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ABSTRACT 

The twisted plate has various applications in turbine blades, compressor blades, fan 

blades and particularly in gas turbines. Many of these plates are subjected to in-plane load 

due to fluid or aerodynamic pressures. Buckling of such plates is of special importance 

especially if the plates are thin. Hence it is necessary to study their behaviour under different 

types of loads. Laminated composite materials are increasingly used as  load bearing 

structural components in aerospace and naval structures, automobiles, pressure vessels, 

turbine blades and many other engineering applications because of their high specific strength 

and stiffness. 

For a complete buckling study, a geometrically nonlinear analysis should be carried 

out. In a geometrically nonlinear analysis, the stiffness matrix of the structure is updated 

between loading increments to take into account deformations which affect the structural 

behaviour unlike a linear buckling analysis where the stiffness matrix is constant through the 

analysis. 

   The analysis is carried out using ANSYS software. In ANSYS, the shell 281 element 

with six  degrees of freedom per node is used. A twelve by twelve mesh is found to give good 

accuracy.The buckling of twisted plates was investigated by a nonlinear analysis.  The effect 

of number of layers, changing angle of twist, width to thickness ratio, aspect ratio, etc is also 

studied. It was observed in all cases that the buckling load by nonlinear analysis is lesser than 

that predicted by a linear analysis which proves the importance of the present study. 
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Nomenclature 

The principal symbols used in this thesis are presented for reference. Every symbol is used 

for different meanings depending on the context and defined in the text as they occur. 

a, b       dimensions of the twisted panel 

a/ b       aspect ratio of the twisted panel 

Aij, Bij, Dij and Sij     extensional, bending-stretching coupling, 

bending and transverse shear stiffnesses 

b/ h       width to thickness ratio of the twisted panel 

dx, dy     element length in x and y-direction 

dV       volume of the element 

E11, E22      modulii of elasticity in longitudinal and 

transverse directions 

G12, G13, G23      shear modulii 

h       thickness of the plate 

k       shear correction factor 

kx, ky, kxy      bending strains 

Mx, My, Mxy      moment resultants of the twisted panel 

n       number of layers of the laminated panel 

[N]       shape function matrix 

Ncr       critical load 

Nx, Ny, Nxy      in-plane stress resultants of the twisted panel 

Nx
0
, Ny

0
, Nxy

0    
  external loading in the X and Y directions 

respectively 

[P]       mass density parameters 

q       vector of degrees of freedom 

Qx , Qy      shearing forces 

Rx, Ry, Rxy  radii of curvature of shell in x and y directions 

and radius of twist 
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u, v, w       displacement components in the x, y, z 

directions at any point 

uo, vo, wo      displacement components in the x, y, z 

directions at the midsurface 

w       out of plane displacement 

xi, yi       cartesian nodal coordinates 

γ       shear strains 

εx εy γ xy      strains at a point 

εxnl, εynl, εxynl      non-linear strain components 

θx, θy       rotations of the midsurface normal about 

the x- and y- axes respectively 

λ       non-dimensional buckling load 

ν       Poisson’s ratio 

(ρ)k       mass density of kth layer from mid-plane 

Ρ      mass density of the material 

σx σy τxy       stresses at a point 

σx
0
, σy

0
 and σxy

0
     in-plane stresses due to external load 

τxy, τxz, τyz      shear stresses in xy, xz and yz planes 

respectively 

Φ       angle of twist of the twisted panel 

∂∕∂x ,∂∕∂y      Partial derivatives with respect to x and y 
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1. INTRODUCTION 

1.1 Introduction 

Laminated composite plates have increasing applications due to their high stiffness and 

strength-to-weight ratios, high fatigue life, resistance to corrosion and other properties of 

composites. A true understanding is required about the vibration and buckling behaviour of 

such structures such as the buckling loads and modal characteristics, the distributions of 

stresses and strains, and the large deflection behaviour. A large amount of research has been 

devoted to the analysis of vibration, buckling and post buckling behaviour, failure and so on 

of such structures. 

The laminated composite panels are mainly used in shipbuilding, aerospace and in 

engineering constructions as well. These structures are highly sensitive to geometrical and 

mechanical imperfections. The defects include different directions of fibre, variations in 

thickness, delaminations or initial deformations. Plates in a ship structure are subjected to any 

combination of in plane, out of plane and shear loads. Due to the geometry and nature of 

loading of the ship hull, buckling is one of the most important failure criteria of these 

structures. 

The twisted cantilever panels have significant applications in turbine blades, compressor 

blades, fan blades, aircraft or marine propellers, chopper blades, and predominantly in gas 

turbines. Today twisted plates are key structural units in the research field. Because of the use 

of twisted plates in turbo-machinery, aeronautical and aerospace industries and so on, it is 

mandatory to understand both the buckling and vibration characteristics of the twisted plates. 

The twisted plates are also subjected to loads due to fluid pressure or transverse loads. 

1.2 Importance of the present Study 

The blades are often subjected to axial periodic forces due to axial components of 

aerodynamic or hydrodynamic forces acting on it. Composite materials have been 

increasingly used in turbo-machinery blades for their high specific strength and stiffness.  

