
Effort Estimation For Object-oriented System

Using

Stochastic Gradient Boosting Technique

Barada prasanna Acharya

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

May 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Effort Estimation For Object-oriented System

Using

Stochastic Gradient Boosting Technique

Thesis submitted in partial fulfilment of the requirements for the degree of

Bachelor of Technology

in

Computer Science and Engineering

by

Barada prasanna Acharya
(Roll- 110CS0111)

Under the supervision of

Prof. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

May 2014

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Effort Estimation For

Object-oriented System Using Stochastic Gradient Boosting Technique

by Barada prasanna Acharya is a record of an original research work carried

out by him under my supervision and guidance in partial fulfilment of the require-

ments for the award of the degree of Bachelor of Technology in the department

of Computer Science and Engineering, National Institute of Technology Rourkela.

Neither this thesis nor any part of it has been submitted for any degree or academic

award elsewhere.

Place: NIT Rourkela (Prof. Santanu Ku. Rath)
Date: May 12, 2014 Professor, CSE Department

NIT Rourkela, Odisha

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India.

Authors Declaration

I hereby declare that all the work contained in this report is my own work unless

otherwise acknowledged. Also, all of my work has not been previously submitted

for any academic degree. All sources of quoted information have been acknowl-

edged by means of appropriate references.

Place: NIT Rourkela (Barada prasanna Achary)
Date: May 12, 2014 CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. Santanu Ku. Rath for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction to the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I would like to thank Mr. Shashank Mouli Satapathy for his encouragement

and support, without which this project could not have seen the light of the day.

I am obliged to the faculty members of the Department of Computer Science

and Engineering at NIT Rourkela for the valuable information provided by them

in their respective fields. I must acknowledge the academic resources that I have

got from NIT Rourkela.

I would like to thank all my friends and lab-mates for their encouragement and

understanding. Their help can never be penned with words.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience and understanding.

Barada prasanna Acharya

Roll-110CS0111

Abstract

The success of software development depends on the proper prediction of the

effort required to develop the software. Project managers oblige a solid method-

ology for software effort prediction. It is particularly paramount throughout the

early stages of the software development life cycle. Faultless software effort esti-

mation is a major concern in software commercial enterprises. Stochastic Gradient

Boosting (SGB) is a machine learning techniques that helps in getting improved

estimated values. SGB is used for improving the accuracy of estimation models

using decision trees. In this paper, the basic aim is the effort prediction required to

develop various software projects using both the class point and the use case point

approach. Then, optimization of the effort parameters is achieved using the SGB

technique to obtain better prediction accuracy. Furthermore, performance com-

parisons of the models obtained using the SGB technique with the other machine

learning techniques are presented in order to highlight the performance achieved

by each method.

Keywords: Class Point Approach, Object-oriented Analysis and Design, Soft-

ware Effort Estimation, Stochastic Gradient Boosting, Use case point Approach.

Contents

Certificate ii

Authors Declaration iii

Acknowledgement iv

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Basic Concepts . 2

1.1.1 Top-down Approach . 2

1.1.2 Bottom-up Approach . 2

1.2 Class Point Analysis . 4

1.3 Use Case Point Analysis . 7

1.4 Various Performance Measures . 10

1.4.1 Mean Square Error (MSE) 11

1.4.2 Magnitude of Relative Error (MRE) 11

1.4.3 Mean Magnitude of Relative Error (MMRE) 11

1.4.4 Root Mean Square Error (RMSE) 11

1.4.5 Normalized Root Mean Square(NRMS) 11

1.4.6 Prediction Accuracy (PRED) 11

1.5 Dataset used for Effort Calculation 12

1.6 Thesis Organization . 12

2 Literature Survey 13

vi

3 Stochastic Gradient Boosting Technique 16

3.1 Introduction . 16

3.2 Stochastic Gradient Boosting Technique 16

3.3 Proposed Approach . 17

3.4 Experimental Details . 19

3.5 Model Design Using Stochastic Gradient Boosting Technique 20

3.6 Summary . 21

4 Results and Comparison 22

4.1 Class Point Approach Result . 22

4.1.1 Comparison . 23

4.2 Use Case Point Approach Result 25

4.2.1 comparison . 26

4.3 Summary . 28

5 Conclusion and Future Work 29

Bibliography 30

Dissemination of Work 34

List of Figures

1.1 Phases for Class Point Calculation 5

1.2 Phases for Calculation of Use Case Point 7

3.1 Proposed Steps Used for Effort Estimation using SGB 19

4.1 The SGB-based Effort Estimation Model for class point approach . 23

4.2 Actual vs. Predicted Effort using SGB for class point approach . . . 23

4.3 Comparison of MMRE and PE Values 24

4.4 Actual vs. Predicted Effort using SGB for use case point 26

4.5 The SGB-based Effort Estimation Model for use case point 26

viii

List of Tables

1.1 Evaluation of Complexity Level for CP1 5

1.2 Evaluation of Complexity Level for CP2 6

1.3 TUCP evaluation for Each Class Type 6

1.4 DI of Twenty Four General System Characteristics 7

1.5 Weighting Factors of Actor . 8

1.6 Weighting Factors Use Case . 8

1.7 Technical Factor values . 9

1.8 Environment Factors . 10

4.1 MMRE and NRMSE Values Obtained using SGB for Each Fold . . 22

4.2 Comparison of Efforts obtained using MLP, RBFN and SGB 24

4.3 Comparison of Prediction Accuracy Values of Related Works 25

4.4 Comparison of Efforts obtained using MLP, RBFN and SGB 25

4.5 Comparison of Prediction Accuracy Values of Related Works 27

4.6 Comparison of MMRE, NRMSE and PRED Values 27

ix

Chapter 1

Introduction

According to survey, more than one-third projects outmatch their budget and suf-

fer late delivery and about two-thirds of all projects run over their initial estimates.

The basic reasons for above problems are the inability of a project manager or sys-

tem analyst to predict the cost and effort required to develop a software accurately.

Without accurate effort estimation capability, project managers face difficulty in

determining how much time and manpower the project should take to be finished.

Software effort estimation is always a difficult task to understand and estimate

in initial phases of software development life cycle, as a software product cant

be seen and touched. Software grow and change when it is written. In project

management, the most challenging task is effort estimation. Need for precise

estimation require assets and timetables for programming improvement ventures.

