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Abstract

Correlations are very significant from the earliest days; in some cases, it is
essential as it is difficult to measure the amount directly, and in other cases it is
desirable to ascertain the results with other tests through correlations. Soft computing
techniques are now being used as alternate statistical tool, and new techniques such as
artificial neural networks (ANN), support vector machine (SVM), multivariate adaptive
regression splines (MARS) has been employed for developing the predictive models to
estimate the needed parameters. In this report, four geotechnical problems like
compaction parameters of sandy soil, compression index of clay, relative density of
clean sand and side resistance of drilled shaft have been modeled. In the first problem,
compaction parameters (i.e. MDD and OMC) of sandy soil have been predicted from its
index properties such as coefficient of uniformity, percentage of sand and fines content
with reference to compactive effort and MARS shows better predictability. In the
second problem, the relative density (D;) of clean sand has been predicted from
coefficient of uniformity, mean diameter of grain size with reference to four levels of
compactive effort and predictability of LS-SVM is found to be very accurate. In third
problem, compression index of clay has been predicted from consistency limits, natural
moisture content and initial void ratio and the developed ANN shows better prediction.
In the fourth problem, side resistance of drilled shaft has been predicted from effective
stress and undrained shear strength and the MARS model performs better than the other
models. Various error criteria such as mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R)
have been considered for the comparison of different models. Finally different
sensitivity analysis has been shown to identify the significance of different input

parameters that affects the developed models. The performance comparison showed that



the soft computing system is a good tool for minimizing the uncertainties in the soil
engineering projects. The use of soft computing may provide new approaches and

methodologies to minimize the potential inconsistency of correlations.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

In geotechnical engineering, empirical connections are frequently used to evaluate
certain engineering properties of soils. By means of data from extensive laboratory or field
testing, these correlations are generally derived with the help of statistical methods. Artificial
neural networks (ANNSs), support vector machine (SVM) and multivariate adaptive
regression splines (MARS) are the forms of artificial intelligence. These techniques learn
from data cases presented to them in order to capture the functional interactions among the
data even if the fundamental relationships are unknown or the physical meaning is tough to
explain. This is in contrast to most traditional empirical and statistical methods, which need
prior information about the nature of the relationships among the data. Al is thus well
suited to model the complex performance of most geotechnical engineering materials which,
by their very nature, exhibit extreme erraticism. This modeling capability, as well as the
ability to learn from experience, have given Al superiority over most traditional modeling
approaches since there is no need for making assumptions about what the primary rules
that govern the problem in hand could be.

ANN is still considered as ‘black box’ system with poor simplification, though various
efforts made for modification and explanations. Recently support vector machine (SVM),
based on statistical learning theory and structural risk minimization is being used as an
alternate prediction model. The SVM uses constrained minimization, penalizing the error
margin during training. The error function being a convex function better generalization
used to observe in SVM compared to ANN.

Though Al techniques has proved to have the superior predictive capability than

other traditional methods for modeling complex performance of geotechnical engineering



materials, still it is facing some criticism due to the lack of transparency, knowledge

extraction and model uncertainty. To overcome this there is a development of improvised Al

techniques.

1.2 Origin of Project

. Empirical relationships are frequently used to estimate certain engineering properties

of soils in geotechnical engineering.

. Computational techniques learn from data samples presented to them in order to

capture the functional relationships among the data even if the fundamental relationships are

unknown or the physical sense is difficult to clarify.

. Most traditional empirical and statistical methods need prior knowledge about the

nature of the interactions among the data.

. Soft-computing techniques are suitable to model the complex behavior of most

geotechnical engineering materials which exhibit extreme inconsistency.

1.3 Objective

. To apply various soft-computing techniques like ANN, MARS and SVM in
parametric estimation of Geotechnical problems.

. To model for relative density of granular soil from grain size distribution and
compaction energy.

. To model for compaction parameters (Maximum Dry Density and Optimum Moisture

Content) of granular and c-¢ soils from index properties and compaction energy.

. To model for compression Index from various physical properties of clayey soil.

. To model the side resistance of drilled shaft from effective stress and undrained shear
strength.

. To compare the efficiency of different models..



1.4 Applications in Geotechnical Engineering
Various geotechnical problems where soft computing has been applied are:

> For forecasting the axial and lateral load capacities in compression and uplift of pile
foundations.

> Conventional constitutive modeling based on the elasticity and plasticity theories to
properly simulate the performance of geomaterials.

> For estimating several soil properties including the shear strength, stress history, pre-
consolidation pressure, swell pressure, compaction and permeability, soil

classification and soil density.

> Predicting liquefaction potential.
> Bearing capacity and Settlement prediction of shallow foundations.
> Other applications of Artificial Intelligence in geotechnical engineering include

retaining walls, dams, blasting, mining, geo-environmental engineering, rock
mechanics, site characterization, tunnels and underground openings and slope
stability.
1.5 Methodology for Soft-Computing
« Artificial Neural Network (ANN)
» Auniversal function approximator and fast to evaluate new examples.
« Multivariate Adaptive Regression Splines (MARYS)
» Capacity to find complex data mapping and produce simple, easy-to-interpret
models.
» Support Vector Machine
« The quality of generalization and ease of training of SVM is better.

1.6 Software used
For the above modeling MATLAB R2008b has been used.



CHAPTER 2
METHODOLOGY

2.1 Artificial Neural Network (ANNs)
2.1.1 An overview of ANNs

In the last decades, Artificial Intelligence (Al) techniques such as Artificial Neural
Networks (ANNS) have received a great deal of attention. In essence, ANN is an information
technology that mimics the human brain and nervous system in learning from experience and
generalizes from previous examples to generate new outputs by abstracting essential
characteristics from inputs in the pattern of variable interconnection weights among the
processing elements. ANNs are more powerful than traditional methods in the situations
when the problem requires qualitative or complex quantitative reasoning where the
conventional statistical and mathematical methods are inadequate or the parameters are
highly interdependent and data is intrinsically noisy, incomplete or error prone (Bailey and
Thompson, 1990).

ANNs have many advantages over traditional methods of modeling. Firstly, as
opposed to the traditional mathematical and statistical methods, ANNs are data-driven self-
adaptive methods, which can capture subtle functional relationships among the data even if
the underlying relationships are unknown or hard to describe. Secondly, ANNs are able to
capture complex nonlinear relationship with better accuracy (Rumelhart et al. 1994). Thirdly,
the most important advantage of ANNs over mathematical and statistical models is their
adaptability. ANN systems can automatically adjust their weights to optimize their behavior
(Boussabaine, 1996). Neural networks have been utilized for classification, clustering, vector

quantification, pattern association, function approximation, control, optimization and search.



2.1.2 Basic Concepts of ANNs

An artificial neural network is a computational model defined by four parameters:
type of neurons, connection architecture, learning algorithm and recall algorithm (Mehrotra,
etal., 1997).
2.1.2.1 Artificial Neural Systems

ANNs is an information processing technology that simulates the human nervous
system. It is built on three basic components: processing elements (PE) which are an artificial
model of human neuron, interconnections whose functions are similar to the axon and
synapses which are the junctions where an interconnection meets a PE. Each PE receives
signals from other PEs that constitute an input pattern. This input pattern stimulates the PE to
reach some level of activity. If the activity is strong enough, the PE generates a single output
signal that is transmitted to other PEs through an interconnection.
2.1.2.2 Processing Elements

Figure 1 describes a typical artificial neuron. The input signals come from either the

environment or outputs of other PEs and form an input vector:

A=(a,......... - a,) (1.1)

Where, a; is the activity level of the iy, PE or input. There are weights bound to the
input connections: W,,W,,....,w,. The neuron has a bias b. The sum of the weighted inputs

and the bias form the net input signal, X:
X=b;+> w; a=WxA+b (1.2)
i=1

The input signal is then sent to a transfer function, which serves as a non-linear
threshold. The transfer function calculates output signal of the PE (j) as:

0,=f(X) (1.3)



Where O; is the output signal from PE(j); f is a transfer function and X is the net input

signal to PE(j).

i

Figure 2.1 Generic processing element of neural network

2.1.2.3 Threshold functions

There are many threshold functions adopted in ANNs. The two most commonly used
transfer functions are linear and sigmoid.
o The linear threshold function: f(x) = x
o The sigmoid function: Log-sigmoid transfer function and Tan-Sigmoid transfer
function is commonly used in backpropagation networks, partly because in backpropagation,
it is important to be able to calculate the derivatives of any transfer function used (Demuth

and Beale, 2000). They can be expressed as the following equations:

Logistic function: f(x) = L -
1+e
_ e —e™"
Hyperbolic tangent: f(x)= ———
e’ +e

2.1.2.4 Architecture of ANNs

The architecture of an ANN is the organization that assembles PEs into layers and
links them with weighted interconnections. The architecture determines how computations
proceed. A common ANN architecture is determined by three distinguishing characteristics:

connection types, connection schemes and layer configurations.



The most commonly used ANN paradigm is multilayer perceptions (MLPs). A MLP
consists of an input layer, at least one hidden layer and one output layer. The neurons in each
layer are usually fully connected to the neurons in another layer. Among them, three-layer
feed forward network is the most popular. Feed forward network is a type of network in
which connection is allowed from a node in layer i only to nodes in layer i+1. The three
layers are input layer, hidden layer and output layer. Input layer is the layer that receives
input signals from the environment. Output layer is the layer that emits signals to the
environment. Hidden layers are layers between the input and output layers.
2.1.2.5 Learning Rules

Learning makes possible modification of behavior in response to the environment. A
learning rule is a procedure for modifying the weights of connections between the nodes and
biases of a network. These are three broad learning categories: supervised learning,

unsupervised learning and reinforcement learning.

2.1.3 ANN Model Equation
A model equation is developed using the weights from trained neural network model

(Goh et al. 2005). The mathematical equation relating input parameters to output parameter

S

where y = predicted value of output, f, = transfer function, h = no. of neurons in the

can be written as

(1.4)

hidden layer, X; = value of Inputs, m= no of input variables, wix = connection weight between
it layer of input and kg, neuron of hidden layer, wy = connection weight between ki, neuron of
hidden layer and single output neuron, bpk = bias at the kg neuron of hidden layer and by =

bias at the output layer.



2.1.4 Methodology of ANN

The sequences of modeling by ANN are given in the flow chart below.

DETERMINATION OF MODEL INPUTS
v
DIVISION OF DATA

v
DATA PRE-PROCESSING

v
DETERMINATION OF MODEL ARCHITECTURE

v
MODEL OPTIMIZATION

v
STOPPING CRITERIA

v
MODEL VALIDATION

. @

Figure 2.2 Flow chart of neural network modelling

2.1.4.1 Determination of Model Inputs

A subset of input variables can significantly improve model performance. A large
number of input variables usually increase the network size, resulting in a decrease in
processing speed and a reduction in the efficiency of the network. Another approach is to
train with different combinations of input variables and to select the network that has the best
performance. The network that performs the best is then retained. This process is repeated
for an increasing number of input variables, until the addition of other variables results in no
improvement in model performance.
2.1.4.2 Division of Data

ANNs accomplish best when they do not generalize beyond the range of the data used

for standardization. Therefore, the purpose of ANNSs is to non-linearly introduce (generalize)



in high-dimensional space between the data used for calibration. A discrete validation set is
needed to ensure that the model can generalize within the range of the data used for
calibration. It is common practice to split the existing data into two subsets; a training set, to
construct the neural network model, and an independent validation set to evaluate the model
performance. Usually, two-thirds of the data are suggested for model training and one-third
for validation.
2.1.4.3 Data Pre-processing

Once the presented data have been divided into their subsets (i.e. training, testing
and validation), it is significant to pre-process the data in a appropriate form. Data pre-
processing is necessary to ensure all variables obtain equal attention during the training
process and it usually speeds up the learning process. Pre-processing can be in the form of
data scaling, normalization and transformation. Scaling the output data is essential, as they
have to be equal with the limits of the transfer functions used in the output layer (e.g.
between —1.0 to 1.0 for the tanh transfer function and 0.0 to 1.0 for the sigmoid transfer
function). In some cases, the input data need to be normally distributed in order to obtain
optimal results. To improve the performance, transformation of the input data can be done to
some known forms (i.e. linear, log, exponential, etc.).
2.1.4.4 Determination of model architecture

Determining the network architecture is most essential and difficult job in ANN
model development. It needs selection of the ideal number of layers and the number of
nodes. It is usually achieved by fixing the number of layers and choosing the number of
nodes in each layer. For MLPs, there are always two layers signifying the input and output
variables in any neural network.
2.1.4.5 Model optimization

The process of improving the connection weights is known as training or learning.



The aim is to find a global solution to what is usually a highly non-linear optimization
problem. The technique most commonly used for finding the optimum weight grouping of
feed-forward MLP neural networks is the back-propagation algorithm.
2.1.4.6 Stopping criteria

Stopping criteria are used to adopt when to break the training process. They
determine whether the model has been optimally or sub-optimally trained. Training can be
stopped: after the performance of a fixed number of training records; when the training error
reaches an effectively small value; or when no or minor changes in the training error
occeur.
2.1.4.7 Model Validation

Once the training segment of the model has been effectively accomplished, the
performance of the trained model should be validated. The purpose of the model validation
phase is to confirm that the model has the ability to simplify within the limits set by the
training data. The error criteria such as coefficient of correlation (R), the root mean squared
error (RMSE), and the mean absolute error (MAE) are often used to evaluate the
performance of models. The coefficient of correlation is a measure that is used to determine
the relative correlation and the goodness-of-fit between the expected and experimental
data.
2.2 Details of Support Vector Machine (SVM)

2.2.1 Support Vector Machine (SVM)

SVM has been utilized to solve a regression problem. Let us consider a training set

(X1, Y1), (X5, Y)--o.(Xy , Yy ) froma vector, X; eR" with corresponding targetsy, i = 1,2,...
,N. &-SVR determines a linear function defined on x; as,

f(x) = (w,x)+b (1.5)

where w is a high-dimensional weight vector and b € R as the bias such that there is

10



at most ¢ distance from the actual data and f (X ) should be flat. (.) denotes the dot product.
No care is taken as long as errors are less than €. But, any deviation more than ¢ is not
accepted. Flatness means the value of w should be as small as possible. This can be written as

convex optimization problem:

Minimize%||vv||2
Subjected to {yi —wx)-b < e
J w,x))+b—y; < ¢

In this case it is assumed that a function ¥ exists which approximates the data set

(Xi,yi) with ¢ precision. Introducing slack variables &;, &;" the problem can be stated as,
Minimize %||vv||2 +CY (& +E) (1.6)

yi— wx)—b < e+ §
Subjected to {(w,x;)) +b— ¥; < e+ &
§u,§ 20

The parameter C controls the trade-off between the flatness of f and tolerance level
of error ¢. This deals with a e-insensitive loss function expressed as,

0,if |¢l < ¢

|é] — &, otherwise

gl = {

The graphical presentation of the e-insensitive loss function is shown in the Figure
2.3. The optimization problem defined in (6) is easily solved in its dual formulation.