These can be designed through the variation of fibre orientation and stacking sequence to 

obtain an efficient design. For a complete buckling study, a geometrically nonlinear analysis 

should be carried out.   Non-linearity due to material and boundary conditions can also be 

investigated if required. In a geometrically nonlinear analysis, the stiffness matrix of the 
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structure is updated between loading increments to take into account deformations which 

affect the structural behaviour. A nonlinear buckling analysis can be performed on the 

original structure either without imperfection, or by incorporating an imperfection based upon 

a deformed shape obtained from a linear buckling analysis. 

 

Material nonlinearity during buckling is due to yielding or boundary nonlinearity. Modelling 

of nonlinear effects should be done in such a way so as to assess the results of additional 

modelling at every stage. This helps to understand the structural behaviour. A nonlinear 

analysis calculates actual displacements and stresses as opposed to linear buckling analysis, 

which only calculates the potential buckling shape. 

ANSYS is the software used for analysing and validating the results. Shell element eight 

node 281 is used which is having 6 degrees of freedom per node with different sizes of mesh 

and also shell 93 which is having 6 degrees of freedom per node was used. ANSYS is also a 

powerful tool for non linear analysis. 

1.3 OUTLINE OF PRESENT WORK 

An attempt has been made to investigate the buckling characteristics of square and rectangular 

laminated composite twisted plates by a non-linear analysis. The effect of boundary conditions, angle 

of twist, aspect ratio, number of layers and fiber orientation on the non-linear buckling load is studied. 

All the studies have been done with the finite element package ANSYS 13.0. 

This thesis consists of five chapters. The first chapter gives a brief introduction about the importance 

of the present study. 

In the second chapter, the relevant literature is presented. All the research papers relevant to this study 

was critically reviewed and discussed briefly. 

The third chapter presents the theoretical formulation. All the computation was carried out using 

ANSYS. This chapter presents the details of modelling in ANSYS. The relevant steps are clearly 

discussed. 

In chapter 4, the results obtained in the present investigation are studied. The effects of various 

parameters – boundary conditions, number of layers, angle of twist, aspect ratio, fiber orientation, etc 

is studied and analysed. Chapter 5 gives the conclusions and scope of future work. 
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2. LITERATURE REVIEW 

 

2.1. LITERATURE REVIEW  

The vast use of turbo machinery blades lead to large amount of research over the years. Due 

to its broad range of application in the practical field, it is essential to know the deformation, 

vibration and stability behavior of cantilever twisted plates. Due to their widespread use, the 

mechanical performance of cantilever beams and plates has been studied broadly. One 

important aspect that has received comparatively little attention involves the coupling of in-

plane loads to the out-of-plane deflection of cantilever plates. Such type of mechanism can 

potentially lead to buckling, and is thus of particular relevance to the design of 

instrumentation and structures employing these devices.  

 

Louis Bauer and Edward L. Reiss 
15 

studied the nonlinear deflections of a thin elastic simply-

supported rectangular plate. The plate considered was loaded by a compressive force applied 

along the short edges. They proved that the plate cannot buckle for thrusts less than or equal 

to the lowest eigenvalue of the linearized buckling problem. For larger loads, fairly accurate 

solutions of the von Kármán equations were obtained by an accelerated iteration method.  

Crispino and Benson 
8
 studied the stability of thin, rectangular, orthotropic plates which were 

in a state of tension and twist. Results were presented, for a range of material, geometric and 

loading parameters, in a compact non-dimensional form. 

A computational model for buckling and post buckling analysis of stiffened panels was 

developed by Eirik Byklum and Jorgen Amdhal 
10 

which provided accurate results for use in 

design of ships and offshore structures. The in plane compression or tension, shear force and 

lateral pressures were considered. The geometric and material non linearity were taken into 

account, since the onset of yielding was taken as the limit. Various computations were 

performed for verification of the proposed model and comparisons were made with non linear 

finite element methods. The most important advantage of the method was a large gain in 
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computational efficiency and additionally no geometric modelling was required and no mesh 

was created.  

Nonlinear buckling analysis of shear deformable plates was studied by Judha Purbolaksono 

and M. H. (Ferri) Aliabadi 
14

. Two models of imperfections introduced are: small uniform 

transverse loads and distributed transverse loads, according to the number of half-waves 

indicated by the eigenvectors from linear elastic buckling analysis. A simple numerical 

algorithm was given to analyze the problems. Numerical examples with different loading, 

geometries and boundary conditions were presented to demonstrate the accuracy of the 

formulation. 

Shaikh Akhlaque-E-Rasul and Rajamohan Ganesan
 21

 developed a simplified methodology to 

predict the stability limit load that required only two load steps. A large number of load steps 

were necessary to determine the buckling load based on the non-linear analysis in which the 

stability limit load was calculated from the non-linear load–deflection curve. The stability 

limit loads of the tapered curved plates were calculated. Based on first-ply failure analysis 

and the simplified non-linear buckling analysis, critical sizes and parameters of the tapered 

curved plates were determined. The stability limit loads calculated using the present 

methodology were in  good agreement with that calculated based on the non-linear load–

deflection curve with the conventional non-linear buckling analysis methodology. 

