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Abstract 
 
 
 
 
 
 
Software maintenance activity is one of the most important part of software development 

cycle. Certain regions of a program cause more damage than other regions resulting in errors, 

if they contain bugs. So, it is important to debug and find those areas. We use slicing criteria 

to obtain a static backward slice of a program to find these areas. 

An intermediate graphical representation is obtained for an input source program such as the 

Program Dependence Graph, the Class Dependence Graph and the System Dependence 

Graph. Slicing is performed on the System Dependence Graph using a two pass graph 

reachability algorithm proposed by Horwitz[3], and a static backward slice is obtained.  After 

obtaining static slice, dynamic slice is calculated for the given input variable using an 

algorithm where in a statement, a set of variables and the input values for these variables are 

taken as input and a dynamic slice is obtained.  
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Chapter 1 
 
 
 
 

 

Introduction 
 
 
 
 
 
The need for program slicing arises from the need of finding errors in the program which may 

effect the entire software.  Many softwares have evolved in the market for these purposes. It 

is more preferred nowadays due to time and cost issues. Additionally, the center of building 

software has seen an emotional float from utilizing customary procedural strategies to protest 

arranged methods. Item arranged strategy, doubtlessly modularizes the system, however in 

the meantime, it is exceptionally perplexing and troublesome to debug and test for mistakes. 

 

Different strategies have been produced to test virtual products for finding bugs. These 

strategies apply diverse methodologies to software testing which utilize different intermediate 

representation like  SDG, ClDG etc. to represent the relations  between statements in the 

program.  
 
Slicing is used in software testing, regression testing and has many other applications in 

software maintenance activities. Static slicing is a process of selecting the statements where 

in all the variables change whereas dynamic slicing is selecting all the statements that change 

when a particular variable is taken. 
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1.1 Motivation: 
 
 

 Many literatures and procedures are proposed to compute static slices whereas very few 

methods are proposed to compute dynamic slice of object-oriented programs. 

Communication dependencies come into the picture along with object-oriented features 

like abstraction, polymorphism, classes etc when dealing with object-oriented programs 

compared to that of sequential programs.  

 

 
1.2 Objective: 
 
 
Our goal is to build the intermediate graph of an example object-oriented program and  

obtain static slice of that program and compute dynamic slice for a particular execution.  

Before slicing, we remove redundant edges of  the graphical representation to reduce the 

run-time. 

  

 
 

1.3 Organization: 
 

 

The project is organized as follows: 
 

 

Chapter 2 
 
All the ground work required for the project is mentioned in this section ie; intermediate 

graphs, types of slicing and their differences are explained with examples. 

 

 
 
Chapter 3 
 
 All the related work is mentioned in this section. 
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Chapter 4 
 
Here, we talk about how each step of our objective is obtained and what algorithms are used 

to obtain them. 

 
Chapter 5 
 
In this section we give an overview about the tools used in different phases of slicing present 

the execution subtle elements of our venture to obtain graph and for coding purpose. lastly 

we talk about the effects. 

 
Chapter 6 
 
We conclude here from the results discussed in the above section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11 



Chapter 2 
 
 
 
 

Fundamental Concepts 
 

Here, we examine the fundamental ideas and wordings co-partnered to our work . 

 

 

2.1 Intermediate Graphs 

 

Here, we study about how to construct intermediate graphs required for slicing from a 

program. 

 

 

2.1.1 Control Flow Graph (CFG) 
 
It is graph with an entry and exit nodes called “START” and “STOP”. All other nodes in 

between are connected with edges directed in a direction to show the control flow in the 

program. Each statement is a node in the program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1: CFG  
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2.1.2 Data Dependence Graph (DDG) 
 
 
A Data dependency edge is said to be existent  if it follows the following rules:  

    Suppose, Consider two nodes A and B and a variable X 

 

(i) Variable X is initiated at A  

 

(ii)  X is being used in a computing at node B 

 

(iii) X should not defined in between and the control flow is allowed in between from 

A to B.  