The dual optimization problem can be written as ,

11



Loss

Figure 2.3 Soft margin loss setting for a linear SVM

(_%Z(ai _a:)(aj_a;)<xi’xj>
Maximize (1.7)
lk_gz(ai +ai*)+ZYi (o —a;)

Subjected to > (&, —a;)=0and ¢, a; €[0,C]

where are «;, a; Lagrange multipliers. In the above equations xj and xj are input

vector spaces.
To address nonlinear regression problems, the linear SVR is prolonged to

nonlinear SVR by mapping the input space into a high dimensional feature space through a

kernel function ¢(x). In such case, (X, xt) is replaced by k(x, xt). Distinctive kernel functions
used in the SVR are RBF, polynomial, linear and defined as,

Polynomial Kernel

In machine learning, the polynomial kernelis akernel function commonly used
with support vector machines (SVMs) and other kernelized models, that represents the
similarity of vectors (training samples) in a feature space over polynomials of the original

variables, allowing learning of non-linear models. Intuitively, the polynomial kernel looks not

12
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only at the given features of input samples to determine their similarity, but also

combinations of these.

For degree-d polynomials, the polynomial kernel is defined as

K(x y)=(x"y+c)" (1.8)
where x and y are vectors in the input space, i.e. vectors of features computed from
training or test samples. c>0is a constant trading off the influence of higher-order versus
lower order terms in the polynomial. When ¢ = 0, the kernel is called homogenous. (A further
generalized poly-kernel divides x"y by a user-specified scalar parameter a.)
As a kernel, K corresponds an inner product in a feature space based on some
mapping o:
K (x,y)=((x).0(y))
The nature of ¢ can be glanced from an example. Let d = 2, so we get the special case

of the quadratic kernel. Then

2 i n
K (X, y)=[inyi +CJ = XY+ le\/in Vi 2%V} + D 4/20x; /20y, +C7
i-1 i-1 i—2 jo1 i-1

(1.9)

Radial Basis Function Kernel

In machine learning, the (Gaussian) radial basis function kernel, or RBF kernel, is a
popular kernel function used in support vector machine classification.
The RBF kernel on two samples x and x’, represented as feature vectors in some input
space, is defined as
02
3| X=X
K(x,X")=exp| ———=
o

2
(1.10)

where ||x—x'||§ may be recognized as the squared Euclidean distance between the two feature

vectors. o is a free parameter. The parameter o in represents the spread of Gaussian kernel.
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An equivalent, but simpler definition involves a parameter y=— 21 5
O

K(xx)=exp(y |x—x]3) (1.11)

Since the value of the RBF kernel decreases with distance and ranges between zero
(in the Ilimit) and one (whenx=x"), it has a ready interpretation as a similarity

measure. The feature space of the kernel has an infinite number of dimensions; for =1, its

expansion is:

1 12 Tx") 1, 2 1, 42
o9~ L ]3O o L e L

J!

(1.12)
2.2.2 Least Square Support Vector Machine (LS SVM)

LSSVM models are an alternate formulation of SVM regression (Vapnik and Lerner,

1963) proposed by Suykens et al. (2002). Consider a given training set of N data points
{X, » Vi ho With input data x, eR" and output Yy, er where R" the N-dimensional vector space
is and r is the one-dimensional vector space. For prediction of output using multiple parameters,
x=[inputs] and y=[output].
In feature space LSSVM models take the form
y(X)=w" p(X)+b (1.13)
Where the non-linear mapping ¢(.) maps the input data into a higher dimensional
feature space; weR" ;ber;w = an adjustable weight vector; b = the scalar threshold. In LSSVM

for function estimation the following optimization problem is formulated:

N S A
Minimize: W' w+y = e
2 21

Subjected to: y(x)=w" @(x,)+b+e ,k=1,.......... ,N (1.14)

Where ¢, = error variable and y = regularization parameter. The following equation
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for output prediction has been obtained by solving the above optimization problem (Scholkopf

and Smola, 2002; Vapnik, 1988).

C. :y(x):iozk K(x,x,)+b (1.15)

k=1

e

Where K (x,,X)=exp K= N (116)

O

o is the width of radial basis function and o is the Lagrange multiplier.

In LS-SVM regression algorithm, the regularization parameter y and RBF kernel
parameter ¢° have to be tuned in order to achieve an accurate solution. An integrated
parameter optimization approach via simplex i.e. multidimensional unconstrained non-linear
optimization (Nelder and Mead 1965) and 10 fold cross-validation is used to minimize
generalization error. The optimum values of parameters [y, o] and bias values have been
used for the models developed herein.

2.3 Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression technique introduced by Friedman (1991). It
essentially detects relation between a dependent variable and a set of predictors by fitting
piecewise linear regressions. In particular, MARS builds flexible models by dividing the
whole space of each covariate into various subsets and then defining a different regression
equation for each area. In this way, separate regression slopes in distinct intervals of the
predictors space are individuated (Hastie et al. 2009). A key concept is the notion of knots
that are the points that bound each interval of data in which a distinct regression equation is
calculated, i.e. where the behavior of the modelled function changes.

In this way, the space of predictors is split into several regions in which truncated
spline functions or basis functions (BFs) are fit. A truncated BF consists of a left-sided (1.17)

and a right-sided (1.18) segments defined by a knot t:
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X _ a_)(t x)% if x<t
alx t=0 (x the {O otherwise (1.17)

b _ a_ (x t)q, if x<t
abc t=[+0c {o otherwise (1.18)

where b (x—t) and ba’ (X —t) are the BFs describing the regions to the left and the right

of the knot t, g indicates the power (>0) to which the BFs are raised in order to manipulate the
degree of smoothness of the resultant regression models. The general MARS model equation

is given as

M
Yp=Qg+ 20, Byx)
m-0 (1.19)

where Yy, is the dependent variable predicted through the MARS model, M is the
number of BFs included into the model, og is the constant term, o IS the coefficient of the
m™ truncated BF and Bn(X) is the m™ truncated BF that may be a single spline function or a
product (interaction) of two or more spline functions.

The optimal MARS model is built by a two-stage process: a forward selection
procedure followed by a backward-pruning procedure. The forward procedure starts with just
the constant term in the model and then, by an iterative way, selects the best pairs of BFs that
improves the global model. This forward stepwise selection of BFs leads to a very complex
and over fitted model that has poor predictive abilities for new data. So, in the backward
stage, the “lack of fit” criterion is used to evaluate the contribution of each BF to the
descriptive abilities of the model and the BFs with the lowest contribution are removed one at
a time.

The “lack of fit” criterion used by MARS is the generalized cross-validation (GCV)
criterion, i.e. the mean square error divided by a penalty dependent on the model complexity.

It is given by:
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> - vp) (1.20)

Where n is the number of observations in the data set, M is the number of non-
constant BFs, and C(M) is the cost-complexity measure of the model containing M BFs.
C(M) increases with the number of BFs and has the purpose to penalize model complexity in
order to avoid over-fitting. It is defined as:

CM)=M+dx M (1.22)

Where d is a cost penalty factor for adding a BF. The higher value of d reduces the
number of BFs in the final model.

2.4 Performance criteria

The present study uses various statistical error measure criterions like R, MAPE and
RMSE to compare different developed models. A good model should have; R value
(expresses degree of similarity between predicted and actual values) close to 1 and low

MAPE and RMSE values (indicate high confidence in model-predicted values).

Root mean-squared error (RMSE) is used to compute the square error of the prediction
compared to actual values as well as the square root of the summation value. Thus the RMSE

is expressed using the following equation:
RMSE = %Z(yp —yf (1.22)

Mean Absolute Percentage Error (MAPE) is a measure of closeness of predictions to

actual values. The mean absolute error is given by

2

n —_

MAPE=1 z[yp y] x100 (1.23)
nNial Y
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The Coefficient of correlation (R) value is a measure of linear relationship between

the predictions and the actual values. The R value is calculated using the following formula:

re NQYY)-QNQY,) (1.24)
Iy =AYy, - y,)7

Mean of the observed data = §/=%Z(yi)
i=1

Total sum of squares = SS,.,, = > (¥, —Y)°
i=1
Explained sum of squares = SS,,;=> (¥, — )’
i=1

Residual sum of squares = SSresiduaFZ(yi —yp)2

i=1

SS

residual

Coefficient of determination (R?) = 1- s

total

where y and Yy, are the actual and the predicted values; yand yp are average of the

actual and the predicted values respectively; n is the sample size.

2.5 Sensitivity analysis
Different methods have been adopted for knowing the importance of the input

parameters for the developed models.

2.5.1 Variance based sensitivity analysis
Iman and Hora (1990) investigate the performance of a sensitivity measure based on
the percentage variance in f explained by any variable Xi. This technique is known as
measure of importance, and its use is associated with the estimation of the quantity
g Var, [E(f|X)] (1.25)
' Var (f)
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where E(f|X;) indicates the expectation value of f when the i variable is fixed to the
value X, Var,;[e]stands for the variance of the argument over all the possible values of X;

and Var(f) is the unconditional (total) variance of f. In the present paper, the outcomes in the f

are observed by keeping mean of the X; value fixed for other arguments varying.

2.5.2 Rate of change of input

The sensitivity tests are carried out to determine the relative significance of each of
the inputs and to find the inputs that affect the models performance. The sensitivity test is
carried out on the all data by varying each of the input, one at a time, at a constant rate of
20%. For every input, the percentage change in the output is observed. The sensitivity (S) of

each input is calculated by the following:

. .
s :12( % change in outputj><100

N % change in input (1.26)

where N = number of datasets used in the study.
2.5.3 Connection weight approach

Calculates the product of the raw input-hidden and hidden-output connection weights
between each input neuron and output neuron and sums the products across all hidden
neurons (Olden and Jackson, 2002b).
2.5.4 Garson’s algorithm

Partitions hidden-output connection weights into components associated with each

input neuron using absolute values of connection weights (Garson, 1991).
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.‘5) XY | HiddenA Hidden B Hidden C Hidden D Hidden E
_c§ R} Input 1 -0.93 -1.49 0.37 -0.91 0.37
E E Input 2 -0.57 -1.96 -0.14 1.18 1.26
= 8= Input 3 -0.85 1.74 -1.86 0.05 0.10
Q
E‘ g Input 4 0.25 -3.01 -0.99 -1.34 -1.65
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5. 38 Hidden A Hidden B Hidden C Hidden D Hidden E
g E® Output -1.75 -1.08 -1.13 2.90 337
S 5B
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m l
= X~ | HiddenA Hidden B Hidden C Hidden D Hidden E
5] Input 1 1.63 1.62 -0.42 2.64 1.24
wl
E ‘g Input 2 1.00 2.12 0.16 -3.43 4.25
-§ = Input 3 1.48 -1.89 2.10 0.14 0.34
Rl
% R Input 4 -0.43 3.26 1.12 3.90 -5.57
S Input 5 1.43 -0.09 -0.97 1.18 -0.16
i :
i B, = |szden e |
Input, = ) Hidden,, = S
Y=4 .
Yoda Z |Hldden o |
Z=1
Importance | Rank Importance | Rank
Input 1 6.71 1 Input 1 0.88 4
Input 2 4.10 2 Input 2 1.11 2
Input 3 2.18 3 Input 3 0.94 3
Input 4 2.28 4 Input 4 1.50 1
Input 5§ 1.38 -] Input§ 0.57 5
Connection Weight Garson’s
Approach Algorithm

Figure 2.4 Steps for connection weight approach and Garson’s algorithm
(Olden, Joy and Death, 2004)

Sensitivity analysis is performed for choice of important input variables. Different
methodologies have been recommended to select the important input variables. Goh (1994)
and Shahin et al. (2002) have used Garson’s algorithm (Garson, 1991) in which the input
hidden and hidden output weights of trained ANN model are segregated and the absolute

values of the weights are taken to select the significant input variables, and the details with
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example have been presented in Goh (1994). It does not provide evidence on the effect of
input variables in terms of direct or inverse relation to the output. Olden et al. (2004)
suggested a connection weight approach based on the Neural Interpretation Diagram (NID),
in which the actual values of input hidden and hidden output weights are taken. It sums the
products across all the hidden neurons, which is defined as S;. The relative inputs are
corresponding to absolute S; values, where the most important input corresponds to highest S;

value. The details of connection weight approach are presented in Olden et al. (2004).
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CHAPTER 3
PREDICTION OF COMPACTION PARAMETERS OF SANDY SOIL
3.1 Introduction

Compacted soils are used in many projects such as highway embankments, railway
subgrades, airfield pavements, earth dams and landfill liners. The granular materials are
generally used as fill material in earth work. In the field, soils are usually compacted using
rollers and other various equipments. To evaluate compaction in the field, laboratory
compaction parameters are required using the Standard Proctor and Modified Proctor
compaction which requires large efforts and time. A standard amount of compactive effort is
applied to produce soil density with which site values can be compared. The compaction
parameters of soils are influenced by many factors such as water content, compactive effort,
and index properties. For a certain compactive effort, a typical compaction curve that relates
the water content of the soil to its dry unit weight is usually obtained. The most important
point on the compaction curve is the optimum compaction point in which two important
parameters, maximum dry unit weight (MDD) and optimum water content (OMC), are
obtained, and they represent compaction behavior.

