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Abstract

The main purpose of this report is to carry out the effect of the various numerical meth-

ods for solving singular perturbation problems on non-uniform meshes. When a small

parameter ‘ε’ known as the singular perturbation parameter is multiplied with the higher

order terms of the differential equation, then the differential equation becomes singularly

perturbed. In this type of problems, there are regions where the solution varies very

rapidly known as boundary layers and the region where the solution varies uniformly

known as the outer region. Standard finite difference/element methods are applied on the

singularly perturbed differential equation on uniform mesh give unsatisfactory result as

ε→ 0. Due to presence of boundary layer, standard difference schemes unable to capture

the layer behaviour until the mesh parameter and perturbation parameter are of the same

size which results vast computational cost. In order to overcome this difficulty, we adapt

non-uniform meshes. The Shishkin mesh and the adaptive mesh are two widely used spe-

cial type of non-uniform meshes for solving singularly perturbed problem. Here, in this

report singularly perturbed problems namely convection-diffusion and reaction-diffusion

problems are considered and solved by various numerical techniques. The numerical so-

lution of the problems are compared with the exact solution and the results are shown in

the shape of tables and graphs to validate the theoretical bounds.
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Chapter 1

Introduction

Singularly perturbed problems(SPP) are wide-spread in nature. These problems can be

algebraic equations, ordinary differential equations, partial differential equations or their

systems. Singularly perturbed differential equations is one of the area of increasing interest

in the applied mathematics and engineering since recent years. Differential equations

where the highest order derivative is multiplied by an arbitrarily small parameter “ε”

(known as the singular perturbation parameter) are known as singularly perturbed and

the solution cannot be approximated by setting the parameter value to zero. The solution

of singularly perturbed problem has special character: there are thin layers where the

solution varies very rapidly known as boundary layer, while away from the layers the

solution behaves uniformly and varies slowly known as outer region . These equation arises

in many areas of science and engineering such as fluid dynamics, quantum mechanics,

control theory, chemical science etc.

Singularly perturbed differential equation arises in modeling many real life problem. For

example modeling of semiconductor device,

v′′(x) = d(x)− p(x)

λp′′(x) + v′(x)p′(x) + (d(x)− p(x))p(x) = 0

}
,

where p is the density of positive charge holes, d is the dopant density of negative charges,

v is the electrostatic potential and λ is small diffusion coefficient.

Another example is the fluid flow past over a cylindrical system. Considering the system
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to be conservative i.e. div u = 0. Then by the Navier-Stokes equation

∂u

∂t
− 1

Re
4 u+ (u.5)u+5p = F,

where u, p and F are the velocity, pressure and the external force respectively. This equa-

tion becomes singularly perturbed with appropriate boundary condition when Re, the

Reynolds number is very high.

SPP was first introduced by Prandtl during his talk on fluid motion with small friction

in the third international conference of mathematicians in Heidelberg in 1904 in which

he demonstrated that fluid flow past over a body can be divide in two regions, a bound-

ary layer and outer region. Prandtl introduced the term boundary layer but Wasow had

generalized the term. Many outstanding work has been done by many researchers in past

few decades ( [1], [3], [8], [10], [12], [16]).

The solution of singularly perturbed problem has boundary layer or narrow region (as

shown in figure (1.1, 1.2, 1.3) where, the solution varies very rapidly. In these problems,

the standard numerical techniques used on uniform mesh leads to the error in the solution

as ε→ 0 and so the error depends upon the value of ε. Since the boundary layer is of the

width O(ε), in order to capture the layer phenomena, one has to take the mesh length

of size ε, which results vast computational cost . That is why our interest is to device

special techniques to solve these problems, in which the error is independent of ε and

we call these techniques ε-uniformly convergent methods or robust techniques. There are

various methods available to solve the singularly perturbed differential equations. Numer-

ical method and asymptotic analysis methods are two mainly used method to solve the

singularly perturbed problem . Solving singularly perturbation problems by asymptotic

methods. one need to have some idea about the behavior of the solution. So we go for

numerical treatments. Numerical techniques do not give the exact solution of the problem

but the approximation to the solution. We can solve problems by numerical techniques

those faces difficulty with the asymptotic methods. We can examine the behaviour and

quantitative information about a particular problem by using numerical techniques.

One may refer Farrrell et al.[6], Miller et al.[9], Shishkin et al.[18] for theoretical and nu-

merical treatment of singularly perturbed differential equations. Many numerical schemes

have been devised to solve these type of problems. Roos and Stynes[19] has used midpoint

upwind scheme to solve the singularly perturbed boundary value problem. Kadalbajoo[7]

used cubic B-spline method to solve the singularly perturbed problem.
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Figure 1.1: Right layer

Figure 1.2: Left layer.

Figure 1.3: Twins layer
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1.1 Preliminaries

Perturbation theory is a subject in which we study the effect of small parameter in the

mathematical model problems in differential equations. In perturbation theory we deal

with two types of problems. They are Regularly perturbed and Singularly perturbed.

Definition 1.1.1. If the mathematical problem involving a small parameter ε converges

to the reduced problem (which is obtained by setting the ε to zero) as ε goes to zero is

categorized as regularly perturbed problem. Mathematically, if Pε is the solution of any

problem and if Pε → P0 as ε→ 0, P0 is the solution obtained by setting ε to zero.

Example 1.1.2. u′′ + u = εu2, u(0) = 1, u′(0) = −1.

Definition 1.1.3. The perturbed problem is said to be singularly perturbed, when the the

solution Pε behaves differently from P0 of problem as ε → 0, where P0 is the solution

obtained by setting ε to zero. In other words, order of the problem is reduced when we set

ε = 0.

Example 1.1.4. εu′′ + u′ = 2x+ 1, u(0) = 1, u(1) = 3.

Definition 1.1.5. In the domain of problem the region where the solution varies rapidly

is known as boundary layer region or inner region and the region where solution varies

uniformly is known as outer region.

Definition 1.1.6. The letters ‘O’ and ‘o’ are order symbols. The function f is big-oh

of function g if lim
x→x0

f(x)

g(x)
= C, where C is finite and it is written as f(x) = O(g(x)) as

x → x0 or in other words, the function f(x) approaches to a limiting value at the same

rate of another function g(x) as x→ x0. And if lim
x→x0

f(x)

g(x)
= 0 then f is little-oh of g as

x→ x0 that means f(x) is smaller than g(x) as x→ x0.

