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Abstract

Image Denoising is the process of removal of the noise from the image contaminated

by additive Gaussian noise without loss of features of image. It is a fundamental

process in pattern recognition and image processing.In this thesis,a wavelet

based new denoising scheme for estimation of parameters such as variance of

the multiscale Linear minimum mean square error(LMMSE) estimator to derive

optimal threshold using maximum a posterior (MAP) estimator of the noisy

coefficients in wavelet domain has been proposed. Our proposed scheme modify

the parameter of LMMSE. Input image is decomposed in four wavelet subband

then for each subband the LMMSE estimator is then applied.Denoised image

is reconstructed after applying inverse wavelet transform. Each schemes is

studied separately and experiments are conducted on test images to evaluate

the performance.This denoising scheme shows the best performance for highly

corrupted image in terms of the structure similarity index measure(SSIM)the peak

signal-to-noise ratio (PSNR).

Keywords: Discrete Wavelet Transform, additive Gaussian noise, maximum a

posteriori(MAP) estimation, Linear minimum mean square error(LMMSE).
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Chapter 1

Introduction

The objective of this chapter is to define the problem of image denoising and

describes about the condition in which image denoising is important. Also discuss

about performance measures to evaluate image denoising results.

1.0.1 What is image denoising?

Image denoising is the problem of restoring a clean image from a noisy image [1].

In most cases, it is assumed that the noisy or corrupted image is the summation of

original image and a noise component,as shown in Figure 1.1. Hence denoising is

a procedure which removes the existing noise in an image and minimizes the loss

of features in a clean image. It involves prior knowledge: One knows something

about images and about the noise. Without prior knowledge, image denoising

would be impossible.

1.0.2 Why is denoising important?

Image Denoising is the part of preprocessing in Pattern Recognition system.The

digital images sensed by sensors are generally corrupted by Gaussian noise during

the process of acquisition, transmission, and retrieval from storage media. During

the image acquisition process and interference noise may be generated due to

improper settings of sensors used in image processing. A noisy image is not

1



Introduction

pleasant to view.Therefore, it is very important to get the improved image from

the corrupted image without loss of features of the image. In Pattern recognition

it need a denoised image to work effectively. Random and uncorrelated noise

samples are not compressible.So the motivation behind the denoising algorithm

is to remove Gaussian noise. So all these factor give importance of denoising in

image processing.

1.0.3 Problem Formulation

The problem of denoising can be mathematically presented as follows,

Y = X + η (1.1)

Let X be a original image with size N ×N , Y be a observed noisy image and

η be zero-mean Gaussian noise with variance σ2,where η ∈ N(0, σ2)

The objective is to estimate true image X from given noisy image Y. A best

estimate can be written as the conditional mean X̂ = E [X|Y ] The difficulty lies

in determining the probability density function ρ (x| y) here,the goal is to estimate

the true image X from the noisy image Y without loss of features of the original

image.

(a) (b)

Figure 1.1: (a) Original Lena image. (b) Noisy Lena image

2



Introduction

1.0.4 Image Denoising versus Image Enhancement

Image denoising is different from image enhancement. As Gonzalez and Woods [1]

explain, image enhancement is an objective process, whereas image denoising is

a subjective process. Image denoising is the problem of restoring a clean image

from a noisy that has been corrupted by using prior knowledge of the degradation

process. Image enhancement, on the other hand, involves manipulation of the

image characteristics to make it more appealing to the human eye. There is some

overlap between the two processes.

1.0.5 Noise model

As Gonzalez and Woods [1] explain, A lens focuses the light from regions of

interest onto a sensor. The sensor measures the color and light intensity. An

analog-to-digital converter (ADC) converts the image to the digital signal. An

Image processing block enhances the image and compensates for some of the

deficiencies of the other camera blocks. Memory is present to store the image,

while a display may be used to preview it. Some blocks exist for the purpose of

user control. Noise is added to the image in the lens, sensor, and ADC as well as

in the image processing block itself.

The sensor is made of millions of tiny light-sensitive components [1].

They differ in their physical, electrical, and optical properties, which adds a

signal-independent noise (termed as dark current shot noise) to the acquired

image. Another component of shot noise is the photon shot noise. This occurs

because the number of photons detected varies across different parts of the sensor.

Amplification of sensor signals adds amplification noise, which is zero mean

Gaussian noise. There are many other types of noise exist. Correlated noise with

a Guassian distribution is an example. Noise can also have different distributions

such as Poisson, Laplacian, or non-additive Salt-and-Pepper noise. It is caused

by bit errors in image transmission and retrieval as well as in analog-to-digital

converters. A scratch in a picture is also a type of noise. Noise can be signal

dependent or signal independent. For example, the process of quantization

3
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(dividing a continuous signal into discrete levels) [1]. It is also focused on zero

mean additive Gaussian noise due to its simple nature and generic. For correlated

noise with a non-zero mean, the zero mean model can be derived by subtracting

the mean after de-correlating the samples.

