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ABSTRACT

LetM,N be Orlicz functions and letD(lM , lN) be the space of all diagonal operators (that is

multipliers) acting between the Orlicz sequence spaces lM and lN . We prove that the space

of multipliers D(lM , lN) coincides with (and is isommorphic to) the Orlicz sequence space

lM∗
N

, where M∗
N is the Orlicz function defined by M∗

N(λ) = sup{N(λx)−M(x), x ∈ (0, 1)}

.

Key words and phrases. Compact multiplier, Linear operator, Multipliers, Orlicz func-

tion, Orlicz sequence space, M2-condition.
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CHAPTER 1

1 Historical Glimpses and Motivation

1.1 Orlicz and Modular Sequence Spaces

Orlicz spaces have their origin in the Banach space researches of 1920. Indeed, after the

development of Lebesgue theory of integration and inspired by the functions tp in the

definitions of the spaces lp and Lp, Orlicz spaces were rst proposed by Z. W. Birnbaum

and W. Orlicz in [1] and later developed by Orlicz himself in [12], [13]. The study and

applications of this theory was picked up again in Poland, USSR and Japan after the

war years. Around the year 1950, H. Nakano [11] studied Orlicz spaces with the name

’modulared spaces’. However, the theory became popular for researches in the western

countries after the publication of the book Linear Analysis by A. C. Zaanen. This possibly

resulted in the translation of the monograph of M. A. Krasnoselskii and Ya.B. Rutickii on

Convex Functions and Orlicz Spaces by Leo F. Boron from Russian to English, and after

the appearance of the English version of this book in 1961, the theory has been eectively

used in many branches of Mathematics and Statistics, e.g, dierential and integral equations,

harmonic analysis, probability etc.

Prior to the researches of W. Orlicz, it was W. H. Young [18] who, motivated by the

functions up(u ≥ 0) and vp(v ≥ 0) with
1

p
+

1

q
= 1, 1 < p, q < ∞, introduced a function

v = ϕ(u) for u ≥ 0 such that ϕ is continuous and strictly increasing with ϕ(0) = 0 and

ϕ(u)→∞ as u→∞. If u = ψ(v) is inverse of ϕ, he defined

Φ(a) =

∫ a

0

ϕ(u)du , Ψ(b) =

∫ b

0

ψ(v)dv

for a, b ≥ 0. These functions are known as Youngs functions in the literature, and besides
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being convex, satisfy the Youngs inequality

ab ≤ Φ(a) + Ψ(b)

for a, b ≥ 0. Young introduced the classes YΦ and YΨ consisting of measurable functions f

for which
∫

Φ(|f(x)|)dx <∞ and
∫

Ψ(|f(x)|)dx <∞, respectively. These spaces failed to

form the vector spaces. However, if Φ satisfies M2condition in the sense that there exists a

constant C > 0 such that Φ(2u) ≤ CΦ(u) holds for all u ≥ 0,YΦ becomes a vector space. In

the process of norming the spaces YΦ, YΨ, Orlicz considered the class LΦ of all measurable

functions f satisfying

|f |Φ = sup

{∫
|fg|dx :

∫
Ψ(|g|)dx ≤ 1

}
<∞

and proved that (LΦ, ‖.‖Φ) is a normed linear space. In general, YΦ ⊂ LΦ, however, if φ

satisfies M condition defined as above, YΦ = LΦ, cf.[12], [13]

Orlicz sequence spaces which are of the particular type of Orlicz spaces, attracted the

attention of mathematicians with a certain specic purpose of solving problems in Banach

space theory. Though the spaceslM and hM were respectively introduced by Orlicz [12]

and Y. Gribanov [3], a clear and detailed exposition of results on Orlicz sequence spaces

was given by K. Lindberg [7,8] who got interested in finding the solution of the problem,

Does a Banach space have a complemented subspace isomorphic to either lp, 1 ≤ p <∞,

or c0? He succeeded in getting the affirmative answer to this problem for certain type of

Orlicz sequence spaces. Lindberg also proved that hM is a closed subspace of lM for which

the sequence en, forms a symmetric basis. He also considered the M2-condition for small x

and proved the equivalence of this condition with the equality of the spaces hM and lM .

