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ABSTRACT

The purpose of this report is to analyze the properties of Fibonacci numbers modulo

a Lucas numbers. Any Fibonacci number, except the first two, is the sum of the two

immediately preceding Fibonacci numbers and closely related to Fibonacci numbers are

Lucas number. Fibonacci numbers are used in the application of computer algorithms.

They can be used to compress audio files and generate code. The most recently Fibonacci

number have been used to symbolize mathematical relationship in the Davinci code as well

as in the TV shows fringe, criminal minds. In this report, some generalized identities of

Holliday and Komatsu have been studied results of Liu and Zhao obtained by applying the

floor function to the reciprocal of infinite sums of reciprocal generalized Fibonacci numbers

and the infinite sums of reciprocal generalized Fibonacci sums have been extended.
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Chapter 1

1 Introduction

The Fibonacci numbers were first mentioned in 1202 in the Liber Abaci, the book was

written by Leonardo of Pisa to introduce the Hindu - Arabic numeral system to western

Europe.

They can be obtained by the recursive formula

Fn = Fn−1 + Fn−2 F0 = 0, F1 = 1, n ≥ 2

First derived from the famous “ rabbit problem ” of 1228, the Fibonacci numbers were

originally used to represent the number of pairs of rabbits born one pair in a certain

population. Let us assume that a pair of rabbit is introduced in to a certain place in the

first month of the year. This pair of rabbits take one month to became mature, and every

pair of rabbits produces a mixed pair every month, from the second month and all rabbits

are immortal.Every pair of rabbits will produce perfectly on schedule.

Suppose that the original pair of rabbits was born on January 1. They take a month to

become mature, so there is still only one pair on February 1. On March 1, they are two

months old and produce a new mixed pair, so total of two pairs. Continuing on, we find

that we will have 3 pairs, in month April, 5 pairs in month May, then 8,13,21,34,...

The Fibonacci sequence is one of the most famous and curious numerical sequence in

the mathematics and have been widely studied from both algebraic and combinatorial

prospectives.

The Pell sequence {Pn} are defined by recurrence. The Pell sequence, also obtained from

the recurrence relation

Pn = 2Pn−1 + Pn−2 , P0 = 0, P1 = 1, n ≥ 2

is also very important in number theory.

The Diophantine equation x2 − dy2 = 1, is known as the Pell’s equation. Early mathe-

maticians, upon discovering that
√

2 is irrational, realized the link of successive rational

1



approximations of
√

2 with x2 − dy2 = 1. The early investigators of Pell’s equation were

the Indian mathematicians Brahmagupta and Bhaskara. In particular Bhaskara stud-

ied Pell’s equation for the values d = 8, 11, 32, 61. and 67, Bhaskara found the solution

x = 1776319049, y = 2261590, for d = 61.

Fermat was also interested in the Pell’s equation and worked out some of the basic theo-

ries regarding Pell’s equation. In general Pell’s equation is a Diophantine equation of the

form x2 − dy2 = 1, where d is a positive non square integer and has a long fascinating

history and its applications are wide and Pell’s equation always has the trivial solution

(x, y) = (1, 0), and has infinite solutions and many problems can be solved using Pell’s

equation.
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Chapter 2

2 Preliminaries

2.1 Lucas number

Closely related to the Fibonacci numbers are called the Lucas numbers 1, 3, 4, 7, 11, ....

Lucas numbers are denoted by Ln and recuresive relation as given below,

Ln = Ln−1 + Ln−2 , L1 = 1, L2 = 3, n ≥ 3.

2.2 Binet’s formula

Both Fibonacci numbers and Lucas numbers can be defined explicity using Binet’s for-

mulas,

Fn =
αn − βn

α− β
and Ln = αn + βn

where α = 1+
√
5

2
and β = 1−

√
5

2
are the solution of the quadratic equation x2 = x+ 1.

2.3 Cassini’s identity

Let {Fn} be sequence of Fibonacci numbers, defined as

F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1, n ≥ 1.

Then for n ≥ 1,

Fn+1Fn−1 − F 2
n = (−1)n+1.
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2.4 Pell numbers

The Pell numbers can be obtained by the recurrence relation

Pn =


0, if n = 0.

1, if n = 1.

2Pn−1 + Pn−2, otherwise.

The Pell numbers sequence starts from 0 and 1 and then each Pell number is the sum of

twice the previous Pell number and the Pell number before that.

