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ABSTRACT 

 Many techniques have been proposed for the identification of unknown system. The scope of the pa-

rameter approximation or estimation and system identification is growing day by day. Lots of research 

has been done in this field but it can be still considered as an open field for researchers. 

The overall field of system identification is day by day growing in the field of research and lots of 

methods are coming time to time. This research presents a number of results, examples and applica-

tions of parameter identification techniques. Different Methods are introduced here with less and 

more complexities. For System Identification some of Neural Network techniques are studied.  Least 

mean square technique is used for the final calculations of simulation results. Simulations are done 

with the help of Matlab programming. 

Some Neural Network Techniques have been proposed here are multilayered neural Network, Func-

tional link Layer Neural network Technique. Mainly Disadvantage of basic system identification 

techniques is that it use the back propagation techniques for the weight updating purpose which have 

a lots of computation complexity. 

 A single layer Artificial Neural Network has been studied which is known as Functional Link Artifi-

cial Neural Network (FLANN). In such type of System Identification technique hidden layers are 

wipe out by functional expansion of input pattern. The prominent advantage of such type of network 

is that the computation complexity is much less than complexity of the multilayered neural network. 

In the field Control and Instrumentation there are some characteristics which are desirable for the sen-

sors. Linearity is one of the prime characteristic which is highly desirable for a sensor. Many a time in 

the field of instrumentation it is highly desirable to reduce the nonlinearity. There are many tech-

niques has been developed for sensor linearization like functional approximation techniques for digi-

tal system, embedded sensor interface and microcontroller based methods etc. Artificial neural Net-

work has been emerged as one of alternating techniques for Linearization of sensor. 

Linearization of thermistor with the help of ANN has been done in this research and result has been 

discussed. 
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1. Introduction of System Identification 

There are many types of systems are present in nature .They can have any characterization 

like linear or nonlinear, dynamic or static, time variant or time invariant as well as it can be 

mathematical or physical or any other. Some time we need to make a parallel system to a un-

known system. To formulate such type of system first thing we need is to identify the system. 

if we have a well-defined system and we also have the sets of inputs to be applied to system 

then we can easily calculate or find the output characteristics of the system. For the system 

identification techniques we have the known input patterns and corresponding to that input 

pattern we have a set of output pattern which can be evaluated experimentally. So with the 

information of such input output pattern we can map the system. The Approach system iden-

tification may be different depends upon the system properties. One method can‘t be applica-

ble for all systems so we need different types of approach for different types of system. 

Recently many developments have been done in the field of system identification to accurate-

ly identify the complex nonlinear systems with much less computational complexities and 

with fewer efforts. One such technique is block adaptive digital filter technique.it simply cal-

culate filter output from some block of inputs it comes with the saving of lots mathematical 

computation complexity. It enables the parallel processing of computation which enables the 

system to have a good processing speed. 

In near years Artificial Neural Network Techniques has been developed as an efficient and 

fast learning technique for system identification [2] of very highly nonlinear dynamic as well 

as static system. These types of methods have some major advantages from traditional tech-

niques like they are very good in approximation of highly nonlinear and complex system. 
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They have very high reliability for complex system and they have very good performance 

index for the highly nonlinear complex system. 

Basic Building Block of Neural Network 

Multilayered Neural Network is basic structure to perform such type of system identification 

but we have large number of hidden layers and very complex structure which slows down the 

speed of operation. 

 

 

                                  FIg1.1: Basic MLP Structure  

 

              

Activation Function: In Multilayer Neural Network Activation Function of any node is de-

fined as particular characteristic of a node it defines the output of any node for a particular 
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input or for the set of particular input pattern given to that node. According to the use of Sys-

tem different types of activation functions are used some of these are: 

1. Step Function 

2. Continuous Log Sigmoid Function 

3. Continuous Tan Sigmoid Function  

Step Function: Step Function is the function that is basically used by normal perceptron‘s. 

Under a particular threshold value the output of this function is low or another standard signal 

and value greater than a particular threshold the value output of such activation function 

changes and becomes a particular high value. 