 

A is said to the reaching definition of B if  B is data dependant on A. an example is shown 

showing the reaching definition of 6 and 7. Reaching definitions are calculated based in 

statement labels from these sets: 

 Def-set(S defined at), Gen-set(S generated at), Kill-set (S killed at), in-set(statement S), out-

set(leaving S) etc 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               Figure 2.2: DDG 
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2.1.3 Control Dependence Graph (CDG) 

 

CDG summarizes the control conditions necessary for a statement to execute if a statement 

has  executed. 

A control dependence graph contains several types of nodes: 

Statement nodes - represent simple statements, are shown as ellipses in the figure. 

Predicate nodes - from which labeled edges originate, are shown as rectangles in the figure. 

Region nodes - summarize the control-dependencies for statements in the program, are shown 

as circles in the figure 

 

 

 

 
                               Figure 2.3: CDG   

 
 
 

2.1.4 Program dependence graph (PDG) 

 

PDG is proposed by Ferrante[2] in 1987. Both data and control dependencies of a 

function/method are made explicit. As the DFG is updated, PDG  allows incremental 

optimization. It is of hierarchical nature .  

Disadvantage: PDG can’t handle programs with multiple functions.    
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                                    Fig 2.4: Sample Program(i) and it’s PDG(ii) 

 

 
                                  ( i) 
 

 

 
 

                                 (ii) 
 

  In the above PDG obtained, all the control dependencies, data dependencies, intra- 

procedural and inter-procedural edges are marked and their flow is depicted. 

 

 

2.1.5 System dependence graph (SDG) 
 
 
Horwitz[3]  introduced the SDG. It can handle programs with multiple proedures because it is 

collaboration of PDG of each procedure in the program. SDG is same as PDG for a program 

with single method/function. Following types of vertices are used to represent flow: 

 Call site nodes represent function calls. 


 Actual in-out vertices represent the calling side parameter passing. 


 Formal in-out vertices represent the called procedure parameter passing.
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2.1.6 Class dependence graph (ClDG) 

 

ClDG used to speak to projects with OOPS characteristics. Each one capacity/system is 

spoken to in PDG and subsequently worked together with their information/control reliance 

edges.  

 

Each one capacity has a capacity/technique passage vertex that addresses the area into the 

strategy. A CLDG furthermore holds a class section vertex that chooses the passage into the 

class. The class entry vertex is joined with the framework door vertex for each system in the 

class by a class part edge. Class section vertices and class part edges let us quickly get to the 

framework information when a class is united with a substitute class or schema  

 

Formal in-out vertices are utilized to speak to parameter passing from call to capacity and the 

other way around. 

 Since the class' event variables are interested in all procedures in the class, we treat them as 

worldwide to schedules in the class and we incorporate formal-in and formal-out vertices for 

all reference variables referenced in the method. In any case, the extraordinary case to this 

representation for instance variable is that formal-in vertices for the event variables in the 

class constructor and formal-out vertices for the event variables in the class destructor are 

barred. 
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2.2  Program Slicing and it’s types 

 
 
Program Slicing is selection a group of statements from the initial program statements which 

are going to be effected if a change is made in the given input statement based on the slicing 

criteria. 

 
 

2.2.1 criterion 
 
Slicing criterion (S, V). where S is the statement or node number  and V is the variable.It is 

proposed by Weiser[1]. This is for static slicing whereas for dynamic slice that particular 

execution for which dynamic slice to be computed also need to be mentioned. 

 

2.2.2 Types 
 
It is basically of two types based on input and direction. 
 
 
 
 

Slicing based on input: 
 
 
Static Slicing: All possible executions are considered  for  calculating static slice. It is 

calculated for an input statement wherein if the variables are made changes, what are the 

other statements it may change? . As all executions are acknowledged. 