By and large Software cost estimation procedure incorporates the accompanying :

� Estimation of the size of the software product is required

� Estimation of the effort prediction

� Development of project schedules

� Estimation of cost of the project

First step towards estimation involves understanding and defining the system

to be estimated. A software is intractable and invisible during its early stages

of production. Understanding and estimating a product or process which can-

not be seen and touched is often more difficult and challenging. Often hardware

1

1.1 Basic Concepts Introduction

design failure leads towards change in the software. Late changes during the de-

velopment process results in unanticipated software growth. After several years

research, there exist many software cost estimation methods like, estimation by

analogy, algorithmic methods, expert judgement method, bottom-up method and

top-down method. As weaknesses and strengths of these methods are often com-

plimentary, we can not say a method is better or worse than the other. Before es-

timation of projects, understanding the strengths and weaknesses of every method

is important.

1.1 Basic Concepts

1.1.1 Top-down Approach

In top-down approach, generally procedure-oriented software designing approach

is used. In this type of approach, sub-systems are occurred by breaking down the

system into its compositional and an overview of the system is generated, which

specifies but does not give detail about any first-level subsystems. Each subsystem

is again elaborated in greater detail. Macro Model is also a name of top-down

estimating method. Using this method, using the globally defined properties of

the software project, an overall project cost estimation is derived, and then the

project is partitioned into many low-level components. In early phase of software

development life cycle, this methodology is extremely helpful, in light of the fact

that at first there are no point by point data accessible.

1.1.2 Bottom-up Approach

Bottom-up Approach is popularly known as object-oriented programming con-

cept. Several features such as inheritance, encapsulation, abstraction and poly-

morphism, offered by object-oriented programming play important roles in the

development of software products. Size estimation of a software product is one of

the most important measures. Conventional software estimation techniques like

Function Point Analysis (FPA) and Constructive Cost Estimation Model (CO-

COMO) are not suitable for precise measurement of the effort and cost of all types

2

1.1 Basic Concepts Introduction

of software. It is also observed that the line of code (LOC) and function point (FP)

methods are both adopted from procedural programming [1]. Procedure-oriented

design divides the data and procedure; in case of object-oriented concepts merges

them. The extent that effort estimation is concerned, various unsolved issues re-

gardless blunders exist. Correct estimation of a software project is constantly

critical for deciding the achievability of the undertaking regarding examination of

expense-profit [2].

In the present scenario, most software project planning depends upon accurate

effort estimation. Since the fundamental intelligent unit of an object-oriented

system is class, more accurate result can be generated by using the class point

approach to predict the effort required for a project. For the effort estimation

process using class point, two measures, CP1 and CP2, are used. CP1 is computed

using two metrics, the former one is Number of External Methods (NEM) and the

later one is Number of Services Requested (NSR); whereas CP2 is computed by

using a new metric along with NEM and NSR, called as Number of Attributes

(NOA). The size of the interface of a class, which is decided by the no. of local

public methods is measured by NEM; whereas NSR offers a measurement for the

interconnection between the system components. On the other hand, NOA helps

in finding out the number of attributes used in a class. For both the function point

analysis (FPA) as well as the class point approach (CPA), the computation of the

Technical Complexity Factor (TCF) is dependant upon the influence of general

system characteristics. However, in the class point approach, non-technical factors

such as Developer’s professional competence, Management efficiency, Reliability,

Security, Portability and Maintainability are not taken into account [3].

The Use Case Point (UCP) model estimates the effort of a software product by

using use case diagrams. UCP helps in providing more accurate effort estimation

from design phase of software development life cycle. The no. of use cases and

the no. of actors are counted for the measurement of UCP, which are multiplied

by complexity factors assigned with them. Use cases and actors are consists of

three categories, such as average, simple and complex. The complexity value

3

1.2 Class Point Analysis Introduction

(complex, average or simple) determination of use cases are calculated by the no.

of transactions used per use case.

Hence in this paper, both the class point approach and the use case point

method are utilised for the calculation the effort needed to create a software prod-

uct item and and their performances are analysed. In order to get better prediction

accuracy, a Stochastic Gradient Boosting based effort estimation model is used.

The results obtained from the SGB-based estimation model are then compared

with the results obtained from a Multi Layer Perception (MLP) and a Radial

Basis Function Network (RBFN) based models.

1.2 Class Point Analysis

Gennaro Costagliola et al. has introduced the class point approach in 1998 [4].

Based on the function point analysis approach, The idea using the Class Point Ap-

proach is to quantify the classes. Functions or procedures are the basic program-

ming units in procedure-oriented model; whereas, in case of an object-oriented

model, the fundamental building blocks are classes. The Class Point size estima-

tion process consists of three basic phases, corresponding to similar phases in the

function point approach [5] :

� Information processing size prediction:

– Classes are identified and classified

– Complexity level of each class are assigned

– Total Unadjusted Class Point is estimated

� Estimation Technical complexity factor

� Evalution of Final Class Points

In the beginning step, the requirement specifications of the software’s design

are analysed for identification and classification of the classes into four different

types of system components. They are Human Interaction Type (HIT), Problem

4

1.2 Class Point Analysis Introduction

Domain Type (PDT), Task Management Type (TMT) and Data-Management

Type (DMT) [5].

In the second step of first phase, each above identified class is given a com-

plexity level which is based on the local declared methods of the class and of the

association of the comparing class with whatever remains of the system. For CP1,

the complexity level for individual class is evaluated based on the No. of External

Methods (NEM), and the No. of Services Requested (NSR). Similarly for CP2, to

evaluate the complexity level of each class, the No. of Attributes (NOA) measure

is considered with the above measures. The following block diagram, which is

shown in Figure-1.1 describes the steps to compute the class point.

UML Diagram

Identify and

Classify Classes

Assign

Complexity Level
Calculate TUCP

and TCF

Final Class Point

Evaluation

Figure 1.1: Phases for Class Point Calculation

In case of CP1 calculation, the complexity level for the class is evaluated ac-

cording to Table-1.1 depending on the value of NSR and NEM [5]. For example,

a class having NSR value 3 and NEM value 7, average complexity level will be

assigned to the corresponding class.

Table 1.1: Evaluation of Complexity Level for CP1

0 - 4 NEM 5 - 8 NEM 9 - 12 NEM ≥ 13 NEM

0 - 1 NSR Low Low Average High

2 - 3 NSR Low Average High High

4 - 5 NSR Average High High Very High

> 5 NSR High High Very High Very High

In case of CP2 calculation, the complexity level for a class is evaluated using

NEM, NOA and NSR values corresponding to Table- 1.2a, 1.2b and 1.2c [5]. In

these tables, NEM and NOA range vary according to the fixed NSR range.