                                                                             

                                         

                                                   Fig 1.2:   Step Function graph                                                                                

Continuous Log Sigmoid Function: Log Sigmoid function can be abbreviated as Logistic 

function. The equation of Logistic Function is given as 

 ( )  
 

      
 

Slope of the Logistic function can be determined by the value of β so it can be said as slope 

parameter. This function is known as Log-Sigmoid Function because Sigmoid can also be 

achieved by the hyperbolic function beside of this relationship in such case it would be called 

as Tan-Sigmoid Function. Log-sigmoid is here referred as sigmoid. The sigmoid is basically 

𝑓(𝑥)   
𝑎0, 𝑥 < 0
𝑎 , 𝑥 ≥ 0
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similar to the step function but some region is added to the step function which is called as 

the region of uncertainty.[4] Input- Output characteristic of biological Neurons are very simi-

lar to the sigmoid function in many aspects but not the totally. Derivative of Sigmoid function 

can be easily calculated so they can be referred as simple prized function.  

                                                   

                                                  Fig: 1.3 Sigmoid Function Graph 

When β =1 then derivative of Sigmoid function cab be calculated as 

  ( )

  
  ( )    ( )  

When β ≠1 then  

  ( ,  )

  
    ( ,  )    ( ,  )   

 

Continuous Tan Sigmoid Function: Continuous Tan Sigmoid Function‘s Equation is as fol-

lows. 

 ( )      ( )  
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Derivative of Tan-Sigmoid Function is as follows 

  ( )

  
        ( )       ( )    

(      ) 

(      ) 
 

The Functional Link Layer Artificial Neural Network (FLANN) was first suggested by Pao 

[1]. This Flann Network shows many advantages over the traditional MLP structure. These 

can be used for functional approximations and classifier for the different pattern with much 

faster rate of convergence and lesser mathematical computational complexity than a simpler 

Multilayer perceptron layer network. Flann Structure for the tool for identification of com-

plex nonlinear system is studied. Using trigonometric functional expansion techniques the 

functional expansion of input layer is done in Flann structure. Comparing Functional Link 

layer ANN with the MLP structure the better performance of FLANN structure is found in 

terms of speed of computation as well as in term of computation complexity of the network. 

Here an option for the MLP structure is discussed which FLANN structure is. Which comes 

with the more effective and simple identification of complex highly nonlinear dynamic func-

tions. Chebyshev‘s Polynomials [11] or for the functional expansion of the input patterns the 

trigonometric functional expansion can be used. 

FLANN structure is proposed to reduce the region between the linearity of highly complex 

multilayered system and simple single layer system. FLANN system consist of a simple sin-

gle layer feed forward neural network structure. To use it in complex nonlinear system func-

tional expansion techniques are used. In such technique a simple N*1 matrix is converted into 

a N*P matrix.  
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                                      Fig 1.4: Basic FLANN structure 

It‘s a simple single layered neural network structure so mathematical complexity of this net-

work is less compared of a multilayer network. 

 The FLANN methods are used to identify time domain series complications in discrete time 

plants as well [8]. The identification process does learning as the same time with functioning 

feature not the traditional functioning after the learning process. The training processing is 

dependent on recursive LMS technique.  

Motivation: Field of system identification is growing day by day with the rapid speed. In the 

broad area of Signal and data processing system identification have a major importance. 

Adaptive Filtering have major importance in the field of nonlinear system identification [3]. 

Adaptive digital filtering have a major capability of self-adjustment of its transfer characteris-

tics to get an optimal method for a system which is unknown Depended on the output set of 

the system which is not well known. To achieve an optimal set of model for unknown system, 

it depends upon structural characteristics of the system as well as the adaptive algorithm and 

the nature of input signal. 

Digital Signal processing based equalizer system has become important in many different appli-

cation including voice communication, data communication, video communication via different 
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transmission lines. Area of Applications of the system identification is so vast in nature that is 

acoustic echo controller for the speakerphones which are full duplex for the video purpose. 

[6, 7 ] 

1.3 Thesis Layout  

System Identification problem are explained and disused in chapter 2 in brief and different 

models of system identification are given in 2
nd

 chapter. Then the nonlinearity problems in 

the System Identification explained. 