Gaussian noise [1] is the type of statistical noise which have probability density

function same as the normal distribution,given by:

pG(z) =
1

σ
√
2π

exp−(z−µ)2/2σ2 (1.2)

where σ the standard deviation, µ the mean value and z represents the gray level.

1.0.6 Introduction to the Wavelet Transform in Image

Denoising

The wavelet transform is a efficient tool used in image denoising [1]. The main

task in denoising is to estimate the true image from the corrupted image by

differentiating it from the signal. Advantages of wavelet transform are as follows:

• Energy compactness refers that most of the signal energy is contained

in a few large wavelet coefficients, but a small portion of the energy

is spread across a large number of small wavelet coefficients. These

coefficients represent details as well as high frequency noise in the image.

By appropriately thresholding these wavelet coefficients, image denoising is

achieved while preserving fine structures in the image.

• Blocking artifacts are not produced in WT but DCT produces.

• Wavelets allow multi-resolution analysis at different scales or resolution.It

permits us to describe an image in terms of frequency at a position in the

image [1].

Donoho [5] shows that wavelets are near optimal for compression, denoising, and

detection of a wide class of signals. Wavelets are discretely sampled in discrete

wavelet transform (DWT).It captures both frequency and location information so

4
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temporal resolution is key advantage it has over Fourier transforms. A wave

is usually defined as an oscillating function in time or space. Sinusoids are

an example. Fourier analysis is a wave analysis. A wavelet is defined as a

small wave that has its energy concentrated in time and frequency.It allows

simultaneous time and frequency analysis with a flexible mathematical foundation

while retaining the oscillating wave-like characteristic.It provides a tool for the

analysis of time-varying,non-stationary, and transient phenomena. Instead of

considering a continuous signal, if we consider a discrete sequence s(n), defined

for n = 0, 1, 2, 3... the resulting coefficients in the series expansion are called

the Discrete Wavelet Transforms (DWT) of s(n). The coefficients of series

expansions shown in equations (1.3) and (1.4) for discrete signal to obtain the

DWT coefficients, given by

Wφ(j0, k) =
1√
M

∑

n

s(n)φj0,k(n) (1.3)

Wψ(j, k) =
1√
M

∑

n

s(n)ψj,k(n) (1.4)

where,j ≥ j0 and s(n), φj0,k(n) and ψj,k(n) are functions of discrete variables

n = 0, 1, 2...M − 1. Equation (1.3) computes the approximation coefficients and

equation (1.4) computes the detail coefficients. The corresponding Inverse Discrete

Wavelet Transform (IDWT) to express the discrete signal in terms of the wavelet

coefficients can be written as

s(n) =
1√
M

∑

k

Wφ(j0, k)φj0,k(n) +

∞
∑

j=0

∑

k

Wφ(j, k)ψj,k(n) (1.5)

Normally, we let j0 = 0 and select M to be a power of 2(M = 2j) so that the

summations are performed over j=0,1,2...J-1 and k=0,1,2.....2j−1.

1.0.7 Computing 2-D DWT and IDWT through subband

analysis and synthesis

The concepts of one-dimensional DWT [1] and its implementation through

subband coding can be easily extended to two-dimensional signals for digital

5
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(a) (b)

Figure 1.2: (a) Original Image(b) wavelet coefficient at horizontal ,vertical and

diagonal direction.

images. In case of subband analysis of images, DWT perform two dimensional

wavelet decomposition. It compute approximation coefficient, and detail

coefficients in horizontal, vertical, diagonal directions. The analysis of 2-D wavelet

signals require the use of 2-D filter functions through the product of separable

wavelet and scaling functions in n2(vertical) and n1(horizontal) directions :

φ(n1, n2) = φ(n1)φ(n2) (1.6)

ψH(n1, n2) = ψ(n1)φ(n2) (1.7)

ψV (n1, n2) = φ(n1)ψ(n2) (1.8)

ψD(n1, n2) = ψ(n1)ψ(n2) (1.9)

In the above equations ψD(n1, n2, ψ
V (n1, n2), ψ

H(n1, n2), φ(n1, n2)) represent the

signals with diagonal details, vertical details, horizontal details, and approximated

signal respectively.

In subband coding the low-pass (L) and high-pass (H) filters along the columns

(vertical direction) and along the rows (horizontal direction) are used . The bands

ψD(n1, n2, ψ
V (n1, n2), ψ

H(n1, n2), φ(n1, n2)) are also referred to as HH, HL, LH,

LL respectively.