Definition 1.1.7. A method is said to be uniform convergence if

sup︸︷︷︸
0<ε≤1

‖Uε − uε‖ΩN ≤ CN−p,

where uε is the unique solution of family of mathematical problems Pε parameterized by

a singular parameter ε, where 0 < ε ≤ 1 and Uε is the approximation of uε on the mesh

Ω
N

. Here p is called the ε-convergence rate and C is called ε-uniform error constant.
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To study the convergence of numerical solutions to the exact solution of SPP’s the

appropriate norm is maximum norm.

‖u‖ = max︸︷︷︸
Ω

|u(x)|.

Since max ‖.‖ easily capture the layer phenomena. Let us define the finite difference op-

erator as follows:

Let U be the solution then the forward, backward and central difference operatorsD+, D−, D0

and second order central difference operator D+D− are define respectively as:

D+U(xi) =
U(xi+1)− U(xi)

xi+1 − xi

D−U(xi) =
U(xi)− U(xi−1)

xi − xi−1

D0U(xi) =
U(xi+1)− U(xi−1)

xi+1 − xi−1

D+D−U(xi) =
2(D+U(xi)−D−U(xi))

xi+1 − xi−1

Objective

Main objective of my report is to analyze theoretical bound, analytical properties and

numerical techniques namely upwind scheme, midpoint scheme, hybrid scheme and B-

spline method to solve two kind of singularly perturbed problems which are convection

diffusion and reaction diffusion problems and also in my report I will adapt the non-

uniform meshes instead of uniform meshes namely Shishkin mesh and adaptive grid.

Hence, in my report I will try to analyze and develop the numerical techniques to solve

convection diffusion and reaction diffusion problem on Shishkin mesh and adaptive grid.

1.2 Non-uniform meshes

In my study, I will adopt various numerical schemes to examine the solution of various

models. But we cannot apply the difference scheme (forward difference, backward dif-
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ference, central difference) arbitrarily. For example, when we use the central difference

scheme we get oscillation in the solution. Moreover, since the solution of these problems

have boundary layer where the solution varies sharply, we get unsatisfactory results on

the uniform mesh as ε → 0. The numerical methods constructed on uniform-mesh re-

sult in arising of serious difficulties ([6], [18]). These difficulties can be overcome by the

use of appropriate kind of non-uniform-mesh. The simplest kind of non-uniform mesh

to construct ε-uniform method is a piece-wise uniform mesh. The first special kind of

non-uniform mesh was introduced by Bakhvalov(1969). Some other special kinds of non-

uniform meshes are Shishkin mesh(1982) and adaptive mesh [8].

Shishkin mesh

Shishkin mesh is a special piece-wise uniform mesh. This mesh is different from other

meshes in the sense that the choice of transition parameter where the solution changes

very rapidly. Let Ω = [0, 1]. To establish the Shishkin mesh, one has to known the location

and width of boundary layer. Let us assume that a layer of width O(ε) is at x = 0 on

the left end of the domain. If the boundary layer O(ε) is near 0 (left end) then piece-wise

uniform mesh ΩN
ε is constructed by dividing Ω into two sub-interval Ω = (0, σ) ∪ (σ, 1),

where

σ = min

{
1

2
,
ε

α
lnN

}
.

Shishkin mesh is obtained by dividing both sub-intervals in N/2 mesh elements. When

σ = 1/2 the mesh is uniform and when σ = ε
α

lnN then it has boundary layer at x = 0

(see the figure). When the boundary points is near to the x = 1 then piece-wise uniform

mesh ΩN is constructed by dividing Ω into two sub-interval Ω = (0, 1− σ) ∪ (1− σ, 1).

Adaptive mesh

To solve the SPP’s, we have to use meshes that are fine in layer regions and coarse in the

outer region. Shishkin mesh has the demerit of prior knowing of location and width of
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Figure 1.4: Shishkin mesh for N=8.

layer, so we go for adaptive grid. Adaptive mesh is one of the special kind of mesh. To

construct such mesh we use the adaptive algorithm. Initially the mesh used is uniform

with N sub interval. One approaches to the adaptive mesh construction for SPP’s is the

use of monitor function. A monitor function M(x) is an arbitrary non-negative function

defined on [0, 1]. A mesh is said to be equidistribute if∫ xi

xi−1

M(x)dx =
1

N

∫ 1

0

M(x)dx, for i = 1, ..., N.

Different monitor functions are used by the researchers. Some of the monitor functions

are,

(1) M(x) = |u′(x)|
(2) M(x) = 1 + |u′(x)|1/m, m ≥ 2

(3) M(x) =
√

1 + (u′(x))2 ( Known as arc-length Monitor function)

(4) M(x) = 1 + α|(u′(x))|p, p > 0

(5) M(x) = 1 + |(u′′(x))|1/2

Since the exact solution u is unknown, a priori adaptive algorithm used some discrete

analogues of certain monitor functions. We will consider arc length monitor function in

our report. We have to find (xi, ui), with uNi computed from the xi by Lui = fi, u0 =

A, uN = B such that,√
|ui − ui−1|2 + |xi − xi−1|2 =

1

N

√
|uj − uj−1|2 + |xj − xj−1|2, for every i

7



We can write,

hiMi =
1

N

N∑
i=1

hjMj, for i = 1, 2, ...N.

Where, Mi =

√
1 +

(
ui − ui−1

xi − xi−1

)2

and hi = xi − xi−1.

Adaptive mesh generation algorithm

Step 1: Consider the initial mesh {0, 1/N, 2/N, ...1} is uniform.

Step 2: For k = 0, 1, ... assuming the mesh {xki } is given. Compute the discrete solution

{uki } satisfying, Lkuk = fk on xki with uk0 = A, ukN = B.

Let lki = hki

√
1 +

(
uki − uki−1

xki − xki−1

)2

, where hki = xki − xki−1 be the arc length of points

(xki−1, u
k
i−1) and (xki , u

k
i ). Thus total arc length is, Lk =

∑N
i=1 l

k
i .

Step 3: Let C0 be the user chosen constant C0 > 1. If,
maxi l

k
i

Lk
≤ C0

N
then go to step 5

otherwise continue to step 4.

Step 4: Chose the points 0 = xk+1
0 < xk+1

1 < ... < xk+1
N = 1 such that for each i the

distance from (xk+1
i−1 , u

k(xk+1
i−1 )) to (xk+1

i , uk(xk+1
i )), measured along polygon solution curve

uk(x) equals Lk/N . Our new mesh is defined to be xk+1
i .