In recent years attempts have been made to correlate Index properties of soil and
gradation to obtain MDD and OMC of compacted sandy soils. Several researches have been
done to correlate compaction parameters with index properties of fine-grained soils (Wang
and Huang1984; Blotz et al.1999; Nagaraj et al. 2006; Sivrikaya et al. 2008; Sivrikaya 2008).
On the other hand, prediction models of coarse-grained soils are rare (Korfiatis and
Manikopoulos 1982; Omar et al. 2003). In recent years, Artificial Intelligence (Al) has been
applied successfully to several problems in geotechnical engineering. Several soft-computing
methods like Artificial Neural Network (ANN), Support Vector Machine (SVM), Genetic

Programming (GP), Adaptive Neuro Fuzzy Inference System (ANFIS), Regression Tree,
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Multivariate Adaptive Regression Splines (MARS) are continuously used in modeling of
geotechnical problems. These techniques have been used for predicting the bearing capacity
of piles, permeability of compacted clay liners, settlement prediction of shallow foundations
on granular soils, swelling pressures of soil, compaction parameters of soils, slope reliability
analysis, ultimate capacity of driven piles in cohesionless soils, OCR prediction of clay.

This study investigates the capability of ANN, MARS and LSSVM for determination
of compaction parameters of coarse-grained soils with an emphasis on the influence of soil
properties and compaction effort. MARS is a flexible, more accurate, and faster simulation
method for both regression and classification problems (Friedman, 1991). Different models
has been developed and observed that MARS gives a better predictability as compared to
regression equation and other non-linear models from ANN and MARS.

The laboratory experiment was conducted by Mujtaba et al. (2013) for the
determination of compaction parameters, grain size distribution and Index properties of sandy
soil. The compaction parameters were determined at different compaction energy (CE) level
(592 kN-m/m® & 2696 kN-m/m®) and performing regression analysis, the potential input
parameters were identified which affect the output parameters. Based on the analysis a
regression model equation was developed for MDD and OMC. The model equations were as

follows:

MDD (kN/m?®)=4.49log(C,)+1.51log(CE)+10.2 (3.1)
log(OMC) (%)=1.67—-0.193log(Cu)—0.153log(CE)

where C, = coefficient of uniformity

From the cross-correlation matrix, it is observed that two other parameters also affect
the compaction parameters i.e. fines (%) and Sand (%) along with C, and CE. In the present
study, two models were taken into consideration consisting of the index properties and

compaction energy. The inputs of the two models are as follows:
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Model - I Cu, CE
Model — 11 Fines (%), Sand (%), C,, CE
Model-111: Fines (%0), Sand (%0), Ds, C,, CE

The data available in literature (Mujtaba et al., 2013) are taken with input and output
parameters. The total number of data points considered is 220 out of which 160 are taken for
training and 60 are taken for testing. Some of the data base of the experiment has been shown
in Table 3.1 and the maximum, minimum, average, and standard deviation for the data used
are shown in Table 3.2 and it can be seen that it covers a wide range of values. The successful
application of a method depends upon the identification of suitable input parameters. Table
3.2 shows the cross correlation between the inputs and output; it can be seen that fines (%),
sand (%), Dsg, Cy and CE are found to be important input parameters for predicting MDD and
OMC.

Table 3.1. some of the compaction of test data and index properties of soil

Sample Gravel Sand Fines Dg Dso D3 Dy, MDD (m) OMC (m) MDD (s) OMC (s)

No. (%) (%) (%) (Mmm) (mm) (mm) (mm) (kN/m°) (%) (kN/m®) (%)
1 0 67 33 0.12 0.1 0.06 0.0319 18.2 11 17.2 14
2 3 64 33 015 011 0.06 0.014 20.1 9 19.1 12
3 0 91 9 0.11 0.1 0.09 0.075 16.3 13 154 16.5
4 0 92 8 0.11 0.1 0.09 0.075 16.0 13.5 15.2 16.5
5 2 82 16 0.2 0.17 0.1 0.06 17.9 12 17.0 16
6 0 84 16 0.2 0.17 0.1 0.04 18.1 11.5 17.1 15
7 4 68 28 0.27 0.2 0.08 0.024 20.0 8 18.9 11
8 0 70 30 021 019 0.08 0.02 20.0 9 18.9 115
9 2 70 28 0.22 0.19 0.08 0.019 20.4 9.5 19.3 12
10 0 57 43 0.16 0.1 0.055 0.021 20.0 9.5 18.9 12
11 0 96 4 0.12 0.11 0.1 0.08 16.3 14.5 154 18
12 0 94 6 0.11 0.1 0.09 0.08 16.2 15.5 154 18
13 0 92 8 0.7 058  0.27 0.085 19.8 11 18.8 125
14 0 92 8 0.17 0.14 0.1 0.075 16.3 14 15.6 17.5
15 3 52 45 016 0.09 0.04 0.017 20.4 9.5 19.5 10.5
16 2 79 19 021 0.19 0.1 0.05 18.2 10 17.3 12.5
17 2 72 26 0.2 0.18  0.09 0.045 18.9 11 18.1 14
18 0 83 17 0.21 0.2 0.15 0.05 17.9 11 17.0 14
19 0 54 46 0.15 0.095 0.058 0.027 19.0 9 18.1 12
20 0 71 29 0.2 0.16  0.08 0.021 19.2 9 18.2 12
21 2 74 24 0.2 0.16  0.09 0.038 18.5 9 17.6 11
22 3 77 20 0195 0.15 0.092 0.05 17.6 11 16.7 14
23 2 60 38 015 011 0.06 0.026 18.8 9.5 17.9 12
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78 1 97 2 0.44 0.35 0.2 0.15 18.3 10.5 17.4 13

79 2 95 3 0.85 0.7 0.4 0.21 17.3 9 16.3 11
80 0 94 6 0.2 0.15 0.1 0.08 17.5 10.5 16.7 13

m: modified Proctor test, s: standard Proctor test

Table 3.2 Summary of Statistical values of input and output parameters

Fines (%) Sand (%) Ds Cy CE MDD OoMC
Maximum 100 46 0.8 11.765 2696 20.75 18.50
Minimum 50 0 0.09 1.375 592 15.17 8.00
Average 88.5 10.44 0.274 4.55 1644 17.62 12.19
Standard  11.63 11.48 0.166 2.51 1054.4 1.183 2.18

Deviation

Table 3.3 Cross correlation between the inputs and output

Sand (%) Fines (%0) Dso Cy CE MDD O((I)\/:)C
Sand (%) 1
Fines (%) -0.995 1
Dso 0.40154 -0.4269 1
Cy -0.556 0.5448 0.324 1
CE 0 0 0 0 1
MDD -0.447 0.431 0.332 0.774 0.42 1
OMC (%) 0.309 -0.284 -0.205  -0455  -0.643 -0.76 1

3.2 Database preprocessing
The database has been normalized between 0 to 1 for LS-SVM model by using the
formula:

X - Xmin

%0 X e~ X
max — ““min

For ANN and MARS modeling, the actual database has been used.
3.3 Developed model equations
3.3.1 ANN model equation

In the neural network model, Levenberg-Marquartd back-propagation has been used
for minimization of error for both the models. The hyperbolic tangent sigmoid transfer
function for input-hidden layer and linear transfer function for hidden layer-output layer has

been used to construct the model equation which is found to be optimum for both the models.
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The final ANN model equation can be given as follows:

A; =-11.167 a - 13.829 b - 99.4175 C, + 0.00034 CE + 1363.383
A, =3.808a-3.126 b - 7.536 C, - 0.00003331 CE -328.6133
A;=0.03571 a +0.0228 b - 0.3913 C, - 0.000068 CE -1.6421
A,=51.961a +39.188 b + 32.941 C, - 2.336 CE -1.2856
MDD = -0.8841 tanh(A;) + 0.8931 tanh(A,) - 4.8144 tanh(As) - 0.8341 tanh(As) + 20.293
(3.2)
A, =-11.2872 a + 10.0223 b- 2.7313 C, - 0.3716 CE + 28.6707
A,=1.2647 a+1.1810 b - 2.5487 C, - 0.0005 CE - 118.8911
As = -0.0542 a - 0.0574 b + 0.0154 C,, + 0.0149 CE - 37.0904
A, =3.2903a +2.9314 b - 3.6901 C, + 0.0005 CE - 295.7113

OMC = -3.1872 tanh(Ay) + 3.8722 tanh(A,) -26.9176 tanh(As) + 1.4801 tanh(A4) +
11.7996 (3.3)

3.3.2 LS-SVM model equation

For the LS-SVM model, Radial basis kernel function has been used for transformation
of the inputs in the prediction of MDD and OMC. The optimum values of bias, regularization
parameter and with of radial basis function is given below and the values for Lagrange
multiplier for all the inputs have been represented in Figure 3.1 and 3.2:

For prediction of MDD

y 901.8988
b 1.967575
o? 19.42052
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Figure 3.2 Corresponding a-values in the prediction of OMC

3.3.3 MARS model equation

For developing the MARS, 19 and 16 basis functions have been introduced in forward
phase for modeling MDD & OMC respectively and in backward elimination phase, 6 and 5
basis functions have been removed from the MARS model. So, the final MARS contains 13

and 11 basis functions respectively for MDD and OMC. The optimal MARS model is given

below
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Table 3.4 Basis functions of MARS model

Basis MDD oMC

Functions

BF, max(0, C, -5.33) max(0, CE -592)

BF, max (0, 5.33 -C,) max(0, C, -3.29) x max(0, b -2)
BF; max(0, 2700 -CE) max(0, C, -3.29) x max(0, 2 -b)
BF, max (0, b -5) BF, x max(0, C, -3.53)

BFs max(0, 5 -b) BF, x max(0, 3.53 -C,)

BFs BFs x max(0, C, -2.93) max(0, C, -3.29) x max(0, C, -3.64)
BF; BFs x max(0, 2.93 -C,) max(0, C, -3.29) x max(0, 3.64 -C,)
BFg BF; x max(0, b -38) max(0, 3.29 -C,) x max(0, b -2)
BF, BFs x max(0, a -94) max(0, 3.29 -C,) x max(0, 2 -b)
BF1o BFs x max(0, 94 -a) max(0, 3.29 -C,) x max(0, a -95)
BF; BFg x max(0, 2.23 -C,) max(0, 3.29 -C,) x max(0, 95 -a)
BF1, BF, x max(0, C, -4.17)

BFi3 BF, x max(0, 4.17 -C,)

MDD =18.2 + 0.438 BF; - 0.377 BF, - 0.000473 BF3; + 0.0327 BF, + 0.19 BFs - 0.0857 BFs
- 0.766 BF; + 0.0411 BFg + 0.0461 BFg + 0.603 BF1o + 0.173 BF1; - 0.00906 BF1, - 0.0478
BFi3 (3.4)
OMC =13.6 - 0.00131 BF; - 0.0203 BF; - 0.516 BF3 + 0.00271 BF,4 + 21.7 BFs - 0.0304 BF¢
-41.2 BF; + 0.743 BFg - 1.37 BFg + 0.592 BF4q - 0.858 BF1; (3.5)

Then all the models for the prediction of Maximum Dry density (MDD) were
compared as per Root Mean Square Error (RMSE) and Mean Absolute Percentage Error
(MAPE).
3.4 Performance comparison among all the models

The error criteria like MAE, MAPE, RMSE, R and R? for all the models in the
prediction of MDD and OMC are presented in Table 3.5 and 3.6 respectively. The results of
MARS have been compared with ANN and LS-SVM model developed. The comparisons
have been done in terms of Mean Absolute Percentage Error (MAPE), and Root Mean Square
Error (RMSE). Figure 3.7 and 3.8 depict the bar chart of MAPE and RMSE for training
dataset, respectively. It is observed from Figure 3.7 and 3.8 that the developed MARS

outperform ANN and LS-SVM models. MARS does not give a generalizing function for the
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entire dataset, but splits the whole model into linear regions and produces discrete functions

for each of the produced linear area. Researches emphasized that regression equations

obtained by the MARS technique make robust and coherent parameter valuations. Figure 3.5

and 3.6 represents the actual versus predicted value of MDD and OMC respectively and

Figure 3.3 and 3.4 presents the performance of MARS model in the prediction of MDD and

OMC respectively.

Table 3.5 Results of Different Models for Prediction of MDD of sandy soil

Model Correlation  Coefficient of
ode
Model MAE RMSE MAPE coefficient determination
Inputs )
(R) (RY)
Mujtaba et .
C. CE Regression 0.432 0.512 2.46 0.9 0.81
al. (2013)
Training 0.436 0.52 2.48 0.9 0.81
ANN
Testing 0.4 0.49 2.31 0.9 0.81
Training 0.41 0.494 2.35 0.911 0.829
Model | C. CE SVM
Testing 0.45 0.54 2.526 0.89 0.767
Training 0.35 0.43 2 0.936 0.875
MARS
Testing 0.353 0.42 2.2 0.923 0.853
Training 0.335 0.43 1.89 0.935 0.872
ANN
Testing 0.35 0.43 2.04 0.926 0.858
a, b, C, Training 0.322 0.4 1.845 0.934 0.871
Model 11 SVM
CE Testing 0.415 0.486 2.38 0.928 0.853
Training 0.32 0.39 1.82 0.94 0.887
MARS
Testing 0.33 0.4 1.91 0.937 0.877
Training 0.35 0.44 2 0.935 0.87
ANN
Testing 0.39 0.47 2.24 0.92 0.815
Model a, b, Dsg, SUM Training 0.36 0.45 2.06 0.92 0.848
I C.,, CE Testing 0.369 0.462 2.11 0.93 0.86
Training 0.314 0.4 1.79 0.93 0.877
MARS
Testing 0.3 0.41 1.72 0.94 0.89

a: Sand (%), b : Fines (%)

30



Table 3.6 Results of Different Models for Prediction of OMC of sandy soil

Model Correlation  Coefficient of
Model Inputs MAE RMSE MAPE  coefficient determination
(R) R
Mujtaba
et al. C,CE Regression 0.963 1.21 7.85 0.83 0.69
(2013)
ANN Training 0.91 1.18 7.62 0.855 0.71
Testing 1.05 1.2 8.9 0.857 0.687
Training 0.94 1.17 7.72 0.84 0.705
Modell C, CE SVM )
Testing 0.931 1.174 7.44 0.85 0.719
Training 0.81 0.98 6.75 0.89 0.79
MARS
Testing 0.756 0.93 6.24 0.91 0.825
ANN Training 0.856 1.08 6.93 0.874 0.76
Testing 0.851 1.05 7.18 0.871 0.745
Trainin 0.865 1.09 7.06 0.867 0.751
Model 11 & P Co sum g
CE Testing 0.91 1.12 7.606 0.855 0.72
Training 0.74 0.94 6.17 0.903 0.815
MARS
Testing 0.72 0.95 5.97 0.896 0.8
ANN Training  0.845 1.05 6.92 0.88 0.77
Testing 0.82 1.01 6.93 0.879 0.764
Model a, b, D, SUM Training 0.83 1.08 6.71 0.87 0.758
11 C., CE Testing 0.859 1.05 7.11 0.868 0.753
Training 0.75 0.934 6.15 0.907 0.822
MARS
Testing 0.77 0.93 6.52 0.9 0.8
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Figure 3.8 Comparison of different models in terms of (a) MAPE and (b) RMSE for the
prediction of OMC
It is seen that model II and 111 gives better correlation as reflected by higher R? values

for both MDD and OMC as compared to model I. When compared in terms of over fitting
ratio (i.e. ratio of RMSE for testing and training data), the value of over fitting ratio of model
Il is very closer to 1. Model Il has an advantage of having 4 inputs. The basis functions of
model are presented in Table 3.5.The MARS model equations for the prediction of MDD and
OMC are given by Equations 10 & 11.