6
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(a)

(b)

Figure 1.3: (a) One stage decomposition of the 2-D Wavelet Transform,wavelet

coefficient at horizontal ,vertical and diagonal direction.(b) Inverse 2-D Wavelet

Transform of wavelet. coefficient

7



Chapter 1 Introduction

1.1 Performance Measurement

Images are corrupted with Gaussian noise and then denoised using various

methods.The random noise added to the image with the different standard

deviation. Performance of wavelet based denoising algorithm is measured in terms

of following two method:

1.1.1 PSNR comparison

Peak signal to noise ratio(PSNR) is used as quality measurement in decibels

between original and noisy image.

To compute PSNR the block first calculate Mean Square Error(MSE) using

the following Formula:

MSE =

∑

I,J

(A1(i, j)− A2(i, j))
2

I × J
(1.10)

PSNR = 10 log10
r2

MSE
(1.11)

where I × J is the size of the image and r is the most extreme variance in the

image data type.

1.1.2 SSIM comparison [30]

Structural similarity(SSIM) index is a technique for measuring the similarity of

structural information between two input images. It is a fully reference metric i.e

it measure the quality of image based on original noise-free image as reference. [30].

The SSIM metric is measured between two windows p and q of common size

M ×M is

SSIM(p, q) =
(2µpµq + c1)(2σpq + c2)

(σ2
p + σ2

q + c2)(µ2
p + µ2

q + c1)
(1.12)

where µp, µq are average of p and q respectively.

σpq = covariance of p and q.

σ2
p, σ

2
q are variance of p and q respectively.

8



Chapter 1 Introduction

c1 = (x1y)
2

c2 = (x2y)
2, y is pixel dynamic range (2 no. of pixel)− 1

1.2 Motivation

Recently the digital image is important for every day life applications. Keeping

the research directions a step forward, it has been realized that there exists enough

scope to new research work in the area of Image Denoising. The previous work used

different Denoising Algorithm to remove White Gaussian Noise. This motivated

us to use wavelet transform for Denoising of Image using Statistical Estimation

Theory. In this work, an effort has been made to propose modified parameter

estimation for linear minimum mean square error estimation based new denoising

algorithm. In particular, the objectives are narrowed to

(i) Enhancing the image quality without loss of features and the performance

measurement of denoising algorithm.

(ii) The main goal of this algorithm is to optimize the estimation technique to

restore the original image, noise removal and achieve the better quality of

the image.

1.3 Thesis Layout

Rest of the thesis is organized as follows —

Chapter 2: Literature Review This section describes a brief review on

different Image Denoising techniques. All techniques considered Gaussian noise in

images.

Chapter 3: Multiscale LMMSE Based Statistical Estimation For Image

Denoising In this chapter, we proposed method to denoise the noisy images is

discussed. A introduction of LMMSE based statistical estimation of parameter

9
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has been discussed.The signal variance and the noise variance,represents the noisy

coefficients is estimated using approximate ML and MAP estimator then applied

LMMSE to get Thresholded wavelet coefficient and qualitative and quantitative

comparisons of the outputs of proposed technique tested over various image with

the other existing methods of image denoising .

Chapter 4: Conclusion and Future Work In this chapter conclusion of the

thesis research and some future scope to extend the proposed image denoising

technique is presented.

10



Chapter 2

Literature Review

2.1 Image denoising Techniques

In this section a brief review on different Image Denoising techniques are disscused.

All techniques considered Gaussian noise in images [10].Generally Wavelet based

denoising algorithms contain three steps as follows:

• Forward Wavelet Transform: Forward operator is applied to the noisy image

Y to obtain wavelet coefficients. i.e b =W (Y )

• Estimation: Clean coefficients are estimated after applying Denoising

operator to wavelet coefficients b.

• Inverse Wavelet Transform: Inverse wavelet transform is applied to

reconstruct the image from z.

2.2 Wavelet Thresholding methods

There are two types of thresholding used in wavelet based image denoising first one

is hard and second is soft thresholding [2, 3].In hard thresholding equation (2.1)

represent,all wavelet coefficient above the selected threshold, λ, will be preserved

and those wavelet coefficient less than λ will set to 0.

X̂ = sign(Y )(Y ∗ (abs(Y ) > λ)) (2.1)

11



Chapter 2 Literature Review

where Y represents the noisy coefficients, λ is the selected threshold, X̂ represents

the estimated coefficients.