Step 5: Set x0, x1, ...xN = xki and u = uk then stop.
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Chapter 2

Methods for convection-diffusion
problems

Introduction

The convection-diffusion equation is a combination of the convection and diffusion equa-

tions and describes physical phenomena where particles, energy or other physical quan-

tities are transferred inside a physical system due to two processes: convection and dif-

fusion. In this chapter, we discuss numerical techniques to solve singularly perturbed

convection-diffusion equations. The various numerical schemes viz. the upwind scheme,

the midpoint scheme, the hybrid scheme and the B-spline collocation method is applied

to obtain approximate solutions and then it is compared with the exact solution.

2.1 Model problem

Consider the following singularly perturbed differential equation

εu′′ + p(x)u′ + q(x)u = f(x), x ∈ Ω = (0, 1)

u(0) = A, u(1) = B

}
, (2.1)
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where 0 < ε ≤ 1 and p(x) ≥ α > 0 for all x ∈ Ω, A, B are constants.

when ε = 0, the reduced problem is p(x)u′ + q(x)u = f(x) which is first order differential

equation . So it can not be made to satisfy the both boundary conditions simultaneously.

And hence it has boundary layer at x = 0 or x = 1 depending upon the sign of p(x).

Let Lε be the differential operator, then Lεu = εu′′ + pu′ + qu. The differential operator

Lε satisfy the maximum principle.

Maximum Principle

Lemma 2.1.1. Assume that u(0) ≥ 0 and u(1) ≥ 0. Then Lεu ≥ 0 for all x ∈ Ω implies

that u(x) ≥ 0 for all x ∈ Ω.

Proof. See [15].

2.2 Properties of the solution

Lemma 2.2.1. Let u be the solution of model problem (2.1). Then u satisfying following

bound:

‖u‖ ≤ ‖f‖
α

+ max(u(0), u(1)), forall x ∈ Ω̄.

Proof. Let us consider Ψ±(x) = x
‖f‖
α

+ max (u(0), u(1))± u(x). So we have,

Ψ±(0) = max (u(0), u(1))± u(0) ≥ 0 and Ψ±(1) =
‖f‖
α

+ max (u(0), u(1))± u(1) ≥ 0.

Lψ± = ε(ψ±(x))′′+p(x)(ψ±(x))′+q(x)ψ± = p(x)
‖f‖
α

+p(x)(max(u(0), u(1))+x
‖f‖
α
±f(x).

Since p(x) ≥ α > 0 and ‖f‖ ≥ f(x) , we have p(x)α−1 ‖f‖ ± f(x) ≥ 0. Using this

inequality we get Lψ± ≥ 0, for all x ∈ Ω. Hence by Lemma(2.1.1) ψ± ≥ 0, for all x ∈ Ω

which is the required result.
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Lemma 2.2.2. Let u be the solution of model problem (2.1) then for 0 ≤ i ≤ 3 we have

|uk(x)| ≤ C(1 + ε−k exp(−αx/ε)).

Proof. By mean value theorem, ∃ a point z in (0, ε) such that

u′(z) =
u(0)− u(ε)

ε
.

Thus

|εu′(z)| < 2 ‖u‖ . (2.2)

Integrating (2.1) from 0 to z we get

εu′ − εu′(0) =

∫ z

0

(f(t)− p(t)u′(t)− q(t)u(t))dt. (2.3)

∣∣∣∣∫ z

0

(f(t)− p(t)u′(t)− q(t)u(t))dt

∣∣∣∣ ≤ ‖f‖ |z|+ ∫ z

0

(p(t)u′(t))dt+ ‖u‖ z. (2.4)

Here,
∫ z

0
(p(t)u′(t))dt = p(t)u(t)|z0 −

∫
p′(t)u(t)dt. Taking modulus on both side∣∣∣∣∫ z

0

(p(t)u′(t))dt

∣∣∣∣ ≤ 2 ‖p‖ ‖u‖ − ‖p′‖ ‖u‖ ‖z‖ . (2.5)

Now combining the inequalities (2.2) and (2.4)∣∣∣∣∫ z

0

(f(t)− p(t)u′(t)− q(t)u(t))dt

∣∣∣∣ ≤ ‖f‖+ (2 ‖p‖+ ‖p′‖ ‖q‖) ‖u‖ . (2.6)

Using (2.6) with (2.2) and (2.3), we get |u′(0)| ≤ Cε−1. Now using (2.3) with z = x ∈ Ω

we get |u′(x)| ≤ Cε−1, for all x ∈ Ω. Similarly, by using the bound of u and u′, we can

show that |uk(x)| ≤ C(1 + ε−k exp(−αx/ε)), x ∈ Ω, 0 ≤ i ≤ 3.

The solution of model problem (2.1) can be decomposed in u = v + w where v and w

are regular and singular components of u respectively. The v component can be written

in asymptotic expansion as v(x) = v0 + εv1 + ε2v2. Now

p(x)v′0 + q(x)v0 = f(x) v0(0) = u0(0)

p(x)v′1 + q(x)v1 = v′′0(x) v1(0) = 0

11



εv′′2 + p(x)v′2 + q(x)v2 = v′′1(x) v2(0) = 0, v1(0) = 0

Thus v is the solution of

Lv(x) = f(x) with v(0) = u(0) and v(1) = v0(1) + εv1(1),

and singular component w is the solution of

Lw(x) = 0 with w(0) = 0 and w(1) = u(1)− v(1),

and we have,

Lemma 2.2.3. The regular and singular components v(x) and u(x)respectively satisfying

the following bond:

|vk(x)| ≤ C(1 + ε−(k−2) exp(−αx/ε)),

and

|wk(x)| ≤ Cε−k exp(−αx/ε).

Proof. From above it is very well known∣∣vk0 ∣∣ ≤ C, 0 ≤ k ≤ 3 and
∣∣vk1 ∣∣ ≤ C, 0 ≤ k ≤ 3.

From previous lemma,
∣∣vk2 ∣∣ ≤ (1 + ε−1 exp (−αx/ε)), 0 ≤ k ≤ 3. Thus we have required

bound.

Now construct ψ±(x) = |w(0)| exp (−αx/ε) ± w(x). Clearly, ψ±(0) ≥ 0, ψ±(1) ≥ 0

and Lψ±(x) ≥ 0. Hence by maximum principle ψ±(x) ≥ 0 for all x ∈ Ω which gives

|w(x)| ≤ C exp(−αx/ε).