In 1971 J. Lindendenstruss and L. Tzafriri [9], besides proving that every Orlicz se-

quence space contains a subspace isomorphic to lP for some p ≥ 1, showed that there are

Orlicz sequence spaces with a unique (upto equivalence) symmetric basis. In their subse-

quent work [9], they investigated the structure of those subspaces of an Orlicz sequence
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space which are themselves Orlicz sequence spaces. They also considered an example of a

reexive Orlicz sequence space which does not contain any lp, 1 < p <∞,as a complemented

subspace. In [10] Lindendenstruss and Tzafriri considered the problem of identifying those

ps for which lp is isomorphic to a subspace of a given Orlicz sequence space lM . Indeed,

they proved that if an Orlicz function M satisfies M2 condition at 0, then is lp isomorphic

to a subspace of lM iff p ∈ [αM , βM ], where αM = sup

{
p : sup0<x,t≤1

M(ts)

M(t)xp
<∞

}
and

βM = inf

{
p : sup0<x,t≤1

M(ts)

M(t)xp
> 0

}
.

Almost at the same time in 1973, J. Y. T. Woo [16] generalized the concept of Orlicz

sequence spaces to modular sequence spaces which envelope the modular sequence spaces

considered earlier by H. Nakano [11] as particular case; indeed take Mn(x) = xpn for some

p ∈ [1,∞) in definition of Modular sequence spaces from Section 1.3. He generalized some

of the results of Lindendenstruss and Tzafriri proved by them in [9] to modular sequence

spaces; for instance, they proved that every modular sequence space contains lp for some

p ∈ [1,∞). Indeed, in order to carry out their investigations on modular sequence spaces

for results valid for Orlicz sequence spaces, Woo introduced the notion of almost equality

for two sequences {Mn} and {Nn} of Orlicz functions ({Mn} and {Nn} are said to be

almost equal if there exists an > 0 for all n ∈ N such that Mn(x) = Nn(x) for all x > an

and
∑

nMn(an) < ∞) and the uniform M2-condition (cf. p-13 for denition). He also

investigated the duals of modular sequence spaces and characterized their reflexivity. This

study was further continued by him in [17].

In 1977, N. J. Kalton [5], studied Orlicz sequence spaces without the condition of con-

vexity in the denition of an Orlicz function. He observed that in case of locally bounded

spaces, some results of Lindendenstruss and Tzafriri hold with identical proofs (as pointed

out by them in [10], p-369); but it was not so with the non-locally bounded case. He

succeeded in nding many interesting features distinguishing the two theories.
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CHAPTER 2

2 Preliminaries

2.1 Definitions

Definition 3.1.1. Let M be function with

M : [0,∞)→ [0,∞)

is continuous, non-negative, convex, even function such that M(0) = 0 and for some

a 6= 0,M(a) 6= 0.

Then M(x) is called an Orlicz function.

Definition 3.1.2. (Orlicz Sequence Space) lM is a Banach space of real sequence,

{xi}∞i=1 such that for some r > 0,
∑

iM
(xi
r

)
<∞ that is,

lM =

{
{x(i)} :

∞∑
i=1

M
(xi
r

)
<∞, for some r > 0

}
.

with the norm,

‖{xi}∞i=1‖M = inf

{
r > 0 :

∑
i

M
(xi
r

)
≤ 1

}
.

The space lM with norm ‖.‖M is called Orlicz sequence space.

Representation of M(x) : An Orlicz function M(x) has the representation,

M(x) =

∫ |x|
0

p(t)dt

where p(t) is the right derivative of M(x).
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If p(t) is a right continuous, non decreasing, non negative function defined on the non

negative reals. Then
∫ |x|

0
p(t)dt call the representation of M(x).

According to behaviour of p(t) : there will be three distinct properties of p

(i) There is an a > 0 such that p(0) = a.

(ii) There is an x0 > 0 such that for 0 6 x 6 x0, p(x) = 0.

(iii) p(0) = 0 and for x > 0, p(x) > 0.

First two generate l1 and l∞ respectively.

The third is called M - function.