In Chaper3, Non Linearization of different sensors and the methods of linearization of sen-

sors has been discussed in details Some Model of Sensor linearization is discussed in details 

In Chapter4, the System Identification process is done with the help of LMS and RLS tech-

niques in time domain and it was shown that RLS (Recursive Least Square) algorithm works 

with fast rate than the conventional LMS algorithm. Slope of RLS is greater than the LMS so 

error signal gets die out with faster rate in in the RLS algorithm. So comparison between 

LMS and RLS techniques are done in chapter 4. 

In Chapter5, the MLP and FLANN algorithm for system identification is suggested. The 

comparison between computation complexity and time requirement for system identification 

is done.  

The basics of Neuron, multilayer Perceptron (MLP) and Functional link Layer ANN 

(FLANN) were discussed in the chapter number 6. Comparison of the above Methods of sys-

tem identification is done in the Dynamic and system complex nonlinear systems. Nonlinear 

system identification problem was solved with help of extensive MATLAB simulation study. 
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CHAPTER 2 

System Identification 

 Techniques 

 Introduction and Steps of System Identification 

 Introduction of Box Methods  

 Theory Behind System Identification 

 Derivation of Weight updation 
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2 Introductions: 

System Identification techniques are the experimental technique their accuracy depends upon 

the hit and trail methods. One can‘t exactly estimate the result with application of pure theo-

retical knowledge.[1] There are some steps which have to be follow for the system identifica-

tion techniques. 

                                              

                                                Diag 2.1: Steps of System identification 

1. Experimental Design: Purpose of experimental design is to find better experimental 

data and it also contains of selection of measuring variable and for the character of 

sets of input data. 

2. Selection for the Model Structure: With the use of prior knowledge a well suited 

model structure is chosen in the step of selection of model structure. 

3. Choice of Criteria to fit: An appropriate function of cost is chosen in this step which 

shows how well the model approximates the experimental data. 

4. Parameter Estimation: The parameters explain a physical setting in this way that 

that measure of the data. An approximate technique attempts by the estimator the pro-
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cess which is not known using the measurement. The parameter approximation prob-

lem is solved to find the mathematical quantity of the model parameter.  

5. Model Validation: The module goes under the testing in this step to reveal any inad-

equacies 

The most important aspect of system approximation is to find the proper and suitable model 

structure. Hence a better model can be found within such suitable model structure. To incor-

porate a given model in to a given structure (under parameter estimation) is the vital problem 

in system identification. Thumb rule in system identification is not to estimate such system 

that you already know.[3] 

Use of past knowledge and physical insight should be done while choosing the structure of 

the model. It is necessary to differentiate between the three levels of previous information 

which is color coded as follows:  

1. White Box Method 

2. Black Box Method 

3. Gray Box Method  

White Box Model: This Technique is used when we have the perfect knowledge of system. 

White box models can be constructed from the prior information without the help of any ob-

servations. 

Black Box Model: When no prior model or knowledge of system is available black box 

technique is used. No physical insight is available in black box model. Most system Identifi-

cation uses this type of technique. In black box method we do not have the first principles 

model for the system. It is completely a data driving modeling technique. 
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                     Fig 2.2: Black Box Input- Output Structure 

Grey Box Model: In such type of model some amount of insight or information is available 

but many specifications have to be determined from the observed data. 

A black box nonlinear model for a dynamical plant is a module structure which makes to de-

cide almost any nonlinear complex dynamic system. Recently there has been much interest in 

this black box technique. Black box structure is simply based on the LMS techniques, RLS 

techniques, Multilayer Perceptron, Functional link Layer ANN, and Radial Basis Function 

based method. The basics of these algorithms in briefly discussed here. 

Fundamental techniques for system identification have two-step process. In first step the use-

ful basis functions are identified using the available data. Then in the second step a linear lest 

square step to determine the co-ordinates of functional approximation. [5, 6] A particular 

complexity is to deal with the huge amount of effectively important parameters.  

Basics of system identification problems, solutions with the help of various techniques and 

approaches are introduced. Different basic methods which lead to further complex methods 

are derived here. The basic overviews of different technique and comparison between the 

methods of different system identification methods are discussed. Simple Derivation of Least 

LMS Technique is given further, which is the traditional and mostly used method for adjust-

ing the coefficient of an system identification techniques. Basics of LMS technique is dis-

cussed further. Further Recursive Least square (RLS) technique is defined and then compari-

sons between these two techniques are made. [4] Then new techniques useful for more com-

plex system are discussed, which can be useful for the more nonlinear systems. 

