219 3.02 

139 58 32 22.4 0.685 0.153 -16.20 
 

289 40 20 28.7 0.755 0.249 30.92 

140 40 19 37 0.923 0.309 36.61 
 

290 32 11 31 0.786 0.216 13.68 

141 32 11 20.5 0.557 0.106 -14.31 
        

142 34 14 31.2 0.871 0.176 -38.41 
        

143 33 13 33.6 0.789 0.279 53.32 
        

144 59 36 27.1 0.693 0.259 45.98 
        

145 24 4 26.3 0.695 0.169 6.97 
        

146 29 8 26.5 0.637 0.166 16.15 
        

147 34 12 25.8 0.692 0.173 4.96 
        

148 27 7 26.6 0.766 0.149 -24.68 
        

149 40 18 28.2 0.757 0.169 -18.80 
        

150 47 27 29.8 0.736 0.25 29.72 
        

 

5.4 Different developed model equations 

 The different model equations developed from ANN, SVM and MARS are presented 

in the following sections. 
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5.4.1 ANN Model equation 

 In the neural network model, Levenberg-Marquartd back-propagation has been used 

for minimization of error. The log-sigmoid transfer function for input-hidden layer and linear 

transfer function for hidden-output layer has been used to construct the model equation. The 

final ANN model equation can be given as follows: 

A1 = 0.5543 LL - 0.6398 PI + 0.1297 wn + 2.0933 e0 – 21.9155 

A2 = 0.3221 LL – 0.4918 PI – 0.3425 wn – 7.4531 e0 + 13.146 

A3 = 0.0012 LL + 0.0021 PI - 0.0156 wn + 1.6466 e0 + 0.7929 

A4 = -6.8441 LL – 6.6654 PI + 6.0927 wn + 3.026 e0 – 5.6638 
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5.4.2 LS-SVM Model equation 

 For the LS-SVM model, Radial basis kernel function has been used for transformation 

of the inputs. The optimum values of bias, regularization parameter and width of radial basis 

function is given below and the values for Lagrange multiplier (α) for all the inputs have been 

represented in Figure 5.1: 

b = 1.7804, γ = 51.7066, σ
2 

= 17.0637 

 

Figure 5.1 corresponding α-values in the LS-SVM model 
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5.4.3 MARS model equation 

 For developing the MARS, 11 basis functions have been presented in forward phase 

and in backward elimination phase, 3 basis functions have been removed from the MARS 

model. So, the concluding MARS model contains 8 basis functions. The best MARS model is 

given below 

BF1 = max(0, e0 -0.694) 

BF2 = max(0, 0.694 -e0) 

BF3 = BF1 × max(0, PI -13) 

BF4 = max(0, e0 -0.694) × max(0, 13 - PI) × max(0, LL -27) 

BF5 = BF3 × max(0, 43 - LL) 

BF6 = BF3 × max(0, PI -21) 

BF7 = max(0, e0 -0.694) × max(0, 13 - PI) × max(0, wn -22.4) 

BF8 = BF3 × max(0, PI -17) 

         Cc = 0.174 + 0.162 × BF1 - 0.263×BF2 - 0.0644 × BF3 + 0.012 × BF4 + 0.0178 × BF5 -

0.0211 × BF6 + 0.00141 × BF7 + 0.0208 × BF8                                                         (5.2) 

Table 5.4 Results of Different Models for Prediction of compression index of clay 

Model 
Model 

Inputs 
    RMSE MAPE 

Coefficient of 

determination (R
2
) 

Model I wn, e0 

ANN 
Training 0.042 15 0.71 

Testing 0.042 15 0.65 

SVM 
Training 0.044 18 0.68 

Testing 0.043 18 0.68 

MARS 
Training 0.042 17 0.7 

Testing 0.042 18 0.72 

Model II 
LL, wn, 

e0 

ANN 
Training 0.04 14 0.72 

Testing 0.041 15 0.73 

SVM 
Training 0.042 17 0.68 

Testing 0.042 18.8 0.76 

MARS 
Training 0.041 17 0.73 

Testing 0.04 16 0.68 

Model III 
LL, PI, 

wn, e0 

ANN 
Training 0.39 14 0.76 

Testing 0.04 13 0.66 

SVM 
Training 0.04 17 0.72 

Testing 0.039 17 0.73 
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MARS 
Training 0.0396 16.8 0.73 