Harvey C. Lee 
13 

determined the critical buckling pressure of a submarine using Finite 

Element Analysis (FEA). The problem required to take into account the out-of-roundness of 

the cylindrical hull due to manufacturing tolerances as well as material nonlinearity. Finite 

Element Analysis was used to find out the crushing depth of a given submarine design once 

its buckling strength had been determined. 

A.H. Sofiyev et al 
2
 examined the buckling behaviour of cross-ply laminated non-

homogeneous orthotropic truncated conical shells under a uniform axial load. The basic 

relations of the cross-ply laminated non-homogeneous orthotropic truncated conical shells 

were derived using the large deformation theory. The influence of the degree of non-

homogeneity, the number as well as ordering of layers and the variations of the conical shell 

characteristics on the non-linear axial buckling load were investigated. 
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Alinia et al
1 

investigated the inelastic buckling behavior of thick plates under interactive shear 

and in-plane bending. Plate girder web panels and infill plates in steel shear wall systems are 

two typical elements that are usually subjected to interactive shear and in-plane bending. 

 

Buckling of a cantilever plate uniformly loaded in its plane was studied by Michael J. Lachut 

and John E. Sader
16

. Applications of this problem consist of loading due to uniform 

temperature and surface stress changes. This was achieved by a scaling analysis and full 

three-dimensional numerical solution, leading to explicit formulas for the buckling loads.  

 

The nonlinear buckling and post-buckling behaviour of functionally graded stiffened thin 

circular cylindrical shells subjected to external pressure were investigated by Dao Van Dung 

and Le Kha Hoa
6
. The material properties of shell and stiffeners were assumed to be 

constantly graded in the thickness direction. Fundamental relations and equilibrium equations 

were derived based on the smeared stiffeners technique and the classical shell theory with the 

geometrical nonlinearity in von Karman sense. The numerical results show the effectiveness 

of stiffeners in enhancing the stability of shells. 

Dao HuyBich et al 
7
 presented an analytical approach to investigate the nonlinear static and 

dynamic buckling of imperfect eccentrically stiffened functionally graded thin circular 

cylindrical shells subjected to axial compression. Based on the classical thin shell theory with 

the geometrical nonlinearity in von Karman–Donnell sense, initial geometrical imperfection 

and the smeared stiffeners technique, the principal equations of motion of eccentrically 

stiffened functionally graded circular cylindrical shells were derived. The nonlinear dynamic 

responses were found by using fourth-order Runge–Kutta method. The obtained results show 

the effects of stiffeners and input factors on the static and dynamic buckling behaviour of 

these structures. 

Z. Yuan and X.Wang 
25

 studied the non-linear buckling analysis of inclined circular cylinder-

in-cylinder by the discrete singular convolution.  The non linear differential equation was 

solved incrementally using the discrete singular convolution (DSC) algorithm mutually with 

the Newton–Raphson method. It was verified that under certain circumstances only lateral or 

helical buckling alone will occur. Under some other conditions, both lateral buckling and 

helical buckling may occur and the critical helical buckling loads were higher than the critical 

lateral buckling loads if friction was not considered.  
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M. Shariyat 
18 

investigated dynamic buckling of imperfect sandwich plates subjected to 

thermo-mechanical loads. He proposed a generalized higher-order global–local theory that 

satisfied all the kinematic and transverse stress continuity conditions at the interfaces of the 

layers. 

 

Danial Panahandeh-Shahraki et al 
5
 analysed laminated composite cylindrical panels resting 

on tensionless foundation under axial compression. The governing equations were derived 

based on classical shell theory and principle of minimum total potential energy.  The 

numerical results showed that if initial curvature of reinforcing panels for modelling columns 

having cross sections of curved boundaries was neglected, the buckling load would be less 

than that of actual value. They observed that the influence of tensionless foundation on the 

uni-lateral buckling behaviour of panels was dependent on parameters such as central angle, 

aspect ratio, thickness, and the degree of foundation modulus. The effect of parameters like 

aspect ratio, thickness, central angle, the number and angle of plies, lamination scheme, 

material orthotropy and foundation modulus on buckling load were also investigated. 

Using higher order shear deformation theory, buckling of composite plate assemblies was 

studied by F.A. Fazzolari et al 
11

.  A precise dynamic stiffness element based on higher order 

shear deformation theory was developed for the first time to carry out a buckling analysis of 

composite plate assemblies. The theory of minimum potential energy was used to derive the 

governing differential equations and natural boundary conditions. The dynamic stiffness 

matrix, which includes contributions from the stiffness and initial pre-stress terms, was 

developed by imposing the geometric boundary conditions in algebraic form. The critical 

buckling loads and mode shapes of laminated composite plates including stiffened plates was 

computed using an algorithm proposed by Wittrick–Williams. The effects of important 

parameters such as thickness-to-length ratio, orthotropic ratio, number of layers, lay-up and 

stacking sequence along with boundary conditions on the critical buckling loads and mode 

shapes was investigated.  
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2.2 Objective and scope of the present study 

A review of literature shows that a lot of work has been done on linear buckling analysis of 

laminated composite plates either by analytical, numerical methods or using software like 

ANSYS or others. However, very little work exists on the non-linear buckling analysis of 

laminated composite plates and laminated composite twisted plates. Hence the present study 

was taken up. 