2.3 Numerical methods

In this section, we apply different numerical schemes on various convection-diffusion prob-

lems to find the numerical solutions and then they will be compared with the exact solu-

tions. The results are shown in the shape of tables and graphs. Here we discritized the
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model problem (2.1) on non-uniform mesh as defined in Chapter 1. ΩN = {0 = x0 < x1 <

x2 < ... < xN−1 < xN = 1}.

Scheme 1: Upwind scheme

Let us consider the upwind scheme to solve the model problem (2.1)

εD+D−U(xi) + p(xi)D
+U(xi) + q(xi)U(xi) = f(xi), xi ∈ ΩN

U(0) = u(0), U(1) = u(1)

}
, (2.7)

where ΩN is non- uniform mesh as defined in chapter 1.

Theorem 2.3.1. The upwind method defined in(2.7) satisfy the error bound, for all N ≥ 4

|u(xi)− ui| ≤ CN−1 lnN, (2.8)

where u(x)is the exact solution and ui is the numerical solution obtained by (2.7).

Proof. Refer [6].

Scheme 2: Midpoint upwind scheme

The midpoint upwind scheme to solve model problem (2.1) is defined as follows

εD+D−U(xi) + p(xi−1/2)D+U(xi) + q(xi−1/2)U(xi) = f(xi−1/2), xi ∈ ΩN

where xi−1/2 = (xi + xi−1) /2

U(0) = u(0), U(1) = u(1)

 , (2.9)

where ΩN is piece-wise uniform mesh as defined in Chapter 1.

Theorem 2.3.2. The midpoint method defined in(2.9) satisfy the error bound.

|u(xi)− ui| ≤

{
CN−1(ε+N−1), 0 ≤ i ≤ 3N/4,

CN−1(ε+N−4(1−i/N) lnN), 3N/4 ≤ i ≤ N,
(2.10)

where u(x) is the exact solution and ui is the numerical solution obtained by (2.9).
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Proof. For the proof one may refer [19].

Scheme 3: Hybrid scheme

Consider the hybrid scheme to solve the model problem (2.1){
εD+D−U(xi) + p(xi)D

0U(xi) + q(xi)U(xi) = f(xi), if i = 0, 1, . . . N/2,

εD+D−U(xi) + p(xi−1/2)D+U(xi) + q(xi−1/2)U(xi) = f(xi−1/2), if i = N/2 + 1 . . . N,

(2.11)

with the boundary conditions U(0) = u(0), U(1) = u(1).

Theorem 2.3.3. The hybrid method defined in(2.11) satisfy the following error bound.

|u(xi)− ui| ≤

{
CN−1(ε+N−1), 0 ≤ i ≤ N/2,

CN−2 ln2N, N/2 ≤ i ≤ N,
(2.12)

where u(x) is the exact solution and ui is the numerical solution obtained by (2.11).

Proof. For the detail proof refer [19].

Scheme 4: B-Spline method

Now, we consider the cubic B-spline S(x) to find the numerical estimation of model prob-

lem (2.1).

S(x) =
N+1∑
i=−1

αiBi(x),
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where cubic B-splines Bi is defined as

Bi(x) =
1

h3



(x− xi−2)3, xi−2 ≤ x ≤ xi−1,

h3 + 3h2(x− xi−1) + 3h2(x− xi−1)2 + (x− xi−1)3, xi−1 ≤ x ≤ xi,

h3 + 3h2(xi+1 − x) + 3h2(xi+1 − x)2 + (xi−1 − x)3, xi ≤ x ≤ xi+1,

(xi+2 − x)3, xi+1 ≤ x ≤ xi+2,

0, Otherwise.

(2.13)

Suppose the approximate solution of (2.1) is given as

U(x) =
N+1∑
i=−1

αBi(x).

From equation (2.13), we have

Bi(xj) =


4 if j = i,

1 if j = i− 1 or j = i+ 1,

0 if j = i+ 2 or j = i− 2,

(2.14)

and Bi(x) = 0 if x ≥ xi+2 and x ≤ xi−2. Thus we have

U(x) = αi−1 + 4αi + αi+1

U ′(x) = 3(αi−1 − αi+1)/h

U ′′(x) = (6αi−1 − 12αi + 6αi+1)/h2

Substituting the value of Ui, U
′
i , U

′′
i in the equation (2.1) we have

εh2U ′′(xi) + p(xi)h
2U ′(xi) + q(xi)h

2U(xi) = h2f(xi)

ε(6αi−1−12αi+6αi+1)+3p(xi)h(αi−1−αi+1)+q(xi)h
2(αi−1+4αi+αi+1) = h2f(xi). (2.15)

The boundary conditions are

U(0) = u(0) = A⇒ α−1 + 4α0 + α1 = A

U(1) = u(1) = B ⇒ αN−1 + 4αN + αN+1 = B

}
. (2.16)

From the equation (2.15) and (2.16), we obtain (N + 3) × (N + 3) system with (N + 3)

unknowns α = {α−1, ..., αN+1}. On eliminating α−1 from first equation of (2.15) and αN+1
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from the last equation of (2.15), we obtain the (N + 1) × (N + 1) system with (N + 1)

unknowns α = {α0, ..., αN}. It is easily seen that matrix for above system of equation

strictly diagonally dominant and non-singular. Therefore, we can solve the above linear

system uniquely for real unknowns α0, ..., αN and then using the boundary conditions

(2.16) we obtain α−1 and αN+1. Hence, the method of B-spline using a basis of cubic

B-splines applied to model problem ( 2.1) has a unique solution.

Theorem 2.3.4. The B-spline method defined above for model problem (2.1) satisfy the

following error bound for sufficiently large N.

|u(xi)− ui| ≤ CN−2(lnN)2, (2.17)

where u(x) is exact solution and ui is numerical solution obtained by B-spline method.

Proof. One may see [7].

2.4 Results and discussion

Example 2.4.1. Consider the following constant coefficient problem

εu′′ + 2u′ = 0, u(0) = 1, u(1) = 0 x ∈ (0, 1).

The exact solution is given as u(x) =
exp(−2x/ε)− exp(−2/ε)

(1− exp(−2/ε))
.

Example 2.4.2. Let us consider the following variable coefficient problem

−εu′′ + (1 + x(1− x))u′ = f(x), u(0) = 0, u(1) = 0 x ∈ (0, 1),

where f is chosen such that u(x) =
1− exp(−(1− x)/ε)

1− exp(−1/ε)
− cos

π

2
x.