Testing 0.043 17.9 0.7 

 

5.5 Results and discussion 

The models have been created and compared with the empirical correlations given by 

various researchers shown in Table 5.5. The comparison is made in terms of coefficient of 

efficiency (R
2
) presented in Table 5.4 of the developed models. The performances of the 

empirical formulas are presented in Table 5.6. An error bar chart has been shown in Figure 

5.2 for the comparison between different developed models. From the comparison it is found 

that model 3 of ANN and model 2 of LS-SVM are showing better performance than others. 

But model 3 of ANN having lower value of MAPE is the better model as compared to others.  

The performance of model 3 in training and testing is shown in Figure 5.3 and variation of 

actual and predicted values has been shown in Figure 5.4.  

Table 5.5 some widely used empirical correlations 

Sl. 

No Author   Equation 

1 Azzouz et al. (1976) Cc = 0.4 (e0 + 0.001 wn - 0.25 ) 

2 Azzouz et al. (1976) Cc = 0.01 wn - 0.05 

3 Koppula (1981) Cc = 0.01 wn 

4 Herrero (1980) Cc = 0.01 wn - 0.075 

5 Park and Lee (2011) Cc = 0.013 wn - 0.115 

6 Skempton (1944) Cc = 0.009 (LL-10) 

7 Nishida (1956) Cc = 0.54 e0 - 0.19 

8 Cozzolino (1961) Cc = 0.43 e0 - 0.11 

9 Sower (1970) Cc = 0.75 e0 - 0.38 

10 Kalantary et al. (2012) Cc = 0.0074 wn - 0.007 

11 Kalantary et al. (2012) Cc = 0.3608 e0 - 0.0713 
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(a) 

 

(b) 

Figure 5.2 performance evaluations of different models in terms of (a) MAPE and (b) 

RMSE 

Table 5.6 results of different models for prediction of compression index of clay 

Model Model Inputs   RMSE R R
2
 

1 e0, wn   0.047 0.823 0.63 

2 wn   0.063 0.75 0.56 
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3 wn   0.098 0.74 0.54 

4 wn   0.055 0.75 0.49 

5 wn   0.0846 0.75 0.52 

6 LL  0.111 0.397 0.37 

7 e0   0.057 0.82 0.67 

8 e0   0.048 0.82 0.62 

9 e0   0.082 0.82 0.615 

10 wn   0.051 0.75 0.56 

11 e0   0.044 0.823 0.677 

 

 

Figure 5.3 Performance of model 3 using ANN in training and testing. 

 

Figure 5.4 Variation of actual and predicted value from ANN of compression index 
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5.6 Sensitivity Analysis 

      Sensitivity analysis is performed for selection of important input variables. Different 

approaches have been suggested to select the important input variables. Goh (1994) and 

Shahin et al. (2002) have used Garson‟s algorithm (Garson, 1991) in which the input hidden 

and hidden output weights of trained ANN model are partitioned and the absolute values of 

the weights are taken to select the important input variables, and the details with example 

have been presented in Goh (1994). It does not provide information on the effect of input 

variables in terms of direct or inverse relation to the output. Olden et al. (2004) proposed a 

connection weight approach based on the Neural Interpretation Diagram (NID), in which the 

actual values of input hidden and hidden output weights are taken. It sums the products across 

all the hidden neurons, which is defined as Si. The relative inputs are corresponding to 

absolute Si values, where the most important input corresponds to highest Si value. The 

details of connection weight approach are presented in Olden et al. (2004).  