After assignment of complexity level for every class, weight to the class is

assigned based on information and its type which are given in Table- 1.3 [5]. After

5

1.2 Class Point Analysis Introduction

Table 1.2: Evaluation of Complexity Level for CP2

0 - 2 NSR 0 - 5 NOA 6 - 9 NOA 10 - 14 NOA ≥ 15 NOA

0 - 4 NEM Low Low Average High

5 - 8 NEM Low Average High High

9 - 12 NEM Average High High Very High

≥ 13 NEM High High Very High Very High

(a)

3 - 4 NSR 0 - 4 NOA 5 - 8 NOA 9 - 13 NOA ≥ 14 NOA

0 - 3 NEM Low Low Average High

4 - 7 NEM Low Average High High

8 - 11 NEM Average High High Very High

≥ 12 NEM High High Very High Very High

(b)

≥ 5 NSR 0 - 3 NOA 4 - 7 NOA 8 - 12 NOA ≥ 13 NOA

0 - 2 NEM Low Low Average High

3 - 6 NEM Low Average High High

7 - 10 NEM Average High High Very High

≥ 11 NEM High High Very High Very High

(c)

that, the Total Unadjusted Class Point value (TUCP) is calculated as a weighted

sum of the no. of classes of different component types.

TUCP =

4
∑

i=1

3
∑

j=1

wij × xij (1.1)

where xij is the no. of classes of component type i (human interaction, task

management, problem domain etc.) with the complexity level j (low, average or

high), For i type and j complexity level,wij is the weighting value.

Table 1.3: TUCP evaluation for Each Class Type

System Component Type Description
Complexity

Low Average High Very High

PDT Problem Domain Type 3 6 10 15

HIT Human Interaction Type 4 7 12 19

DMT Data Management Type 5 8 13 20

TMT Task Management Type 4 6 9 13

The Total Degree of Influence (TDI) is calculated by the aggregate of the

influence degrees of all the general system characteristics [5], which is shown in

Table-1.4. This is used in determining the TCF according to the below formula:

TCF = 0.55 + (0.01 ∗ TDI) (1.2)

Finally, the Class Point (CP) value is determined by multiplying the Total

Unadjusted Class Point (TUCP) value by TCF.

CP = TUCP ∗ TCF (1.3)

6

1.3 Use Case Point Analysis Introduction

Table 1.4: DI of Twenty Four General System Characteristics

ID System Characteristics DI ID System Characteristics DI

C1 Data Communication C13 Multiple sites

C2 Distributed Functions C14 Facilitation of change

C3 Performance C15 User Adaptivity

C4 Heavily used configuration C16 Rapid Prototyping

C5 Transaction rate C17 Multi-user Interactivity

C6 On-line data entry C18 Multiple Interfaces

C7 End-user efficiency C19 Management Efficiency

C8 On-line update C20 Developers’ Professional Competence

C9 Complex processing C21 Security

C10 Re-usability C22 Reliability

C11 Installation ease C23 Maintainability

C12 Operational ease C24 Portability

TDI Total Degree of Influence (TDI)

The final class point of various projects is used for calculation of the required

effort to develop the project in a very scheduled time.

1.3 Use Case Point Analysis

The Use Case Point (UCP) model was proposed by Gustav Karner in 1993 [6].

This system is accomplished by developing Function Point Analysis and Mk II

Function Point Analysis, based on the rationality of above strategies. An early

use case based software effort estimation might be made when there exist some

information of the system size, architectural planning and issue area at the phase

of the estimation. The block diagram, which is shown in Figure 1.2 describes the

steps to calculate the class point.

Use Case

Diagram

Classification

of Actors

and Use

Cases

Calculation

of Weights

and Points

Calculation

of TCF and

EF

Final Use

Case Point

Evaluation

Figure 1.2: Phases for Calculation of Use Case Point

The use case point approach can be implemented using the following steps :

7

1.3 Use Case Point Analysis Introduction

Classification of Actors and Use Cases

The first step is about the classification of the actors into classes like complex,

average or simple. A simple actor is represented by a system which has a definite

Application Programming Interface, (API). For an average actor, it is an system,

which is interacted through a protocol and in case of a complex actor, it may be

a person who interacts through a Web page or a GUI. Each actor type is assigned

a weighting factor, in the following manner :

Table 1.5: Weighting Factors of Actor

Actor Type Weighting Factor

Simple 1

Average 2

Complex 3

Similarly every use case is classified as average, simple or complex which de-

pends on no. of transactions between cases in the use case description diagram

and include secondary scenarios. Set of activities is called as a transaction which

is either executed completely, or not at all. No. of transactions is counted by

counting the number of use case steps. The use case is considered as Simple type,

when a simple user interface is used by it and interacts with only a single database

entity. The use case is considered as Average type, when it uses more than one

interface design and interacts with 2 or more database entities. Similarly the use

case is Complex type, when it uses a complex user interface or processing and

interacts with 3 or more database entities. Then use case complexity is defined

and weighted in the below described manner:

Table 1.6: Weighting Factors Use Case

Use Case Type No. of Transactions Type Weighting Factor

Simple <= 3 5

Average 4 to 7 10

Complex >= 7 15

8

1.3 Use Case Point Analysis Introduction

Calculation of Weights and Points

The total Unadjusted Actor Weights (UAW) is measured by counting number of

actors of each kind (by degree of complexity), then multiplied each total with

weighting factor, and finally the products are added up. Each type of use case is

then multiplied with weighting factor and the generated products are added up to

find the Unadjusted Use Case Weights (UUCW). Then the UAW is summed up

to the UUCW to get the Unadjusted Use Case Points (UUCP).

UUCP = UAW + UUCW (1.4)

Calculation of TCF and EF

The UUCP are calculated based on the values of a number of technical and envi-

ronmental factors which are shown in Tables 1.7 and 1.8. Each factor is scaled a

value between 0 and 5, depends on its influence on the project. Rating of 0 signi-

fies the factor has no impact upon this project and 5 signifies it is very essential

for this project.