 

Basic Theory behind System identification: 
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In system identification we have to approximate a method of a system based upon experi-

mental sets of input-output data pattern. Many ways are there to define a system and to ap-

proximate or estimate a system. 

The procedure of determining a model of a nonlinear dynamic system from experimental ob-

served Input-output pattern consist three basic things: 

 The input-output data pattern 

 The model structure 

 The identification  method 

 

                            

                                 Fig 2.3: Block diagram of system identification technique 
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The identification process amounts to repeatedly selection of a model structure, finding the 

best suitable model in the structure and approximate the property of model to check whether 

they are satisfactory or not. 

Basically in system identification techniques we have the set of input-output pattern and we 

have to build a mathematical model for the system.[7] Here input of any system is denoted by 

u (t) and the output any time t is denoted by f (t). System is assumed to be a discrete time sys-

tem. Thus at particular instant of time t we have the input-output data set and the basic rela-

tionship in the the input and output data pattern in the form of differential mathematical equa-

tions. 

 ( )     (   )      (   )     (   )          (   )          (2.1) 

This system shows the equation of a discrete time system. Data is collected at some particular 

instant of time interval. A different way to observe above equation is the method of determin-

ing the next output value given for the previous values of observations. 

Above equation can be written in the form by simple shifting of some terms of equation 

which will result. 

 ( )     (   )          (   )     (   )      (   )      (2.2) 

The equation can be simplified further as  

Θ=    ,,   ,         ,   ,   ,                                                                     (2.3) 

 ( )     (   )       (   ) (   )    (   )                            (   )            

 

With the above two expressions we can state 

Output from the Network 

y (t)=  ( )            
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Derivation of weight updation: 

By selecting a any System Identification architecture, we have to determine the number and 

different types of parameters which is to be changed or adjusted. An identification technique 

is use to update the weight parameter values and to minimize the error of the system. 

 

                     Fig 2.4 Adaptive Filtering problem 

Diag 6 presents a basic building block diagram in Digital Input signal is fed to the unknown sys-

tem, called as adaptive filter that calculate the corresponding output for the particular value of the 

input. Till the calculating the output for a particular set of input at any instant the structure set of 

adaptive filter does not have importance but in fact it have the changeable or adjustable parameter 

whose value affect how it is calculated.[8] The output is now compared with a second signal 

which can be called as desirable signal. Then after subtracting the output from the desired signal 

one can find the error signal. 

 ( )   ( )   ( ) 

Where  

d (n)= desired output signal 

y (n)=output at the particular time instant ‗n‘ 

e (n)= error signal results from subtraction of desired signal from output signal.  

After finding the error signal it is fed to the further mechanism which updates or alters the 

parameters of the system at every instant of time n to n+1.This updating represent in the fol-
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lowing diagram. Now the structure of different filters is discussed in brief that are useful in 

the field of system identification. 

 

                            Fig 2.5: Block diagram of FIR Filter 

Normally nay system with some number of parameter that will decide that how the output y 

(n) will be computed from the knowledge of the input x (n). 

W (n) =   0( ),  ( )        ( ) 
  

 

                  Fig2.6 Weight updation block diagram for Adaptive filter 

With the help of such system identification techniques different complex mapping structures 

can be done like the mapping of most complex structures like brain. 

Basic Building block diagram of the System identification technique is given below 
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          Fig 2.7 Different layers of Neural Network  

Output after giving the input to the function will be dependent upon the activation function of 

layer as well as the weights parameters. 

 ( )       (  ) 

                                                                             ( )  (      )   

Error after every iteration may be defined as 

                                                           ( )    ( )    ( ) 

Calculating the mean square value of the error 

                                                                      ( )  
 

 
∑   

 ( )  

Using gradient descent we find our change in weight will be 

    ( )    
  ( )

   ( )
  ( ) 

  ( )

   ( )
    ( ) 

 (  ( )) 

Speed of learning is vital factor in the field of system identification and control theory which 

is determined by the value of constant. 
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CHAPTER 3 

Linearization of Non Linear Sensors  

 Sensor Linearization 

 Introductions of Nonlinearity 

 Introduction of Nonlinear sensor Thermistor 

 Thermistor’s Nonlinearity Correction with the 

help of FLANN 

 