      The relative importance of the four input parameters as per Garson‟s algorithm is 

presented in Table 5.7. The wn is found to be the most important input parameter with the 

relative importance value being 95.85 % followed by 2.27 % for PI, 1.09 % for LL and 0.781 

% for e0. The relative importance of the present input variables, as calculated following the 

connection weight approach (Olden et al., 2004), is also presented in Table 5.7. wn is found to 

be the most important input parameter (Si = 21.41) followed by e0 (Si = 0.188), LL (Si =-

0.154) and PI (Si = 0.128). The Si values being negative imply that LL is indirectly related 

and wn, e0 and PI are directly related to Cc value. In other words, increasing LL will lead to a 

reduction in the Cc and increasing wn, e0 and PI will increase the Cc. The sensitivity of the 

parameters affecting the model is presented in Figure 5.5. 
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Table 5.7 relative importance of different inputs as per Garson's algorithm and 

connection weight approach 

Parameters Garson's algorithm Connection weight approach 

(1) 

Relative 

importance (%) 

(2) 

Ranking of 

inputs as per 

relative 

importance (3) 

Si values as per 

connection 

weight 

approach (4) 

Ranking of 

inputs as per 

relative 

importance (5) 

LL 1.09 3 -0.154 3 

PI 2.27 2 0.128 4 

e0 0.781 4 0.188 2 

wn 95.85 1 21.41 1 

    

 

where Cc = predicted value of compression index of clay from ANN. 

 

 

Figure 5.5 Sensitivity of different parameters 

5.7 Discussions 

From the present study it is observed that the developed ANN model can be used to 
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each other and with different regression models. The result shows that the proposed model 

equation gives better predictability in comparison with others. Sensitivity analysis is fulfilled 
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CHAPTER 6 

PREDICTION OF SIDE RESISTANCE OF DRILLED SHAFT 

6.1 Introduction 

The two main criteria that govern the design of pile foundations are bearing capacity 

and settlement so that safety and serviceability requirements are attained. Drilled shafts are 

cast-in-situ piles installed by excavating a cylindrical volume of soil from the ground and 

filling the resulting void with concrete. They can range from 2 to 30 feet in diameter and can 

be over 300 feet in length. The installation of drilled shafts causes insignificant lateral 

displacement of the soil adjacent them. The calculations of shaft resistance of drilled shafts 

are most often performed using empirical correlations (Skempton 1959; O Neill and Reese 

1999) developed on the basis of a limited number of load tests. They are particularly 

advantageous where huge lateral loads from extreme event limit states govern bridge 

foundation design. Additional applications include providing foundations for high pole 

lighting, communication towers. In many instances, a single drilled shaft can replace a cluster 

of piles eliminating the need and cost for a pile cap. 

Static analysis methods are commonly used for determining the side resistance of 

drilled shafts. The methodologies apply the soil parameters resulting from laboratory tests to 

calculate the side resistance of the shafts. The most common method to evaluate the 

undrained side resistance is based on the total stress or alpha (α) method (Tomlinson; 1957), 

in which the side resistance or adhesion is related to the undrained shear strength Su by an 

empirical coefficient denoted by α, the adhesion factor. This coefficient was derived mostly 

from field load test data on driven piles. The main criticism of the alpha method is that Su is 

not a unique soil parameter and depends significantly on the type of test used, the strain rate, 

and the orientation of the failure plane. 

The geotechnical literature has included numerous investigations and many methods, 
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both theoretical and experimental, to predict settlement and bearing capacity of pile 

foundations. However, the mechanisms of pile foundations and pile–soil interaction are 

ambiguous, complex, and not yet entirely understood (Reese et al. 2006; Nejad et al. 2009; 

Shahin 2010; Alkroosh and Nikraz 2012). Because of the uncertainties associated with the 

factors that affect the behavior of pile foundations, most available methods, by necessity, 

have been mainly based on simplifications and assumptions. This has led to limited success 

in terms of providing consistent and accurate predictions (Abu-Kiefa 1998; Nejad et al. 2009; 

Pal and Deswal 2010; Alkroosh and Nikraz 2012).  