Hard thresholding causes ringing effect in denoised image so to overcome this

,Donoho [3] introduced the soft thresholding, equation (2.2) represent , If the

absolute value of a coefficient greater than ”+λ” will shrunk towards 0 and if less

than ”− λ” will increased towards 0. The remaining values of coefficient between

”−λ” and ”+ λ” are assumed to be 0. This uproots the brokenness, yet corrupts

the various coefficients which has a tendency to blur the image.

X̂ = sign(Y ). ∗ ((abs(Y ) > λ). ∗ (abs(Y )− λ)) (2.2)

2.3 Denoising using Neighboring Coefficients

[17]

In this paper Chen and Bui [17] suggest an approximation and simple formula

for the threshold. The essential inspiration of neighbor thresholding is that if

the current coefficient holds some signal, then it is likely that the two neighbor

coefficients additionally do. Consequently, at every area we edge each coefficient

by utilizing the coefficient at that area and the coefficients of the two neighbors.

A local window of length L uses the VisuShrink threshold,S2
i,j denote the sum of

square of the wavelet coefficients denoted as d, in the neighboring window D(i, j).

In the event that S2
i,j is short of what or equivalent to λ

2 then the wavelet coefficient

set to 0 and if it is greater then applied given formula:

z = b

((

1− λ2visu
S2
i j

))

(2.3)

S2
i,j =

∑

(p,q)∈D(i,j)

d2(p, q) (2.4)

The Visushrink threshold λvisu is calculated as follows:

λvisu = σ
√

2logM (2.5)

here, σ2
mis the noise variance estimated with MAD estimator.

σ2
m =

[

median |HH1(i, j)|
0.6745

]2

(2.6)

12
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2.4 A generalized wavelet based denoising

technique using neighboring wavelet

coefficients [10]

In this paper Om and Biswas [10] proposed generalized wavelet based image

denoising scheme using neighboring coefficients. The author observed that after

applying the shrinkage factor [17] to the wavelet coefficients the reconstructed

denoised image becomes blurred and some details in the image are lost. In request

to beat these problems,the generalized shrinkage factor used to restore the denoised

image . Shrink the wavelet coefficients di,j in the neighboring window D(i, j) , by

using the following formula, denoting the new coefficients by d̂i,j,

d̂i,j = di,jβ
G
i,j (2.7)

where βGi,j is the shrinkage factor,S2
i,j defined in equation 2.4

βGi,j =

(

1− n

(n+ 1)2
λ2G
S2
ij

)

+

(2.8)

where 0 < n <∞ and the threshold λG is defined as

λG = σ

√

2logM̂ − J (2.9)

where M̂ = M
2J

is image dimension at J th decomposition level and σ2 is noise

variance. Therefore, this method keeps more wavelet coefficients than the

VisuShrink and Neighboring Coefficients method [17].

2.5 An improved adaptive wavelet based

denoising technique using neighboring

wavelet coefficients [22]

Jiang proposed a new improved adaptive based threshold function. In this

paper the distribution and the local characteristics of the image in distinctive

13
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decomposition levels are both considered. This wavelet technique is more adaptive

and keep more features of the original image. They used the maximum and the

minimum sums of the wavelet coefficients to modify the NeighShrink. windows in

the same level are given by:

S2
j,max = max(S2

j,k) (2.10)

S2
j,min = min(S2

j,k) (2.11)

The new adaptive threshold is redefined as:

λj,k = λDonoho

(

S2
j,max − S2

j,k

S2
j,max − S2

j,min

)

(2.12)

where λDonoho = σ
√
2 lnN [31].

2.6 Bivariate Shrinkage scheme for image

denoising [11]

Sendur et al. introduced a locally adaptive wavelet denoising technique using

the bivariate shrinkage function.This algorithm used both the dual tree complex

and orthogonal wavelet transforms.In this paper, the local adaptive estimation of

necessary parameters is described for the bivariate shrinkage function using MAP

shrinks the wavelet coefficients using the following relation:

ŵ = (

{

√

(y21 + y22)−
√
3σ2m
σs

)
}

+
√

(y21 + y22)
.y1 (2.13)

where σ2
y is the marginal variance of j and j+1.

σ2
y =





1

L

∑

p,qǫD(i,j)

d2p,q



 (2.14)

The signal variance, σs is calculated by

σs =
(√

σ2
y − σ2

m

)

+
(2.15)

This method used the joint statistics of the wavelet coefficients of natural images.

It presented an effective and low-complexity image denoising algorithm.
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2.7 LMMSE-Based Image Denoising [7]

Lei Zhang et al. introduced a new wavelet image denoising scheme which is

based on multiscale linear minimum mean square-error estimation (LMMSE)

and also discussed the determination of the optimal wavelet basis. In this

denoising scheme the overcomplete wavelet expansion (OWE) is used in noise

reduction. It join together the pixels at the same spatial location across scales as

a vector which investigate the strong interscale dependencies of OWE and apply

LMMSE to the vector.In this paper author proposed two denoising performance

measurement criteria,one is the signal information extraction criterion and other is

the distribution error criterion. The optimal wavelet that achieves the best tradeoff

between the two criteria could be never going to budge from a library of wavelet

bases.They have taken eight typical wavelets for consideration and observed that

performance of biorthogonal CDF(1,3) is the best.