3.5 Sensitivity Analysis

Iman and Hora (1990) have investigated the performance of a sensitivity measure
based on the percentage variance in f explained by any input variable X;. This technique is

known as measure of importance, and its use is associated with the estimation of the quantity

SiZVar)\(i/ [E((: |) Xi)] (3.6)

where E(f|X;) indicates the expectation value of f when the i variable is fixed to the value
Xi, Var[.]stands for the variance of the argument over all the possible values of X; and

Var(f) is the unconditional (total) variance of f. In the present paper, the outcomes in the f are
observed by keeping mean of the X; value fixed for other arguments varying. From the

sensitivity analysis, it is found that the value of sand and fines are more sensitive towards the
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evaluation of MDD (i.e. 89% and 5% respectively) and OMC (25% and 57% respectively)
followed by C, and compaction energy. The sensitivity of all the input variables is presented
in Figure 3.9. Hence for the prediction, the values of sand (%) and fines (%) have to be

determined very precisely in the laboratory.

Sensitivity of parameters
100
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80
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60
50
40
30
20
10

E MDD

£ omC

Sand(%) Fines(%) Cu CE

Figure 3.9 Sensitivity of the parameters in prediction of MDD and OMC

3.6 Discussion

The performances of the developed models are better than other models and gives
very promising result in prediction. In the present study, model equations has been developed
and compared with the regression model given by Mujtaba et al. (2013). Based on the
developed MARS model, the following conclusion may be drawn:
MARS gives a simplified equation for prediction of MDD and OMC.
. The predictability of MARS equation is found to be better than the empirical equations.
Based on sensitivity analysis, it is observed that sand (%) affects MDD and both sand and

fines (%) affects OMC.
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CHAPTER 4
PREDICTION OF RELATIVE DENSITY OF CLEAN SAND

4.1 Introduction

Field compaction of sands usually involves different equipments with the compaction
energy varying significantly. The relative density is the better indicator for specifying the
compaction of granular soil. If the relative density can be correlated simply by any index
property of the granular soil, it can be more useful in the field. The relative density is defined
in terms of voids ratio and the minimum and maximum voids ratio depend on the mean grain
size. Therefore, the effect of mean grain size (Dso) on the relative density of sand has been
studied at different compaction energies (E). Relative density of sand is greatly affected by
particle shapes, sizes and their packing.

Several publications have appeared in recent years documenting the prediction of
compaction parameters of coarse-grained soils (Korfiatis and Manikopoulos 1982; Omar et
al. 2003). Very limited researches have been done to predict the relative density of sand.
Present work is an attempt to develop a single empirical correlation for relative density of
clean sands. In this paper a model is developed to predict the relative density using LS-SVM
which proves to be very effective. The empirical correlation given by Patra et al. (2010) is
given by

D, =AD3 (4.1)
where A and B are the functions of compaction energy. A =0.216 InE - 0.85and B = —
0.03 In E + 0.306.
4.2 Selection of the input parameters

The maximum, minimum, average, and standard deviation for the data set used for

modeling are shown in Table 4.1. The successful application of a method depends upon the

identification of suitable input parameters. The selection of the input parameters is based on
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the correlation coefficient (R) with output. This is shown in Table 4.2. The more the absolute
value of correlation coefficient is close to value 1, the stronger will be the linear correlation
while closer to 0 will be very poor correlation between the tested variables. From Table 4.2, it
IS observed that Gs, C,, Dsp and E are the important input parameters for predicting D, having
cross-correlation values of 0.232, -0.188, -0.196 and 0.846 respectively. Out of these
variables, two parameters Dsy and E are considered for development of model for direct
comparison with the regression model reported by Patra et al. (2010). The training dataset has
been reported in Table 4.3.

Table 4.3 statistical values of parameters

Gs Cy Dso E Dr
Mean 2.633 3.606 0.880 1240 65.7
Standard Deviation 0.061 2.233 0.614 913 18.1
Minimum 2535 1420 0340 360 33.7
Maximum 2.764 9.830 2.600 2700 97.7

Table 4.4 cross-correlation between different parameters

G, Cu Dso E Dy
Gs 1.000
Cu -0.718 1.000
Dsp -0.682 0.895 1.000
E 0.000 0.000 0.000 1.000
D, 0.232 -0.188 -0.196 0.846 1.000

4.3 Database preprocessing
The database has been normalized between 0 to 1 for LS-SVM model by using the
formula:

X - Xmin
Xmax - Xmin
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Table 4.3 Training database considered for the model development

For ANN and MARS modeling, the actual database has been used.

SI.No. | G Cy Dso E D, Va‘l”L;ES
1 2662 | 1.88 | 039 | 360 | 42.76 | -15.05
2 2726 | 144 | 035 | 600 | 67.88 | -5.86
3 2668 | 161 | 035 | 360 | 434 | -30.37
4 2634 | 182 | 054 | 360 | 42.81 | 29.96
5 2662 | 1.88 | 039 | 2700 | 95.16 | 64.19
6 2564 | 4.39 1.1 600 | 54.22 | -22.54
7 2556 | 3.93 08 360 | 3597 | -0.67
8 2705 | 157 | 035 | 2700 | 9453 | 17.76
9 2726 | 144 | 035 | 2700 | 87.3 |-106.97
10 | 2581 | 455 1 600 | 5457 | -17.66
11 | 2717 | 209 | 055 | 2700 | 80.61 | -85.23
12 | 2702 | 177 | 036 | 360 | 4585 | 21.55
13 | 2692 | 1.74 | 036 | 1300 | 82.01 | 16.25
14 | 258 | 727 | 195 | 2700 | 81.96 | 16.56
15 | 2702 | 177 | 036 | 600 | 69.67 | 3858
16 | 2652 | 1.94 | 058 | 2700 | 80.01 | -82.80
17 | 2556 | 3.93 08 2700 | 77.88 | -38.84
18 | 2556 | 4.68 | 125 | 2700 | 78.65 | -25.07
19 | 2652 | 1.94 | 058 | 600 | 64.16 | 38.70
20 | 2697 | 153 | 041 | 360 | 41.97 | -37.25
21 | 2656 | 165 | 036 | 1300 | 83.83 | 45.68
22 | 2663 | 177 | 036 | 360 | 41.22 | -55.67
23 | 2764 | 154 | 0375 | 2700 | 89.09 | -58.06
24 | 2564 | 4.39 11 2700 | 77.08 | -43.94
25 | 2696 | 1.74 | 035 | 600 | 68.83 | 19.36
26 | 2578 | 9.83 24 | 2700 | 84.19 | 2.06
27 | 2.554 4 125 | 1300 | 69.02 | 10.00
28 | 2649 | 205 | 035 | 360 | 42.79 | -18.98
29 | 2566 | 4.38 1.2 1300 | 71.26 | 25.83
30 | 2627 | 229 0.7 1300 | 7297 | 2.63
31 | 2589 | 7.33 17 600 | 58.22 | 8.20
32 | 2655 | 213 | 058 | 2700 | 88.32 | 58.68
33 | 2554 4 125 | 600 | 533 | -26.48
34 | 2717 | 209 | 055 | 600 | 589 | -57.67
35 | 2711 | 167 | 038 | 2700 | 91.45 | -11.39
36 | 2566 | 4.38 12 360 | 38.55 | 45.03
37 | 2688 | 2.26 0.6 360 | 37.34 | -31.20
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38 2.711 1.67 0.38 1300 80.42 -2.96
39 2.592 7.41 1.6 360 37.43 8.57
40 2.575 3.27 0.49 2700 87.2 39.14
41 2.59 6.67 11 1300 7532 | 14.18
42 2.729 1.44 0.365 600 69.82 | 33.23
43 2.589 7.33 1.7 2700 80.88 | -11.69
44 2.729 1.44 0.365 2700 94.73 | 26.69
45 2.697 2.05 0.35 1300 82.11 | 19.47
46 2.574 4.39 1.25 2700 78.29 | -20.52
47 2.684 2.05 0.38 600 66.69 8.40
48 2.697 1.53 0.41 600 63.23 | -54.61
49 2.586 7.27 1.95 1300 73.5 -3.48
50 2.576 4.44 0.78 600 54.66 | -16.34
51 2.535 3.8 1.3 2700 76.54 | -23.30
52 2.574 5 11 1300 76.52 | 83.90
53 2.702 1.77 0.36 1300 74.07 | -115.79
54 2.662 1.88 0.39 600 63.34 | -50.83
55 2.584 8.08 1.4 600 59.96 6.57
56 2.711 1.67 0.38 600 65.59 | -24.61
57 2.707 1.61 0.34 360 46.17 | 12.38
58 2.59 4.55 0.93 1300 68.44 | -40.51
59 2.649 2.05 0.35 600 63.75 | -51.64
60 2.668 1.61 0.35 600 63.92 | -67.08
61 2.576 4.44 0.78 360 36.1 0.53
62 2.668 1.61 0.35 2700 96.45 | 51.18
63 2.663 1.77 0.36 1300 79.39 | -27.07
64 2.556 3.93 0.8 1300 69.5 -25.66
65 2.679 1.8 0.35 600 65.86 | -27.83
66 2.584 7.37 2.4 1300 73.63 | 11.90
67 2.655 2.13 0.58 600 63.82 | 36.01
68 2.554 4 1.25 360 3431 | -15.62
69 2.649 2.05 0.35 2700 89.46 | -46.50
70 2.574 5 11 600 61.26 | 90.84
71 2.584 7.37 2.4 360 36.27 | 11.38
72 2.696 1.74 0.35 360 45.14 4.93
73 2.679 1.8 0.35 360 43.42 | -20.82
74 2.576 4.44 0.78 1300 69.59 | -30.43
75 2.601 3 0.41 360 39.76 -9.04
76 2.589 6.67 2.6 2700 81.67 -0.36
77 2.592 7.41 1.6 1300 73.16 | -21.56
78 2.566 4.38 1.2 2700 86.09 | 108.90
79 2.592 7.41 1.6 2700 80.63 | -22.21
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80 2.764 1.54 0.375 1300 78.33 | -40.68
81 2.726 1.42 0.75 2700 79.84 0.00
82 2.581 4.24 1 600 53.14 | -41.74
83 2.652 1.94 0.58 1300 74.83 | -13.47
84 2.652 1.94 0.58 360 41.58 | 24.94
85 2.584 7.37 2.4 2700 82.97 | 17.12
86 2.607 4.86 14 1300 71.52 9.71
87 2.589 6.67 2.6 360 36.48 -4.96
88 2.617 7.69 1.15 360 36.9 -11.93
89 2.578 9.83 2.4 1300 71.23 1.73
90 2.627 2.29 0.7 360 41.03 | 54.77
91 2.656 1.65 0.36 360 44.48 -7.03
92 2.537 3.66 1.3 360 34.49 -1.94
93 2.586 1.27 1.95 360 3494 | -15.77
94 2.729 1.44 0.365 1300 80.76 -4.44
95 2.587 7.37 2.4 2700 81 -15.73
96 2.587 7.37 2.4 600 56.15 | -16.62
97 2.7 1.85 0.34 2700 9534 | 36.21
98 2.662 1.88 0.39 1300 83.03 | 47.18
99 2.584 7.37 2.4 600 58.36 | 20.24
100 2.59 4.55 0.93 2700 77.64 | -43.29
101 2.581 4.55 1 1300 71.28 | 10.47
102 2.697 2.05 0.35 600 69.91 | 51.10
103 2.607 4.86 1.4 2700 77.86 | -41.76
104 2.627 2.29 0.7 600 62.49 | 56.43
105 2.564 4.39 11 1300 68.75 | -21.03
106 2.711 1.67 0.38 360 43.57 | -14.51
107 2.592 7.41 1.6 600 57.53 -9.63
108 2.688 2.26 0.6 600 60.57 -8.75
109 2.68 1.57 0.35 2700 96.78 | 55.28
110 2.535 3.8 1.3 1300 66.58 | -16.76
111 2.566 4.38 1.2 600 59.56 | 68.29
112 2.617 7.69 1.15 2700 84.36 | 10.56
113 2.589 6.67 2.6 1300 71.54 -6.45
114 2.693 1.65 0.35 600 69.94 | 34.65
115 2.663 1.77 0.36 2700 91.75 | -14.95
116 2.627 2.29 0.7 2700 85.61 | 67.05
117 2.697 2.05 0.35 2700 94.37 | 35.39
118 2.764 1.54 0.375 600 68.93 | 25.26
119 2.693 1.65 0.35 1300 81.88 9.14
120 2.584 8.08 1.4 2700 82.83 1.55
121 2.696 1.74 0.35 2700 94.4 21.93
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122 2.729 1.44 0.365 360 46.66 | 21.24
123 2.68 1.57 0.35 360 48.66 | 55.43
124 2.601 3 0.41 2700 85.27 | -35.31
125 2.586 1.27 1.95 600 56.36 -9.90
126 2.656 1.65 0.36 600 66.78 | -13.84
127 2.693 1.65 0.35 2700 93.4 1.77

128 2.578 9.83 2.4 360 35.19 -1.39

129 2.655 2.13 0.58 1300 7756 | 34.00
130 2.7 1.85 0.34 600 69.67 | 33.85
131 2.684 2.05 0.38 1300 81.85 | 26.77
132 2.68 1.57 0.35 1300 83.86 | 41.58
133 2.556 4.68 1.25 1300 68.57 | -32.33
134 2.574 5 11 2700 87.3 | 107.98
135 2.634 1.82 0.54 600 64.39 | 25.15
136 2.557 5.56 1.25 2700 81.13 -9.86

137 2.668 1.61 0.35 1300 8243 | 17.99
138 2.707 1.61 0.34 2700 97.72 | 66.04
139 2.554 4 1.25 2700 80.28 | 28.38
140 2.726 1.42 0.75 600 54.63 | -45.71
141 2.684 2.05 0.38 360 44.2 13.78
142 2.557 5.56 1.25 600 54.26 | -36.35
143 2.726 1.42 0.75 360 36.15 | -29.39
144 2.581 4.55 1 360 34.9 -18.90
145 2.679 1.8 0.35 1300 83.33 | 35.08
146 2.556 4.68 1.25 600 5453 | -19.98
147 2.575 3.27 0.49 600 59.18 | -17.12
148 2.535 3.8 1.3 360 34.43 -7.07

149 2.697 2.05 0.35 360 46.98 | 50.90
150 2.59 6.67 11 360 38.66 | 17.79
151 2.589 6.67 2.6 600 58.29 0.70

152 2.702 1.77 0.36 2700 88.47 | -69.65
153 2.726 1.44 0.35 1300 77.94 | -57.56
154 2.574 4.39 1.25 600 55.91 8.23

155 2.68 1.57 0.35 600 70.3 38.08
156 2.59 4.55 0.93 360 35 -17.10
157 2.764 1.54 0.375 360 4573 | 13.83
158 2.576 4.44 0.78 2700 79.15 | -22.98
159 2.697 1.53 0.41 1300 79.77 -2.41

160 2.717 2.09 0.55 360 38.72 | -26.42
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4.4 Different developed model equations
The different model equations developed from ANN, SVM and MARS are presented
in the next segments.