In recent years, AIs have been used with varying degrees of success for prediction of 

axial and lateral bearing capacities of pile foundations in compression and uplift, including 

driven piles (Chan et al. 1995; Goh 1996;Lee and Lee 1996; Teh et al. 1997; Abu-Kiefa 

1998; Goh et al. 2005; Das and Basudhar 2006;Pal 2006;Shahin and Jaksa 2006;Ahmad et al. 

2007;Ardalan et al. 2009;Shahin 2010;Alkroosh and Nikraz 2011) and drilled shafts (Goh et 

al. 2005; Shahin 2010; Alkroosh and Nikraz 2011). 

In the present study the side resistance of drilled shaft has been modeled using 

artificial intelligence. An error comparison has been made between different models in terms 

of coefficient of correlation and other statistical errors. Finally sensitivity analysis has been 

carried out to know the importance of parameters that influences the output in the model. 

6.2 Database used in present study 

Using the database of Goh et al. 2005, this problem has been reanalyzed using LS-

SVM and MARS. The database was compiled from 127 field load tests on drilled shafts in a 

variety of cohesive soil profiles. 

6.3 Database preprocessing 

 The database has been normalized between 0 to 1 for LS-SVM model by using the 

formula: 
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minmax

min

XX

XX
X n






 

 For MARS modeling, the actual database has been used.  

Table 6.1 Training dataset used in the modelling 

Sl. 
No. 

σ Su α α-value 
 

Sl. 
No. 

σ Su α α-value 

1 53 53 0.6 -1.186 
 

51 83 208 0.34 -0.094 

2 125 351 0.36 0.299 
 

52 74 115 0.5 0.319 

3 100 107 0.47 -0.098 
 

53 37 102 0.61 0.969 

4 29 178 0.26 -0.226 
 

54 44 182 0.42 1.191 

5 97 108 0.4 -0.764 
 

55 79 51 1.03 3.219 

6 59 57 0.72 0.153 
 

56 60 140 0.31 -0.730 

7 29 100 0.35 -1.569 
 

57 28 80 0.8 1.888 

8 82 112 0.52 0.428 
 

58 48 266 0.38 0.754 

9 34 32 0.74 -0.495 
 

59 70 226 0.3 -0.278 

10 126 164 0.41 -0.066 
 

60 102 71 0.54 -0.326 

11 97 212 0.49 1.158 
 

61 25 68 0.67 0.164 

12 50 96 0.5 -0.374 
 

62 105 120 0.42 -0.287 

13 34 26 0.88 0.699 
 

63 45 109 0.38 -0.980 

14 162 130 0.44 -0.205 
 

64 60 186 0.25 -0.645 

15 120 180 0.37 -0.332 
 

65 80 96 0.33 -1.906 

16 17 32 0.83 0.614 
 

66 30 132 0.28 -1.033 

17 109 94 0.54 0.365 
 

67 67 136 0.45 0.455 

18 30 137 0.27 -0.973 
 

68 34 32 0.72 -0.686 

19 25 105 0.49 -0.002 
 

69 25 68 0.63 -0.219 

20 80 117 0.37 -0.868 
 

70 57 53 0.7 -0.204 

21 70 215 0.32 -0.082 
 

71 70 94 0.51 -0.320 

22 34 64 0.67 -0.067 
 

72 200 113 0.62 1.238 

23 83 208 0.41 0.576 
 

73 29 165 0.27 -0.311 

24 343 285 0.38 -0.196 
 

74 125 375 0.34 0.051 

25 95 309 0.27 -0.546 
 

75 53 42 0.73 -0.325 

26 17 32 0.79 0.231 
 

76 127 389 0.32 -0.232 

27 76 143 0.33 -0.612 
 

77 18 95 0.61 0.771 

28 120 242 0.28 -0.991 
 

78 83 193 0.37 0.169 

29 70 119 0.54 0.830 
 

79 67 123 0.5 0.578 

30 45 118 0.35 -0.924 
 

80 19 307 0.25 -0.382 

31 57 45 0.83 0.760 
 

81 40 45 0.7 -0.523 

32 19 307 0.24 -0.478 
 

82 37 126 0.51 0.934 

33 23 112 0.39 -0.670 
 

83 83 192 0.37 0.167 

34 34 166 0.33 0.244 
 

84 82 117 0.49 0.282 

35 119 303 0.42 0.752 
 

85 197 105 0.36 -1.194 
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36 40 57 0.66 -0.469 
 