Table 1.7: Technical Factor values

Factor Description Weight

T1 Distributed System 2

T2 Response Adjectives 2

T3 End-user Efficiency 1

T4 Complex Processing 1

T5 Reusable Code 1

T6 Easy to Install 0.5

T7 Easy to Use 0.5

T8 Portable 2

T9 Easy to Change 1

T10 Concurrent 1

T11 Security Features 1

T12 Access for Third Parties 1

T13 Special Training Required 1

The adjusted use case points are produced by the multiplication of adjustment

factors by the unadjusted use case points, which yield an estimation of the size of

the software. The Technical Complexity Factor (TCF) is computed by multiplying

each factor value (T1- T13) with its weight and then summing all these numbers

9

1.4 Various Performance Measures Introduction

Table 1.8: Environment Factors

Factor Description Weight

F1 Familiar with RUP 1.5

F2 Application Experience 0.5

F3 Object-oriented Experience 1

F4 Lead Analyst Capability 0.5

F5 Motivation 1

F6 Stable Requirements 2

F7 Part-time Workers -1

F8 Difficult Programming Language 2

to find the summation called the TFactor. The below formula is applied to find

TCF:

TCF = 0.6 + (0.01 ∗ TFactor) (1.5)

The Environmental Factor (EF) is computed by the multiplication of each

factor (F1-F8) with its weight and summing the products to get the summation

called the EFactor. The below equation gives EF value:

EF = 1.4 + (−0.03 ∗ EFactor) (1.6)

Final Use Case Point Calculation

The final adjusted use case points (UCP) are calculated as follows:

UCP = UUCP ∗ TCF ∗ EF (1.7)

The final use case point value is then considered as input argument to SGB

model to calculate effort.

1.4 Various Performance Measures

The evalution of accuracy of the model can be obtained by using the following

criteria:

10

1.4 Various Performance Measures Introduction

1.4.1 Mean Square Error (MSE)

It can be calculated as:

MSE =

∑N

i=1 (yi − ȳ)2

N
(1.8)

1.4.2 Magnitude of Relative Error (MRE)

The Magnitude of Relative Error (MRE) for each observation i can be ob-

tained as:

MREi =
|ActualEfforti − PredictedEfforti|

ActualEfforti
(1.9)

1.4.3 Mean Magnitude of Relative Error (MMRE)

TheMean Magnitude of Relative Error (MMRE) can be obtained by taking

the average of MRE over N observations.

MMRE =

∑N

1 MREi

N
(1.10)

1.4.4 Root Mean Square Error (RMSE)

It is just the square root of the mean square error.

RMSE =

√

∑N

i=1 (yi − ȳ)2

N
(1.11)

1.4.5 Normalized Root Mean Square(NRMS)

The Normalized Root Mean Square(NRMS) can be obtained by dividing

the RMSE value with standard deviation of the actual effort value.

NRMS =
RMSE

std(Y)
(1.12)

where Y is the actual effort for testing data set.

1.4.6 Prediction Accuracy (PRED)

The Prediction Accuracy (PRED) can be calculated as:

PRED = (1− (

∑N

i=1 |actuali − predictedi|

N
)) ∗ 100 (1.13)

11

1.5 Dataset used for Effort Calculation Introduction

where

N = Total number of data in the test set.

1.5 Dataset used for Effort Calculation

The dataset from forty Java frameworks is inferred throughout two progressive

semesters of graduate courses on Software Engineering. Effectiveness of the Class

Point approach [5] is proved by the use of such data in the validation process.

It is clear that the utilization of understudy’s undertakings may undermine the

outside legitimacy of the investigation and consequently, for the appraisal of the

system; further dissection is required by utilizing information hailing from the

modern world. By and by, we have attempted to make the approval process as

correct as could reasonably be expected.

The proposed approach for use case point is based on one forty nine data set

used in [7]. The use of this data set designates to evaluate software development

effort and validate the practicability of improvement. The utilization of such infor-

mation in the approval procedure has given introductory exploratory confirmation

of the adequacy of the UCP.

1.6 Thesis Organization

The rest of the thesis is organized as follows.

Literature Survey is given in Chapter-2. Details of the Stochastic Gradient

Boosting Technique) technique is given in Chapter-3, in that chapter proposed

approach and experimental details are also described. In Chapter-4 Results and

Comparison are discussed. Discussion of conclusion and Future work are at the

end Chapter-5.

12

Chapter 2

Literature Survey

Gennaro Costagliola et al. [5] purposed the class point approach method and ob-

served that the prediction accuracy of CP1 and CP2 under the class point approach

were 75 and 83 percentage respectively. They found this result by conducting an

experiment on a dataset with forty projects. Wei Zhou and Qiang Liu [3] extended

the above approach by adding CP3 measure in CPA. They acknowledged twenty-

four system characteristics rather than the eighteen characteristics by Gennaro

Costagliola et al. They observed no effect on the prediction accuracies of CP1 and

CP2, although the no. of characteristics changed by this approch. S.Kanmani et

al. [8] applied an artificial neural network model on CPA for mapping CP1 and

CP2 into the estimated software development effort and observed that the predic-

tion accuracy for CP1 was improved to 83 and CP2 to 87 percentage. SangEun

Kim et al. [9] modified definitions of class point and used a some extra parameters

beside NSR, NEM and NOA to compute the no. of class points. S. Kanmani et

al. [10] applied a fuzzy system by adopting the subtractive clustering technique in

the class point approach for effort calculation and comparison it with the result ob-

tained from an artificial neural network. They observed that their technique yields

better results than ANN. Mahmoud O. Elish [11] applied a data mining technique,

multiple additive regression trees (MART) that augments and progresses the clas-

sification and regression trees (CART) model. The obtained results were then

compared with linear regression, support vector regression and radial basis func-

tion networks models with the help of a NASA software project dataset and found

an improved estimation accuracy. J. S. Pahariya et al. [12] proposed a new genetic

13

Literature Survey

programming-based feature selection algorithm in software effort estimation and

compared the predicted effort with other computational intelligence techniques.

The results show that the new architecture for genetic programming surpassed the

other techniques. Ali B. Nassif et al. [7] applied Treeboost model for estimation

of software effort based on the use case point approach by considering eighty-four

data points and obtained promising results.

Adriano L.I. Oliveira [13] describes a relative study on radial basis function

neural networks (RBFNs), support vector regression (SVR) and linear regression

for software project effort estimation. The experiment is carried out using NASA

project datasets and the result shows that SVR performs better than RBFN and

linear regression. K. Vinay Kumar, et al. [14] have proposed the use of wavelet

neural network (WNN) to predict the software development effort and compares

the result with other techniques such as radial basis function network (RBFN),

multiple linear regression (MLR), multilayer perceptron (MLP), support vector

machine (SVM) and dynamic evolving neuro-fuzzy inference system (DENFIS).

A. Issha et al. [15] reports on three use case model based software effort estima-

tion models such as use case patterns estimation method, object points extraction

estimation method and use case rough estimation method. The prediction accu-

racy of this methods have been verified using a wide spectrum of software projects.