2.8 MAP Estimation based image denoising

Using the BKF Prior [14]

Boubchir etal. presented image denoising technique wavelet based nonparametric

Bayesian estimator. An alternate gathering of Bessel K Form (BKF) densities

are planned to fit the observed histograms, to give a probabilistic model to the

marginal densities of the wavelet coefficients [14].Major contribution is to design

a Bayesian denoiser focused around the Maximum A Posteriori (MAP) estimation

under the 0 − 1 misfortune capacity. This procedure uses an earlier model of

the wavelet coefficients planned to catch the sparseness of the wavelet extension.

An alternate hyper-parameters estimator centered around EM calculation is

planned to gauge the parameters of the BKF density and, it is contrasted and

a cumulants-based estimator.the T-F representation of the indicator is recognized

as an image. The results got on biomedical signs indicate that image denoising

methods might be connected to denoise motions in the T-F space.
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2.9 Image denoising using support vector

machine(SVM) [15]

Duo Zhang etal. presented a image denoising algorithm using support vector

machine(SVM).This method is mostly applied to solve classification problems.

SVM is a machine learning based on statistical learning theory.The main task

of SVM is selection of the kernel function, selection of proper kernel function

give high dimensional space classification function.In SVM theory, different kernel

functions will lead to different kinds of SVM algorithm. Results demonstrate that

schemes The results shows that the proposed scheme can remove Gaussian noise

more effectively, and get a higher PSNR and which additionally has a finer visual

impact.
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Chapter 3

Multiscale LMMSE Based

Statistical Estimations

In this chapter, we introduce a new multiscale LMMSE based image denoising

scheme for removing Gaussian noise from digital images using a locally estimated

variance. A modification is done in parameter estimation of signal and noise

variance corresponding to the LMMSE estimator. Under the assumption of

Gaussian noise, LMMSE is an optimal predictor for the clean wavelet coefficient.

The work which we have proposed is similar in approach to the LMMSE [21]

however it’s approach in terms to statistical estimation model with parameter

estimation is different. Input image is decomposed without using downsampling in

wavelet domain. All Wavelet coefficients are combined together. Initially for each

wavelet coefficient statistical estimation technique (MAP and ML estimation) is

applied to estimate signal and noise variance from the local neighborhood window

and after that linear minimum mean squared error(LMMSE)estimation is applied.
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3.1 Statistical model

In this section we introduce a statistical model to estimate the optimal wavelet

coefficient for denoising. Model for corrupted image wavelet coefficient is based on

features of its the variance and neighbors of the corrupted wavelet coefficient. Two

estimator is used in this work such as maximum likelihood(ML) and maximum a

posteriori(MAP) estimator. According to estimation theory if a efficient estimator

is used for the data variance it estimate more accurate for the image data.

The signal variance is estimated for the Gaussian Probability Distribution

Function using the ML and MAP estimation .The multivariate distributions of

the true image can be estimated from set of sample images. The signal variance

is estimated using MAP estimator for image denoising.The performance of the

LMMSE is fully depends on the accurate value of the estimated signal and noise

variance to get noise-free wavelet coefficients. The estimation of variance using

shrinkage improve the performance of LMMSE in the process of image denoising.

N ∈ (0, σ2)

DWT

Parameter

Estimation(σx, σn)

Apply

LMMSE

IDWT
X Y y z X̂

Figure 3.1: Illustrated Diagram of proposed method.

3.1.1 LMMSE of Wavelet Coefficients

LMMSE method use locally estimated variance under the assumption of Gaussian

noise, an optimal predictor for the clean wavelet coefficient.In this work LMMSE

is applied instead of soft thresholding.

suppose original image X is corrupted with additive Gaussian noise η from
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equation 1.1

y = x+ n (3.1)

after applying Wavelet transform to noisy image Y at scale j and y(i,j) is wavelet

coefficient of Y, σ̂2
n ,σ̂2

x is denoted as estimated noise variance and signal variance

respectively,the LMMSE of wavelet coefficient of original Image x(i,j) is

x̂ =

(

σ̂2
x

σ̂2
x + σ̂2

n

)

y (3.2)

where M is dimension of X (0 < i, j ≤ M)