2.5 Associated Pell numbers

The Associated Pell numbers can be obtained by the recurrence relation

Qn+1 = 2Qn +Qn−1, Q0 = 1, Q1 = 1.

2.6 Golden ratio

In Mathematics, two quantities are in the golden ratio if their ratio is the same as the

ratio of their sum to the larger of the two quantities.

The golden ratio is also called the golden section or golden mean. It is denoted by φ and

the approximately value is 1.61803398874989. Two quantities a and b are said to be in

the golden ratio φ if

a+ b

a
=
a

b
= φ

Then
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a+ b

a
= 1 +

a

b
= 1 +

1

φ

1 +
1

φ
= φ

φ2 = φ+ 1

φ2 − φ− 1 = 0

φ =
1 +
√

5

2

φ = 1.61803398874989

φ ≈ 1.618
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Chapter 3

3 Properties of Pell and Fibonacci Numbers

3.1 The simplest properties of Pell Numbers

Theorem 3.1.1. Let ap=
2

p+ 1

(
2p

p+ 1

)p

. Then ap < ap+1 for p > 1

Proof. Note that for all k > 1

1

2

(
k + 1

k

)2

<
k2

k2 − 1

Since, also k2 > k2 − 1 for all k > 1. Thus we can write for k > 2

1

2

(
k + 1

k

)2

<

(
k2

k2 − 1

)k−1

Then we may write,

1

2

(
k + 1

k

)2

<

(
k

2(k − 1)
× 2k

(k + 1)

)k−1

=

(
k

2(k − 1)

)k−1(
2k

k + 1

)k−1

Therefore we get,

1

k

(
2(k − 1)

k

)k−1

<
1

k + 1

(
2k

k + 1

)(
2k

k + 1

)k−1

2

k

(
2(k − 1)

k

)k−1

<
2

k + 1

(
2k

k + 1

)k

Which gives us for k > 2

ak−1 < ak

Thus, the proof is complete.

Theorem 3.1.2. The characteristic equation of the Pell numbers xp+1−2xp−1 = 0 does

not have multiple roots for p > 1.

Proof. Let f(z) = zp+1 − 2zp − 1. Suppose that α is a multiple root of f(z) = 0.

Note that α 6= 0 and α 6= 1. Since α is a multiple root, f(α) = αp+1 − 2αp − 1 and

f ′(α) = (p+ 1)αp − 2pαp−1 = 0. Then

f ′(α) = αp−1 ((p+ 1)α− 2p) = 0
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Thus, putting α =
2p

p+ 1
and hence

0 = −f(α) = −αp+1 + 2αp + 1 = αp(2− α) + 1

=

(
2p

p+ 1

)p(
2− 2p

p+ 1

)
+ 1

=
2

p+ 1

(
2p

p+ 1

)p

+ 1

= ap+ 1.

Since By above lemma, a2 = 32
27
> 1 and ap < ap+1 for p > 1, ap 6= −1

which is a contradiction. Therefore the equation f(z) = 0, does not have multiple roots.

3.2 Some Properties of Fibonacci Numbers

Theorem 3.2.1. Fn ≡ 0(mod 2) if and only if n ≡ 0(mod 3).

Proof. We prove by induction that for k ∈ N we have

F3k ≡ 0(mod 2)

We have F0 = 0 ≡ 0(mod 2).

We assume that F3k ≡ 0(mod 2).

Since, Fk+l = FlFk+1 + Fl−1Fk, we have

F3(k+1) = F3k+3 = F3F3k+1 + F2F3k

Since F3 = 2 ≡ 0(mod 2) and we assumed that F3k ≡ 0(mod 2), we have

F3(k+1) ≡ 0(mod 2)

We again prove by induction for k ∈ N

F3k+1 ≡ 1(mod 2)

We have F1 = 1 ≡ 1(mod 2).

Let us assume that F3k+1 ≡ 1(mod 2).
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From, Fk+l = FlFk+1 + Fl−1Fk, we have

F3(k+1)+1 = F3k+4 = F4F3k+1 + F3F3k

Since F3k ≡ 0(mod 2) and F4 = 3 ≡ 1(mod 2), using the assumption F3k+1 ≡ 1(mod 2),

it follows that

F3(k+1)+1 ≡ 1(mod 2)

which completes the proof.