Definition 3.1.3. (Complementary M- function): Let M(x) be an M - function

with representation M(x) =
∫ |x|

0
p(t)dt

Define,

q(s) = supp(t)6st

Then q(s) is a right-continuous, non-decreasing function defined on the non-negative reals

such that

q(0) = 0 and q(s) > 0 for s > 0

N(x) =

∫ |x|
0

tq(s)ds

is an M -function and it is called the M -function complementary to M(x).

M(x) is also complementary of N(x). Hence M(x) and N(x) are complementary M -

function.

Example: Let p > 1 and
1

p
+

1

q
= 1 , then M(x) =

1

p
xp and N(x) =

1

q
xq are comple-

mentary M -function.
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Definition 3.1.4. (The sequence space ¯lM)

¯lM =
{
{x(i)}∞i=1 : ‖|{xi}∞i=1‖|M = sup∑

N(yi)≤1

(∑
xiyi

)
<∞

}
The space ¯lM with norm ‖.‖M is a Banach space over the reals.

hM - space :-

Let M(x) be an Orlicz function and

hM =

{
{xi}∞i=1 :

∑
i

M
(xi
r

)
<∞, for all r > 0

}

with

‖{xi}∞i=1‖M = inf

{
r > 0;

∑
i

M
(xi
r

)
≤ 1

}
hM is a subset of lM .

Unit Vector Space:-

The set {ei}∞i=1 where ei = {0, 0, ..., 0, 1, 0, ...} (1 in the ith position) is the set of unit vector

for the Orlicz space lM . The unit vectors form a symmetric basis for c0 (space of sequence

convergences to zero with supremum norm) and lp, 1 6 p < ∞. This basis is called the

unit vector basis.

Definition 3.1.5.: Let M1(x) and M2(x) are equivalent if there are positive constants

A,B, a, b and x0 , such that for all 0 6 x 6 x0,

AM2(ax) 6M1(x) 6 BM2(bx).
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2.2 Basic Results of Orlicz sequence spaces.

Proposition 3.2.1. Let M(x) be an M -function and let {xi}∞i=1 be a real sequence. Then

{xi}∞i=1 is in lM iff {xi}∞i=1 is in l̄M . And,

‖{xi}∞i=1‖M ≤ |||{xi}∞i=1|||M ≤ 2‖{xi}∞i=1‖M .

Proposition 3.2.2. Let M(x) and N(x) be complementary M -functions.

Let M(x) =
∫ |x|
o
p(t)dt be the representation of M(x).Then,

(a) For all x, y ≥ 0, xy ≤M(x) +N(x).

(b) For all x ≥ 0, xp(x) = M(x) +N(x).

(c) For all {xi}∞i=1 in lM ,∑
i

xiyi ≤ |||{xi}∞i=1|||M if
∑

N(yi) ≤ 1,

and ∑
i

xiyi ≤ |||{xi}∞i=1|||M ·
∑

N(yi) if
∑

N(yi) ≤ 1.

Proposition 3.2.3. An M-function M(x) satisfies the 42-condition for small x if for all

Q > 0 there are K > 0 and x0 > 0 such that M(Qx) ≤ KM(x) for all 0 ≤ x ≤ x0. Using

convexity of M(x), it follows that the above is equivalent to the existence of K and x0 such

that M(2x) ≤ KM(x) for all 0 ≤ x ≤ x0.

Proposition 3.2.4. Let M(x) be an M-function with representation M(x) =
∫ |x|

0
p(t)dt.

M(x) satisfies the 42-condition for small x iff there are K > 0 and x0 > 0 such that

1 ≤ xp(x)

M(x)
≤ K for all 0 < x < x0.
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Proposition 3.2.5. Let M(x) be an M-function. The following are equivalent :

(a) M(x) satisfies the 42-condition for small x.

(b) lM = hM .

(c) lM is separable.

(d) lM has a symmetric basis.

Proposition 3.2.6. Let M1(x) and M2(x) be Orlicz functions. If M1(x) is equivalent

to M2(x), then lM1 and lM2 are isomorphic. If lM1 and lM2 are separable, then M1(x) is

equivalent to M2(x) iff the unit vectors bases of lM1 and lM2 are equivalent.