Figure 2.1 is the graph which is plotted for Example 2.4.1 using upwind scheme on

Shishkin mesh with ε = 1e − 2 and N = 32. From the Figure 2.1(a) it can be seen that

the approximate solution on Shishkin mesh is identical for the most of the range. Figure
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2.1(b) show that the error is more in the layer region and less in the outer region. Figure

2.2 display the graph which is plotted for Example 2.4.1 with the same perturbation

parameter and the number of nodes using upwind scheme on adaptive grid. From Figure

2.2(a) we can see that the adaptive grid approximate the solution very well in the layer

region. Error distribution using upwind scheme on adaptive grid for Example 2.4.1 is

shown in the Figure 2.2(b) . Solution of Example 2.4.1 with ε = 1e − 2 and N = 32

using B-spline method with corresponding error is plotted in the Figure 2.3. From Figure

2.3(a) and (b) we can observe that the approximate solution is identical in the outer region

and the error in the boundary layer is much greater than the error in the outer region.

Figures 2.4, 2.5 and 2.6 are the graphs plotted for the solution and error distribution for

Example 2.4.2 with ε = 1e − 2 and N = 32 using midpoint-scheme, hybrid scheme and

B-spline method. From the Figures 2.4(b), 2.5(b) and 2.6(b) we can observe that the error

distribution in the hybrid scheme is less than that on the midpoint scheme and B-spline

method.

Let u(x) be the exact solution and ui be the numerical solution then the maximum point-

wise error is calculated as:

EN = ‖u(xi)− ui‖,

and the rate of convergence rN = log2

(
EN

E2N

)
.

The maximum point-wise error and the rate of convergence of the Example 2.4.1 on

upwind scheme on the Shishkin mesh and on the adaptive grid is shown in Tables 2.1

and 2.2. From the Table it can be seen that upwind scheme on adaptive grid give better

result than on the Shishkin mesh. The rate of convergence on adaptive grid is lies in the

range (0.7, 1) while on the Shishkin mesh convergence rate lies in (0.4, 1) for Example

2.4.1. The Table 2.3 show the maximum point-wise error and the rate of convergence of

the Example 2.4.1 on B-spline method on Shishkin mesh. It is clear from the Tables 2.4

and 2.5 that rate of convergence of the midpoint upwind scheme is less than the hybrid

scheme. The rate of convergence of the hybrid scheme is lies in the range (1, 2) and the

result of hybrid scheme is better than the midpoint upwind scheme. The maximum point-

wise error and the rate of convergence for the Example 2.4.2 calculated on the B-spline

method on Shishkin mesh is shown in Table 2.6.

17



(a) Solutions. (b) Error.

Figure 2.1: Numerical solution with the exact solution and the corresponding error of
Example (2.4.1)for ε = 10−2 and N = 32 on upwind scheme on Shishkin mesh.

(a) Solutions. (b) Error.

Figure 2.2: Numerical solution with the exact solution and the corresponding error of
Example (2.4.1)for ε = 10−2 and N = 32 on upwind scheme on adaptive grid.
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(a) Solutions. (b) Error.

Figure 2.3: Numerical solution with the exact solution and the corresponding error of
Example (2.4.1)for ε = 10−2 and N = 32 on on B-spline scheme.

(a) Solutions. (b) Error.

Figure 2.4: Numerical solution with the exact solution and the corresponding error of
Example (2.4.2)for ε = 10−2 and N = 32 on midpoint scheme.

(a) Solutions. (b) Error.

Figure 2.5: Numerical solution with the exact solution and the corresponding error of
Example (2.4.2)for ε = 10−2 and N = 32 on hybrid scheme.
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(a) Solutions. (b) Error.

Figure 2.6: Numerical solution with the exact solution and the corresponding error of
Example (2.4.2)for ε = 10−2 and N = 32 on B-spline scheme.

Table 2.1: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.1)on upwind scheme on Shishkin mesh.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.2729e-2 6.6191e-3 3.3708e-3 1.7012e-3 8.5460e-4 4.2831e-4 2.1441e-4
0.9434 0.9735 0.9865 0.9932 0.9965 0.9982

1e− 2 8.9324e-2 6.5034e-2 4.2930e-2 2.6189e-2 1.5372e-2 8.7840e-3 4.9243e-3
0.4578 0.5992 0.7130 0.7687 0.8073 0.8349

1e− 4 8.9044e-2 6.4959e-2 4.2914e-2 2.6189e-2 1.5371e-2 8.7838e-3 4.9243e-3
0.4549 0.5981 0.7125 0.7687 0.8072 0.8349

1e− 6 8.9041e-2 6.4959e-2 4.2914e-2 2.6185e-2 1.5371e-2 8.7838e-3 4.9243e-3
0.4549 0.5981 0.7125 0.7687 0.8072 0.8349

1e− 8 8.9041e-2 6.4959e-2 4.2914e-2 2.6185e-2 1.5371e-2 8.7838e-3 4.9243e-3
0.4549 0.5981 0.7125 0.7687 0.8072 0.8349

1e− 10 8.9041e-2 6.4959e-2 4.2914e-2 2.6185e-2 1.5371e-2 8.7838e-3 4.9243e-3
0.4549 0.5981 0.7125 0.7687 0.8072 0.8349
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Table 2.2: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.1)on upwind scheme on adaptive grid.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.2694e-2 6.6175e-3 3.3806e-3 1.7093e-3 8.5943e-4 4.3092e-4 2.1576e-4
0.9397 0.9690 0.9838 0.9919 0.9959 0.9979

1e− 2 1.3692e-1 8.2410e-2 4.7575e-2 2.6291e-2 1.4102e-2 7.3660e-3 3.7806e-3
0.7324 0.7926 0.8556 0.8986 0.9369 0.9622

1.e− 4 1.5209e-1 9.4878e-2 5.6235e-2 3.2573e-2 1.8499e-2 1.0342e-2 5.7038e-3
0.6808 0.7546 0.7878 0.8162 0.8389 0.8584

1e− 6 1.5401e-1 9.6126e-2 5.7093e-2 3.3182e-2 1.8935e-2 1.0649e-2 5.9194e-3
0.6801 0.7516 0.7829 0.8093 0.8303 0.8472

1e− 8 1.5416e-1 9.6228e-2 5.7168e-2 3.3237e-2 1.8975e-2 1.0678e-2 5.9405e-3
0.6799 0.7512 0.7824 0.8087 0.8294 0.8461

1e− 10 1.5416e-1 9.6230e-2 5.7170e-2 3.3239e-2 1.8977e-2 1.0680e-2 5.9419e-3
0.6799 0.7512 0.7824 0.8086 0.8293 0.8459