4.4.1 ANN Model equation

In the neural network model, Levenberg-Marquartd back-propagation has been used
for minimization of error. The hyperbolic tangent sigmoid transfer function for input-hidden
layer and linear transfer function for hidden layer-output layer has been used to construct the
model equation. The final ANN model equation can be given as follows:

A; =0.02581 C; —0.0149 Dsp — 0.0052 E + 2.5603
A;=-0.1201 C, + 0.0784 Dso —0.0005664 E + 1.608
Az =-9.4862 C, + 1.7756 Dso — 0.000566 E + 24.5579
A4 =0.1203 C, + 3.5595 D5y — 0.0002435 E — 1.0608

D, = 69.4104 — 18.4647 tanh(A;) — 12.1131 tanh(A,) + 1.4698 tanh(As) — 11.4156 tanh(As)
(4.2)

4.4.2 LS-SVM Model equation

For the LS-SVM model, Radial basis kernel function has been used for transformation
of the inputs. The optimum values of bias, regularization parameter and with of radial basis
function is given below and the values for Lagrange multiplier for all the inputs has been
represented in Figure 4.1:

b =-0.0896, y = 299.0974, 6° = 3.2817
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Figure 4.1 Corresponding a-value for the LS-SVM model for prediction of D,
4.4.3 MARS model equation

For developing the MARS, 13 basis functions have been introduced in forward phase
and in backward elimination phase, 4 basis functions have been removed from the MARS
model. So, the final MARS contains 9 basis functions. The optimal MARS model is given
below

BF1 = max(0, E -600)
BF, = max(0, 600 -E)
BF3; = max(0, 0.75 —Dsp)
BF, = BF1 x max(0, 2700 -E)
BFs =max(0, 3-C,)
BFs = BF; x max(0, 0.41 - Ds)
BF; = BFs x max(0, C, -2.26)
BFs = BFs x max(0, 2.26 - C,)
BFg =max(0,5-C,)
D, =58.1 +0.0114xBF; -0.0887xBF;, +26.7xBF; +6.14e-006xBF, +7.83%BFs

+0.0247xBFs  +258%BF7 -2.64xBFg -2.98xBFq (4.3)
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4.5 Result comparison and discussion

The statistical performances i.e. Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), Correlation Coefficient (R) and coefficient of efficiency (R?) for the model

are presented in Table 4.4.

Table 4.4 Results of Different Models for Prediction of Relative density of clean sand

Model mggi RMSE | MAPE | (R) | (R | ©OVerniting
Pa(t;:f;)a" Dy, E Regression 523 | 738 | 96 0.92
ining | 245 | 328 | 099 | 098
ANN I;:ltl.nr:gg 254 | 307 | 099 | 0.98 1.04
ot | o | o [l s 3 L Tom |
ini 227 | 278 | 0992 | 0.984
MARS I:tr::;g 221 | 294 | 0993 | 0985 037
ining | 231 | 29 | 0992 | 0.984
ANN I;:tl.r::gg 21 | 248 | 0993 | 0985 091
Model Il | C,Ds, E | SVM I:t'lnn'gg 2'227 22'.678 8:33421 8:222 0.88
ini 221 | 264 | 0992 | 0985
MARS I:Itr::.:g 213 | 287 | 0993 | 0.985 0-96
ini 23 | 29 | 099 | 0983
ANN I;itl.nr:;g 215 | 266 | 0993 | 0.983 093
Model 1t | S+CaPor | svm | e e T s |
ini 22 | 28 | 0993 | 0986
MARS IZ'::;g 218 | 25 | 0992 | 0981 0-99

The model was compared in terms of correlation coefficient (R) and coefficient of

efficiency (R?) to access the performance of models. The value of R has been determined by

using the following equation:

n(Zy.y,) (2Zy)(2y,)

JInZy? (2920 Sy, (2y,)%

where y = observed value, y, = predicted value, n = number of observations

Smith (1986) suggested that the value of R lies between 0 to 1. He suggested some
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guidelines for deciding the performance of the model. If |R| > 0.8: a strong correlation exists,
0.2 < |R| < 0.8: correlation exists and [R| < 0.2: a weak correlation exists. When the value of
|R| is greater than 0.9, then a very strong correlation exists between the variables. From Table
4.3, it was observed that the value of |R| is nearly equal to 0.99; hence it shows a very strong

relation between inputs and outputs.
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Figure 4.2 Comparison of MAPE of different models in the prediction of D,
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Figure 4.3 Comparison of RMSE of different models in the prediction of D,
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Figure 4.4 Comparison between experimental and predicted value of D,
(Patra et al., 2010).

The error criteria MAPE and RMSE has been shown in Figure 4.2 and 4.3 for all the
models and it can be observed that the developed LS-SVM model shows good correlation in
both training having three inputs which is comparatively the “better model” for the prediction
of D, as compared to other models. The optimum values of y, o and b presented in Section
4.3.2 and the Lagrange multipliers are shown in Figure 4.1. By using these optimum values
and o, the relative density can be predicted. The comparison of experimental and predicted
value of D, by regression model is shown in Figure 4.4 and the performance of the LS-SVM
model in training and testing is shown in Figure 4.5 for present study. The variation of actual

and the predicted value have been shown in Figure 4.6.
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Figure 4.5 Performance of the LS-SVM model in training and testing (Present study).
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Figure 4.6 Variation of the values predicted by LS-SVM model and observed values.
4.6 Sensitivity Analysis
The details of the sensitivity analysis have been given in section 3.5.2. From the
sensitivity analysis, it is found that the mean grain size of the C, (50%) is more sensitive

towards the evaluation of Relative density compared to the mean grain size (42%),

47



compaction energy (8%). Hence for the prediction, the value of C, and mean grain size has to

be determined very precisely. The sensitivity of different parameters has been shown in

Figure 4.7 Sensitivity of the parameters

4.7 Discussion

This study presents an efficient approach for the prediction of relative density using
ANN LS-SVM and MARS. The proposed SVM model has shown good agreement with
experimental results as corresponding correlation coefficients were found to be 0.99. The
proposed model is valid for the ranges of the experimental database used for the modeling.
To obtain the main effects of each variable on relative density, sensitivity analysis has been
performed. As a result, coefficient of uniformity and mean diameter of the sand particles
affect the model significantly. The proposed model and formulation for relative density is

quite accurate and hence practically applicable in the field.
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CHAPTER 5
PREDICTION OF COMPRESSION INDEX OF CLAY
5.1 Introduction

Settlement due to expulsion of pore water is of engineering importance. Due to
increase in stress caused by the construction of foundations or other loads, the soil
compresses. The various causes of compression are deformation of soil particles, relocation
of soil particles, and expulsion of water or air from the void spaces. To calculate settlement
in clayey soil layers, laboratory consolidation tests which depict one-dimensional
compression behavior need to be performed on samples taken as representative.

As the oedometer test in laboratory takes a much longer time than simpler
index property tests various attempts have been made to estimate this index to obtain an
initial estimate and also to cross check the results of the consolidation test. Empirical
formulas relating various parameters to the compression index have been presented by
many researchers (Azzouz et al., 1976; Koppula, 1981; Herrero, 1980; Park and Lee,
2011; Nishida, 1956; Cozzolino, 1961; Sower, 1970; Ahadiyan et al., 2008; Al-Khafaji
and Andersland, 1992; Yoon and Kim, 2006; Ozer et al., 2008). However, due to fact that
the index is affected by multiple parameters and highly non-linear, simple regression
analysis is not sufficient and hence non-linear regression such as ANN, SVM and MARS are
more effective. The advantage of these techniques is the ability of learning complex
relationships between multi-dimensional data and has been applied in a number of
geotechnical problems where mathematical models sustain simplifications, lack of robustness
or are not available at all.

The data set (Kalantary, 2012) consists of consolidation test data for soil samples
collected from 125 construction sites in province of Mazandaran, Iran. Different models have

been developed using this set of data. The results from the developed model have been
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compared with the results obtained by using various empirical equations available in
literature. It is found that the ANN model gives better prediction and finally the model
equation is presented.
5.2 Data base selection

In the current paper, 391 experimental results of compression index have been used. The
data set is subdivided into two groups as training data set (290 data) and testing data set (101
data). Liquid Limit (LL), Plasticity index (PI), natural water content (w,) and initial void ratio
(eo) are considered as input and compression index (C.) as output parameter. From the cross-
correlation matrix (Table 5.1), it is observed that the above inputs w, and ey, with cross-
correlation values of 0.75 and 0.82 respectively affect C. more than the other input
parameters (i.e. LL and PI). Hence three models (considering two inputs, three inputs and
four inputs as shown in Table 5.3) are selected for the prediction of compression index. The
statistical values of all the input and output parameters are given in Table 5.2.

Table 5.1 cross-correlation matrix for all data

LL Pl Wh €o Ce

LL 1.00

Pl 097 1.00

Wn 033 0.28 1.00

€o 031 026 090 1.00

Cec 040 036 075 0.82 1

Table 5.2 statistical value of the parameters
LL Pl Wh €o Cc
Mean 39.8 1858 28.61 0.767 0.206
Standard
Deviation 9.89 857 7.79 0.176  0.0774
Minimum 24 3 10.2 0.357 0.05
Maximum 81 50 70 1.882 0.628
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5.3 Database preprocessing
The database has been normalized between 0 to 1 for LS-SVM model by using the

formula:

X =X
max — Mmin

For ANN and MARS modeling, the actual database has been used.

Table 5.3 Database considered for modeling for training.

Iﬁ(l).. LL | PL w € C. vaTl;es NS(I) LL | PL] W €o C. vaTl;es
1 31 | 12 | 245 | 0.748 | 0.266 | 48.19 151 | 44 | 22 | 28.8 | 0.75 | 0.209 5.83
2 44 | 21 | 145 | 0.476 | 0.126 | 0.96 152 | 56 | 36 | 20.2 | 0.498 | 0.169 | 19.04
3 42 | 21 | 20.5 | 0.601 | 0.229 | 48.48 153 | 32 | 12 | 21.6 | 0.665 | 0.166 | -0.41
4 34 | 13 | 20.5 | 0.565 | 0.076 | -37.75 154 | 47 | 24 | 37.5| 0915 | 0.29 18.36
5 29 | 7 | 293 | 0.795| 0.186 | -5.10 155 | 44 | 23 | 10.2 | 0.357 | 0.08 | -23.58
6 35 | 16 | 25.6 | 0.803 | 0.203 | -13.18 156 | 58 | 36 | 34 | 0.867 | 0.196 | -47.69
7 29 8 20.5 | 0.717 | 0.146 | -21.72 157 | 29 | 11 | 24.7| 0.71 | 0.19 8.13
8 43 | 21 | 17.2 | 0.73 | 0.206 | -7.17 158 | 32 | 12 | 17.7 | 0.74 | 0.159 | -31.45
9 41 | 20 | 35.3 | 0.909 | 0.226 | -18.01 159 | 35 | 13 | 30.8|0.825 | 0.2 -8.06
10 | 31 | 10 | 12.7 | 0.63 | 0.236 | 40.86 160 | 52 | 28 | 17.6 | 0.615 | 0.21 3181
11 | 62 | 34 | 36.5 | 0.959 | 0.375 | 43.02 161 | 34 | 16 | 27.6 | 0.738 | 0.189 | -3.19
12 | 31 | 12 | 26.1 | 0.778 | 0.189 | -8.89 162 | 46 | 25 | 23.8 | 0.647 | 0.123 | -32.44
13 | 33 | 16 34 ] 0.894 | 0.329 | 55.46 163 | 43 | 22 | 31.1 | 0.964 | 0.365 | 51.02
14 | 43 | 20 | 28.1 | 0.719 | 0.156 | -18.12 164 | 53 | 35| 23.1|0.642 | 0.169 | -8.04
15 | 37 | 21 | 16.6 | 0.507 | 0.226 | 53.92 165 | 36 | 16 | 31.8 | 0.831 | 0.206 | -9.89
16 | 52 | 28 | 28.9 | 0.806 | 0.28 | 33.59 166 | 36 | 20 | 20 | 0.562 | 0.163 6.28
17 | 41 | 18 | 27.1 | 0.666 | 0.116 | -29.36 167 | 39 | 20 | 32.1 | 0.823 | 0.236 6.54
18 | 31 | 12 | 239 | 0.621 | 0.156 | 5.86 168 | 34 | 13 | 18.7 | 0.711 | 0.22 17.73
19 | 35 | 13 | 35.3 | 0.841 | 0.256 | 27.58 169 | 28 5 1308|0751 0173 | -2.21
20 | 40 | 21 | 30.9 | 0.926 | 0.379 | 70.88 170 | 45 | 21 | 234 | 0.697 | 0.176 | -3.92
21 [ 30| 8 | 239 | 0.605| 0.133| 0.40 171 | 52 | 29 | 70 | 1.882 | 0.54 1.21
22 | 37 | 15| 30.8 | 0.784 | 0.199 | 0.02 172 | 43 | 21 | 22.1 | 0.643 | 0.203 | 24.19
23 | 51 | 25| 19.2 | 0.586 | 0.186 | 27.75 173 | 28 7 | 228 | 0.619 | 0.153 9.43
24 | 31 | 11 | 25.3 | 0.723 | 0.169 | -6.89 174 | 49 | 25 | 39.6 | 0.891 | 0.26 241
25 | 39 | 21 | 25.3 | 0.647 | 0.259 | 58.58 175 | 29 | 11 | 29.7 | 0.778 | 0.196 | -0.90
26 | 34 | 12 | 195 | 0.609 | 0.189 | 27.19 176 | 34 | 12 | 28.1 | 0.824 | 0.269 | 36.67
27 | 40 | 18 | 40.7 | 1.045 | 0.259 | -21.46 177 | 33 9 | 295 0.784 | 0.143 | -30.96
28 | 26 | 6 | 248 | 0.704 | 0.226 | 41.06 178 | 27 9 20 0.63 | 0.193 | 26.24
29 | 46 | 25 | 30.3 | 0.775 | 0.173 | -28.37 179 | 40 | 18 | 25.2 | 0.588 | 0.16 16.21
30 | 52 | 28 | 19.5 | 0.517 | 0.14 7.17 180 | 29 7 | 3140839 | 015 | -39.57
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31 | 62 | 34| 37.2 | 0937 | 0.345 | 27.61 181 | 37 | 16 | 27.6 | 0.748 | 0.236 | 28.75
32 | 34 | 13| 27.2 | 0.759 | 0.163 | -19.71 182 | 44 | 24 | 21.9 | 0.686 | 0.166 | -17.55
33 | 34 | 13| 22 |0.675]|0.216 | 30.61 183 | 53 | 28 | 23 | 0.608 | 0.16 5.27