Proposition 3.2.7. Let M(x) =
∫ |x|

0
p(t)dt be an M-function which satisfies the 42-

condition for small x. Then there is an M-function M1(x) which is equivalent to M(x)

such that M1(x) has the representation M1(x) =
∫ |x|

0
p1(t)dt, where p1(t) is a continuous,

strictly increasing function with p1(0) = 0.
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CHAPTER 3

3 Multipliers between Orlicz Sequence Space

Let M(t), t ≥ 0 be a Orlicz function i.e,

M : [0,∞)→ [0,∞)

is convex, non-decreasing (constant and increasing) such that M(0) = 0 and M(t) → ∞

as t→∞.

Orlicz sequence space

lM =

{
{xi}∞i=1 :

∑
i

M

(
|xi|
α

)
<∞; for some α > 0

}
is a linear space.

Equipped with norm

‖x‖M = inf

{
ρ :
∑
i

M

(
|xi|
α

)
6 1

}
is Banach space, that is, it is complete(Cauchy sequence is convergences).

To show : lM is complete.

Let (xn) be any Cauchy sequence in the space lM where xm = (ξm1 , ξ
m
2 , ..., ). Then for every

ε > 0, there is an N such that for all m,n > N ,

d(xm, xn) = |xm − xn| < ε

=
∑
i

∣∣∣∣M (
|ξmi |
α

)
−M

(
|ξni |
α

) ∣∣∣∣ < ε, for some α > 0

=
∑
i

∣∣∣∣M (
|ξmi |
α
− |ξ

n
i |
α

) ∣∣∣∣ < ε.

It follows that for every i = 1, 2, ... we have∣∣∣∣M (
|ξmi |
α

)
−M

(
|ξni |
α

) ∣∣∣∣ < ε
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we choose a fixed i, we see that (ξ1
i , ξ

2
i , ...) is a Cauchy sequence of numbers. It convergences

since R and C are complete.

say ξmi → ξi as m→∞, using this limit.

We define

x = (ξ1, ξ2, ...)

To show : x ∈ lM and xm → x.

we have for all m,n > N .

k∑
i=1

∣∣∣∣M (
|ξmi |
α

)
−M

(
|ξni |
α

) ∣∣∣∣ < ε (k = 1, 2, ...)

letting n→∞, we obtain for m > N .

∞∑
i=1

∣∣∣∣M (
|ξmi |
α

)
−M

(
|ξni |
α

) ∣∣∣∣ < ε (1)

This show that xm − x =

(
M

(
|ξmi |
α

)
−M

(
|ξi|
β

))
∈ lM

since xm ∈ lM .

Hence by triangle inequality,

|ξi| = |(ξi − ξmi ) + (ξmi )|

6 |ξi − ξmi |+ |ξmi |

⇒
∑
i

M

(
|ξi|
α

)
6
∑
i

M

(
|ξi − ξmi |

α

)
+
∑
i

M

(
|ξi|
α

)
< 2ε = ε.

This inequality holds for every i,

This implies that x = (ξi) ∈ lM and from (1) we obtain d(xm, x) < ε. This show that

xm −→ x.

Since (xm) was arbitrary Cauchy sequence, So lM is complete.

Definition (42-condition): An Orlicz function M(t) is said to satisfy the 42-condition

if

M(2t) ≤ CM(t), t ∈ (0, 1), for some constant C > 0.
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Proposition 4.1.:

Let M be an Olicz function, then the subspace

hM =

{
x = (xi) :

∑
M

(
|xi|
ρ

)
<∞, ∀ ρ > 0

}
is a closed subspace of lM and the vectors (en)∞1 (where en = (eni), eni = 0 if i 6= n, enn = 1)

form a basis in it.

Proof.

Let Xn ∈ hM where hM =

{
x = (xni ) :

∑
iM

(
|xi|
r

)
<∞, for all r > 0

}
and Xn =

{xni }∞i=1 and

‖Xn‖M = inf

{
r > 0 :

∑
i

M

(
|xni |
r

)
6 1

}
Let Xn converges to X0 in the norm ‖.‖M .