Ali B. Nassif et al., [16] presents a log-linear regression model as well as a mul-

tilayer perception model based on the use case point model (UCP) for software

effort estimation. By the comparative analysis of the result, they show that the

MLP model can overrun the regression model in case of small projects, but the

log-linear regression model provides better prediction accuracy in case of larger

projects.

Using the use case point size metric, Ali B. Nassif et al. [17] presented a

regression model for software effort estimation. They proposed an effort equation

that consider the non-linear relationship between software size and software effort,

along with the influences of project productivity and complexity. Results intends

that the software effort estimation accuracy can be improved by 16.5%. Ali B.

14

Literature Survey

Nassif et al., [18] extended this process by applying mamdani fuzzy inference

system with regression model to enhance the estimation accuracy and found 10%

improvement in the result. Ali B. Nassif et al. [19] also applied sugeno fuzzy

inference system with regression model to enhance the estimation accuracy and

found 11% improvement in the MMRE result. Ali B. Nassif et al., [20] propose an

Artificial Neural Network (ANN) for software effort estimation based on the Use

Case Point (UCP) model with the help of 240 data points and found a competitive

result with respect to other regression model. Ali B. Nassif et al., [21] also present

some techniques using fuzzy logic and neural networks for improvement of the

prediction accuracy of the use case points method and obtained a hike up to 22%.

Bilge Bakele et al., [22] proposed a machine learning based methods and evaluate

the model on public data sets, gathered from software industries. From analysis, it

is found out that the usage of any one model cannot produce the optimum results

for software effort estimation.

Shashank et al. [23] used Multi-Layer Perceptron (ANN) and Radial Basis

Function Network (RBFN) in class point approach for software effort estimation.

Then in his paper [2], he applied Adaptive Neuro-Fuzzy Inference System Model

for optimization of class point parameters and got improved results. He also

applied Various Support Vector Regression Kernel Methods in Use Case Point

Approach for Software Effort Estimation in his article [24].

15

Chapter 3

Stochastic Gradient Boosting
Technique

3.1 Introduction

The effort involved in software developing process plays an important role in de-

termining the faith of the product. In the context of software development using

object-oriented methodologies, in this chapter,using both class point and use case

point approach the main aim is software project’s effort estimation and optimize

the parameters using Stochastic Gradient Boosting Technique. The results ob-

tained from the SGB technique is compared with various types of adaptive re-

gression techniques such as Multi-Layer Perception (ANN), Radial Basis Function

Network(RBFN). By the correct estimation of the software product, we can have

software with satisfactory quality inside our plan and on arranged timetables.

3.2 Stochastic Gradient Boosting Technique

The Stochastic Gradient Boosting (SGB) technique is also called the Tree-boost

model [25]. Boosting means that we apply the function iteratively in a series

and combine the output of each function with a weighting coefficient in order to

minimize the total error of prediction and increase the accuracy. The mathematical

representation of the SGB algorithm can be written as

F (y) = F0 + C1 ∗ T1(y) + C2 ∗ T2(y) ++ CM ∗ TM(y) (3.1)

16

3.3 Proposed Approach Stochastic Gradient Boosting Technique

where F(y) is the estimated target value. F0 is the initial value for the series.

Vector y is used to represent the pseudo-residual values remaining at this point in

the series. To fit the pseudo-residuals, a series of trees T1(y), T2(y) etc. are used.

C1, C2 etc. are coefficients of the tree node estimated values that are calculated

using the SGB technique.

Usually, an individual tree consists of 8 terminal nodes with depth level 3.

Hence, it is fairly small. But, the full SGB model is built with hundreds of these

small trees. Beginning with the first tree, successive trees are fitted to the data.

The residuals (error values) from the preceding tree are fed into the next tree in

order to reduce the error. After repeating the process for a chain of trees, the

final predicted value is obtained by the summation of the individual weighted

contributions of the trees. The SGB method uses the Huber-M loss function for

regression. Residuals falling under the Hubers Quantile-Cutoff are squared before

use. In other cases the absolute values are used.

Stochastic means that a random percentage of training data points (50of all.

To delay the learning process and elongate the length of the series, a shrinkage

factor (between 0 and 1) is multiplied to each tree in the series. In return the

increased length compensates for the shrinkage. This improves the prediction

values. An Influence Trimming Factor is applied to optimize the process, as it

allows the rows with small residuals to be excluded.

3.3 Proposed Approach

The proposed model is based on a dataset [5] which is derived from forty stu-

dent projects built in Java programming language and aims to evaluate software-

development effort. For software effort estimation of a given software project,

basically the bellow steps have been used.

Steps in Effort Estimation

1. Calculation of Class Points or Use case points:After collecting the

data from other developed projects, the CP2 value is computed from the

class diagram. This generated CP2 value is used as an input argument. In

17

3.3 Proposed Approach Stochastic Gradient Boosting Technique

case of use case point the use case point (UCP) has been computed from the

use case diagram.

2. Normalization Dataset: Input arguments are normalized over the range

[0,1]. For X be the dataset and x is an element of the dataset,the normal-

ization of the x can be expressed as :

Normalized(x) =
x−min(X)

max(X)−min(X)
(3.2)

where

min(X) = the minimum value of X.

max(X) = the maximum value of X.

if max(X) is equal to min(X), then Normalized(x) is set to 0.5.

3. Division of data set: The dataset is divided into three parts. These are

learning, validation and test set.

4. Selection of Parameters: Various parameters such as number of trees,

Hubers quantile cutoff, shrinkage factor, stochastic factor and influence trim-

ming factor are selected to perform model selection using a five fold cross-

validation procedure.

5. Performing Model Selection: In this step, a five-fold cross validation

is implemented for model selection. The model that provides the lowest

normalized root mean square error (NRMSE), mean magnitude of relative

error (MMRE) values and the highest prediction accuracy (PRED) values is

selected as the best model for each fold.

6. Performance Evaluation: The performance of the model is verified using

final NRMSE, MMRE and PRED values obtained from test samples. These

final values are calculated by taking the average of NRMSE, MMRE and

PRED accuracy values obtained in each fold.

The above steps are followed to implement the SGB-based effort estimation model.

Finally, a comparison of the results obtained using the SGB-based effort estima-

18

3.4 Experimental Details Stochastic Gradient Boosting Technique

tion model with the results obtained from the MLP and RBFN-based models is

presented to assess their performances.