Dynamic slicing is computed for a particular exection only. If a variable V is changes in a 

statement S how does it change other statements? Since just a specific execution succession 

is viewed as, the predicate worth may either assess to genuine or false. Accordingly, just the 

real cuts are registered for a specific data. 
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Slicing based on direction: 

 

  Forward slicing: All the statements which effect the statement in the slicing criteria 

are found out by working forward from the statement in the criteria . 

 Backward Slicing:  All the statements which effect the statement in the slicing 

criteria are found out by working backward from the statement in the criteria. We use 

backward slicing in our implementation.  

 

 
                     Figure 2.5: A sample program 

 

 

 

 
Static Slice (s4, V)   {s5,s6,s8} 
 
Whereas  
     
   Dynamic Slice (s4, V)   either {s5,s6} or {s8}  based the condition true or false in s4. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18



 

Chapter 3 
 
 
 

Dynamic Slicing of object-oriented programs 
 
 

 

Our goal is to compute dynamic slice of a program for a given slicing criteria. In order to 

compute dynamic slice for a particular variable, first we need to compute static slice for the 

statement. First, we require a graphical representation of program with appropriate edges 

marked. ie; ClDG, SDG etc. This representation becomes the system dependence graph for a 

single method. Order of constructing intermediate representation is  

i) CFG 

ii) DDG and CDG 

iii) PDG 

iv) Then the required graph depending on the purpose ie; SDG or  ClDG  

For concurrent programs with only thread, it becomes SDG. 

 

After obtaining the intermediate representation, we follow these remaining steps. 
 

 Construction of the intermediate graphical representation 



 Reducing the transitive edges using Redundant Edge Removal(RER) Algorithm



 Two phase algorithm is used to compute Static slice.



 Computing the Dynamic slice from the above Static slice for a given input.





3.1 Intermediate Graphs  
 
Algorithms  used for the construction of the intermediate representation are presented here. 
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3.1.1 Steps for ClDG graph 

 

Proposed by Larsen and Harrold[5] to represent object-oriented features like data hiding, 

inheritance and  polymorphism. 

 

Step 1: Class  “ENTRY” vertex is created. 
 
Step 2: “ENTRY” node is connected with all the method/ procedure calls. 
 
Step 3: Each method graphs are constructed and are collaborated. 

 

3.1.2 Steps for SDG graph 
 
  Proposed by Horowitz[3] to represent programs with more than one procedure or method.  

 

 Step 1:  All methods are represented by PDGs and thus collaborated with the edges 

mentioned in step 2.  

 

 Step 2 : Parameter edges used for parameter passing and formal edges used for 

communication with call sites. 

 

 

 

 

3.2 Redundant  Edge Removal(RER) algorithm  

 
  Removing  Redundant  edges: 

  Given a directed graph (digraph) G= (V,E)  where  V is  set of  vertices and  E is set of 

edges.  

      Ex:- (a,b)   an edge incident from  vertex  ‘a’  on  vertex ‘b’ . 

 An  edge   is  redundant if it can be obtained from other ways . 

 

 

 

 

 

 

 

 

 

20 



RER Algorithm: 

  I/P:   A  set  of  Dependencies  (Edges)  E. 

O/P:   graph containing non-redundant  set  of  edges   F. 

1.   F:=  E ; 

2.          For all (u,v)  belongs  to  F  do    

3.                      G  =  E – (u,v) ; 

4.                      S  =  u ;                     ( S  is  a  temporary  set) 

5.                     For  all  (x,y)  belongs  to  G  do    

6.                               If  x  is  subset  of  S  then 

7.                                        S : =  S U  {y} ; 

8.                                End If  

9.                    End For 

10.                    If  v subset of S then 

11.                                 E :=  E – (u,v); 

12.                    End If 

13.         End For 

14.    F := E;                   ( F  is set  of  redundant  edges) 

15.   End      

Example:- 

Fig: 3.1: Sample graph 

 

 

 

 

Adjacency  Matrix:   Adjacency  Matrix  of  a  Graph  G  with  n vertices  having  

no  parallel  edges  is  an  n  by n  matrix  A(G) = [aij],  whose  elements  are  

defined  as  follows:  

aij     = 1,  if there  is  an  edge  between  ith  and  jth  vertices.                                