The stiffness of a structure changes due to the change in shape of the structure during its 

deformation under loads or due to material property changing due to large deformations. If 

the deformation is small, then it may be assumed that the shape or material property does not 

change, that is the initial stiffness of the structure does not change with the deformed shape. 

This is the fundamental assumption in a linear analysis.  

A nonlinear analysis is required when the stiffness of the structure changes due to the 

deformation of the structure. In a nonlinear analysis, the stiffness does not remain same. It 

has to be changed with changing geometry or material property. If the change in stiffness is 

only due to change in shape, then the nonlinear behaviour is defined as geometric 

nonlinearity. If it is due to changing material property, then the nonlinear behaviour is 

defined as material nonlinearity. 

A linear buckling analysis can be used to calculate the Euler buckling load, i.e., the load 

under which a structure will buckle. Assumptions used in the FEA model may result in the 

predicted buckling load being much higher for the FEA model than for the actual structure. 

The results of linear buckling analysis should be used carefully. A nonlinear buckling 

analysis of a structure thus helps to understand the results in a better way. This is the 

objective of the present study. 
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3. THEORY AND FORMULATION 

The basic laminated composite twisted curved panel is considered to be composed of 

composite material laminates. ‘n’ denotes the number of layers of the laminated composite 

twisted panel. 

       

 

Figure 3.1: Laminated composite twisted panel with in-plane loads 
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The governing equations for the laminated composite doubly curved twisted panels/shells 

subjected to in-plane loading are developed. The governing differential equations have been 

developed using the first order shear deformation theory (FSDT). The assumptions made in 

the analysis are given below. 

 

It is assumed that the straight line that is perpendicular to the neutral surface before 

deformation remains straight but not normal after deformation (FSDT). The thickness of the 

twisted panel is small compared with the principal radii of curvature. Normal stress in the z-

direction is neglected. 

 

3.1 Governing Differential Equations 

 

The governing differential equations are derived on the basis of the principle of potential 

energy and Lagrange’s equation. 

 

 The equations of motion are obtained by taking a differential element of the twisted panel as 

shown in figure 3.2. The figure shows an element with internal forces like membrane forces 

(Nx, Ny, and Nxy), shearing forces (Qx, and Qy) and the moment resultants (Mx, My and Mxy). 

The governing differential equations of equilibrium of a shear deformable doubly curved 

pretwisted panel subjected to external in-plane loading can be expressed as 

(Chandrashekhara
4
, Sahu and Datta

19
 ) 
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                                            (3.1)    

                        

Figure 3.2: Element of a twisted shell panel 

 

Here n = number of layers of panel 

          = angle of twist   

        a and b are length and width of the panel 
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Also   and Ny
0
 are the external loading in the X and Y direction respectively. The 

constants ,  and  are the radii of curvature in the x and y directions and the radius of 

twist. 

( , , ) =               (3.2) 

where n= number of layers of the laminated composite twisted curved panel and  = mass 

density of layer from the mid-plane. 

First order shear deformation theory is used and the displacement field assumes that the mid 

–plane normal remains straight before and after deformation, but not necessarily normal after 

deformation, so that 

u(x,y,z)= (x,y)+ z (x,y) 

v(x,y,z)= (x,y)+ z (x,y)                                                                                               (3.3) 

w(x,y,z)= (x,y) 

Where u,v,w and are displacement in the x,y,z directions at any point and at the 

midsurface respectively    and   are the rotations of the midsurface normal about 

the x and y axes respectively . 

Strain Displacement Relations 

Green-Lagrange’s strain displacement relations are used throughout. The linear strain 

displacement relations for a twisted shell element are: 

=  

=  

=                                                                    (3.4) 
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=  

=  

Where the bending strains  are expressed as 

,  

 +                                                 (3.5) 

The linear strains can be expresses in term of displacements as: 

{ } =[B]{ }                                                                                                          (3.6) 

Where 

} = { }                                         (3.7) 

[B] = [[                                                                  (3.8) 

 

=                                 (3.9) 
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3.2 Constitutive Relations 

The basic composite twisted curved panel is considered to be composed of composite 

material laminates (typically thin layers). The material of each lamina consists of parallel, 

continuous fibers (e.g. graphite, boron, glass) of one material embedded in a matrix 

material(e.g. epoxy resin). Each layer may be regarded on a macroscopic scale as being 

homogeneous and orthotropic. The laminated fiber reinforced shell is assumed to consist of a 

number of thin laminates as shown in figure 3. The principle material axes are indicated by 1 

and 2 and moduli of elasticity of a lamina along these directions are E11 and E22 respectively. 