Calculation of Class

Points or Use case

points

Normalization of

Dataset

Division of Dataset

Selection of Parameters

Performing Model

Selection

Performance Evaluation

Figure 3.1: Proposed Steps Used for Effort Estimation using SGB

3.4 Experimental Details

After computing value of the final class point and use case point values, the dataset

is then normalized. The normalized dataset is partitioned into distinctive subsets

using a double sampling method. In starting step, the normalized dataset is

partitioned into a training and a test set. The training set helps in learning

purposes (model estimation), whereas the test set help in the prediction accuracy

estimation of the final model. In the second step, the training set is partitioned into

a validation set and a learning set. The learning set helps in model parameter’s

estimation, and the validation set helps in selection of an model with optimal

performance measures (usually via cross-validation).

Every fifth row of the table, is extracted for testing purposes and the rest are

used for training purposes. Hence, after completion of the first step of the double

sampling process, the complete forty project dataset is divided into thirty-two rows

for training and eight rows for testing. Then every fifth row of the training set is

19

3.5 Model Design Using Stochastic Gradient Boosting TechniqueStochastic Gradient Boosting Technique

selected for validation purposes, and the rest are used for learning purposes. So,

after completion of the second step of the double sampling process, the complete

thirty-two project dataset is partitioned into twenty-six rows for learning and

six rows for validation. After partitioning the sample into a learning set and

a validation set, using a five fold cross-validation process the model selection is

performed.

3.5 Model Design Using Stochastic Gradient Boost-

ing Technique

To design an effort estimation model using the SGB technique, the following steps

are used.

1. The coefficient of F0 is obtained by calculating the mean of the target vari-

ables (Software Effort).

2. A random percentage of rows are selected to feed the next tree using the

stochastic factor. If it is set to 0.5, 50 percent of the rows will be randomly

chosen.

3. The residuals of the rows are sorted and then the residues using the Hubers

Quantile Cutoff factor are transfered. The transformed residual values are

called pseudo-residuals.

4. The first tree (T1) is fitted to the pseudo-residuals.

5. The predicted values of the nodes are calculated using the mean of the

pseudo-residuals in each of the terminal nodes.

6. The residuals between the predicted values and the pseudo-residuals that

fed the tree are calculated.

7. The Hubers Quantile Cutoff factor is applied again on the result obtained

from step 6 and the mean of these residuals are then computed.

20

3.6 Summary Stochastic Gradient Boosting Technique

8. The boost coefficient (A1) of the tree is obtained by measuring the difference

between the mean residual value and the mean of the predicted values of the

tree.

9. Finally, the boost coefficient is multiplied by the shrink value to retard the

learning process.

The following parameter values are used to predict the effort using the SGB tech-

nique.

� No of Trees : 1000

� Hubers Quantile Cut off : 0.95

� Shrinkage Factor : 0.1

� Stochastic Factor : 0.5

� Influence Trimming Factor : 0.01

3.6 Summary

In this chapter, Stochastic Gradient Boosting Technique has been proposed and

details of steps are described to predict the effort of software product using op-

timized class point and use case point. First, the calculated class point and use

case point values are being normalized into a range of values and used as input

arguments to the SGB model to optimize the effort estimation performance mea-

sures. The optimization will be achieved by implementing Stochastic Gradient

Boosting technique. Finally, the produced results from distinctive systems have

been looked at for assessing the execution of diverse models.

21

Chapter 4

Results and Comparison

4.1 Class Point Approach Result

To improve reliability of software development processes proper estimation of effort

is an essential part. Among various cost estimation methods in this chapter, the

estimation of the effort of various software projects is done using Class Point

Approach. The parameters are optimized using the Stochastic Gradient Boosting

technique and compare with the MLP and RBFN techniques to achieve better

accuracy.

Table 4.1: MMRE and NRMSE Values Obtained using SGB for Each Fold

Fold MMRE Test Set Prediction Error (NRMSE)

1 0.3920 0.3130

2 0.1684 0.4819

3 0.5199 0.3736

4 0.0790 0.1582

5 1.0079 0.2460

Average 0.4334 0.3145

Table 4.1 provides the minimum MMRE and NRMSE values obtained from

the training set and the test set using the SGB technique for each fold in the five

fold cross validation processes. The final result is calculated by taking the average

of the MMRE and NRMSE values obtained in each fold. The proposed model

generated using the SGB technique is plotted based on the training and testing

samples in Figure 4.1.

From Figure 4.1, it is observed that the training and testing data are correlated

22

4.1 Class Point Approach Result Results and Comparison

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class Point (CP2)
Ef

fo
rt

(P
M

)

Training Examples
Testing Examples
Prediction

Figure 4.1: The SGB-based Effort Estimation Model for class point approach

around the regression line.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effort (PM)

Pr
ed

ic
te

d
Ef

fo
rt

(P
M

)

y=x
Predicted Effort

Figure 4.2: Actual vs. Predicted Effort using SGB for class point approach

Figure 4.2 displays the actual effort and the predicted effort obtained using the

SGB technique. From this figure, it is observed that there is very little difference

between the predicted effort and the actual effort.

4.1.1 Comparison

On the basis of the results obtained, the estimated effort values using the MLP,

RBFN and SGB techniques are compared. The results for the MLP and RBFN

techniques are collected from Satapathy et al. [23]. The results show that the SGB

technique performs better than the MLP and RBFN techniques.

Table 4.2 compares the actual effort with an estimated effort generated using

the MLP, RBFN and SGB techniques. From the table, it is observed that the

23

4.1 Class Point Approach Result Results and Comparison

Table 4.2: Comparison of Efforts obtained using MLP, RBFN and SGB

Actual Effort MLP Effort RBFN Effort SGB Effort

1 0.6661 0.7218 0.7700 0.6111

2 0.0100 0.0812 0.0839 0.0703

3 0.4067 0.5135 0.4689 0.4490

4 0.3081 0.2328 0.2822 0.2545

5 0.3112 0.2262 0.2757 0.2564

6 0.1916 0.1742 0.1687 0.1725

7 0.0542 0.1553 0.1410 0.1228

8 0.1084 0.0948 0.0924 0.1223

difference between the predicted effort and the actual effort values for the SGB

technique is much less than for the MLP and RBFN techniques. Hence, it can

be concluded that the SGB technique exhibits higher prediction accuracy than

the MLP and RBFN techniques. The results obtained from table Table 4.1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fold Number

Er
ro

r

MMRE
MLP

MMRE
RBFN

MMRE
SGB

PE
MLP

PE
RBFN

PE
SGB

Figure 4.3: Comparison of MMRE and PE Values

are plotted in figure 4.3. This figure shows a comparison between MMRE and

the prediction errors obtained using the MLP, RBFN and SGB techniques. In

this figure, MMREMLP , MMRERBFN and MMRESGB denotethe MMRE values

obtained using these three techniques. Similarly, PEMLP ,,PERBFN and PESGB

denote the prediction errors obtained using these three techniques.