Since σ2
n noise variance is Gaussian distributed and not dependent of x(i, j) if

it is Gaussian distributed, and equation 3.2 is equivalent to the optimal LMMSE

[7]. Referring to Figure 1.2,and equation 1.6,1.7,1.8,1.9 term ψDj + 1, ψHj + 1,

ψVj + 1 is diagonal, vertical and horizontal details of wavelet coefficient at scale

j+1 respectively can be written as

ψDj+1 = s ∗ L0 ∗ L0
′ ∗ ... ∗ Lj−1 ∗ Lj−1

′ ∗Hj ∗Hj
′ (3.3)

ψHj+1 = s ∗ L0 ∗ L0
′ ∗ ... ∗ Lj−1 ∗ Lj−1

′ ∗Hj ∗ Lj ′ (3.4)

ψVj+1 = s ∗ L0 ∗ L0
′ ∗ ... ∗ Lj−1 ∗ Lj−1

′ ∗ Lj ∗Hj
′ (3.5)

3.1.2 MAP and ML estimations

In this section MAP and ML estimation is discussed. There are two estimator

for the estimation of local variance. The first one is MAP and second is ML

estimator.The MAP is utilized to acquire a point estimate of a surreptitiously

amount on the premise of exact information. MAP estimation can be seen as a

regularization of ML because it related to Fisher’s method of ML. [28] Many

denoising algorithm have been described a statistical schemes based on MAP

estimation in wavelet domain.The selection of threshold function is very important

and can be derived based on the MAP estimation. The determination of threshold

function is extremely essential and could be inferred focused around the MAP

estimation. Let us consider the conditional p.d.f. p(y|x) is indicated for obscure
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parameter x on account of added substance Gaussian random noise n. [29]

P (y|x) = 1√
2πσn

exp

(−(y − x)2

2σ2
n

)

(3.6)

For this circumstance the MAP estimation issue may be presented through

logarithm maximization of a posterior probability function p(y|x). x̂ is estimated

value of x to maximize P (x|y) using MAP. MAP estimator for x̂ is given below:

x̂MAP = argmax
x

Px|y(x|y)

= argmax
x

(Pn(y − x).Px(x))

= argmax
x

(logPn(y − x) + logPx(x)) (3.7)

These suggestion gives investigative expression of the MAP estimation regarding

pdf of the true wavelet coefficients px and the noise Pn.

Statistical estimation provides estimates for the model’s parameters when given

a statistical model and ML estimation applied to a data set. The distribution

parameter σZ is standard deviation. A local adaptive technique gives superior

performance if it is used to estimate the parameter in terms of σZ of every

coefficient. Local neighborhood is a square window centered at the wavelet

coefficient to be estimated. Equation 3.8 show that ML estimator is applied for

noisy coefficient:

σZ = argmax
σ

Pb(b)

= argmax
σ

∏

i,j∈Z(i,j)
Pb(b(i, j))

= argmax
σ

∑

i,j∈Z(i,j)
logPb(b(i, j)) (3.8)

P indicate the pdf with zero mean and variance σ2 ,Z(i,j) is theN×N neighborhood

window in the subband as shown in Figure 3.2 [10]. Statistical estimation model is

depend on maximum a posteriori(MAP) estimator to evaluate the signal variance

and a LMMSE is applied to compute the true wavelet coefficient for reconstructed

denoised image.

New modified denoising algorithm perform in two steps. Initially it perform

MAP estimation of the variance for each corrupted coefficient in prior model for
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Central Wavelet Coefficient

3x3 window

Figure 3.2: Neighborhood window selection

variance and a local neighborhood. In next step the estimated value of signal

variance and noise variance are provided in the equation of the LMMSE for getting

the noise free coefficient as it is shown in figure 3.1.
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3.2 Denoising Algorithm

Data: Image contaminated with additive Gaussian noise

Result: Estimated noiseless image

1 Decompose the noisy image using Discrete wavelet transform(DWT) into

wavelet domain up to Jth decomposition level;

2 for Each subband (i.e.HH, HL, and LH) in decomposition level j do

3 Parameters Estimation signal variance and noise variance σ2
x and σ2

n

,respectively;

4 Apply LMMSE estimator to obtain modified noiseless wavelet

coefficients.;

5 up to Jth decomposition levels repeat steps (3) and (4);

6 Restore the denoised data using inverse wavelet transform from the

modified coefficients;

Algorithm 1: Denoising Algorithm

3.3 Parameter Estimation

In this section parameters are estimated for noisy coefficients to extract the

noiseless wavelet coefficients. Here signal and noise variance is estimated

using MAP and ML estimation and then LMMSE method is applied,instead of

thresholding.