34 | 67 | 43 | 39.1 | 0.939 | 0.36 | 30.08 184 | 48 | 28 | 32.4 | 0.85 | 0.249 | -1.39
35 | 35|15 | 36.6 | 0.883 | 0.246 | 7.84 185 | 39 | 20 | 28.5 | 0.653 | 0.186 | 14.30
36 | 53 | 28 | 22.4 | 0.583 | 0.169 | 16.50 186 | 36 | 14 | 27.4 | 0.777 | 0.229 | 19.33
37 | 37 | 15| 33 0.88 | 0.209 | -16.80 187 | 44 | 24 | 27 | 0.629 | 0.166 | 2.61

38 | 62 | 44 | 384 | 1.014 | 0.326 | -4.13 188 | 25 | 5 | 225 0.595|0.183 | 34.81
39 | 39 | 21| 216 | 0552 | 0.11 | -22.06 189 | 43 | 25 | 25.1 | 0.708 | 0.156 | -30.11
40 | 42 | 20 | 25.2 | 0.645 | 0.159 | -0.69 190 | 32 | 11 | 28.8 | 0.703 | 0.206 | 26.58
41 | 33 | 8 | 27.2 | 0.881 | 0.266 | 26.02 191 | 36 | 17 | 28.8 | 0.759 | 0.21 6.48

42 | 46 | 24 | 33.6 | 0.847 | 0.296 | 38.12 192 | 29 | 8 | 26.7 | 0.663 | 0.12 | -20.25
43 | 36 | 19 | 27.2 | 0.678 | 0.153 | -16.91 193 | 34 | 14 | 246 | 0.676 | 0.226 | 38.62
44 | 43 | 24 | 29.8 | 0.789 | 0.22 | -2.39 194 | 58 | 33 |36.2|0.894| 0.32 | 27.09
45 | 32 | 11 | 204 | 0.699 | 0.173 | -4.21 195 | 53 | 27 | 39.8 | 0.97 | 0.252 | -29.34
46 | 37 | 16 | 23.5 | 0.596 | 0.05 | -60.57 196 | 30 | 11 | 26.1 | 0.752 | 0.183 | -4.82
47 | 62 | 36 | 34.4 | 0.806 | 0.312 | 43.79 197 | 30 | 8 | 20.3 | 0.546 | 0.149 | 19.36
48 | 29 | 9 | 26.1 | 0.786 | 0.209 | 7.52 198 | 36 | 17 | 26.5 | 0.676 | 0.159 | -8.19
49 | 49 | 29 | 32.1 | 0.805 | 0.233 | -1.23 199 | 50 | 29 | 31.2 | 0.74 | 0.259 | 33.68
50 | 37 | 17 | 28.3 | 0.734 | 0.159 | -20.19 200 | 36 | 14 | 33.7 | 0.844 | 0.203 | -9.88
51 | 31 |12 | 229 | 0.628 | 0.143 | -5.69 201 | 43 | 19 | 29.8 | 0.828 | 0.186 | -24.93
52 | 45| 22 | 115 | 0.537 | 0.13 | -16.00 202 | 39 | 21 |21.6|0.552 | 0.11 | -22.06
53 | 35 | 13 | 23.2 | 0.652 | 0.206 | 32.81 203 | 44 | 26 | 32.1 | 0.761 | 0.199 | -10.71
54 | 35|16 | 25.2 | 0.663 | 0.14 | -17.94 204 | 40 | 21 | 23.7|0.585 | 0.22 | 47.70
55 | 40 | 19 | 20 | 0.605 | 0.196 | 26.18 205 | 27 | 8 | 253 | 0.661 | 0.15 | 1.73

56 | 34 | 10 | 42.1 | 1.013 | 0.355 | 53.34 206 | 42 | 20 | 30.3 | 0.755 | 0.193 | -2.40
57 | 34 | 14 | 221 | 0573 | 0.123 | -7.93 207 | 41 | 24 | 164 | 0.605 | 0.173 | -5.29
58 | 41 | 20 | 21.3 | 0.699 | 0.14 | -35.28 208 | 34 | 13 | 422 | 1.161 | 0.219 | -67.95
59 | 46 | 24 | 26.2 | 0.666 | 0.126 | -31.01 209 | 34 | 12 | 25.2 | 0.675 | 0.229 | 45.88
60 | 25 | 5 | 48.7 | 1.222 | 041 | 24.47 210 | 52 | 31 | 45.7|1.132 | 0.379 | 10.71
61 | 47 | 29 | 314 | 0.826 | 0.179 | -44.72 211 | 45 | 22 | 27.1|0.809 | 0.22 | -4.65
62 | 29 | 9 | 284 | 0.777 | 0.14 | -34.82 212 | 34 | 12 | 24.1 | 0.668 | 0.106 | -35.58
63 | 45 | 26 | 34.5 | 0.808 | 0.319 | 59.15 213 | 45 | 22 | 27110652 | 0.18 | 12.61
64 | 39 | 17 | 41.1 | 0.993 | 0.259 | -8.31 214 | 33 |12 | 28 | 0.703 | 0.103 | -43.34
65 | 46 | 23 | 185 | 0.611 | 0.173 | 7.75 215 | 49 | 28 | 344 | 0.864 | 0.223 | -21.23
66 | 37 | 15| 29.6 | 0.761 | 0.173 | -12.26 216 | 53 [ 29 | 39 | 0.98 | 0.26 | -29.57
67 | 29 255 | 0.643 | 0.126 | -14.02 217 | 28 | 9 | 195 0.73 | 0.113 | -50.62
68 | 29 247 | 0.763 | 0.259 | 47.18 218 | 57 | 34| 35 | 0.88 | 0.256 | -11.04
69 | 36 | 16 | 225 | 0.599 | 0.149 | 1.81 219 | 51 | 32| 32 | 0829 | 0.31 | 40.25
70 | 36 | 13 | 259 | 0.762 | 0.103 | -60.26 220 | 56 | 35| 25.2 | 0.569 | 0.146 | -6.84
71 |1 29 | 11 | 25.1 | 0.658 | 0.149 | -6.27 221 | 44 | 24 | 37.8 | 0.965 | 0.229 | -34.74
72 | 34|12 | 216 | 0.83 | 0.28 | 32.83 222 | 35 | 15| 2350507 | 0.11 | -1.01
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73 | 42 | 19 | 403 | 1.04 | 0.27 | -14.86 223 | 31 |11 | 415 | 1.195 | 0.259 | -47.66
74 | 38 | 19 | 354 | 0.859 | 0.249 | 10.19 224 | 31 | 7 | 2750738 |0.173 | 0.82

75 | 45 | 22 | 19.7 | 0.661 | 0.149 | -19.36 225 | 30 | 10 | 54.3 | 0.943 | 0.282 | -8.88

76 | 30 | 10 | 31.1 | 0.874 | 0.209 | -12.49 226 | 81 | 50 | 37.8 | 0.966 | 0.27 | -17.03
77 | 33 | 10 | 22.6 | 0.632 | 0.116 | -19.19 227 | 54 | 31| 29.8 | 0.755 | 0.149 | -42.91
78 | 52 | 31| 19.9 | 0.582 | 0.166 | 6.46 228 | 79 | 45 | 57.4 | 1.587 | 0.628 | 2.90

79 | 38 | 17 | 21.8 | 0.563 | 0.103 | -20.69 229 | 32 | 8 | 3941|0979 | 0.266 | 2.58

80 | 27 11.1 | 0.519 | 0.126 | -6.52 230 | 40 | 20 | 32.5| 0.793 | 0.186 | -17.42
81 | 27 | 8 | 224 1 0.196 | -51.57 231 | 29 | 7 | 22.7|0.637 | 0.183 | 26.03
82 | 31 | 11| 29.8 | 0.831 | 0.176 | -25.67 232 | 36 | 17 | 26.5| 0.676 | 0.159 | -8.19

83 | 36 | 15 | 289 | 0.711 | 0.216 | 27.78 233 | 40 | 19 | 19.4 | 0.528 | 0.149 | 12.50
84 | 42 | 21 | 476 | 1.135| 0.37 | 32.20 234 | 58 | 35| 27.3|0.807 | 0.229 | -1.45
85 | 55 | 27 | 253 | 0.719 | 0.209 | 14.85 235 | 39 |19 | 285 0.725 | 0.183 | -3.90
86 | 31 |11 | 27.2 | 0.769 | 0.176 | -12.02 236 | 39 | 17 | 258 | 0.73 | 0.196 | 4.67

87 | 32|14 | 244 | 0.824 | 0.276 | 30.60 237 | 60 | 30 | 26.3 | 0.733 | 0.196 | 2.59

88 | 32 | 11 | 29.7 | 0.822 | 0.213 | 1.88 238 | 37 | 15| 27.6 | 0.873 | 0.329 | 58.20
89 | 40 | 19 | 26.7 | 0.669 | 0.133 | -22.94 239 | 39 |17 | 3190837 | 0.2 | -14.83
90 | 57 | 34 | 39.2 | 1.091 | 0.302 | -39.42 240 | 46 | 25| 30.3 | 0.775 | 0.173 | -28.37
91 | 39 | 16 | 25.1 | 0.672 | 0.13 | -22.06 241 | 49 | 28 | 32.8 | 0.797 | 0.309 | 53.48
92 | 56 | 28 | 36.9 | 0.909 | 0.27 | -3.39 242 | 47 | 26 | 29.8 | 0.785 | 0.173 | -32.54
93 | 36 | 14 | 27.7 | 0.677 | 0.136 | -15.67 2431 29 | 9 25 | 0.691 | 0.149 | -10.29
94 | 31 |11 | 38.2 | 0.967 | 0.266 | 3.39 244 | 27 28,51 0.735 | 0.173 | -1.20
95 | 36 | 12 | 21.3 | 0.502 | 0.11 4.27 245 | 40 |19 | 19 | 0.715|0.219 | 9.25

9 | 43 | 20 | 26.9 | 0.732 | 0.163 | -18.41 246 | 46 | 24 | 26.2 | 0.666 | 0.126 | -31.01
97 | 61 | 37 | 23.2 | 0.586 | 0.159 | 4.34 247 | 46 | 22 | 13.6 | 0.407 | 0.113 | 3.50

98 | 39 | 19| 30.1 |1012| 04 64.20 248 | 37 | 16 | 25.1 | 0.738 | 0.203 | 6.10

99 | 47 | 25 | 28.9 | 1.137 | 0.402 | 20.12 249 | 29 | 10 | 30.1 | 0.75 | 0.223 | 25.73
100 | 34 | 14 | 246 | 0.676 | 0.225 | 37.95 250 | 56 | 34 | 36.1 | 0.983 | 0.306 | -5.70
101 | 58 | 35 | 39 | 1.059|0.385 | 22.53 251 | 32 | 14 | 29.5| 0.744 | 0.173 | -11.15
102 | 33 | 10 | 314 | 0.768 | 0.252 | 44.88 252 | 57 | 33 |224|0.697 | 0.143 | -28.13
103 | 49 | 28 | 36,5 | 0.97 | 0.29 | -3.87 253 | 44 | 25 | 34.2|0.816 | 0.239 | 5.23

104 | 29 | 10 | 27.2 | 0.77 | 0.183 | -7.03 254 | 31 | 10 | 46.4 | 1.232 | 0.465 | 78.27
105 | 49 | 25| 20.1 | 0.638 | 0.09 | -51.11 255 | 47 | 22 | 205 | 0.742 | 0.196 | -7.26
106 | 50 | 27 | 22.2 | 0.614 | 0.166 | 5.09 256 | 41 | 17 | 28.6 | 0.702 | 0.146 | -15.21
107 | 41 | 17 | 30.6 | 0.727 | 0.173 | -2.22 257 | 62 | 36 | 32.7 | 1.054 | 0.355 | 9.24