Table 4.3 provides a comparison of the results obtained by relevant articles as

mentioned in the related work section. The performance of the techniques used in

those articles is compared by measuring their prediction accuracy (PRED) values.

The results show that the first two articles provide the same prediction accuracy;

24

4.2 Use Case Point Approach Result Results and Comparison

Table 4.3: Comparison of Prediction Accuracy Values of Related Works

Sl. No. Related Papers Technique Used Prediction Accuracy

1
Gennaro

Costagliola et al. [5]

Regression

Analysis
83%

2
Wei Zhou and
Qiang Liu [3]

Regression
Analysis

83%

3
S. Kanmani et

al. [8]
Neural Network 87%

4
S. Kanmani et

al. [10]
Fuzzy Logic 92%

whereas the third and forth articles show significant improvement in the prediction

accuracy. Finally, the results obtained in the related work section are compared

with the results of the proposed approaches, which are shown in Table 4.4.

Table 4.4: Comparison of Efforts obtained using MLP, RBFN and SGB

Sl. No. Techniques MMRE NRMSE Prediction Accuracy (in percentage)

1 Multi-Layer Perception 0.5233 0.3327 94.8185

2 Radial Basis Function Network 0.5252 0.3344 94.7539

3 Stochastic Gradient Boosting 0.4334 0.3145 95.3261

Better results in evaluation are indicated by lower values of MMRE, NRMSE

and higher values of prediction accuracy. Table 4.4 displays the final comparison

of MMRE, NRMSE and the prediction accuracy values for the MLP, RBFN and

SGB techniques.

4.2 Use Case Point Approach Result

The proposed model generated using the SGB technique for UCP have been plot-

ted based on the training and testing sample data set as shown in Figure 4.4.

The graphs show the variation of predicted effort value with respect to its corre-

sponding use case point value. In these graphs, it is clearly shown that the data

points are very little dispersed than the regression line. Hence the correlation is

higher. While comparing the dispersion of data points from the predicted model

in the above graphs for UCP, it is clearly visible that for SGB based UCP model,

the data points are less dispersed. Hence, the models exhibit less error values and

higher prediction accuracy values.

From Figure 4.4, it is observed that the training and testing data are correlated

25

4.2 Use Case Point Approach Result Results and Comparison

around the regression line. Figure 4.5 displays the actual effort and the predicted

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size

Ef
fo

rt
(P

M
)

Training Examples
Testing Examples
Prediction

Figure 4.4: Actual vs. Predicted Effort using SGB for use case point

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effort (PM)

Pr
ed

ic
te

d
Ef

fo
rt

(P
M

)

y=x
Predicted Effort

Figure 4.5: The SGB-based Effort Estimation Model for use case point

effort obtained using the SGB technique. From this figure, it is observed that there

is very little difference between the predicted effort and the actual effort.

4.2.1 comparison

On the basis of the results obtained, the estimated effort values using the MLP,

RBFN, Log Linear regression and SGB techniques are compared. The results for

the MLP, RBFN and Log Linear regression techniques are collected from Ali B.

Nasif et al. [20] and [17]. We collected results for SVR kernel methods for UCP

from shashank [24]. The results show that the SGB technique gives better results

than the other techniques.

26

4.2 Use Case Point Approach Result Results and Comparison

Table 4.5: Comparison of Prediction Accuracy Values of Related Works

Sl. No. Related Papers Technique Used Prediction Accuracy

1 A. Issha et al. [15]
3 Novel UCP

model
67%

2
Ali B. Nasif et

al. [20]
ANN Model 90.27%

3
Ali B. Nasif et

al. [17]
Regression

Model
95.8%

Table 4.5 provides a comparative study of the results obtained by some articles

mentioned in the related work section. The performance of techniques used in

those articles have been compared by measuring their prediction accuracy (PRED)

values. Result shows that, a maximum of 95% prediction accuracy is achieved

using regression analysis technique for UCP. Finally, the results obtained in related

work section is compared with results of proposed approaches, which is shown in

Table 4.6. The results obtained using proposed technique shows improvement in

the prediction accuracy value.

Table 4.6: Comparison of MMRE, NRMSE and PRED Values

MMRE
Prediction

Accuracy (in
percentage)

Multi-Layer
Perceptron

0.5233 94.8185

Log Linear
Regression

0.5252 94.7539

SVR Linear
Kernel

0.5438 97.7421

SVR Polynomial
Kernel

1.0003 97.4089

SVR RBF
Kernel

0.3857 98.0188

SVR Sigmoid
Kernel

0.6049 97.3931

Stochastic
Gradient
Boosting

0.2845 98.3635

When the MMRE and prediction accuracy is utilized as a part of assessment,

better results are shown by lower values of MMRE and higher values of predic-

tion accuracy. Table 4.6 displays the last comparison of MMRE, NRMSE and

27

4.3 Summary Results and Comparison

prediction accuracy values for the MLP, RBFN and SGB techniques.

4.3 Summary

In this chapter, to estimate the effort of an object-oriented system, models using

the Stochastic Gradient Boosting Technique has been proposed; and their results

have been compared. The output shows that Stochastic Gradient Boosting Tech-

nique using class point and use case point give better results.

28

Chapter 5

Conclusion and Future Work

A number of approaches have been considered by researchers and practitioners

for the effort estimation required to develop a given software product. The class

point model and the use case point are example of the effort estimation models and

they are preferred for projects developed using object-oriented technologies. This

model also helps in calculating the effort during an initial stage of the software

development life cycle. In the described paper, the class point model and the use

case point are enhanced using the SGB technique and the generated results are

compared with the results obtained from the MLP, RBFN and SVR techniques.

The results show that the SGB-based effort estimation model possesses lower

MMRE, NRMSE and higher prediction accuracy. So, a conclusion can be derived

that the effort estimation using the SGB-based model provides results with more

accuracy than the MLP, SVR and RBFN-based models. The computations for the

procedure were implemented and the outputs were generated using MATLAB. The

research work carried out in this paper can also be extended by applying other

machine learning techniques such as Decision Tree Forest, Random Forest etc. on

the class point and use case point approaches and comparing their results with

the results of the SGB technique to measure their accuracies.