Theorem 3.2.2. F5k ≡ 0(mod 5) with k ∈ N

Proof. We again prove this result by induction.

We have F0 = 0 ≡ 0(mod 5)

Notice also that F5 = 5 ≡ 0(mod 5)

Let assume that F5k ≡ 0(mod 5)

From, Fk+l = FlFk+1 + Fl−1Fk, we have

F5(k+1) = F5k+5 = F5F5k+1 + F4F5k

Since, F5k ≡ 0(mod 5) and we assumed that F5k ≡ 0(mod 5), we get

F5(k+1) ≡ 0(mod 5).

Theorem 3.2.3. Fk+2 = 1 +
∑k

i=1 Fi

Proof. We have

F0 = 0

F1 = 1

F2 = F0 + F1

F3 = F1 + F2

F4 = F2 + F3

Continuing the above process, we get

Fk+2 = Fk + Fk+1

8



Adding these equalities , we get

Fk+2 = 1 + F1 + F2 + ...+ Fk = 1 +
k∑

i=1

Fi

Fk+2 = 1 +
k∑

i=1

Fi

3.3 Binet’s Formulae for Pell and Fibonacci Numbers

Lemma 3.3.1. The Binet’s formula for the Pell sequence is

Pn =
γn − δn

γ − δ

Where γ = 1 +
√

2, δ = 1−
√

2.

Lemma 3.3.2. Let α =
1 +
√

5

2
and β =

1−
√

5

2
, so that α and β are roots of the

equation x2 = x+ 1. Then Fn =
αn − βn

√
5

, for all n ≥ 1.

Proof. When n = 1, F1 = 1, Which is true. Let us suppose that it is true for

n = 1, 2, 3, ...n. Then Fk−1 =
αk−1 − βk−1
√

5
and Fk =

αk − βk

√
5

. Adding these two equa-

tions, we get

Fk + Fk−1 =
αk

√
5

(1 + α−1) +
βk

√
5

(1 + β−1). Then Fk+1 =
α(k+1) + β(k+1)

√
5

.
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Chapter 4

4 Sums of Reciprocal Fibonacci Numbers

4.1 Introduction

Let a, b be two positive integers and c non negative integers. The generalized Fibonacci

numbers Fn(c; a, b) are defined by the following relation

G0 = c, G1 = 1 and Gn+1 = aGn + bGn−1, (n ≥ 1)

Where Fn(0; 1, 1) = Fn, are the Fibonacci numbers.

Fn(2; 1, 1) = Ln, are the Lucas numbers.

Fn(0; 2, 1) = Pn, are the Pell numbers.

4.2 Some results related to the Reciprocals of generalized Fi-

bonacci numbers

Theorem 4.2.1. Let a,b be positive integers and c non negative integers. Then for n ≥ 1,

we have

(1) Fn+1Fn−1 − F 2
n = (−1)nbn−1(1− ac− bc2)

(2)
∑n

i=0 Fi = 1
a+b−1(Fn+1 + bFn + ac− c− 1)

Theorem 4.2.2. Let Fn = Vn(c; 1, 1) for c ≥ 1, we have( ∞∑
k=n

1∑k
i=0 Fi

)−1 = Fn − 1 (n ≥ n0),

Proof. By using the above lemma 4.2.1.

Fn+1Fn−1 − F 2
n = (−1)n(1− c− c2)

and
n∑

i=0

Fn = Fn+2 − 1

10



Suppose c ≥ 1, we have

1

Fn−1
− 1

Fn+1 − 1
− 1∑n

i=0 Fi

=
1

Fn−1
− 1

Fn+1 − 1
− 1

Fn+2 − 1

=
Fn+1

(Fn − 1)(Fn+2 − 1)
− 1

(Fn+1 − 1)

=
2Fn − 1 + (−1)n+1(c2 + c− 1)

(Fn − 1)(Fn+1 − 1)(Fn+2 − 1)

Since Fn is monotonic increasing with n, we can take n so large that 2Fn ≥ (−1)n(c2 + c)

for a fixed c. Hence, the numerator of the right-hand side of the above identity is positive

if n ≥ N1 for some positive integer N1, So we get

1

Fn−1
≥ 1∑n

i=0 Fi

+
1

Fn+1 − 1

≥ 1∑n
i=0 Fi

+
1∑n+1

i=0 Fi

+
1

Fn+2 − 1

≥ 1∑n
i=0 Fi

+
1∑n+1

i=0 Fi

+
1∑n+2

i=0 Fi

+ ...