For the plane stress state,  

 

 

 

 

 

 

                    

3.3    Laminated shell element showing principal axes and laminate directions 

 

                                                            (3.10) 

Where 
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=       =  

=                            =                                    (3.11) 

=                                  = k  

=  

The on –axis elastic constant matrix corresponding to the fiber direction is given by 

                                                                                  (3.12) 

If the major and minor Poisson’s ratio are ν12 and ν21, then using reciprocal relation one 

obtains the following well known expression 

                                                                                                                              (3.13) 

Standard coordinate transformation is required to obtain the elastic constant matrix for any 

arbitrary principle axes with which the material principal axes makes an angle  Thus the 

off-axis elastic constant matrix is obtained from the on-axis elastic constant matrix as 

                                                                             (3.14) 

                                                                                                        (3.15) 

Where T  is  transformation matrix.  After transformation the elastic stiffness coefficients are: 
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                                                                   (3.16) 

 

 

 

The elastic constant matrix corresponding to transverse shear deformation is 

 

                                                                                                        (3.17) 

 

Where m = cos  and  n = sin  

The stress strain relations are                        (3.18) 

The forces and moment resultants are obtained by integration through the thickness h for 

stresses as                                                                                (3.19) 

Where ,  are the normal stresses along X and Y direction ,  and  are shear 

stresses in xy , xz and yz planes respectively. 

Considering only in-plane deformation, the constitutive relation for the initial plane stress 

analysis is 
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                                                                                     (3.20) 

The extensional stiffness for an isotropic material with matrial properties E and v are 

 

                                                                       (3.21) 

 

The constitutive relationships for bending transverse shear of a doubly curved shell becomes 

 

                     (3.22) 

This can also be stated as                                                  (3.23) 

 

 

Or                                                                                                                  (3.24) 

 

Where , , and  are the extensional , bending-stretching coupling, bending and 

transverse shear stiffness. They may be defined as: 
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 =  

 =  

 =                                                            (3.25) 

 =  

And k is the transverse shear correction factor. The accurate prediction for anisotropic 

laminates depends on a number of laminate properties and is also problem dependent. A 

shear correction factor of5/6 is used in the present formulation or all numerical computations. 

 3.3 ANSYS METHODOLOGY: 

For complex geometrical and boundary conditions, analytical method are not so easily 

adaptable, so numerical methods like finite element method have been used. The finite 

element formulation is developed here by for the structural analysis of composite twisted 

shell panels using first order shear deformation theory. ANSYS software which is a finite 

element software has been used for the study. 

The plate is made up with bonded layers, where each lamina is considered to be homogenous 

and orthotropic and made of unidirectional fiber-reinforced material. The orthotropic axes of 

symmetry in each lamina are oriented at an arbitrary angle to plate axes. The present study 

mainly aims to analyse the laminated composite twisted plates under the in plane loading 

conditions. Methodology involves the linear buckling and non linear buckling analysis of 

twisted plates. This project consists of developing FEA models of a laminated composite 

twisted plate under an in plane load. The first step is to develop a model of a laminated 

composite plate in ANSYS. The model will be subjected to in-plane loads, both linear and 

non-linear buckling analysis will be studied and results compared with the previous results. 

Then a laminated composite twisted plate will be studied for its characteristics with in-plane 

loads. Shell element eight node 281 is used which is having 6 degrees of freedom per node 

with different sizes of mesh.  
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Figure 3.4: A SHELL 281 Element 

Modelling and analysis of plate in ANSYS includes the following three steps: 

1. Pre- Processor  

2. Solution  

3. General Post processor. 

4. Time History Post Processor 

Pre-processing  

        It is defining the problem 

1. Define key points/lines/area/volumes 

2. Defining element type and material/geometric properties 

3. Creating Mesh lines/area/volumes as required 

Solution 

Assigning loads, constraints and solving 

Here we specify the loads (point or pressure), constraints (translational and rotational), 

deformations (at the maximum displacement)  

Post-processing 

Further processing and viewing the results in this stage one may wish to see. 

1. List of nodal displacement 
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2. Element forces and moments 

3. Deflection plots 

4. Stress contour diagram 

5. Load at Failure 

Time History Post Processor 

 Further stage we may wish to see the graphs and behaviour of the material by plotting 

graphs. Various graphs can be plotted by changing the parameters and the axes we wish to 

employ and we wish to check. This step is very necessary to view the non linear behaviour as 

the load can be said from the graph. 

The present problem has been solved using ANSYS software. The flat plate was first 

solved in order to validate the methodology and the results compared to previous results for 

linear buckling and non linear buckling. Then the methodology was tested for a laminated 

composite plate with different types of boundary conditions and stacking sequence and 

results compared to a result from a previous paper. Nonlinear buckling analysis is usually the 

more accurate approach and is therefore recommended for design or evaluation of actual 

structures. This technique employs a nonlinear static analysis with gradually increasing loads 

to seek the load level at which the structure becomes unstable. Using the nonlinear technique, 

the model can include features such as initial imperfections, plastic behaviour, gaps, and 

large-deflection response. In addition, using deflection-controlled loading, the post-buckled 

performance of the structure may be tracked. Nonlinear buckling can be performed on the 

original structure without imperfection, or by automatically adding an imperfection based 

upon a scaled deformed shape which could be from a linear buckling model. 
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4. RESULTS AND DISCUSSIONS 

In this chapter, the results of linear buckling and non linear buckling analysis of 

laminated composite plates   under in-plane loads is presented.  The evaluation is done using 

ANSYS software.   