Table 2.3: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.1) on B-spline scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.1509e-1 5.9980e-2 3.0614e-2 1.5465e-2 7.7725e-3 3.8962e-3 1.9506e-3
0.9402 0.9703 0.9852 0.9912 0.9963 0.9981

1e− 2 4.9777-1 3.5121e-1 2.2884e-1 1.4068e-1 8.2995e-2 4.7568e-2 2.6713e-2
0.5031 0.6179 0.7019 0.7613 0.8030 0.8324

1e− 4 4.9752e-1 3.5117e-1 2.2883e-1 1.4068e-1 8.2995e-2 4.7568e-2 2.6713e-2
0.5026 0.6179 0.7019 0.7613 0.8030 0.8324

1e− 6 4.9752e-1 3.5117e-1 2.2883e-1 1.4068e-1 8.2995e-2 4.7568e-2 2.6713e-2
0.5026 0.6179 0.7019 0.7613 0.8030 0.8324

1e− 8 4.9752e-1 3.5117e-1 2.2883e-1 1.4068e-1 8.2995e-2 4.7568e-2 2.6713e-2
0.5026 0.6179 0.7019 0.7613 0.8030 0.8324

1e− 10 4.9752e-1 3.5117e-1 2.2883e-1 1.4068e-1 8.2995e-2 4.7568e-2 2.6713e-2
0.5026 0.6179 0.7019 0.7613 0.8030 0.8324
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Table 2.4: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.2)on midpoint scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.3053e-2 6.6901e-3 3.3831e-3 1.7018e-3 8.5336e-4 4.2730e-4 2.1381e-4
0.9643 0.9836 0.9851 0.9958 0.9979 0.9989

1e− 2 1.0259e-1 6.6944e-2 4.2790e-2 2.5882e-2 1.5155e-2 8.6530e-3 4.8497e-3
0.6157 0.6457 0.7253 0.7722 0.8089 0.8353

1e− 4 1.0621e-1 6.8717e-2 4.3575e-2 2.6313e-2 1.5395e-2 8.7877e-3 4.9246e-3
0.5981 0.6282 0.7277 0.7733 0.8089 0.8353

1e− 6 1.0626e-1 6.8739e-2 4.3584e-2 2.6318e-2 1.5397e-2 8.7892e-3 4.9254e-3
0.6284 0.6573 0.7279 0.7734 0.8088 0.8355

1e− 8 1.0626e-1 6.8739e-2 4.3584e-2 2.6318e-2 1.5397e-2 8.7892e-3 4.9254e-3
0.6284 0.6573 0.7279 0.7734 0.8088 0.8355

1e− 10 1.0626e-1 6.8739e-2 4.3584e-2 2.6318e-2 1.5397e-2 8.7892e-3 4.9254e-3
0.6284 0.6573 0.7279 0.7734 0.8088 0.8355

Table 2.5: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.2)on hybrid scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 6.2314e-3 3.0270e-3 1.4917e-3 7.4074e-4 3.6909e-4 1.8422e-4 9.2032e-5
1.0417 1.0209 1.0099 1.0049 1.0025 1.0012

1e− 2 1.2763e-2 5.2712e-3 1.8920e-3 6.3357e-4 1.9666e-4 5.6763e-5 1.4822e-5
1.2757 1.4782 1.5783 1.6878 1.7926 1.9372

1e− 4 1.2598e-2 5.3028e-3 1.9586e-3 6.7716e-4 2.2364e-4 7.1190e-5 2.2038e-5
1.2483 1.4369 1.5322 1.5983 1.6503 1.6917

1e− 6 1.2596e-2 5.3028e-3 1.9590e-3 6.7747e-4 2.2384e-4 7.1311e-5 2.2106e-5
1.2481 1.4366 1.5319 1.5977 1.6503 1.6897

1e− 8 1.2596e-2 5.3028e-3 1.9590e-3 6.7747e-4 2.2385e-4 7.1311e-5 2.2106e-5
1.2481 1.4366 1.5319 1.5977 1.6503 1.6897

1e− 10 1.2596e-2 5.3028e-3 1.9590e-3 6.7747e-4 2.2385e-4 7.1311e-5 2.2106e-5
1.2481 1.4366 1.5319 1.5977 1.6503 1.6897
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Table 2.6: Maximum point-wise errors EN and the rate of convergence rN for Example
(2.4.2) on B-spline scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 2.0584e-4 5.1458e-5 1.2864e-5 3.2161e-6 8.0406e-7 2.0101e-7 5.0254e-8
2.0000 2.0000 2.0000 1.9999 2.0000 1.9999

1e− 2 7.5422e-2 2.9930e-2 7.8239e-3 4.7361e-3 3.4381e-3 2.8385e-3 1.0421e-3
1.3334 1.9356 1.06635 1.2120 1.5717 1.3621

1e− 4 7.1510e-2 3.5396e-2 1.8931e-2 1.1166e-2 5.9726e-3 2.9070e-3 1.3739e-3
1.0146 0.9028 0.7616 0.9027 1.0388 1.0812

1e− 6 7.1030e-2 3.4250e-2 1.6720e-2 8.3042e-3 4.2167e-3 2.2544e-3 1.0262e-3
1.0523 1.0342 1.0097 0.9777 0.9034 1.1354

1e− 8 7.1025e-2 3.4238e-2 1.6694e-2 8.2490e-3 4.1069e-3 2.0514e-3 1.0282e-3
1.0527 1.0363 1.0170 1.0061 1.0014 0.9967

1e− 10 7.1025e-2 3.4238e-2 1.6693e-2 8.2484e-3 4.1057e-3 2.0491e-3 1.0236e-3
1.0527 1.0363 1.0170 1.0065 1.0026 1.0013
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Chapter 3

Methods for reaction-diffusion
problems

Introduction

Reaction-diffusion systems are naturally occurred in chemistry. However, the system

can also describe dynamical processes of non-chemical nature. Examples are found in

biology, geology and physics and ecology. Reaction-diffusion systems are mathematical

models which explain how the concentration of one or more substances distributed in

space changes under the influence of two processes: local chemical reactions in which the

substances are transformed into each other and diffusion which causes the substances to

spread out over a surface in space.

In this chapter, we discuss the properties and behaviour of singularly perturbed reaction-

diffusion problem using some numerical techniques.
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3.1 Model problem

Consider the following two point boundary value problem:

εu′′ + p(x)u = f(x) , x ∈ Ω = (0, 1)

u(0) = A, u(1) = B

}
, (3.1)

where 0 < ε ≤ 1 and p(x) ≥ α > 0 for all x ∈ Ω, A, B are constants.