86 102 65 0.59 -0.007 

37 29 74 0.57 -0.577 
 

87 43 21 0.83 0.057 

38 55 147 0.33 -0.328 
 

88 28 80 0.76 1.505 

39 109 106 0.48 0.041 
 

89 63 56 0.83 1.209 

40 97 96 0.45 -0.593 
 

90 160 260 0.39 -0.205 

41 105 340 0.29 -0.265 
 

91 25 125 0.41 -0.003 

42 37 126 0.37 -0.406 
 

92 164 153 0.53 0.632 

43 113 178 0.48 0.793 
 

93 102 70 0.55 -0.257 

44 36 43 0.78 0.197 
 

94 28 47 0.79 0.496 

45 70 94 0.68 1.308 
 

95 34 86 0.63 0.486 

46 26 179 0.25 -0.291 
 

96 100 94 0.49 -0.227 

47 57 58 0.64 -0.590 
      48 34 74 0.58 -0.512 
      49 110 297 0.27 -0.678 
      50 37 168 0.39 0.822 
       

6.4 Different developed model equations 

 The different model equations developed from SVM and MARS are presented in the 

next segments. 

6.4.1 LS-SVM Model equation 

 For the LS-SVM model, Radial basis kernel function has been used for transformation 

of the inputs. The optimum values of bias, regularization parameter and with of radial basis 

function is given below and the value for Lagrange multiplier for all the inputs has been 

represented in Figure 6.1:  b = -0.2303, γ=1.7155, σ
2
=1.9817 

 

Figure 6.1 Optimum values of Lagrange multiplier (α) 
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6.4.2 MARS model equation 

 For developing the MARS, 13 basis functions have been introduced in forward phase 

and in backward elimination phase, 4 basis functions have been removed from the MARS 

model. So, the final MARS contains 9 basis functions. The ideal MARS model is given 

below 

BF1 = max(0, Su -132) 

BF2 = max(0, 132 -Su) 

BF3 = max(0, 160 -σ) 

BF4 = BF2 × max(0, σ -79) 

BF5 = BF2 × max(0, 79 -σ) 

BF6 = BF4 × max(0, 82 -σ) 

BF7 = BF5 × max(0, σ -28) 

BF8 = max(0, 132 -Su) × max(0, σ -79) × max(0, σ -82) × max(0, Su -105) 

BF9 = BF4 × max(0, 109 -σ) 

α = 0.453 - 0.000388 × BF1 + 0.00813 × BF2 - 0.000887 × BF3 - 0.000107 × BF4 - 5.45e-5 × 

BF5 - 0.0044 × BF6 - 3.93e-6 × BF7 + 1.14e-7 × BF8 - 1.98e-5 × BF9                         (6.1) 

6.5 Result comparison  

The statistical performances i.e. Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Correlation Coefficient (R) and coefficient of efficiency (R
2
) for the model 

are presented in Table 6.2.  

The results of MARS have been matched with ANN (Goh et al., 2005) and LS-SVM 

model established. The assessments have been done in terms of Mean Absolute Percentage 

Error (MAPE), and Root Mean Square Error (RMSE). Figure 6.2 and 6.3 depict the bar chart 

of MAPE and RMSE for training dataset, respectively and it is observed that the developed 

MARS outperform ANN and LS-SVM models. Studies emphasized that regression equations 

obtained by the MARS technique make robust and coherent parameter valuations. From 
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Figure 6.4, the performance of MARS model can be observed. Figure 6.5 represents the 

variations in actual and predicted value of the training dataset taken in the present study. 

Table 6.2 Performances of different models 

Model 
Model 

Inputs 
  RMSE MAPE 

Correlation 

coefficient  

( R ) 

Coefficient of 

determination 

(R
2
) 

Model I 
Goh et al. 