       = 0  ,  otherwise 

 
 
 
 

21 

 

a 
c 

b 

e 
d 



       .                

      

Adjacency  matrix  of  the above  digraph  =    

 

 

 

 

 

Edge matrix  em[][]  (from Adjacency  matrix )     =     

 

                                          

                       

      Where  ( em[][0],em[][1])  form  edge  .    

 

     Edges  representation :    (0  a, 1  b,  2  c,  3  d,  4  e) 

               ,   em[][2]  =   1 ,  if  the  edge is  visited. 

                                   =   0,  otherwise.       

        And    em[][3] =   1 ,  if  the  edge  is redundant. 

                                  =  0,  otherwise. 

Let  S  be  an  array  of  size  ‘n’ 

                          

        S =  

            S[0] =  1, if  vertex  ‘a’  is present  in array . 

                =  0, otherwise.                                                                                         22 

 

            S[1] =  1, if  vertex  ‘b’  is present  in array . 

                    =  0, otherwise. 

 a b c d e 

a 0 1 1 0 0 

b 0 0 1 1 0 

c 0 0 0 0 1 

d 0 0 0 0 1 

e 0 0 0 0 0 

0 1 0 0 

0 2 0 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

0 0 0 0 0 



            S[2] =  1, if  vertex  ‘c’  is present  in array . 

                    =  0, otherwise. 

            S[3] =  1, if  vertex  ‘d’  is present  in array . 

                    =  0, otherwise. 

            S[4] =  1, if  vertex  ‘e’  is present  in array . 

                    =  0, otherwise. 

By  default ,  all the values  are  set  to  zero  before  checking  redundancy  for  

each  edge. 

 

Now, Applying  the  algorithm  for edge set  E ……….. 

 E =  { (0,1), (0,2), (1,2), (1,3), (2,4), (3,4) } 

1. Checking  redundancy  for  (0,1): 

                   G =  E – (0,1)                                // *   G = E – (u,v)   *// 

                   G = { (0,2), (1,2), (1,3), (2,4), (3,4) } 

                    Now, set  S[u ] to 1                //  S =  u  *// 

                                     ie:  S[0] = 1;                                   S=   

1st Iteration: 

   (i)          

               G    (count = 0)  

                                                                                                                 

 

   

  For (0,2) , 

              0 is in  S  

                       Set  S[y] = 1; 

               (ie:  S[2] = 1);                                        S =    

1 0 0 0 0 

x y   

0 2 0 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

For  all (x,y)  in G ,  

             If  x is in S then 

                      Add  y to  S; 

             End If 

        End  for 

1 0 1 0 0 



 

 

(ii)                     G                 (count = 1)   

  

   

 

      For (1,2) and  (1,3)  

                   1 is not  in  S .     

 

     

(iii) 

           G   (count = 1) 

       

        For  (2,4), 

               2 is in S 

                  S =                   So,  S[4] = 1                       

      

 

       

 

 

          G  (count = 2) 

 

(iv) 

          For  (3,4), 

               3 not in S 

 

x y   

0 2 1 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 2 1 0 

1 2 1 0 

1 3 1 0 

2 4 0 0 

3 4 0 0 1 0 1 0 1 

x y   

0 2 1 0 

1 2 1 0 

1 3 1 0 

2 4 1 0 

3 4 0 0 



 

 

          G   (count = 2)   

 

 

      Reset  em[][2] = 0, and  repeat the procedure till 

count doesn’t change (count = 0). 

2nd Iteration: 

 (i) 

          G   (count = 0)  

  

 

 

 

                  

                                                               S = 

For (0,2),   

                 Both ‘0’ and  ‘2’ are present in  S. 

For (1,2) and ( 1,3) 

                     1 is not in S.                                                                                                                    25 

For (2,4), 

                  Both ‘0’ and  ‘2’ are present in  S. 