To show: If X0 = {x(0)
i }∞i=1, then

∑
iM

(
x

(0)
i

r

)
<∞, for all r > 0.

But since
1

r
Xn −→

1

r
X0, for each r > 0 and let

1

r
Xn ∈ hM .

It is only necessary to show :
∑

iM
(
x

(0)
i

)
<∞.

For each n, let Xn = {x(n)
i }∞i=1 . Choosing N such that for n > N ,

‖Xn −X0‖M 6
1

2

it follow that,

‖Xn −X0‖M 6
1

2

⇒ 2‖Xn −X0‖M 6 1

⇒ 2‖x(n)
i − x

(0)
i ‖ 6

‖x(n)
i − x

(0)
i ‖

‖Xn −X0‖M
6 1, ∀n > N

⇒M
(

2‖x(n)
i − x

(0)
i ‖
)
6M

(
‖x(n)

i − x
(0)
i ‖

‖Xn −X0‖M

)
6 1, ∀n > N

⇒
∑
i

M
(

2‖x(n)
i − x

(0)
i ‖
)
6
∑
i

M

(
‖x(n)

i − x
(0)
i ‖

‖Xn −X0‖M

)
6 1, ∀n > N
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Therefore convexity of M(x),

∑
i

M(x
(0)
i ) =

∑
i

M

(
2x

(n)
i − 2x

(n)
i + 2x

(0)
i

2

)

=
∑
i

M

(
2x

(n)
i − 2(x

(n)
i − x

(0)
i )

2

)
6

1

2

∑
i

M
(

2
(
x

(n)
i

))
+

1

2

∑
i

M
(

2|x(n)
i − x

(0)
i |
)

<∞.

Hence hM is closed in lM . Let {ei}∞i=1 be the set of unit vector. If for each {xi}∞i=1 in

hM ,
∑

i xiei convergence in the norm ‖.‖M to {xi}∞i=1 then {ei}∞i=1 is basis for hM . Given

{xi}∞i=1 in hM and 0 < ε < 1, choose an integer N such that
∑∞

i=1 M
(xi
ε

)
6 1, This can

be done since {xi}∞i=1 is in hM . Now for n > N ,

‖{xi}∞i=1 −
n∑
i=1

xiei‖ = inf

{
r > 0 :

∞∑
i=n+1

M
(xi
r

)
6 1

}

6 inf

{
r > 0 :

∞∑
i=N

M
(xi
r

)
6 1

}
6 ε

Hence {ei}∞i=1 forms a basis for hM . //.

Definition:

Let M(t) and N(t) be two Orlicz functions. A sequence of scalars λ = (λi) is called a

multiplier between the Orlicz space lM and lN if for each

x = (xi) ∈ lM , we have

λx := (λixi) ∈ lN .

Each Multiplier λ defines a continuous diagonal operator

Tλ : lM −→ lN

12



Therefore we identify multipliers with diagonal operators and denoted by D(lM , lN) the

space of all multipliers between lM and lN . Regarded with the usual operator norm it is a

Banach space.

Consider the function

M∗
N(s) = max(0, supt∈[0,1]{N(st)−M(t)}), s > 0 (2)

by the definition, we have

M∗
N(s) = supt∈[0,1](N(st)−M(t))

⇒M∗
N(s) > (N(st)−M(t))

⇒ N(st) 6M∗
N(s) +M(t) (3)

which generalizes the classical Young inequality.

Definition (Equivalent):

Two Orlicz function M(t) and M̄(t) are equivalent, if

∃ c > 0, t0 > 0 : c−1M(c−1(t)) 6 M̄(t) 6 cM(ct), ∀ t ∈ [0, to]

Equivalent Orlicz function generate one and the same Orlicz sequence space and define

equivalent norm on it.

Proposition 4.2.: If S is an Orlicz function then

‖(yi)‖S > 1⇒ ‖(yi)‖S 6
∑
i

S(|yi|)

Proof :

Since S is a convex function and S(0) = 0.