This plans focused around the noise variance and size of the image for every

subband. It provides better result in terms of PSNR when a more adaptive

threshold is taken and local features of the signal are considered. The parameter σn

is normally assessed with the scaled Median Absolute Deviation (MAD) estimator

[31]. The MAD estimator is widely used in the denoising step. In DWT image is

decomposed in different subband. Wavelet details coefficients ψHH1 of the finest

decomposition level are associated only to the noise. The MAD estimator uses the

median of absolute value of ψHH1 coefficients to estimate noise variance. MAD
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is especially useful for the sparse signals that have a very small amount of signal

power in the detail subbands. MAD is defined in equation 3.9.

σ̂m =
MAD(|ψHH1 |)

0.6745
(3.9)

where MAD is the median absolute deviation.

We introduce weighting factor g(k) to extract more noiseless coefficient of noisy

wavelet coefficient for each decomposition levels. Then noise variance and signal

variance is estimated as follows:

σ̂2
n = g(k)σ̂2

m (3.10)

= 2
k

2k+1 σ̂2
m (3.11)

where value of k is taken as 2.

The signal variance of noiseless image is estimated as follows:

σ̂2
x =











σ2
y − σ̂2

m ifσ2
y > σ̂2

m

0 otherwise

(3.12)

σ2
y =

1

M.N

M
∑

m=1

N
∑

n=1

w2(m,n) (3.13)

where w is wavelet coefficient in the square neighborhood at each scale,andM×N
is the size of test image.

3.4 Experiment and Results

This section discussed the results of the proposed schemes.This technique is

applied on various images taken from USC-SIPI image database [32]. This

technique is applied on miscellaneous images like Lena, Cameraman, Barbara,

and house Figure 3.3 are used for experimental purpose. This section compares

the other existing denoising schemes with proposed scheme. Four standard gray

scale images (Lena, Cameraman, Barbara, and house) of size 256 × 256 are

contaminated with zero mean Gaussian noise (σ = 10, 20, 30, 50, and100) and
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then denoised using various methods, including the one proposed by us. We have

taken local window of size 3 × 3 using CDF(1,4) wavelet basis function up to 4

decomposition levels.

Two performance table 3.2 and 3.1 shows result of reconstructed image

measured and compared here in terms of structural similarity index(SSIM) and

peak signal-to -noise ratio (PSNR) respectively.

Four plots 3.14, 3.15, 3.16, 3.17 show the curve drawn between PSNR and

Noise Level, and all graph compare the PSNR result of proposed method with

existing denoising method . It observed that the Proposed scheme works well

(a) (b)

(c) (d)

Figure 3.3: Four 256× 256 test images taken for experiment purpose(a) Lena.(b)

House.(c) Barbara.(d) Cameraman.

for all four images in terms of PSNR when noise level is considered as (σ =

10, 20, 30, 50, and100).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: (a) Noisy Lena with (σ = 20) (b) Denoised using neighshrink (28.56db)

(c)Denoised using Bivariate (30.50db) (d) Denoised using GIDNWC (29.22db)

(e)Denoised using IAWDMBNC (29.56db) (f)Denoised Image using MLMMSE

(30.74db) .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: (a)Cameraman Image with noise level (σ = 20) (b) Denoised using

neighshrink (26.44db) (c)Denoised using Bivariate (30.23db) (d) Denoised using

GIDNWC (27.42db) (e)Denoised using IAWDMBNC (27.76db) (f)Denoised using

MLMMSE (30.40db) .
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Denoised Lena images(a) Noisy Lena Image (σ = 10) (c) Noisy Lena

Image (σ = 20) (e) Noisy Lena Image (σ = 30) (b),(d),(f) Denoised Images by

Proposed Method.
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(a) (b)

(c) (d)

Figure 3.7: Denoised Lena images (a) Noisy Lena Image (σ = 50) (c) Noisy Lena

Image (σ = 100) (b),(d) Denoised Images by Proposed Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Denoised Cameraman images (a) Noisy Cameraman Image (σ = 10)

(c) Noisy Cameraman Image (σ = 20) (e) Noisy Cameraman Image (σ = 30)

(b),(d),(f) Denoised Images by Proposed Method.
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(a) (b)

(c) (d)

Figure 3.9: Denoised Cameraman images (a) Noisy Cameraman Image (σ = 50)

(c) Noisy Cameraman Image (σ = 100) (b),(d) Denoised Images by Proposed

Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Denoised House images (a) Noisy House Image (σ = 10) (c) Noisy

House Image (σ = 20) (e) Noisy House Image (σ = 30) (b),(d),(f) Denoised Images

by Proposed Method.
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(a) (b)

(c) (d)

Figure 3.11: Denoised House images (a) Noisy House Image (σ = 50) (c) Noisy

House Image (σ = 100) (b),(d) Denoised Images by Proposed Method.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Denoised Barbara images (a) Noisy Barbaran Image (σ = 10) (c)