When ε = 0 the reduced problem is p(x)u0 = f(x) which is not a differential equation

and so it can not be made to satisfy the boundary condition at {0, 1} . And hence it has

boundary layer at these points. Let Lε be the differential operator, then

Lεu = εu′′ + +pu. (3.2)

3.2 Properties of the solution

Lemma 3.2.1. Let u be the solution of (3.1). Then for all k, 0 ≤ k ≥ 3,
∥∥u(k)

∥∥ ≤
C(1 + ε−k/2).

Proof. Refer [9].

Lemma 3.2.2. The solution of model problem 3.1 can be decomposed in u = v+w where

v = v0 + εv1 and w = wl + wr are regular and singular components of u respectively.

Furthermore,

|v0(x)|k ≤ C , |v1(x)|k ≤ Cε−(k−2) for all k , 0 ≤ k ≤ 3,

and

|w(k)
l (x)| ≤ Cε−k/2 exp(−x

√
α/ε)

|w(k)
r (x)| ≤ Cε−k/2 exp(−(1− x)

√
α/ε).

Proof. One may refer [9] for the proof.
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3.3 Numerical methods

In this section we consider the reaction-diffusion problem. We compare the numerical

solution of different numerical techniques with the exact solution. Here we discritized the

model problem (3.1) on Shishkin mesh. The Shishkin mesh is constructed by dividing

ΩN in three sub-interval (0, 1) = (0, σ)∪(σ, 1−σ)∪(1−σ, 1), where σ is chosen such that,

σ = min

{
1

4
,
ε

α
lnN

}
.

Now let us take the point N/4 in the domain (0, σ) and (1− σ, 1) and N/2 points in the

(σ, 1− σ).

Scheme 1: Upwind Scheme

Let us apply the upwind scheme to solve the model problem (3.1)

εD+D−U(xi) + p(xi)U(xi) = f(xi), xi ∈ ΩN

U(0) = u(0), U(1) = u(1)

}
. (3.3)

Theorem 3.3.1. The upwind method defined in(3.3) for model problem(3.1) satisfy the

error bound.

|u(xi)− ui| ≤ CN−1 lnN. (3.4)

Proof. The proof is given in [9].
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Scheme 2: Midpoint upwind Scheme

Let us consider midpoint upwind scheme to solve the model problem (3.1)

εD+D−U(xi) + p(xi−1/2)U(xi) = f(xi−1/2), xi ∈ Ω

where xi−1/2 = (xi + xi−1) /2

U(0) = u(0), U(1) = u(1)

 . (3.5)

3.4 Results and discussion

Example 3.4.1. Let us consider the constant coefficient reaction diffusion problem

−εu′′ + u = − cos2 πx− 2ε cos 2πx, u(0) = 0, u(1) = 0,

where the exact solution is given by

u(x) =
exp (−(1− x)/

√
ε) + exp (−x/

√
ε)

1 + exp (−1/
√
ε)

− cos2 πx.

Example 3.4.2. Let us consider the variable coefficient reaction diffusion problem

−εu′′ + 1 + x(1− x)u = f(x), u(0) = 0, u(1) = 0,

where the f(x) is chosen in such a way that the exact solution is given by

u(x) = 1 + (x− 1) exp (−x/
√
ε) + x exp (−(1− x)/

√
ε).

The numerical solution and the exact solution of Example 3.4.1 with corresponding

error on upwind scheme and midpoint upwind scheme for ε = 1e − 4 and N = 32 is

shown in Figures 3.1 and 3.2. From Figure 3.1(a), we can observe that the approximate

solution matches very well. Figure 3.1(b) and 3.2(b) show that the distribution of error

is high in the layer region. Figure 3.3 and 3.4 show the graph of the upwind scheme and

midpoint upwind scheme for Example 3.4.2 with the exact solution and corresponding

error respectively.
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The maximum point-wise error and rate of convergence is calculated as defined in Chapter

2. The maximum point-wise error and the rate of convergence for the Example 3.4.1 on

upwind scheme on the Shishkin mesh is shown in Table 3.1. Table 3.2 show the maximum

point-wise error and the rate of convergence of the Example 3.4.1 on midpoint upwind

method. The maximum point-wise error and the rate of convergence of the Example 3.4.2

calculated on the upwind scheme and midpoint upwind scheme is shown in the Tables 3.3

and 3.4.

(a) Solutions. (b) Error.

Figure 3.1: Numerical solution with the exact solution and the corresponding error of
Example (3.4.1)for ε = 10−4 and N = 32 on upwind scheme.

(a) Solutions. (b) Error.

Figure 3.2: Numerical solution with the exact solution and the corresponding error of
Example (3.4.1)for ε = 10−4 and N = 32 on midpoint scheme.
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(a) Solutions. (b) Error.

Figure 3.3: Numerical solution with the exact solution and the corresponding error of
Example (3.4.2)for ε = 10−4 and N = 32 on upwind scheme.

(a) Solutions. (b) Error.

Figure 3.4: Numerical solution with the exact solution and the corresponding error of
Example (3.4.2)for ε = 10−4 and N = 32 on midpoint scheme.
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Table 3.1: Maximum point-wise errors EN and the rate of convergence rN for Example
(3.4.1) on upwind scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.1946e-2 2.9699e-3 7.4144e-4 1.8530e-4 4.6320e-5 1.1580e-5 2.8949e-6
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

1e− 2 4.9090e-3 1.2848e-3 3.2355e-4 8.1207e-5 2.0311e-5 5.0784e-6 1.2697e-6
1.9338 1.9894 1.9943 1.9993 1.9998 1.9999

1e− 4 4.2790e-2 1.5272e-2 4.0730e-3 7.4851e-4 1.1390e-4 3.6325e-5 1.1232e-5
1.4864 1.9067 2.0008 2.0162 1.6487 2.0087

1e− 6 6.0286e-2 2.9201e-2 1.3697e-2 6.0243e-3 2.3368e-3 7.2086e-4 1.5856e-4
1.0458 1.0921 1.4490 1.3662 1.6967 1.6933

1e− 8 6.2276e-2 3.1040e-2 1.5422e-2 7.6134e-3 3.7106e-3 1.7627e-3 9.1529e-4
1.0045 1.0091 1.0074 1.0369 1.0739 1.0126