Thus,
∞∑
k=n

1∑k
i=0 Fi

≤ 1

Fn − 1
(n ≥ N1) (1)

On the other hand, we have

1∑n
i=0 Fi

− 1

Fn

+
1

Fn+1

=
1

Fn+2 − 1
− 1

Fn

+
1

Fn+1

=
1− Fn+1

Fn(Fn+2 − 1)
+

1

Fn+1

=
Fn−1 + (−1)n(c2 + c− 1)

FnFn+1(Fn+2 − 1)

Similarly, we can take n so large that Fn−1 + (−1)n(c2 + c− 1) > 0 for a fixed c. Hence,

the numerator of the right-hand side of the above identity is positive if n ≥ N2 for some

positive integer N2, we get

1

Fn

<
1∑n

i=0 Fi

+
1

Fn+1

<
1∑n

i=0 Fi

+
1∑n+1

i=0 Fi

+
1

Fn+2

<
1∑n

i=0 Fi

+
1∑n+1

i=0 Fi

+
1∑n+2

i=0 Fi

+ ...

11



Thus,
∞∑
k=n

1∑k
i=0 Fi

>
1

Fn

(n ≥ N2) (2)

Combining the two inequalities (1) and (2), we get

1

Fn

<

∞∑
k=n

1∑k
i=0 Fi

≤ 1

Fn − 1

Where n ≥ n0 = max{N1, N2}, which completes the proof.

Theorem 4.2.3. Let a ≥ b ≥ 1 and Fn = Vn(0; a, b), we have( ∞∑
k=n

1∑k
i=0 Fi

)−1 = Fn − 1 (n ≥ Na),

Where Na = 3, for a = 1 and Na = 2, for a ≥ 2

Proof. The case a = 1, has already been proved, it is sufficient to show the case a ≥ 2.

Defining Sn =
∑n

i=0 Fi, we have

1

Sn

− 1

Fn

+
1

Fn+1

=
1

Fn+1

− Sn−1

FnSn

=
FnSn − Fn+1Sn−1

FnFn+1Sn

=
Fn+1 − Fn + (−1)n+1

aFnFn+1Sn

> 0

and for n ≥ 2

1

Fn − 1
− 1

Fn+1 − 1
− 1

Sn

=
Sn−1 + 1

(Fn − 1)Sn

− 1

Fn+1 − 1

=
Fn+1Sn−1 − FnSn + aSn

(Fn − 1)(Fn+1 − 1)Sn

=
2Fn + (−1)n − 1

a(Fn − 1)(Fn+1 − 1)Sn

> 0

Then, we get
1

Fn

<

∞∑
k=n

1

Sk

≤ 1

Fn−1
(n ≥ 2)

which completes the proof.
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Chapter 5

5 Fibonacci Numbers Modulo a Lucas Number

5.1 Introduction

Let m1,m2, ... be positive integers, then

k := sup
x∈(0,1)

min
i
‖xmi‖.

Here, for x ∈ R, ‖x‖ is the distance to the nearest integer. Observe that if we have a

finite number of integers m1,m2, ...mn and

k1 := max
m=mj+ml

1

m
min

i
|kmi|m

Where |x|m denotes the absolute value of the absolutely least remainder of x mod m.

5.2 Main Results

Let M = {F2, F3, ...Ft}. Let n ≥ 1 be an integer such that 4k + 2 ≤ t ≤ 4k + 5 and

m = F2k+2 + F2k+4 = L2k+3.

In this section, we use the following identities.

1. Cassini’s identity: Fk+1Fk−1 − F 2
k = (−1)k+1.

2. F 2
k + F 2

k+1 = F2k+1

3. d’Ocagne’s identity: FmFk+1 − Fm+1Fk = (−1)kFm−k

4. F2k =
∑k−1

i=0 F2i+1

5. F2k+1 − 1 =
∑k

i=1 F2i

13



5.3 Properties of Fibonacci Numbers Modulo m

Lemma 5.3.1.