Non Linear buckling analysis is a static analysis through which we can incorporate 

the non linearities due to loading, supports and end conditions. Here we consider the 

geometric non linearity only for our study. After analysing the plate for linear analysis we 

have to proceed for non linear analysis. We have to give a deformation by applying a small 

load at the point of maximum displacement obtained from linear buckling analysis. After 

giving a deformation we will get our analysis done with a geometric non linearity. The load 

will start decreasing after the solver extracts two number of modes, the load goes on 

decreasing and then it will increase a little and continue to be constant. The load at which it 

starts increasing is the buckling load from non linear analysis which is less than the buckling 

load obtained from linear buckling. A graph is plotted between displacement and load at the 

node which was given deformation initially. This graph gives the buckling value. 

4.1 Convergence study and validation of results 

The convergence study is first done for square isotropic plates clamped on all the edges for 

different mesh divisions and is shown in Table 4.1. Based on this study, a 12 x 12 mesh was 

chosen for solving the problem. 

a =100mm,    b = 100mm,  h = 1mm
 
  ,      E = 210GPa,    ν  = 0.3 
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Table 4.1: Convergence study  

Mesh division Buckling load (kN/m) Non-dimensional Buckling 

load 

6 x 6 204.1 10.2 

8 x 8 200.3 10.015 

10 x 10 199.72 9.986 

12 x 12 199.65 9.983 

Sandeep Sing et al  
20 

9.96 

 

Next the formulation is run for laminated composite square plates simply supported on all the 

edges and the results are compared with that of Fazzolari et al 
10

 as shown in Table 4.2.  

Table 4.2: Comparative study of non-dimensional buckling load for a simply supported 

laminated composite plate 

a =100mm,    b = 100mm,       

E11 =E33 = 184 Gpa,     E22 = 9.2 GPa,       ν12  = ν13= 0.25,       

 G12 = G13 = 5.52 Gpa ,    G23 = 4.6GPa.   

Stacking  :    0
0
/90

0
/90

0
/0

0  
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E1/E2 b/h Dimensionless 

Buckling load 

      Fazzolari 
et al

 
11 

Dimensionless 

Buckling load 

Present Study 

Dimensionless Non 

Linear Buckling 

Load 

 

10 

50 11.209 11.94 11.57 

25 11.41 12.19 11.84 

 

20 

50 19.48 20.216 19.76 

25 18.82 19.63 19.17 

 

As can be seen from Table 4.2, the results compare quite well with previous literature and it 

also can be seen that non dimensional non linear buckling value is quite nearer to the 

published  results. Also a non linear analysis gives a lower estimate of the buckling load than 

a linear elastic analysis. 

4.2 Results and Discussions 

Having validated the results for linear buckling load, the formulation was applied to simply 

supported flat plates with varying parameters like aspect ratio, thickness, and angle of twist, 

etc.  
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Table 4.3: Variation of buckling load with aspect ratio for a/h of 250 with different ply 

lay-ups simply supported on all edges 

 

a/h = 250 ,    

E11= 141.0GPa, E22 = 9.23GPa,  

υ12= 0.313, G12 = 5.95GPa, G23 = 2.96GPa 

 

a/b Lay ups Linear Buckling load, N/m Non Linear Buckling load ,N/m 

 

1 

0/90/0 4998 4900 

0/90/90/0 5211.3 5150 

0/90/0/90/0/90/0/90 5048 4950 

 

2 

0/90/0 17800 17500 

0/90/90/0 23815 23000 

0/90/0/90/0/90/0/90 23021 22500 

3 0/90/0 42428 41000 

0/90/90/0 53598 52000 

0/90/0/90/0/90/0/90 52242 51000 
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Table 4.4:   Variation of buckling load with aspect ratio for a/h of 150 with different ply 

lay-ups simply supported on all edges. 

 

a/h = 150 ,    

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa 

 

a/b Lay ups Linear Buckling load, N/m Non Linear Buckling load, N/m 

 

1 

0/90/0 23384 21500 

0/90/90/0 24050 23750 

0/90/0/90/0/90/0/90 23321 22500 

 

2 

0/90/0 80731 79000 

0/90/90/0 109560 108700 

0/90/0/90/0/90/0/90 106080 105500 

3 
0/90/0 330260 328000 

0/90/90/0 246060 245000 

0/90/0/90/0/90/0/90 271410 264000 
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Table 4.5:  Variation of buckling load with aspect ratio for a/h of 100 with different ply 

lay-ups simply supported on all edges  

 

 a/h = 100 ,  

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa 

 

       

a/b Lay ups Linear Buckling load, N/m Non Linear Buckling load ,N/m 

 

1 

0/90/0 77970 76500 

0/90/90/0 81016 80000 

0/90/0/90/0/90/0/90 78537 76500 

 

2 

0/90/0 268858 260000 

0/90/90/0 367000 365500 

0/90/0/90/0/90/0/90 334877 332420 

3 
0/90/0 637851 632000 

0/90/90/0 821563 815000 

0/90/0/90/0/90/0/90 817963 812500 
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From the above three tables, table 4.3, 4.4, 4.5 it can be seen that the buckling load increases 

as the number of layers increases and as the aspect ratio increases, i.e., the buckling load is 

high for rectangular plates than square plates. Also it can be observed that the symmetrical 

arrangement of 4 layer ply has more buckling value than the 8 layer asymmetrical ply. 