Tuning of PID Controller by using Bode plot and 
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Sensor Lionization: 

Historically, the factors of cost spent, size and area of ANN (artificial Neural network ) are 

not the factors of concern for the developers. Such types of issues are many applications 

some applications of those issues are present in the field of aeronautics department, high vol-

ume business product, products having the large size where size limitations needs to be appli-

cable. Some application of artificial neural network in the field of sensor performance im-

provement has been discussed here. Many a times the linearity is major factor for the sensor 

performance. Linearity is property of sensor which is highly desirable. Many sensors involves 

today are nonlinear in nature like thermistor, linear variable differential transformer (LVDT) 

(after some range of application). Objective of this research is to extend the linearity range of 

the sensor so that outputs of the sensor can be made more predictive.[1,2] 

We want the linearity characteristics for the ideal transducers. But there are many factors 

which drive transducers toward the nonlinearity. Due to such nonlinearity problem the usable 

range of transducers gets restricted. Accuracy of the transducers also get effected with the 

effect of non-linearity problem occurs in transducers. The major effect of nonlinearity comes 

in order of predictability of sensor get affected and behavior of the sensor becomes unpre-

dictable and working range of the system get affected due to this nonlinearity. Nonlinearity is 

basically time variant in nature [4] sometimes there are factors in nature which also affect the 

nonlinearity such temperature and humidity which varies day by day so it makes the working 

conditions of sensor unpredictable. Then effect of ageing also adds some amount of nonline-

arity to the sensor. Many researchers worked in this field but it‘s still a very open field for the 

researchers as much more work is remaining for linearization of nonlinear sensor and one 

universal technique is still not there. Many algorithm has been came in this field such as in 



Prateek Mishra (212ec3157) Page 33 
 

the field of ANN , Functional link layer Artificial Neural Network(FLANN) based ANN, 

Multilayered Perceptron (MLP), Back propagation network to decrease the nonlinearity range 

of resistive, inductive and capacitive sensors.[3] 

Further it is find that that the MLP and BPN networks are the less efficient as compared to 

FLANN network as the computation complexity of FLANN network is lower. Hence the 

FLANN network can be developed with the fewer amounts of complexions. 

Introduction: Suppose for a sensor we have particular equation of output for a particular in-

put pattern as 

                              ( )                            ( )  

Function f(x) decides the linearity deviation of the sensor from the ideal linearity condition. 

For the case of linearity we want f (x) to be only dependent at the value of x but many a times 

f(x) becomes dependent at the values of different polynomials of x. Many methods are there 

to define the linearity or the nonlinearity of the sensor. Each of them can be defined by dif-

ferent methodology. [7] Linearity and the nonlinearity property are conjugate. We can say 

that the values of nonlinearity can be used for the linearity also i.e. if the sensor is highly non-

linear then it will be a good linear sensor. Measurement of nonlinearity is often done in the 

form of relative units. It can be measured in term of percentage of maximum full reading of 

the sensor or transducer or the percentage of the local reading. Ideally we want the nonline-

arity to be fully vanish or minimize to a minimum value. 
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                                 Fig 3.1 Nonlinearity characteristics of Sensor 

Above graph shows the nonlinearity measurement method. Nonlinearity (NL) can be meas-

ured with help graph.  A linear line is drawn and with reference to that line nonlinearity can 

be measured.   

Corrections for Nonlinearity: In this portion of thesis the compensation of nonlinearity will 

be discussed for the Thermistor will be discussed 

Thermistor: A thermistor is the type of resistor, resistance value of it varies significantly 

with the variation of the value of temperature. Thermistor is made of two words in addition 

thermal plus resistance which means that the resistance value of thermistor varies with the 

thermal (temperature) changes. Where we need some control applications we can use the 

thermistors like in current limiters, on exceeding the particular value of current system will 

be shut down or flow of current will be stop, Temperature sensors, self-resting exceed current 

protectors and self-regulating heating transducers.[6] 

Thermistor is different from RTD in terms of the material used as sintered mixtures of metal 

oxides are used in the case of thermistor which is generally Negative temperature coefficient 

in nature and RTD are the metals like Pt-100 which are positive temperature coefficient met-

als means with the increase in the temperature the resistance value of metal will increase. 
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             Fig 3.2 Thermistor Symbol 

This is symbol of a thermistor rectangular box basically shows the resistance. 