Noisy Barbara Image (σ = 20) (e) Noisy Barbaran Image (σ = 30) (b),(d),(f)

Denoised Images by Proposed Method.
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(a) (b)

(c) (d)

Figure 3.13: Denoised Barbara images (a) Noisy Barbara Image (σ = 50) (c)

Noisy Barbara Image (σ = 100) (b),(d) Denoised Images by Proposed Method.
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Table 3.1: PSNR(dB) Image Denoising Performance Table For Lena,

Cameraman, Barbara, and house images

Denoising Algorithms

Images Noise

Levels

Neighshrink Bivariate GIDNWC IAWDMBNC MLMMSE

Lena

10 33.21 34.18 33.65 33.83 34.36

20 28.56 30.50 29.22 29.56 30.74

30 26.06 28.33 26.74 27.44 28.83

50 23.10 25.55 24.01 24.33 26.64

100 22.10 21.20 22.30 22.40 23.81

Barbara

10 31.05 32.17 31.76 32.45 32.73

20 25.26 28.09 25.95 27.73 28.57

30 22.57 25.84 23.01 24.59 26.33

50 21.07 23.21 21.10 22.60 24.29

100 20.18 19.17 20.05 20.37 22.44

Cameraman

10 32.23 34.12 33.45 33.67 34.16

20 26.44 30.23 27.42 27.76 30.40

30 24.23 27.89 25.04 25.46 27.33

50 21.44 24.92 22.67 23.55 24.91

100 19.23 20.70 19.67 20.54 22.05

House

10 32.45 34.23 33.43 34.03 35.14

20 30.34 31.14 31.95 31.64 32.08

30 27.12 29.64 28.54 29.34 30.40

50 23.45 26.34 26.54 25.97 27.88

100 20.34 23.04 22.12 22.83 24.96
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Table 3.2: SSIM Image Denoising Performance Table For Lena, Cameraman,

Barbara, and house

Denoising Algorithms

Images Noise

Levels

Neighshrink Bivariate GIDNWC IAWDMBNC MLMMSE

Lena

10 0.87 0.86 0.88 0.89 0.89

20 0.78 0.80 0.80 0.81 0.82

30 0.71 0.73 0.73 0.71 0.72

50 0.64 0.60 0.66 0.67 0.6

100 0.60 0.40 0.62 0.61 0.61

Barbara

10 0.88 0.90 0.89 0.90 0.91

20 0.70 0.83 0.73 0.74 0.80

30 0.56 0.72 0.73 0.63 0.69

50 0.49 0.58 0.52 0.55 0.63

100 0.47 0.38 0.48 0.47 0.50

Cameraman

10 0.90 0.91 0.90 0.91 0.92

20 0.78 0.82 0.84 0.82 0.84

30 0.72 0.73 0.74 0.74 0.72

50 0.66 0.67 0.60 0.68 0.66

100 0.590 0.59 0.58 0.57 0.61

House

10 0.83 0.84 0.85 0.82 0.85

20 0.76 0.77 0.78 0.77 0.80

30 0.71 0.72 0.71 0.71 0.76

50 0.65 0.67 0.65 0.70 0.70

100 0.60 0.60 0.62 0.61 0.63
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Figure 3.14: Denoising performance comparison of Lena image
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Figure 3.15: Denoising performance comparison of Barbara image
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Figure 3.16: Denoising performance comparison of Cameraman image
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Figure 3.17: Denoising performance comparison of House image
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Chapter 4

Conclusions and Future Scope

This chapter concludes the overall examination about this thesis and recommends

some of the future works in the research area of image denoising Section 5.1 gives

the conclusion of proposed image denoising technique. Section 4.2 shows the future

scope for extending the proposed technique.

4.1 Conclusion

In this thesis, image denoising using discrete wavelet transform has been

discussed.In the first part of thesis ,we have introduced some important wavelet

transform for image denoising.Then the existing denoising algorithms using various

different approaches have been described as a literature review.

In the latter part of the thesis ,we have proposed new parameter estimation

for LMMSE estimator for image denoising. Various estimation expression and

different experimental results can be obtained by statistical estimation model.This

scheme give fairly satisfying results in both PSNR and SSIM comparison aspects

and outperform some existing algorithm as listed in the experimental results.
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4.2 Future Scope

This thesis has opened several well known algorithms for denoising natural images

and their performance was comparatively assessed in the research directions which

have scope of further investigation. This proposed can be extended to color

image.The LMMSE estimator can be used by optimizing Statistical Modeling.This

technique can be extended to video denoising and can be used for color videos.
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