108 | 34 | 13 | 22.1 | 0.66 | 0.173 | 6.05 258 | 32 | 14 | 30.8 | 0.813 | 0.272 | 38.31
109 | 60 | 32 | 55.7 | 1.357 | 05 11.65 259 | 31 | 15 | 244 |0.711 | 0.159 | -20.81
110 | 57 | 35| 32.7 | 0904 | 0.282 | 1.88 260 | 25 | 5 | 30.8|0869| 0.2 | -12.59
111 | 54 | 30 | 31.2 | 0.776 | 0.183 | -24.87 261 | 36 | 15 | 33.7 | 0.835 | 0.166 | -34.02
112 | 24 | 3 | 106 | 0.368 | 0.09 | -9.12 262 | 30 |11 | 25.2 | 0.681 | 0.163 | -1.44
113 | 54 | 31 | 29.8 | 0.755 | 0.149 | -42.91 263 | 36 | 15 | 18.5| 0.567 | 0.106 | -23.61
114 | 50 | 26 | 33.5 | 0.827 | 0.296 | 41.43 264 | 43 | 22 | 46.6 | 1.127 | 0.269 | -35.41
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115 | 39 | 17 | 36.2 | 0.881 | 0.252 | 11.78 265 | 27 | 6 | 3710951 025 | -3.11

116 | 49 | 24 | 39.1 | 0.948 | 0.32 | 29.78 266 | 26 | 8 | 28.9|0.824|0.199 | -6.51

117 | 33 | 12 | 36.5 | 0.934 | 0.213 | -23.71 267 | 46 | 22 | 28.6 | 0.801 | 0.153 | -44.07

118 | 25 | 9 21 | 0.643 | 0.103 | -36.30 268 | 42 | 24 | 24.3 | 0.809 | 0.199 | -30.69

119 | 33 | 12 | 28 | 0.703 | 0.103 | -43.34 269 | 54 | 30 | 31.2 | 0.776 | 0.183 | -24.87

120 | 37 | 17 | 26 |0.723 | 0.21 | 13.84 270 | 36 | 17 | 47.6 | 1.237 | 0.299 | -28.66

121 | 34 | 13 | 28.3 | 0.778 | 0.133 | -43.51 271 | 36 | 17 | 28.8 | 0.759 | 0.206 | 3.82

122 | 36 | 15| 25 | 0.697 | 0.183 | 5.01 272 | 68 | 46 | 34.4 | 0.909 | 0.226 | -30.52

123 | 36 | 15 | 56.9 | 1.442 | 0.405 | 0.60 273 | 31 | 11 | 23.1| 0.635 | 0.146 | -3.05

124 | 30 | 10 | 31.1 | 0.856 | 0.25 | 19.16 274 | 39 |19 | 29 | 0.77 | 0.279 | 48.33

125 | 42 | 22 | 21.7 | 0.658 | 0.22 | 27.01 275 | 42 | 20 | 26.9 | 0.716 | 0.216 | 20.09

126 | 30 | 10 | 22.6 | 0.602 | 0.13 | -5.66 276 | 56 | 36 | 28.8 | 0.793 | 0.246 | 9.14

127 | 37 | 16 | 31.2 | 0.87 | 0.209 | -18.06 277 | 33 | 10 | 27.8 | 0.707 | 0.176 | 7.75

128 | 31 | 14 | 264 | 0619 | 0.14 | -6.20 278 | 35 | 15 | 27.9 | 0.745 | 0.153 | -25.24

129 | 48 | 25 | 25.6 | 0.724 | 0.163 | -21.95 279 | 35 | 15| 27.7| 0.73 | 0.159 | -17.50

130 | 48 | 25 | 29.9 | 0.756 | 0.163 | -28.03 280 | 37 |14 | 271 0.72 | 0.176 | 0.18

131 | 33 |12 | 259 | 0.8 | 0.266 | 37.74 281 | 27 | 17 | 21.3 | 0.547 | 0.103 | -32.63

132 | 58 | 35 | 28.3 | 0.692 | 0.159 | -21.95 282 | 30 | 10 | 29.7 | 0.718 | 0.11 | -40.93

133 | 37 | 16 | 31.8 | 0.776 | 0.166 | -21.09 283 | 51 | 27 | 348 |0.854 | 0.249 | 1.20

134 | 40 | 19 | 29 0.8 |0.279 | 41.09 284 | 40 | 17 | 39.3 | 0.931 | 0.209 | -27.23

135 | 36 | 14 | 29.7 | 0.753 | 0.2 8.96 285 | 55 | 30 | 37.4 | 0.921 | 0.246 | -25.45

136 | 30 | 8 | 239 | 0.605| 0.133 | 0.40 286 | 39 | 21 | 25.3 | 0.647 | 0.259 | 58.58

137 | 48 | 25 | 25.6 | 0.724 | 0.163 | -21.95 287 | 42 | 20 | 444 | 1.148 | 0.26 | -43.56

138 | 43 | 22 | 29 | 0.798 | 0.209 | -8.58 288 | 41 | 22 | 30.2|0.777 | 0.219 | 3.02

139 | 58 | 32 | 22.4 | 0.685 | 0.153 | -16.20 289 | 40 | 20 | 28.7 | 0.755 | 0.249 | 30.92

140 | 40 | 19 | 37 | 0.923 | 0.309 | 36.61 290 | 32 |11 | 31 | 0.786 | 0.216 | 13.68

141 | 32 | 11 | 20.5 | 0.557 | 0.106 | -14.31

142 | 34 | 14 | 31.2 | 0.871 | 0.176 | -38.41

143 | 33 | 13 | 33.6 | 0.789 | 0.279 | 53.32

144 | 59 | 36 | 27.1 | 0.693 | 0.259 | 45.98

145 | 24 | 4 | 26.3 | 0.695| 0.169 | 6.97

146 | 29 | 8 | 26.5 | 0.637 | 0.166 | 16.15

147 | 34 | 12 | 258 | 0.692 | 0.173 | 4.96

148 | 27 | 7 | 26.6 | 0.766 | 0.149 | -24.68

149 | 40 | 18 | 28.2 | 0.757 | 0.169 | -18.80

150 | 47 | 27 | 29.8 | 0.736 | 0.25 | 29.72

5.4 Different developed model equations
The different model equations developed from ANN, SVM and MARS are presented

in the following sections.
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5.4.1 ANN Model equation

In the neural network model, Levenberg-Marquartd back-propagation has been used
for minimization of error. The log-sigmoid transfer function for input-hidden layer and linear
transfer function for hidden-output layer has been used to construct the model equation. The
final ANN model equation can be given as follows:
A; =0.5543 LL - 0.6398 PI + 0.1297 w,, + 2.0933 ey — 21.9155
A;=0.3221 LL — 0.4918 Pl — 0.3425 w, — 7.4531 ¢, + 13.146
A3;=0.0012 LL + 0.0021 PI1 - 0.0156 w, + 1.6466 e + 0.7929
A, =-6.8441 LL —6.6654 Pl + 6.0927 w, + 3.026 o — 5.6638

0.2037  0.0618 N 1.4749 N 0.0881
1+e™d 1+e™ 1+e™™ 1+e™ (5.1)
5.4.2 LS-SVM Model equation

C,=—0.9998+

For the LS-SVM model, Radial basis kernel function has been used for transformation
of the inputs. The optimum values of bias, regularization parameter and width of radial basis
function is given below and the values for Lagrange multiplier () for all the inputs have been
represented in Figure 5.1:

b=1.7804, y = 51.7066, 6> = 17.0637
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Figure 5.1 corresponding a-values in the LS-SVM model
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5.4.3 MARS model equation

For developing the MARS, 11 basis functions have been presented in forward phase
and in backward elimination phase, 3 basis functions have been removed from the MARS
model. So, the concluding MARS model contains 8 basis functions. The best MARS model is
given below

BF1 = max(0, e -0.694)

BF, = max(0, 0.694 -eg)

BF; = BF; x max(0, Pl -13)

BF, = max(0, e -0.694) x max(0, 13 - PI) x max(0, LL -27)
BFs = BF5 x max(0, 43 - LL)

BFs = BF5 x max(0, Pl -21)

BF; = max(0, ey -0.694) x max(0, 13 - PI) x max(0, w, -22.4)
BFg = BF3 x max(0, PI -17)

C.=0.174 + 0.162 x BF; - 0.263xBF; - 0.0644 x BF3; + 0.012 x BF4 + 0.0178 x BFs -
0.0211 x BFg + 0.00141 x BF7 + 0.0208 x BFg (5.2)

Table 5.4 Results of Different Models for Prediction of compression index of clay

Model Coefficient of
Model Inputs RMSE  MAPE determination (R?)
Training 0.042 15 0.71
ANN .
Testing 0.042 15 0.65
Training 0.044 18 0.68
Model | Wi, € SVM .
Testing 0.043 18 0.68
Training 0.042 17 0.7
MARS
Testing 0.042 18 0.72
Training 0.04 14 0.72
ANN )
Testing 0.041 15 0.73
Trainin 0.042 17 0.68
Model 1l bV sym "N
€o Testing 0.042 18.8 0.76
Training 0.041 17 0.73
MARS
Testing 0.04 16 0.68
Training 0.39 14 0.76
ANN Testi 0.04 13 0.66
estin . )
Model 111 LL, P, - .g
Wy, €9 Training 0.04 17 0.72
SVM _
Testing 0.039 17 0.73
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Training 0.0396 16.8 0.73
Testing 0.043 17.9 0.7

MARS

5.5 Results and discussion

The models have been created and compared with the empirical correlations given by
various researchers shown in Table 5.5. The comparison is made in terms of coefficient of
efficiency (R?) presented in Table 5.4 of the developed models. The performances of the
empirical formulas are presented in Table 5.6. An error bar chart has been shown in Figure
5.2 for the comparison between different developed models. From the comparison it is found
that model 3 of ANN and model 2 of LS-SVM are showing better performance than others.
But model 3 of ANN having lower value of MAPE is the better model as compared to others.
The performance of model 3 in training and testing is shown in Figure 5.3 and variation of
actual and predicted values has been shown in Figure 5.4.

Table 5.5 some widely used empirical correlations

ﬁllé Author Equation
1 Azzouzetal. (1976) Cc= 0.4 (eo+0.001w,-0.25)
2  Azzouzetal. (1976) C.= 0.01w,-0.05
3  Koppula (1981) C.= 0.01w,
4  Herrero (1980) C.= 0.01w,-0.075
5 Parkand Lee (2011) C.= 0.013w,-0.115
6  Skempton (1944) C.= 0.009 (LL-10)
7  Nishida (1956) Cc= 054e-0.19
8 Cozzolino (1961) Cc= 043e-0.11
9  Sower (1970) C.= 0.75e,-0.38
10 Kalantary et al. (2012) C.= 0.0074 w, - 0.007
11 Kalantary et al. (2012) C.= 0.3608 ¢y - 0.0713

57



20
£ ANN models
18 4+—EBSVM-models —
S TR
# MARS models Ly Sree]
16 AL — P
Ly fnts el
b i i h i
e v e L
e F| AL P gy |
w 14 i L oante! kT
& Y St fLsta bty
R a bl bkl
= 12 :‘::::f 4 i) Ll i
[ i -_.:__-_ .:_-_.:_l_. :_ "
h miu, il . r
i et E ALY Ll [T
i . . L s . 'm R
10 . = — . r=r
=i et I et I
i Q- -8 | HD . Q! i
B K = £ N 4 I
8 0.4 o .0 Fo: ¢ o
‘:t . . A E." [ . .‘. -l. :.
: 2 = ot I T
. . . . ! u, E. .‘. [} . . .-
6 1 [ _f- o oon) ':_- _'-.
(@)
0.044
B ANN models
0.043 B SVM models
MARS models
0.042 -
¥
1
0.041 +
w o
[7,) "
S "y
o LT LY
0.04 1 i T
L r I
X I T T
0.039 - Aot it
L = — e L e
st = —-— e | _ == p— = e =)
L@ 2 7} D I T ‘o o R
u L
0.038 o ] E-1 S S A=Y e VR - T S Y
o Q
45 o ) ' O O (=) ':.'E - Ol O]
:E- E E E E E 2 .-..' . l\-. :-I§"1.- = E:.-
0037 H . » [T o - =

(b)
Figure 5.2 performance evaluations of different models in terms of (a) MAPE and (b)

RMSE

Table 5.6 results of different models for prediction of compression index of clay

Model Model Inputs RMSE R R?

1 €0, Wn 0.047 0.823 0.63
2 Whn 0.063 0.75 0.56
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3 Wh 0.098 0.74 0.54
4 Wh 0.055 0.75 0.49
5 Whn 0.0846 0.75 0.52
6 LL 0.111 0.397 0.37
7 €o 0.057 0.82 0.67
8 €o 0.048 0.82 0.62
9 €o 0.082 0.82 0.615
10 Whn 0.051 0.75 0.56
11 €o 0.044 0.823 0.677
0.7 -
O Training datasnit (R=0.87) -
206 ~A—"Ni€rmsﬂ (R=0.83) it
< (0] ’r' fo)
: &
£ 0.5 z
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5
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Figure 5.3 Performance of model 3 using ANN in training and testing.

0.7
—— Actual value of Comanssion Index

x 0.6 - Predicted value of Compression Index
Q
'_g 0.5
So.4 ' ]
- .
2 ] N B Ky
003 i : 4 ¢
o N 1
€0.2 1 {
(o] A 1 '
U &

0.1 3 H 3

0
0 50 100 150 200 250

No. of observations (training)

Figure 5.4 Variation of actual and predicted value from ANN of compression index
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5.6 Sensitivity Analysis

Sensitivity analysis is performed for selection of important input variables. Different
approaches have been suggested to select the important input variables. Goh (1994) and
Shahin et al. (2002) have used Garson’s algorithm (Garson, 1991) in which the input hidden
and hidden output weights of trained ANN model are partitioned and the absolute values of
the weights are taken to select the important input variables, and the details with example
have been presented in Goh (1994). It does not provide information on the effect of input
variables in terms of direct or inverse relation to the output. Olden et al. (2004) proposed a
connection weight approach based on the Neural Interpretation Diagram (NID), in which the
actual values of input hidden and hidden output weights are taken. It sums the products across
all the hidden neurons, which is defined as S;. The relative inputs are corresponding to
absolute S; values, where the most important input corresponds to highest S; value. The
details of connection weight approach are presented in Olden et al. (2004).