(2005) 

Training 0.078 13.14 0.91 0.81 

Testing 0.074 13.9 0.86 0.8 

Model II SVM 
Training 0.08 13.27 0.9 0.8 

Testing 0.08 16.3 0.88 0.77 

Model III MARS 
Training 0.06 11.28 0.935 0.84 

Testing 0.06 10.47 0.94 0.8 

 

 

Figure 6.2 Comparison between models in terms of MAPE 

 

Figure 6.3 Comparison between models in terms of RMSE 
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Figure 6.4 Performance of MARS model in the prediction 

 

Figure 6.5 Comparison between observed and predicted values 
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the inputs and to find the inputs that affect the models performance. The sensitivity test is 

carried out on the all data by varying each of the input, one at a time, at a constant rate of 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

P
re

d
ic

te
d

 s
id

e 
re

si
st

an
ce

 a
lp

h
a 

fa
ct

o
r 

fr
o

m
 M

A
R

S 

Observed side resistance alpha factor 

Training dataset (R=0.935)
Testing dataset (R=0.943)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90

si
d

e 
re

si
st

an
ce

 a
lp

h
a 

fa
ct

o
r 

No. of observations (training) 

Actual value of side resistance alpha factor

Predicted value of side resistance alpha factor



69 
 

20%. For every input, the percentage change in the output is observed. The sensitivity (S) of 

each input is calculated by the following: 

 







 100

1

inputinchange%

outputinchange%

N
S  

where N = number of datasets used in the study. 

The sensitivity of the parameters has been represented in Figure 6.6 and it is found 

that the effective overburden pressure affects the output very significantly. 

 

Figure 6.6 Results of sensitivity analysis 

6.7 Discussion 

Present study shows that the MARS model can be used to predict the side resistance 

of the drilled shaft. The model shows a correlation coefficient of 0.93 in training with a mean 

absolute percentage error of 11.28 which is lower when compared with the literature. The 

overburden pressure affects the model very significantly; hence it is desirable to determine 

the overburden pressure precisely in the field. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

7.1 Conclusion 

Present study focuses on the use of ANN, SVM and MARS in modeling four 

geotechnical problems. The first problem deals with the prediction of compaction parameters 

(i.e. MDD and OMC) of sandy soil. Out of the three models the MARS model gives better 

predictability and sensitivity analysis shows that the coefficient of uniformity and percentage 

of sand affects the model very significantly. The second problem deals with the prediction of 

relative density (Dr) of clean sand. The predictability of LS-SVM is found to be very accurate 

when compared to other methods and coefficient of uniformity and mean grain size are found 

to be the important parameters affecting the model. Third problem deals with the prediction 

of compression index of clay and developed ANN outperforms than SVM and MARS. In this 

case liquid limit, plasticity index and natural moisture content affect the model significantly. 

The fourth model deals with the prediction of side resistance of drilled shaft and the MARS 

model performs better than the other models. Sensitivity analysis shows that the effective 

stress affects the model severely. The resultant predictions of different output parameters by 

the different models agree well with the available experimental data. Although prediction 

error limits were often large, estimation of those parameters with soft computing may be 

accurate enough for most applications, and hence will fill a need where the physical 

parameters are not readily available. These techniques may also provide new approaches and 

methodologies and minimize the potential variation of correlations. Therefore, the practical 

outcome of the proposed models could be used with acceptable accuracy at the preliminary 

stage of design. 

7.2 Future scope for research 

The evaluation of the established models indicates that the capability of different 
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technique rest on the type of problem and the complexity of the database. Further researches 

can be done in the area of data division into training and testing, validation of models 

conducting laboratory experiments, appropriate method for sensitivity analysis to determine 

the significance of the input parameters. As these techniques applicable within a specific 

range of inputs and outputs, other techniques (i.e. genetic programming, ANFIS, Relevance 

Support Vector Machine (RVM), regression tree, principal component analysis (PCA) etc.) 

can be used to extrapolate the predictors and generate simplified model equations. 
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