Thermistor Equation 

        
 (

 
 
 

 
    

)
 

Where         = Resistance at reference temperature. 

FLANN Based Linearization of Thermistor: FLANN (Functional link layer Neural Network ) 

is the single layer Neural network It does not consist any hidden layer which makes the math-

ematical computations simple. The functional link works as on an element of the pattern and 

on the entire pattern itself by creating the group of linearly independent function and calculat-

ing these functions with the pattern as argument.[5,8] The differential voltage v at the output 

of the Thermistor is fed to the FLANN model as the input. In this research trigonometric ex-

pansion is used as it provides the better nonlinearity compensation as compared to the other 

expansions. 

Let us consider the FLANN based learning with the flat Net which does not have hidden lay-

ers. Let V be the input vector of N elements. Let the net configuration have one output. Each 

element goes through nonlinear trigonometric expansion to formulate P elements so that the 

resulting matrixes have the dimension of N*P and the     input is the    1<n<N the func-

tional expansion is carried out as 

Trigonometric Functional Expansion: For the functional expansion of the FLANN network 

functional expansion block used the functional model consist of a subset of sinusoidal and 
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cosine basis function and the original basic pattern with its outer products. Let‘s have a ex-

ample of functional expansion [10, 11] a two dimension input pattern     ,    
 , after 

functional expansion the enhanced pattern is obtained as 

         (   )    (   )    (    )  

The LMS technique which is used to train the network thus become simple as no hidden layer 

is present in the network. 

Mathematical analysis of FLANN: 

     {  

                                  

   (     )                    

   (     )                   
 

 

 

                                Fig 3.3 : Functional Expansion in FLANN 

Let the weight vector is represents as W having Q elements. The y output is then give by 

  ∑     
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The output can be written as 

       

At the     iteration the error signal e (k) is computed as  

 ( )   ( )   ( ) 

Where d(k) is the desired signal at any instant of time k, which is equal to the control signal 

given at any instant of time and y(k) is the real output at any instant of time k. 

This equation can be written further as  

 ( )  
 

 
∑  

 ( )

   

 

With the help of LMS algorithm weight vector can be updated as 

 (   )   ( )  
 

 
 ( ) 

Here the  ( ) is the instantaneous estimate for gradient of   with respect to weight vector 

w(k) 

 ( )  
  

  
   ( )

  ( )

  
 

    ( 
   ( ) ( ) 

  
) 

  ( ) ( ) 

By putting the value of  ( )    get 
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 (   )   ( )    ( ) ( ) 

Where µ presents the size of steps (0 ≤ µ ≤ 1), value of µ controls the speed of Least mean 

square algorithm.  

The results of sensor linearization with help of ANN are shown below. Graph 1 shows the 

thermistor Resistance vs. Temperature which is highly nonlinear in nature. Graph2 shows the 

FLANN mirrored graph and the thermistor graph. After compensating the mirrored graph 

with thermistor original graph 5 shows the final ANN output graph which is approximately 

similar to the linear approximated graph of thermistor.[9] 

Result and Discussion: 

 

                          Fig 3.4: Thermistor Resistance vs. Temperature 



Prateek Mishra (212ec3157) Page 39 
 

 

                     Fig 3.5: Nonlinear output voltage graph of thermistor 

       

                               Fig 3.5: Mirrored output voltage for thermistor  
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                         Fig 3.6: linearize output voltage for thermistor  

  

                                        Fig 3.7 LINEAR ANN OUTPUT                                                    

As shown in graph the linearized output is presented with the help ANN model. FLANN 

model is used for the linearization purpose. 
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CHAPTER 4 

System Identification us-

ing LMS and RLS 

 Introduction  

 Least mean Technique for system identifica-

tion 

 Recursive Least Square Technique (RLS) 

Derivation 

 Comparison between RLS and LMS 

  
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4. Introduction:  

Field of the System identification is one of the most interesting f or adaptive filters, especially 

for the LMS Algorithm (Least mean square algorithm), Robustness and less computation 

complexity helps the LMS technique in the field of system identification. Depending on the 

error signal, the coefficients of filters get updated and adjusted. In process of updation the 

output signal becomes exactly same in the value as the input signal. The advancement in this 

field is remarkable and opening the door of wide research and making an opportunity for au-

tomation and determination. 