29

Bibliography

[1] J. Matson, B. Barrett, and J. Mellichamp, “Software development cost esti-

mation using function points,” Software Engineering, IEEE Transactions on,

vol. 20, no. 4, pp. 275–287, 1994.

[2] S. M. Satapathy, M. Kumar, and S. K. Rath, “Fuzzy-class point approach for

software effort estimation using various adaptive regression methods,” CSI

Transactions on ICT, pp. 1–14, 2013.

[3] W. Zhou and Q. Liu, “Extended class point approach of size estimation for

oo product,” in Computer Engineering and Technology (ICCET), 2010 2nd

International Conference on, vol. 4, pp. 117–122, IEEE, 2010.

[4] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Towards a software

size metrics for object-oriented systems,” Proc. AQUIS, vol. 98, pp. 121–126,

1998.

[5] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class point: an

approach for the size estimation of object-oriented systems,” Software Engi-

neering, IEEE Transactions on, vol. 31, no. 1, pp. 52–74, 2005.

[6] G. Karner, “Resource estimation for objectory projects,” Objective Systems

SF AB, vol. 17, 1993.

[7] A. B. Nassif, L. F. Capretz, D. Ho, and M. Azzeh, “A treeboost model for

software effort estimation based on use case points,” in Machine Learning

and Applications (ICMLA), 2012 11th International Conference on, vol. 2,

pp. 314–319, IEEE, 2012.

30

Bibliography

[8] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Neural net-

work based effort estimation using class points for oo systems,” in Proceedings

of the International Conference on Computing: Theory and Applications, IC-

CTA ’07, (Washington, DC, USA), pp. 261–266, IEEE Computer Society,

2007.

[9] S. Kim, W. Lively, and D. Simmons, “An effort estimation by uml points in

early stage of software development,” Proceedings of the International Con-

ference on Software Engineering Research and Practice, pp. 415–421, 2006.

[10] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Class point

based effort estimation of oo systems using fuzzy subtractive clustering and

artificial neural networks,” in Proceedings of the 1st India software engineering

conference, ISEC ’08, (New York, NY, USA), pp. 141–142, ACM, 2008.

[11] M. O. Elish, “Improved estimation of software project effort using multiple

additive regression trees,” Expert Systems with Applications, vol. 36, no. 7,

pp. 10774–10778, 2009.

[12] J. Pahariya, V. Ravi, and M. Carr, “Software cost estimation using computa-

tional intelligence techniques,” in Nature & Biologically Inspired Computing,

2009. NaBIC 2009. World Congress on, pp. 849–854, IEEE, 2009.

[13] A. L. Oliveira, “Estimation of software project effort with support vector

regression,” Neurocomputing, vol. 69, no. 13, pp. 1749–1753, 2006.

[14] K. Vinay Kumar, V. Ravi, M. Carr, and N. Raj Kiran, “Software develop-

ment cost estimation using wavelet neural networks,” Journal of Systems and

Software, vol. 81, no. 11, pp. 1853–1867, 2008.

[15] A. Issa, M. Odeh, and D. Coward, “Software cost estimation using use-case

models: A critical evaluation,” in Information and Communication Technolo-

gies, 2006. ICTTA’06. 2nd, vol. 2, pp. 2766–2771, IEEE, 2006.

31

Bibliography

[16] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software estimation

using log-linear regression and a multilayer perceptron model,” Journal of

Systems and Software, 2012.

[17] A. B. Nassif, D. Ho, and L. F. Capretz, “Regression model for software ef-

fort estimation based on the use case point method,” in 2011 International

Conference on Computer and Software Modeling, pp. 117–121, 2011.

[18] A. B. Nassif, L. F. Capretz, and D. Ho, “A regression model with mamdani

fuzzy inference system for early software effort estimation based on use case

diagrams,” in Third International Conference on Intelligent Computing and

Intelligent Systems, pp. 615–620, 2011.

[19] A. B. Nassif, L. F. Capretz, and D. Ho, “Estimating software effort based

on use case point model using sugeno fuzzy inference system,” in Tools with

Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference on,

pp. 393–398, IEEE, 2011.

[20] A. B. Nassif, L. F. Capretz, and D. Ho, “Estimating software effort using an

ann model based on use case points,” in Machine Learning and Applications

(ICMLA), 2012 11th International Conference on, vol. 2, pp. 42–47, IEEE,

2012.

[21] A. B. Nassif, “Enhancing use case points estimation method using soft com-

puting techniques,” Journal of Global Research in Computer Science, vol. 1,

no. 4, 2010.

[22] B. Baskeles, B. Turhan, and A. Bener, “Software effort estimation using ma-

chine learning methods,” in Computer and information sciences, 2007. iscis

2007. 22nd international symposium on, pp. 1–6, IEEE, 2007.

[23] S. M. Satapathy, M. Kumar, and S. K. Rath, “Class point approach for

software effort estimation using soft computing techniques,” in Advances in

Computing, Communications and Informatics (ICACCI), 2013 International

Conference on, pp. 178–183, IEEE, 2013.

32

Bibliography

[24] S. M. Satapathy and S. K. Rath, “Use case point approach based software

effort estimation using various support vector regression kernel methods,”

arXiv preprint arXiv:1401.3069, 2014.

[25] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics &

Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.

33

Dissemination of Work

Accepted

1. Shashank Mouli Satapathy, Barada prasanna Acharya, Santanu Kumar Rath.

Class Point Approach for Software Effort Estimation using Stochastic Gra-

dient Boosting Technique. ACM SIGSOFT Software Engineering Notes,

ACM, May 2014.

34

	Certificate
	Authors Declaration
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Basic Concepts
	Top-down Approach
	Bottom-up Approach

	Class Point Analysis
	Use Case Point Analysis
	Various Performance Measures
	Mean Square Error (MSE)
	Magnitude of Relative Error (MRE)
	Mean Magnitude of Relative Error (MMRE)
	Root Mean Square Error (RMSE)
	Normalized Root Mean Square(NRMS)
	Prediction Accuracy (PRED)

	Dataset used for Effort Calculation
	Thesis Organization

	Literature Survey
	Stochastic Gradient Boosting Technique
	Introduction
	Stochastic Gradient Boosting Technique
	Proposed Approach
	Experimental Details
	Model Design Using Stochastic Gradient Boosting Technique
	Summary

	Results and Comparison
	Class Point Approach Result
	Comparison

	Use Case Point Approach Result
	comparison

	Summary

	Conclusion and Future Work
	Bibliography
	Dissemination of Work