We have for every β > 1 that

13



S(β−1(t)) = S(β−1t+ (1− β−1).0)

6 β−1S(t) + (1− β−1)S(0)

= β−1(S(t)) + (1− β−1).0

= β−1S(t)

we know,

‖(yi)‖S = inf

{
β > 0 :

∞∑
i=1

S

(
|yi|
β

)
6 1

}
for every β such that,

1 < β < ‖(yi)‖S

⇒ 1 <
∞∑
i=1

(
S|yi|
β

)
6

1

β

∞∑
i=1

(S(yi))

⇒ β 6
∞∑
i=1

(S(yi))

So, letting β −→ ‖(yi)‖S, we obtain

‖(yi)‖S 6
∞∑
i=1

(S|yi|).

Proposition 4.3.: If S is an Orlicz function then

‖(yi)‖S < 1⇒
∑
i

S(|yi|) 6 ‖(yi)‖S

Proof :

Since S is a convex function and S(0) = 0.

We have for every α ∈ (0, 1) that
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S(α(t)) = S(αt+ (1− α).0)

6 αS(t) + (1− α)S(0)

= α(S(t)) + (1− α).0

= αS(t).

we know,

‖(yi)‖S = inf

{
α > 0 :

∞∑
i=1

S

(
|yi|
α

)
6 1

}
There for every α, such that

‖(yi)‖S < α < 1

Given

‖(yi)‖S < α

⇒
∞∑
i=1

S

(
|yi|
α

)
6 1

⇒
∞∑
i=1

S

(
α|yi|
α

)
6 α

⇒
∞∑
i=1

S

(
α|yi|
α

)
6 α

∞∑
i=1

S

(
|yi|
α

)
6 α

⇒
∞∑
i=1

S(|yi|) 6 α

So, letting α −→ ‖yi‖S we obtain,∑
i

S(|yi|) 6 ‖(yi)‖S.

Proposition 4.4.:

If λ ∈ lM∗
N

then it is a multiplier from lM into lN . Moreover, the following generalization

of the Holder inequality hold:

‖λx‖N 6 2‖λ‖M∗
N
‖x‖M , ∀ λ ∈ lM∗

N
, ∀ x ∈ lM .
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proof :

Fix λ = (λi) ∈ lM∗
N

and x = (xi) ∈ lM , and let

ρ > ‖λ‖M∗
N
, r > ‖x‖M .

Consider the sequences λ̃ =
λ

ρ
and x̃ =

x

r
.

For λ̃i > 0 and x̃i > 0.

Consider the function

M∗
N(λ̃i) = max

(
0, supx̃∈[0,t]{N(λ̃ix̃i)−M(x̃i)}

)
⇒M∗

N(λ̃i) = supx̃∈[0,t]

(
{N(λ̃ix̃i)−M(x̃i)}

)
⇒M∗

N(λ̃i) > N(λ̃ix̃i)−M(x̃i)

⇒ N(λ̃ix̃i) 6M(x̃i) +M∗
N(λ̃i)

Take summation in the both side

⇒
∑
i

N(|λ̃ix̃i|) 6
∑
i

M(|x̃i|) +
∑
i

M∗
N(|λ̃i|) (4)

Given

r > ‖x‖M

⇒
∑
i

M

(
|xi|
r

)
6 1

⇒
∑
i

M (|x̃i|) 6 1

and

ρ > ‖λ‖M∗
N

⇒
∑
i

M∗
N

(
|λi|
ρ

)
6 1

⇒
∑
i

M∗
N(|λ̃i|) 6 1

From (4),

⇒
∑
i

N(|λ̃ix̃i|) 6
∑
i

M(|x̃i|) +
∑
i

M∗
N(|λ̃i|)

6 1 + 1

6 2 (5)

16



From, Proposition (4.2), we have

‖(yi)‖S > 1⇒ ‖(yi)‖S 6
∑
i

S(|yi|) (6)

From (5) and (6),

‖λ̃ix̃i‖N 6
∑
i

N
(
|λ̃ix̃i|

)
6 2

⇒ ‖λ̃ix̃i‖N 6 2

⇒ ‖λ̃x̃‖N 6 2

⇒ ‖λ
ρ

x

r
‖N 6 2

⇒ ‖λx‖N 6 2ρr

Letting ρ −→ ‖λ‖M∗
N

and r −→ ‖x‖M , we obtain the following

⇒ ‖λx‖N 6 2‖λ‖M∗
N
‖x‖M

and λx ∈ lN and λ is multiplier between lM into lN , that is, λ ∈ D(lM , lN).