 

          Fig 4.1 Weight updation for Adaptive Filters 

Block diagram of LMS technique is shown in figure input x (n) is applied to system S which 

produce the desirable result d (n) and x (n) is also applicable to the System which have to be 

realize equivalent to System H which gives the output at the particular time n, y (n) then both 

the outputs have to applied to subtract which in result gives the error signal after subtracting 

the y(n) from d(n).[1] 

LMS Algorithm Derivation 

The error signal can be expressed as 
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The cost factor C(n) is the mean square error 

                                                                  

With the application of chain rule 

                       

                       

Applying the gradient descent algorithm and step size  /2 

                                                                                            

The above equation is called as the update equation for LMS.[2] 

 

         

                                      Fig 4.2: LMS error graph 
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The Least mean square error graph with the number of iteration is shown above graph. As 

shown in the graph with the increment of iteration the least mean square error is reduced sud-

denly which depends upon the learning factor  .  

Recursive Least Square Technique(RLS Technique): The RLS (Recursive least square) 

Algorithm is the algorithm which used to find the filter coefficient that used to minimization 

of the weights with linear least square cost factor depending upon the input signal with help 

of recursion. RLS like LMS used to reduce the cost factor or mean square error.[4] 

In defining the RLS the input patterns are considered deterministic signal not like the case of 

LMS technique in which they are considered to be stochastic. On comparing to other similar 

techniques RLS produce extremely fast convergence speed. But this high convergence speed 

comes at the cost of a lots of computation complexity. So there is trade off in the speed of 

convergence and computation complexity of RLS algorithm with some similar cost factor 

reduction algorithm.  

 

                                     Fig 4.3: Block diagram of RLS algorithm 

RLS Algorithm Derivation: Recursive Least square (RLS) algorithm for RLS filter is de-

fined as 
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Take a zero mean variable randomly d with realization {d (0), d (1)…..}, and a randomly zero 

mean vector for row u with realization { 0,,   ,  }. The optimal weight factor  0 that gives 

    |    |  

Can be considered iteratively via the recursion 

            
         

       

             
 
  

                     
   ( )         ,    ≥   

With initial condition          and where 0     

The mathematical computation cost of RLS is one order greater than computation cost of 

LMS. 

 

                             Fig 4.3: Recursive Least Square Error Graph 
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Comparison between the computation cost of RLS and LMS is shown in following table 

Algorithm Multiplications  Additions  Division 

LMS        8N+2            8N  

RLS               1 

                    Table 4.1: Comparison between RLS and LMS techniques 

As shown in the above comparison between RLS and LMS algorithm the computation speed 

of RLS is much greater then LMS so RLS converges with a very fast rate but in terms of 

mathematical complexity RLS have some restrictions as mentioned in above table RLS is one 

more step complex than RLS. So there is a tradeoff between the speed of response and com-

putation complexity of RLS and LMS.[3] 

   

                             Fig 4.4: Comparison graph of LMS and RLS 
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For 600 hundred iterations the LMS and RLS algoritm graph is plotted ans as sail earlier 

graph shows the result that RLS graph (Black) converges with the faster speed and mean 

square error becomes minimum under the 20 -30 iterations not like the case of LMS (Red) 

which takes some moe time to minimize the error or in athor word have slow response. 
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CHAPTER 5 

System Identification using FLANN and MLP 

 Introduction 

 Simulation Study 

 Learning Algorithm 

 Static System Identification 

 Dynamic System identification 
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Introduction: In industries we have to deal with the many dynamic complex plant. So 

identification of such very complex nature dynamic plant is area of concern in the control 

theory because we have to identify the system first then only the controlling operation of the 

plant can be done. So we need a good and feasible solution for such type of identification 

problem for automatic control industries. Such as to continue to work with more and more 

complex environment we need some effective solution for such type of problem.[1,3] 

The ability of neural networks to approximate large classes of nonlinear functions sufficiently 

accurately make them prime candidates for use in dynamic  models for the representation  of 

nonlinear plants. The fact that static and dynamic back-propagation methods can be used for 

the adjustment of their parameters also makes them attractive in identifiers and controllers. In 

this section four models for the representation of SISO plants are introduced which can also 

be generalized to the multivariable case. 