Also in all cases the non-linear buckling load is less than the linear buckling load. 

To validate the non-linear buckling formulation, Table 4.6 and Table 4.7 shows the 

comparison of the buckling loads for laminated composite square plates simply supported on 

all the edges and  cantilever  conditions , obtained by both linear and non-linear analysis. 

 

Table 4.6: Comparison of linear and nonlinear buckling loads for a laminated 

composite plate[0°/90°/90°/0°] with different aspect ratio simply supported on all edges: 

a/h = 250 ,    

E11= 141.0GPa, E22 = 9.23GPa,  

υ12= 0.313, G12 = 5.95GPa, G23 = 2.96GPa 

 

a/b Buckling load (Linear analysis)
 
N/m 

Buckling load (Non Linear 

analysis) 
 
N/m 

1 5211.3 5150 

2 23815 23000 

3 53598 52000 
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Table 4.7: Comparison of linear and nonlinear buckling loads for a laminated 

composite cantilever plate [0°/90°/90°/0°] with different aspect ratio  

a/h = 250 ,   

E11= 141.0GPa, E22 = 9.23GPa, 

 υ12= 0.313, G12 = 5.95GPa, G23 = 2.96GPa 

 

a/b Buckling load (Linear analysis)
 
N/m 

Buckling load (Non Linear 

analysis)  N/m 

1 823.76 786 

2 823.28 765 

3 823.03 760 

 

From the above tables 4.6 and 4.7 it can be said that as the aspect ratio increases the buckling 

load increases and then decreases for simply supported plates but whereas it remains almost 

same for the cantilever plates for the same stacking sequence. The buckling load found using 

the nonlinear analysis is again found lesser than the linear buckling load. 
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Table 4.8:  Variation of Linear and Non Linear buckling load with angle of twist for a/h 

of 250 with different ply lay-ups for cantilever boundary conditions: 

 

a/h = 250 ,    

E11= 141.0GPa, E22 = 9.23GPa, 

 υ12= 0.313, G12 = 5.95GPa, G23 = 2.96GPa 

 

 

Angle of Twist , Φ No: of  layers 
Linear Buckling 

Load N/m 

Non Linear 

Buckling Load 

N/m 

10 

[0
0
/90

0
] 198.53 195 

[0
0
/90

0
/0

0
/90

0
] 402.12 396 

[0
0
/90

0
/90

0/
0

0
/0

0
/90

0
/90

0/
0

0
] 547.3 535 

20 

[0
0
/90

0
] 171.40 168.5 

[0
0
/90

0
/0

0
/90

0
] 346.97 336 

[0
0
/90

0
/90

0/
0

0
/0

0
/90

0
/90

0/
0

0
] 472.13 465 

30 

[0
0
/90

0
] 140.03 137.8 

[0
0
/90

0
/0

0
/90

0
] 282.6 276 

[0
0
/90

0
/90

0/
0

0
/0

0
/90

0
/90

0/
0

0
] 384.2 378 

 

 

From the above table it can be said that buckling load decreases for increase in angle of twist 

and also buckling load increases with number of layers for same angle of twist for anti 

symmetric ply arrangement.  Buckling load is more for symmetric ply arrangement as shown 

for 8 layer ply in the table. 
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Table 4.9:  Variation of buckling load with aspect ratio for a/h of 250 with different ply 

lay-ups for a cantilever twisted plate with an angle of twist 10
0
  

 

 a/h = 250   

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa    Φ = 10
0 

 

a/b Lay ups Linear Buckling load, 

N/m 

Non Linear Buckling load 

,N/m 

 

1 

0
0
/90

0
/0

0 
852.59 840 

0
0
/90

0
/90

0
/0

0 
402.12 396 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
547.30 535 

 

2 

0
0
/90

0
/0

0 
763.42 751 

0
0
/90

0
/90

0
/0

0 
360.17 352 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
490.19 478 

3 
0

0
/90

0
/0

0 
671.1 653.02 

0
0
/90

0
/90

0
/0

0 
316.72 306 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
431.04 421 
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Table 4.10:  Variation of buckling load with aspect ratio for a/h of 200 with different ply 

lay-ups for a cantilever twisted plate with an angle of twist 10
0
  

 

 a/h = 200 ,  

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa   

  Φ= 10
0 

 

a/b Lay ups 
Linear Buckling load, 

N/m 

Non Linear Buckling load 

,N/m 

 

1 

0
0
/90

0
/0

0 
1658.1 1631 

0
0
/90

0
/90

0
/0

0 
1519.2 1473 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
1067.9 1036 

 

2 

0
0
/90

0
/0

0 
1478.6 1454 

0
0
/90

0
/90

0
/0

0 
1355 1314 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
953.87 935 
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Table 4.11:  Variation of buckling load with aspect ratio for a/h of 150 with different ply 

lay-ups for a cantilever twisted plate with an angle of twist 10
0
  

 

 a/h = 150 ,  

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa    

 Φ= 10
0 

 

a/b Lay ups 
Linear Buckling load, 

N/m 

Non Linear Buckling load 

,N/m 

 