(a) F2F2k+2 ≡ F4k+5F2k+2 (mod m)

(b) F2F2k+2 ≡ −F4k+4F2k+2 (mod m)

(c) F3F2k+2 ≡ F4k+3F2k+2 (mod m)

(d) F4F2k+2 ≡ −F4k+2F2k+2 (mod m)

Proof. (a) We have

mF2k+2 = (F2k+2 + F2k+4)F2k+2

= F 2
2k+2 + F2k+4F2k+2

= F 2
2k+2 + (F2k+3 + F2k+2)(F2k+3 − F2k+1)

= F 2
2k+2 + F 2

2k+3 + F2k+3F2k+2 − F2k+3F2k+1 − F2k+2F2k+1

= F 2
2k+2 + F 2

2k+3 + (F2k+2 + F2k+1)F
2
2k+2 − F2k+3F2k+1 − F2k+2F2k+1

= F 2
2k+2 + F 2

2k+3 + F 2
2k+2 − F2k+3)F2k+1

= F 2
2k+2 + F 2

2k+3 + (−1)2k+1 [Cassini′s identity]

= F4k+5 − 1

Hence, we get

F4k+5F2k+2 = (1 +mF2k+2)F2k+2 ≡ F2k+2 = F2F2k+2 (mod m)

i.e F2F2k+2 ≡ F4k+5F2k+2 (mod m)

Proof. (b) By using (a)

F2F2k+2 ≡ F4k+5F2k+2 (mod m)

= (F4k+6 − F4k+4)F2k+2

= F4k+6F2k+2 − F4k+4F2k+2

= (L2k+3F2k+3)F2k+2 − F4k+4F2k+2 [Since LkFk = F2k]

≡ −F4k+4F2k+2 (modm)

14



i.e F2F2k+2 ≡ −F4k+4F2k+2 (mod m)

Proof. (c)

F3F2k+2 = (F2 + F1)F2k+2

= F2F2k+2 + F1F2k+2

= F4k+5F2k+2 + F2F2k+2 [By using (a) and F1 = F2]

= F4k+5F2k+2 − F4k+4F2k+2 [By using (b)]

≡ (F4k+5 − F4k+4)F2k+2

≡ F4k+3F2k+2 (mod m)

i.e F3F2k+2 ≡ F4k+3F2k+2 (mod m)

Proof. (d)

F4F2k+2 = (F3 + F2)F2k+2

= F3F2k+2 + F2F2k+2

≡ (F4k+3 − F4k+4)F2k+2 [By using (b) and (c) ]

≡ −F4k+2F2k+2 (modm)

i.e F4F2k+2 ≡ −F4k+2F2k+2 (mod m)

Lemma 5.3.2. Fp+5F2k+2 = (Fp+4 + Fp+3)F2k+2 ≡ εF4k+1−pF2k+2 (mod m) for each

0 ≤ p ≤ 2k − 2, where

ε =

+1, if p is even.

−1, if p is odd.
(3)

Proof. Using the recurrence relation FK+1 = Fk + Fk−1 for k ≥ 1 and Lemma 4.3.1, the

proof follows by induction on p.

Lemma 5.3.3.

(a) F2F2k+2 ≡ F2k+2 (mod m).

(b) F3F2k+2 ≡ −F2k+3 (mod m).

(c) F4F2k+2 ≡ −F2k+1 (mod m).

(d) F5F2k+2 ≡ 2F2k+2 − F2k+1 (mod m).
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Proof. (a)

F2F2k+2 = 1F2k+2

≡ F2k+2 (mod m)

i.e F2F2k+2 ≡ F2k+2 (mod m).

Proof. (b)

F3F2k+2 = 2F2k+2 (As F3 = 2)

≡ −(F2k+1 + F2k+2)

= −F2k+3 (mod m)

i.e F3F2k+2 ≡ −F2k+3 (mod m).

Proof. (c)

F4F2k+2 = (F2 + F3)F2k+2

= F2F2k+2 + F3F2k+2

≡ (F2k+2 − F2k+3) [F2 = 1 and using (b)]

≡ −F2k+1 (mod m)

ı.e F4F2k+2 ≡ −F2k+1 (mod m).

Proof. (d)

F5F2k+2 = 5F2k+2 (AsF5 = 5)

= (F3 + F4)F2k+2 [using (b) and (c)]

= F3F2k+2 + F4F2k+2

≡ 2F2k+2 − F2k+1 (mod m)
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i.e F5F2k+2 ≡ 2F2k+2 − F2k+1 (mod m).
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