Simulation Study:  Simulation study for the FLANN and MLP network is given below. The 

four models of discrete-time plants studied can be described by the following nonlinear dif-

ference equations: 

Model 1: 

                 (k+1)= ∑   
   
  0   (k-1) +  [  ( ),   ( −1)…,( − +1)] 
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                          Fig 5.1: Block Diagram for model 1 

Model 2 

Difference equation for the model 2 is given by 

  (k+1)=f[  ( ) ,  ( −1)……..  (K-n+1)] +∑     
   u (k-i) 

                    

                               Fig 5.2: Block Diagram for model 2 

Model 3: 

  (k+1)=f [  ( ),   (   )    ,   (k-n+1)] +   ( ),  (   ),    (     )  
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                               Fig 5.3: Block Diagram for model 3 

 

Model 3: 

   (k+1)=f [  ( ) ,  ( −1)……..  (K-n+1)+[  ( ),  ( −1),….. ( − +1)] 

                 

                                    Fig 5.4: Block Diagram for model 4 

The Learning Algorithm 
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Let number of patterns be applied to the network in a sequence repeatedly. Let the training 

sequence be denoted by {  ,  }and the weight of the network by W(k); where is the discrete 

time index given by k=k+ k ;for all  =0,1,2,3 ….; and k=0,1,2,3,…….K: 

Weight updates Equation: 

 W (k+1) =W (k) +   (k) X(k) 

Where W (k) = [  ( ),  ( ),  ( )….  ( )]‘ 

Static System:  

For the 1-20-10-1 MLP structure following four systems is identifies and the nonlinear func-

tion used is the sigmoid function. 

                                     ( )        0      0        

                                     ( )  0     (  )  0     (   )  0.1sin (5   ) 

                                    ( )=
                  

0     0             0   0      
 

  ( )  0      (  )  
  0

     0
 0     (   )      
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              Fig 5.5 Result for     using MLP 

 

                   Fig 5.6 Result for     using MLP 

 

                        Fig 5.7 Result for     using FLANN 
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                        Fig 5.8 Result for     using FLANN 

 

Dynamic System: 

In Dynamic System following non Linear functions are used along with the delays. So the 

past inputs are fed back to the present outputs.[1] 

            ( )     0     0    …………………………………………….. (1) 

           ( )  0     (  )  0     (   )  0.2sin (6   ) ………….(2) 

          ( )=
    0             

0     0           0       0
………………………………………… (3) 

          ( )  0      (   )  
  0

     0
 0     (   )       ……… (4) 

For 20000 Iterations the weights of neural networks are updated. Then testing of this network 

is done with the help of 600 iterations of the following sinusoidal signal. 

       U (k) =sin (   
  0⁄ ) for k   0   ……………………………………… (5) 
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      U (k) =0.8sin (   
  0⁄ ) +0.2sin (   

  ⁄ ) for k≥   0  …………. (6) 

 

                           Fig 5.9 Result for     using MLP 

 

                           Fig 5.10 Result for     using MLP 
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                           Fig 5.11 Result for     using FLANN 

 

                           Fig 5.12 Result for     using FLANN 

System Identification approximation models have been discussed by the following example and 

comparison between them is given further. 
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CHAPTER 6 

Conclusion and Future Work  

 Conclusion 

 Future Work 
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 Conclusion: 

 A MLP and the FLANN structure is studied with the help of several example. As seen in the 

table below the computation complexity of the FLANN structure is much less than the MLP 

structure. Number of addition, multiplications and sinusoidal and cosine function is shown in 

the table below 

 

              Table 6.1 Comparison of computation complexity between FLANN and MLP 

 

Future Work: 

1. To Simplify the computation complexity of MLP structure with Functional Link layer 

Artificial Neural Network 

2. To reduce the nonlinearity pressure sensors with the help of artificial neural networks. 

3. To reduce the nonlinearity of LVDT by using ANN. 

                         

OPERATION MLP FLANN 

Addition 2IJ+3JK+3K 2K(D+1)+K 

Multiplication 3IJ+4JK+3J+5K 3K(D+1)+2K 

tanh(.) J+K K 

cos(.),sin(.) - I 
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