1e− 10 6.2278e-2 3.1029e-2 1.5405e-2 7.6124e-3 3.8862e-3 1.7632e-3 9.1576e-4
1.0046 1.0093 1.0071 0.9699 1.1402 1.0129

Table 3.2: Maximum point-wise errors EN and the rate of convergence rN for Example
(3.4.1)on midpoint upwind scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 1.0188e-1 4.9930e-2 2.4744e-2 1.2321e-2 6.1480e-3 3.0710e-3 1.5347e-3
1.0289 1.0128 1.0059 1.0029 1.0014 1.00075

1e− 2 1.0056e-01 4.9737e-02 2.4712e-02 1.2314e-02 6.1466e-3 3.0706e-3 1.5347e-3
1.0157 1.0091 1.0049 1.0024 1.0013 1.0056

1e− 4 1.8353e-1 9.1230e-2 4.4989e-2 2.2160e-2 1.0910e-2 5.3703e-3 2.6426e-3
1.0084 1.0199 1.0216 1.0223 1.0226 1.0239

1e− 6 1.9066e-1 9.6975e-2 4.8629e-2 2.4302e-2 1.2257e-2 6.0593e-3 3.0254e-3
0.9753 0.9957 1.0007 0.9875 1.0001 1.0020

1e− 8 1.9127e-1 9.7489e-2 4.8971e-2 2.4511e-2 1.2269e-2 6.1282e-3 3.0637e-3
0.9723 0.9933 1.0109 0.9993 1.0015 1.0118

1e− 10 1.9123e-1 9.7540e-2 4.8905e-2 2.4532e-2 1.0274e-2 6.1250e-3 3.0675e-3
0.9721 0.9936 1.0103 1.2556 0.7462 1.0117
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Table 3.3: Maximum point-wise errors EN and the rate of convergence rN for Example
(3.4.2)on upwind scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 2.0278e-4 5.0719e-5 1.2681e-5 3.1704e-6 7.9260e-7 1.9815e-7 4.9538e-8
1.9993 1.9998 1.9999 2.0431 2.0000 1.9999

1e− 2 6.8072e-3 1.8382e-3 4.6300e-4 1.1597e-4 2.9006e-5 7.2524e-6 1.8132e-6
1.8887 1.9892 1.9972 1.9966 1.9998 1.9999

1e− 4 4.1353e-2 1.4636e-2 3.8826e-3 7.0948e-4 1.1675e-4 3.7195e-5 1.1496e-5
1.4984 1.99144 2.0008 2.0333 1.6502 2.0087

1e− 6 6.0074e-2 2.9060e-2 1.3613e-2 5.9810e-3 2.3180e-3 7.1481e-4 1.5725e-4
1.0477 1.0940 1.1865 1.0375 1.6972 1.6079

1e− 8 6.2254e-2 3.1025e-2 1.5412e-2 7.6075e-3 3.7072e-3 1.7609e-3 9.1495e-4
1.0047 1.0094 1.01856 1.0371 1.0740 1.0226

1e− 10 6.2275e-2 3.1027e-2 1.5404e-2 7.6018e-3 3.8859e-3 1.7630e-3 9.1464e-4
1.0049 1.0091 1.0171 0.9681 1.1402 1.0229

Table 3.4: Maximum point-wise errors EN and the rate of convergence rN for Example
(3.4.2)on midpoint upwind scheme.

ε Number of intervals N

16 32 64 128 256 512 1024

1 5.2437e-4 2.5390e-4 1.2458e-4 6.1641e-5 3.0659e-5 1.5289e-5 7.6344e-6
1.0463 1.0272 1.0151 1.0076 1.0038 1.0019

1e− 2 1.0644e-2 4.4405e-3 1.9579e-3 9.0485e-4 4.3364e-4 2.1218e-4 1.0491e-4
1.2612 1.1814 1.1135 1.0948 1.0312 1.0161

1e− 4 4.2492e-2 1.5165e-2 4.0651e-3 7.6131e-4 1.9556e-4 8.3336e-5 3.7783e-5
1.4864 1.8994 2.0003 1.9609 1.9360 2.0127

1e− 6 6.0240e-2 2.9161e-2 1.3672e-2 6.0123e-3 2.3329e-3 7.2030e-4 1.5877e-4
1.0467 1.0928 1.1852 1.3658 1.9655 2.1816

1e− 8 6.2271e-2 3.1036e-2 1.5419e-2 7.6112e-3 3.7093e-3 1.7620e-3 9.1515e-4
1.0046 1.0092 1.0185 1.0369 1.0739 1.0324

1e− 10 6.2277e-2 3.1029e-2 1.5404e-2 7.6121e-3 3.8861e-3 1.7631e-3 9.1571e-4
1.0045 1.0091 1.0176 0.9699 1.1402 1.0334
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Chapter 4

Conclusion and Future work

4.1 Conclusion

In this report, we have discussed the analytical properties, theoretical bounds and nu-

merical techniques for solving singularly perturbed differential equations. In Chapter 1,

we have discussed some basic terminologies, definitions and formulation of non-uniform

meshes like Shishkin mesh and adaptive grids. For Shishkin mesh, one should have prior

knowledge of location and width of the boundary layers. Since these information about

the location and width of boundary layer are not available easily, one can opt adaptive

grid. The variety of numerical methods viz upwind scheme, midpoint upwind scheme,

hybrid scheme, B-spline methods are applied to convection diffusion problems in Chapter

2. We have observed that these methods are ε- uniform convergent methods. The upwind

scheme on adaptive grid produces the better result than that on the Shishkin mesh. The

hybrid scheme give very good result on Shishkin mesh than the midpoint upwind scheme.

B-spline method is second order ε- uniformly convergent. In Chapter 3, we have applied

the upwind scheme, midpoint upwind scheme for reaction-diffusion problems. We have

observed that these methods are second order ε- uniform convergent methods when ap-

plied on Shishkin mesh. Hence, we conclude that standard numerical methods produce

ε- uniform convergent solution on non-uniform meshes rather than on uniform mesh.
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4.2 Future work

The work of the can be extended in various directions. Some of the future works to be

carried out are listed below.

1. The numerical method considered in Chapter 2 are applied to convection-diffusion

problem on Shishkin mesh. One can also extend those ideas also on adaptive grids

for various SPP.

2. The idea of B-spline method, hybrid scheme can be extended for the system of

singularly perturbed problems.

3. The idea of adaptive grid can be extended for system of first order and second order

singularly perturbed differential equations.
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