The relative importance of the four input parameters as per Garson’s algorithm is
presented in Table 5.7. The w, is found to be the most important input parameter with the
relative importance value being 95.85 % followed by 2.27 % for P1, 1.09 % for LL and 0.781
% for eo. The relative importance of the present input variables, as calculated following the
connection weight approach (Olden et al., 2004), is also presented in Table 5.7. w, is found to
be the most important input parameter (Si = 21.41) followed by e (S; = 0.188), LL (S; =-
0.154) and PI (S; = 0.128). The S; values being negative imply that LL is indirectly related
and wy, ep and PI are directly related to C. value. In other words, increasing LL will lead to a
reduction in the C. and increasing w,, o and Pl will increase the C.. The sensitivity of the

parameters affecting the model is presented in Figure 5.5.
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Table 5.7 relative importance of different inputs as per Garson's algorithm and

connection weight approach

Parameters Garson's algorithm Connection weight approach
. Ranking of Sivalues as per Ranking of
Relative inputs as per connection inputs as per
1) importance (%) put P . put P
@) relatlve weight _relatlve
importance (3)  approach (4) importance (5)
LL 1.09 3 -0.154 3
Pl 2.27 2 0.128 4
€o 0.781 4 0.188 2
Whn 95.85 1 21.41 1
where C. = predicted value of compression index of clay from ANN.
50 Sensitivity of parameters
wl
30
20
10
| B B |
L.L P.l. wn e0

Figure 5.5 Sensitivity of different parameters

5.7 Discussions

From the present study it is observed that the developed ANN model can be used to

predict compression index of clay. The results obtained with these models are compared to

each other and with different regression models. The result shows that the proposed model

equation gives better predictability in comparison with others. Sensitivity analysis is fulfilled

to recognize the most sensitive parameters. Natural water content (wy) is found to be the most

effective parameters for prediction of compression index. From the above model equation,

the compression index of clay soil can be predicted quickly and satisfactorily.
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CHAPTER 6
PREDICTION OF SIDE RESISTANCE OF DRILLED SHAFT
6.1 Introduction

The two main criteria that govern the design of pile foundations are bearing capacity
and settlement so that safety and serviceability requirements are attained. Drilled shafts are
cast-in-situ piles installed by excavating a cylindrical volume of soil from the ground and
filling the resulting void with concrete. They can range from 2 to 30 feet in diameter and can
be over 300 feet in length. The installation of drilled shafts causes insignificant lateral
displacement of the soil adjacent them. The calculations of shaft resistance of drilled shafts
are most often performed using empirical correlations (Skempton 1959; O Neill and Reese
1999) developed on the basis of a limited number of load tests. They are particularly
advantageous where huge lateral loads from extreme event limit states govern bridge
foundation design. Additional applications include providing foundations for high pole
lighting, communication towers. In many instances, a single drilled shaft can replace a cluster
of piles eliminating the need and cost for a pile cap.

Static analysis methods are commonly used for determining the side resistance of
drilled shafts. The methodologies apply the soil parameters resulting from laboratory tests to
calculate the side resistance of the shafts. The most common method to evaluate the
undrained side resistance is based on the total stress or alpha (e) method (Tomlinson; 1957),
in which the side resistance or adhesion is related to the undrained shear strength S, by an
empirical coefficient denoted by «, the adhesion factor. This coefficient was derived mostly
from field load test data on driven piles. The main criticism of the alpha method is that S, is
not a unique soil parameter and depends significantly on the type of test used, the strain rate,
and the orientation of the failure plane.

The geotechnical literature has included numerous investigations and many methods,
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both theoretical and experimental, to predict settlement and bearing capacity of pile
foundations. However, the mechanisms of pile foundations and pile—soil interaction are
ambiguous, complex, and not yet entirely understood (Reese et al. 2006; Nejad et al. 2009;
Shahin 2010; Alkroosh and Nikraz 2012). Because of the uncertainties associated with the
factors that affect the behavior of pile foundations, most available methods, by necessity,
have been mainly based on simplifications and assumptions. This has led to limited success
in terms of providing consistent and accurate predictions (Abu-Kiefa 1998; Nejad et al. 2009;
Pal and Deswal 2010; Alkroosh and Nikraz 2012).

In recent years, Als have been used with varying degrees of success for prediction of
axial and lateral bearing capacities of pile foundations in compression and uplift, including
driven piles (Chan et al. 1995; Goh 1996;Lee and Lee 1996; Teh et al. 1997; Abu-Kiefa
1998; Goh et al. 2005; Das and Basudhar 2006;Pal 2006;Shahin and Jaksa 2006;Ahmad et al.
2007;Ardalan et al. 2009;Shahin 2010;Alkroosh and Nikraz 2011) and drilled shafts (Goh et
al. 2005; Shahin 2010; Alkroosh and Nikraz 2011).

In the present study the side resistance of drilled shaft has been modeled using
artificial intelligence. An error comparison has been made between different models in terms
of coefficient of correlation and other statistical errors. Finally sensitivity analysis has been
carried out to know the importance of parameters that influences the output in the model.

6.2 Database used in present study

Using the database of Goh et al. 2005, this problem has been reanalyzed using LS-
SVM and MARS. The database was compiled from 127 field load tests on drilled shafts in a
variety of cohesive soil profiles.

6.3 Database preprocessing
The database has been normalized between 0 to 1 for LS-SVM model by using the

formula;
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X = Xpmi
max — ““min

For MARS modeling, the actual database has been used.

Table 6.1 Training dataset used in the modelling

I::).. c Sy a a-value I\SlL c Su a a-value
1 53 53 0.6 -1.186 51 83 208 0.34 | -0.094
2 125 | 351 | 0.36 0.299 52 74 115 0.5 0.319
3 100 107 | 0.47 -0.098 53 37 102 0.61 0.969
4 29 178 | 0.26 -0.226 54 44 182 0.42 1.191
5 97 108 0.4 -0.764 55 79 51 1.03 3.219
6 59 57 0.72 0.153 56 60 140 0.31 -0.730
7 29 100 | 0.35 -1.569 57 28 80 0.8 1.888
8 82 112 | 0.52 0.428 58 48 266 0.38 0.754
9 34 32 0.74 -0.495 59 70 226 0.3 -0.278
10 126 164 | 0.41 -0.066 60 102 71 0.54 | -0.326
11 97 212 | 0.49 1.158 61 25 68 0.67 0.164
12 50 96 0.5 -0.374 62 105 120 0.42 -0.287
13 34 26 0.88 0.699 63 45 109 0.38 | -0.980
14 162 130 | 0.44 -0.205 64 60 186 0.25 -0.645
15 120 180 | 0.37 -0.332 65 80 96 0.33 -1.906
16 17 32 0.83 0.614 66 30 132 0.28 | -1.033
17 109 94 0.54 0.365 67 67 136 0.45 0.455
18 30 137 | 0.27 -0.973 68 34 32 0.72 -0.686
19 25 105 | 0.49 -0.002 69 25 68 0.63 -0.219
20 80 117 | 0.37 -0.868 70 57 53 0.7 -0.204
21 70 215 | 0.32 -0.082 71 70 94 0.51 -0.320
22 34 64 0.67 -0.067 72 200 113 0.62 1.238
23 83 208 | 0.41 0.576 73 29 165 0.27 -0.311
24 343 285 | 0.38 -0.196 74 125 375 0.34 0.051
25 95 309 | 0.27 -0.546 75 53 42 0.73 -0.325
26 17 32 0.79 0.231 76 127 389 0.32 -0.232
27 76 143 | 0.33 -0.612 77 18 95 0.61 0.771
28 120 | 242 | 0.28 -0.991 78 83 193 0.37 0.169
29 70 119 | 0.54 0.830 79 67 123 0.5 0.578
30 45 118 | 0.35 -0.924 80 19 307 0.25 -0.382
31 57 45 0.83 0.760 81 40 45 0.7 -0.523
32 19 307 | 0.24 -0.478 82 37 126 0.51 0.934
33 23 112 | 0.39 -0.670 83 83 192 0.37 0.167
34 34 166 | 0.33 0.244 84 82 117 0.49 0.282
35 119 | 303 | 042 0.752 85 197 105 0.36 | -1.194
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36 40 57 0.66 -0.469 86 102 65 0.59 | -0.007
37 29 74 0.57 -0.577 87 43 21 0.83 0.057
38 55 147 | 0.33 -0.328 88 28 80 0.76 1.505
39 109 106 | 0.48 0.041 89 63 56 0.83 1.209
40 97 96 0.45 -0.593 90 160 260 0.39 | -0.205
41 105 | 340 | 0.29 -0.265 91 25 125 0.41 | -0.003
42 37 126 | 0.37 -0.406 92 164 153 0.53 0.632
43 113 178 | 0.48 0.793 93 102 70 0.55 | -0.257
44 36 43 0.78 0.197 94 28 47 0.79 0.496
45 70 94 0.68 1.308 95 34 86 0.63 0.486
46 26 179 | 0.25 -0.291 96 100 94 0.49 | -0.227
47 57 58 0.64 | -0.590

48 34 74 0.58 -0.512

49 110 | 297 | 0.27 -0.678

50 37 168 | 0.39 0.822

6.4 Different developed model equations
The different model equations developed from SVM and MARS are presented in the
next segments.

6.4.1 LS-SVM Model equation

For the LS-SVM model, Radial basis kernel function has been used for transformation
of the inputs. The optimum values of bias, regularization parameter and with of radial basis
function is given below and the value for Lagrange multiplier for all the inputs has been

represented in Figure 6.1: b =-0.2303, y=1.7155, 6°=1.9817

a- values
W N R O R N W BN
[ ]
[ ]
‘.
L |

Figure 6.1 Optimum values of Lagrange multiplier (a)
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6.4.2 MARS model equation
For developing the MARS, 13 basis functions have been introduced in forward phase
and in backward elimination phase, 4 basis functions have been removed from the MARS
model. So, the final MARS contains 9 basis functions. The ideal MARS model is given
below
BF1 = max(0, Sy -132)
BF, = max(0, 132 -S,)
BF3; = max(0, 160 -o)
BF, = BF, x max(0, o -79)
BFs = BF, x max(0, 79 -o0)
BFs = BF4 x max(0, 82 -0)
BF; = BFs x max(0, o -28)
BFg = max(0, 132 -S,) x max(0, ¢ -79) x max(0, ¢ -82) x max(0, S, -105)
BFy = BF4 x max(0, 109 -0)
o = 0.453 - 0.000388 x BF; + 0.00813 x BF, - 0.000887 x BF3 - 0.000107 x BF,4 - 5.45e-5 x
BF5 - 0.0044 x BFg - 3.93e-6 x BF; + 1.14e-7 x BFg - 1.98e-5 x BFq (6.1)
6.5 Result comparison

The statistical performances i.e. Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Correlation Coefficient (R) and coefficient of efficiency (R?) for the model
are presented in Table 6.2.

The results of MARS have been matched with ANN (Goh et al., 2005) and LS-SVM
model established. The assessments have been done in terms of Mean Absolute Percentage
Error (MAPE), and Root Mean Square Error (RMSE). Figure 6.2 and 6.3 depict the bar chart
of MAPE and RMSE for training dataset, respectively and it is observed that the developed
MARS outperform ANN and LS-SVM models. Studies emphasized that regression equations

obtained by the MARS technique make robust and coherent parameter valuations. From
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Figure 6.4, the performance of MARS model can be observed. Figure 6.5 represents the
variations in actual and predicted value of the training dataset taken in the present study.

Table 6.2 Performances of different models

Correlation Coefficient of

Model mgﬂ‘i RMSE MAPE coefficient determination
(R) (R
Model 1 Gohetal. Training 0.078 13.14 0.91 0.81
(2005)  Testing 0.074  13.9 0.86 0.8
Training 0.08 13.27 0.9 0.8
Model 11 SVM
oce Testing 008 163  0.88 0.77
ini : 11.2 . .84
Model 111 MARS Tral_nlng 0.06 8 0.935 0.8
Testing  0.06 1047  0.94 0.8
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Figure 6.2 Comparison between models in terms of MAPE
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Figure 6.3 Comparison between models in terms of RMSE
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6.6 Sensitivity of the parameters
The sensitivity tests are carried out to determine the relative significance of each of
the inputs and to find the inputs that affect the models performance. The sensitivity test is

carried out on the all data by varying each of the input, one at a time, at a constant rate of
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20%. For every input, the percentage change in the output is observed. The sensitivity (S) of

each input is calculated by the following:

1 (% change in output

S=—> — x100
% change in input

where N = number of datasets used in the study.

The sensitivity of the parameters has been represented in Figure 6.6 and it is found

that the effective overburden pressure affects the output very significantly.

Sensitivity of parameters
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Figure 6.6 Results of sensitivity analysis
6.7 Discussion
Present study shows that the MARS model can be used to predict the side resistance
of the drilled shaft. The model shows a correlation coefficient of 0.93 in training with a mean
absolute percentage error of 11.28 which is lower when compared with the literature. The
overburden pressure affects the model very significantly; hence it is desirable to determine

the overburden pressure precisely in the field.
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CHAPTER 7
CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

Present study focuses on the use of ANN, SVM and MARS in modeling four
geotechnical problems. The first problem deals with the prediction of compaction parameters
(i.e. MDD and OMC) of sandy soil. Out of the three models the MARS model gives better
predictability and sensitivity analysis shows that the coefficient of uniformity and percentage
of sand affects the model very significantly. The second problem deals with the prediction of
relative density (D) of clean sand. The predictability of LS-SVM is found to be very accurate
when compared to other methods and coefficient of uniformity and mean grain size are found
to be the important parameters affecting the model. Third problem deals with the prediction
of compression index of clay and developed ANN outperforms than SVM and MARS. In this
case liquid limit, plasticity index and natural moisture content affect the model significantly.
The fourth model deals with the prediction of side resistance of drilled shaft and the MARS
model performs better than the other models. Sensitivity analysis shows that the effective
stress affects the model severely. The resultant predictions of different output parameters by
the different models agree well with the available experimental data. Although prediction
error limits were often large, estimation of those parameters with soft computing may be
accurate enough for most applications, and hence will fill a need where the physical
parameters are not readily available. These techniques may also provide new approaches and
methodologies and minimize the potential variation of correlations. Therefore, the practical
outcome of the proposed models could be used with acceptable accuracy at the preliminary
stage of design.
7.2 Future scope for research

The evaluation of the established models indicates that the capability of different
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technique rest on the type of problem and the complexity of the database. Further researches
can be done in the area of data division into training and testing, validation of models
conducting laboratory experiments, appropriate method for sensitivity analysis to determine
the significance of the input parameters. As these techniques applicable within a specific
range of inputs and outputs, other techniques (i.e. genetic programming, ANFIS, Relevance
Support Vector Machine (RVM), regression tree, principal component analysis (PCA) etc.)

can be used to extrapolate the predictors and generate simplified model equations.
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