Hence, lM∗
N
⊂ D(lM , lN). //.

Proposition 4.5.:

Show that D(lM , lN) ⊂ lM∗
N

, That is, if λ is a multiplier from lM into lN then λ ⊂ lM∗
N

.

Proof :

Consider, in the space of multiplier D(lM , lN), the operator norm

‖λ‖0 = sup{‖λx‖N : ‖x‖M = 1} (7)

We may assume without loss of generality that M(1) = 1 and N(1) = 1

Then we have, ∀ i

‖ei‖M = inf

{
ρ :
∑
i

M

(
|ei|
ρ

)
6 1

}
and

‖ei‖N = inf

{
r :
∑
i

M

(
|ei|
r

)
6 1

}
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But we assume M(1) = 1 and N(1) = 1 So, ‖ei‖M and ‖ei‖N = 1

Let fix a multiplier,

λ = (λi) ∈ D(lM , lN) (8)

λ = (λi) ∈ D(lM , lN) such that ‖λ‖0 =
1

2
Then,

|λi| = λ‖ei‖N = ‖λei‖N 6 ‖λ‖0‖ei‖M‖ =
1

2
‖ei‖M =

1

2

⇒ |λi| 6
1

2

Since M and N are Orlicz function they are continuous.

Thus for every i = 1, 2, 3, ...∃ an xi ∈ [0, 1] such that

M∗
N |λi| = N(|λi|xi)−M(xi)

that is,

N(|λi|xi) = M(xi) +M∗
N(|λi|) (9)

consider the sequence (xi)
∞
i=1. Since by our assumption ‖λ‖0 =

1

2
.

we have from Proposition (4.3), (‖(yi)‖S < 1⇒
∑

i S(|yi|) 6 ‖(yi)‖S) ∀ i,

N(|λi|xi) 6 ‖|λi|xi‖N

= ‖λixiei‖N

6
1

2
‖xiei‖M

6
1

2

Therefore

M(xi) = N(|λi|xi)−M∗
N(|λi|) <

1

2
, i = 1, 2, ...

We shall prove by induction that

n∑
i=1

M(xi) 6
1

2
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It is shown that the statement is true for n = 1. Consider the sequences

ξ(n) =
n∑
i=1

xiei, n = 1, 2, ...

Assume that the claim is true for some n. Then

n+1∑
1

M(xi) =
n∑
1

M(xi) +M(xn+1) ≤ 1

2
+

1

2
≤ 1

So, ‖ξn+1‖M ≤ 1.

Therefore, we obtain From equation (9) and Proposition (4.3) ,

n+1∑
i=1

M(xi) ≤
n+1∑
i=1

N(|λi|xi) ≤ ‖λixiei‖N

≤ ‖λξn+1‖N

≤ ‖λ‖‖ξn+1‖M

≤ 1

2

Which prove the claim.

Since,
n∑
1

M(xi) <
1

2

for every n, we have
∞∑
1

M(xi) ≤
1

2

Thus x ∈ lM and ‖x‖M < 1.

Now from equation (9), it follows

∞∑
i=1

M∗
N(λi) ≤

∞∑
i=1

N(|λi|xi) ≤ ‖λx‖N ≤
1

2
‖x‖M ≤

1

2

Hence,

λ ∈ lM∗
N
and ‖λ‖M∗

N
≤ 1 (10)
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From equation (8) and (10), we get

D(lM , lN) ⊂ lM∗
N
. //.

Proposition 4.6.:

Prove that: ‖µ‖M∗
N
≤ 2‖µ‖0, ∀ µ ∈ D(lM , lN).

Proof :

Suppose µ ∈ D(lM , lN) in an arbitrary multiplier. Consider the sequences λ =
µ

ρ
, where

ρ = 2‖µ‖0. We see in Proposition (4.5), if µ ∈ D(lM , lN) be arbitrary . Then µ ∈ lM∗
N

.