1 

0
0
/90

0
/0

0 
3918 3820 

0
0
/90

0
/90

0
/0

0 
3585.4 3495 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
2529.6 2467 

 

2 

0
0
/90

0
/0

0 
3482.6 3396 

0
0
/90

0
/90

0
/0

0 
3187.7 3109 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
2254.7 2201 

 

From above tables 4.9, 4.10, 4.11 shows that for the buckling value is more for symmetric 

stacking and less for asymmetric stacking for a square plates. The buckling value decreases 

for different type of stacking with increase in side/ thickness ratio.  
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Table 4.12:  Variation of buckling load with aspect ratio for a/h of 250 and angle of 

twist for a cantilever twisted plate  

a/h = 250 ,  

E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa     

a/b Angle of Twist , Φ 
Linear Buckling load, 

N/m 

Non Linear Buckling load 

,N/m 

 

1 

10
0 

852.59 840 

20
0 

735.39 720 

30
0 

597.70 579 

 

2 

10
0 

763.42 751 

20
0 

569.01 560 

30
0 

426.88 420 

3 

10
0 

671.11 653.02 

20
0 

463.94 455 

30
0 

397.2 390 

 

 

From the table 4.12 it can be said that the buckling value decreases with increase in angle of 

twist and aspect ratio for the same stacking sequence and side thickness ratio.  
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Table 4.13:  Variation of buckling load with a/h  ratio with different ply lay-ups for a 

cantilever twisted plate with an angle of twist 10
0
  

 

a/b = 1  E11= 141.0GPa, E22 = 9.23GPa, υ12= 0.313, 

 G12 = 5.95GPa, G23 = 2.96GPa    Φ = 10
0 

 

 

                Lay ups 

Non Linear Buckling load ,N/m 

a/h= 250 a/h = 200 a/h = 150 

0
0
/90

0
/0

0 
840 1631 3820 

0
0
/90

0
/90

0
/0

0 
396 1473 3495 

0
0
/90

0
/90

0
/0

0
/0

0
/90

0
/90

0
/0

0 
535 1036 2467 

 

As the a/h ratio decreases, that is thickness of the plate increases, the non-linear buckling load 

increases for a particular ply orientation as observed from Table 4.13. 

Table 4.14:  Variation of buckling load with different Modular ratio for a cantilever 

twisted plate with an angle of twist 10
0
  

a/b = 1  E22 = 9.23GPa, υ12= 0.313, Φ = 10
0
 

 

 

E1/E2 

Linear Buckling load, N/m Non Linear Buckling load ,N/m 

10 558.42 546 

20
 

1111.1 1095 

30
 

2214 2160 

 

As the E1/E2 ratio increases,  the linear and  non-linear buckling load increases for a 

particular ply orientation as observed from Table 4.14 
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Figure   4.4:  Displacement vs Load for a Cantilever plate for linear and 

non- linear buckling. 

 

(a). Linear Buckling 

 

(b). Non Linear Buckling 

From the figure 4.6 it can be clearly seen the difference between the linear and non-linear 

buckling, which shows a sudden jump in displacement with less change in load. The sudden 

change of displacement with load gives the buckling load of the structure by non-linear 

analysis. 
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Figure   4.5:  Displacement vs Load for a Cantilever plate with different 

Angle of Twist for a non-linear analysis: 
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Figure 4.5 shows the various graphs for non linear buckling analysis with different angle of 

twist which was plotted for Buckling Load Vs Displacement. From the graphs it’s clear 

shown that there is a sudden variation of displacement with a very small increase of load 

which gives the critical buckling load of the problem by Non linear analysis. 
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5. CONCLUSIONS 

 

 Instability may occur before a design bifurcation limit is reached. Understanding the large 

elastic displacement of these types of structures can prevent sudden buckling failures due to 

applied operational and construction loads. 

 

As discussed earlier, the assumptions made in a linear buckling analysis leads to higher 

values of the buckling load than is obtained from a nonlinear buckling analysis. This can 

also be observed from the above studies for both flat and twisted composite plates. Hence 

the above study validates the necessity of a nonlinear buckling analysis, especially for 

structures whose shape changes drastically during buckling as is the case for thin shell 

structures.  

From the studies on twisted plates, it is observed that as the aspect ratio increases, the 

buckling load increases for simply supported plates and decreases for cantilever plates but 

the non linear buckling load is less than linear buckling load. An increase in the number of 

layers in general leads to an increase in the buckling load in linear and non linear analysis 

for the twisted plates. It is also observed that the buckling load increases with decrease in 

side to thickness ratio for the same aspect ratio for laminated twisted composite plate. 

Also it is observed from above studies that as the angle of twist and aspect ratio increases, 

nonlinear buckling load decreases for laminated composite twisted plates. For the same 

angle of twist, buckling load increases with number of layers and for symmetric play ups. 

As the degree of orthotropy increases for laminated composite twisted plates, the non linear 

buckling load increases. 

The above variations hold true for the non linear studies on both the twisted and flat 

laminated composite plates. 
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