Given µ ∈ D(lM , lN) and ρ = 2‖µ‖0. So, ρ ∈ D(lM , lN)

Then we have , λ ∈ lM∗
N

and ‖λ‖M∗
N

= ‖µ
ρ
‖M∗

N
≤ 1,

Hence, µ ∈ lM∗
N

and

‖µ‖M∗
N
≤ 2‖µ‖0. //.

Proposition 4.7.:

Prove that: ‖µ‖0 ≤ 2‖µ‖M∗
N
, ∀ µ ∈M∗

N .

Proof :

Suppose µ ∈ lM∗
N

, Consider the sequence λ =
µ

ρ
Where ρ = 2‖µ‖M∗

N
, So, ρ ∈ lM∗

N
.

Then λ ∈ lM∗
N

. We known that from Proposition (4.4), lM∗
N
⊂ D(lM , lN)

So, λ ∈ D(lM , lN),

‖λ‖0 =

∥∥∥∥µρ
∥∥∥∥

0

≤ 1

⇒
∥∥∥∥ µ

2‖µ‖M∗
N

∥∥∥∥
0

≤ 1

⇒ 1

2‖µ‖M∗
N

‖µ‖0 ≤ 1

⇒ ‖µ‖0 ≤ 2‖µ‖M∗
N
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Theorem-1:

For every pair of Orlicz function M,N the sequence space D(lM , lN) and lM∗
N

coincide

as sets, and moreover, they are isomorphic as Banach spaces.

Proof :

From Proposition(4.4) and Proposition (4.5), We have

lM∗
N
⊂ D(lM , lN)

and

D(lM , lN) ⊂ lM∗
N

⇒ D(lM , lN) = lM∗
N

From Proposition (4.6) and Proposition (4.7), we have

‖µ‖M∗
N
≤ 2‖µ‖0

and

‖µ‖0 ≤ 2‖µ‖M∗
N

⇒ ‖µ‖M∗
N
≤ 2‖µ‖0

⇒ 1

2
‖µ‖M∗

N
≤ ‖µ‖0 ≤ 2‖µ‖M∗

N

This show that D(lM , lN) and lM∗
N

are isomorphic as Banach spaces.

Definition (Degenerate):

An Orlicz function S is called Degenerate, if S(t) = 0 for some t > 0; Then the corre-

sponding Orlicz sequence space lS coincides with l∞.

Remark-1

D(lM , lN) = l∞ if and only if the orlicz function M∗
N is degenerate.
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Example: It is well known that for p, q ≥ 1.

D(lp, lq) =


lr,

1

r
=

1

q
− 1

p
, if p > q

l∞, if p ≤ q,

Proof :

Consider M(t) =
tp

p
and N(t) =

tq

q
. If P > q, then it is easy to see that for each fixed

s ∈ (0, 1) the expression N(st) −M(t) =
(st)q

q
− tp

p
attains its maximum for t ∈ [0, 1] at

t = s
q

(p−q) .Thus for s ∈ [0, 1]

M∗
N(s) =

(
1

q
− 1

p

)
s

pq
(p−q) =

sr

r

with 1
r

= 1
q
− 1

p
, hence D(lq, lp) = lr. In this case p ≤ q, if sq ≤ q

p
, then

N(st)−M(t) =
(st)q

q
− tp

p
≤ o, t ∈ [0, 1]

Therefore M∗
N(s) = 0 for s ≤

(
q
p

) 1
q
, that is M∗

N is a degenerate Orlicz function, hence

D(lp, lq) = l∞ //.

Remark-2

Let Dc(lM , lN) be the space of all compact multipliers between the spaces lM and lN . It

is easy to see by Proposition-4.1. that each multiplier from the subspace hM∗
N

is compact

(as limit of finitely supported multipliers), thus

hM∗
N
⊂ Dc(lM , lN).

In particular, if the function MN satisfies the M2-condition near zero,then each multiplier

between the spaces lM and lN is compact, that is

D(lM , lN) = Dc(lM , lN).

Question. It is true that every compact multiplier between the spaces lM and lN is a limit

of finitely supported multipliers ?
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