For (3,4), 

                  1 is not in S. 

 

 

 

x y   

0 2 1 0 

1 2 1 0 

1 3 1 0 

2 4 1 0 

3 4 1 0 

x y   

0 2 0 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

1 0 1 0 1 



 

 

 

 

 

 

G        (count = 0)        

 

As the count didn’t change , this iterative procedure  terminates. 

             Final value of      S =      

                  

  S[1] = 0,   Therefore, edge (0,1) is not redundant. 

 

 

2. Checking  redundancy  for  (0,2): 

                                   G =  E – (0,2)                                // *   G = E – (u,v)   *// 

                   G = { (0,1), (1,2), (1,3), (2,4), (3,4) } 

                    Now, set  S[u ] to 1                //  S =  u  *// 

                                                                                                                                                                          

                                     ie:  S[0] = 1;                                   S=   

1st Iteration: 

 

x y   

0 2 1 0 

1 2 1 0 

1 3 1 0 

2 4 1 0 

3 4 1 0 

1 0 1 0 1 

1 0 0 0 0 



 

     Count = 0                                                                

                                                                                         Count = 1     

 

 

  

S=                                                          

 

     Count = 2                                                            

                                                                                         Count = 3     

 

 

 

                                                                          

        

                                                                                                                                    Count = 4                  

                                           

                   S =      

 

S[2] = 1,   Therefore, edge (0,2) is  redundant.    

 Now, E  = { (0,1), (1,2), (1,3), (2,4), (3,4) }  

 

3. Checking  redundancy  for  (1,2): 

                                                G =  E – (1,2)                                // *   G = E – (u,v)   *// 

x Y   

0 1 0 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 1 1 0 0 0 

x Y   

0 1 1 0 

1 2 1 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

2 4 1 0 

3 4 1 0 

1 1 1 1 1 



                   G = { (0,1), (1,3), (2,4), (3,4) } 

                    Now, set  S[u ] to 1                //  S =  u  *// 

                                     ie:  S[1] = 1;                                   S=   

 

1st Iteration: 

 

 Count = 0    

                                                                                                        Count = 0  

   

 

             

 

 

      Count = 1  

                                                                                                   

                            Count = 1  

 

 

       

     

 

           

                

                       Count = 2    

                                                                                                                                                                                 28 

S=     

 

0 1 0 0 0 

x y   

0 1 1 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 1 0 

2 4 1 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 1 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 1 0 

2 4 1 0 

3 4 1 0 

0 1 0 1 1 



2nd Iteration:     

             Count = 0  

                                                                                                  Count = 0  

   

 

 

             

 

       Count = 0  

                                                                                                  Count = 0   

 

       

    

 

 

  

                                          Count = 0    

S[2] = 0,   Therefore, edge (1,2) is not redundant. 

 

4. Checking  redundancy  for  (1,3): 

                  G =  E – (1,3)                                // *   G = E – (u,v)   *//                                           29 

 

                   G = { (0,1), (1,2), (2,4), (3,4) } 

x y   

0 1 0 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 1 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 3 1 0 

2 4 1 0 

3 4 0 0 x y   

0 1 1 0 

1 3 1 0 

2 4 1 0 

3 4 1 0 



                    Now, set  S[u ] to 1                //  S =  u  *// 

                                     ie:  S[1] = 1;                                   S=   

1st Iteration: 

              

                Count = 0    

                                                                                                        Count = 0  

   

 

             

 

  Count = 1  

                                                                                                   

                         Count = 1  

 

 

 

 

 

 

 Count = 2    
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0 1 0 0 0 

x y   

0 1 1 0 

1 2 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 0 0 

1 2 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 1 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 1 0 

3 4 1 0 



2nd Iteration:     

      

        Count = 0  

                                                                                                  Count = 0  

   

 

             

 

 

       Count = 0  

                                                                                                  Count = 0   

 

       

     

 

  Count = 0    

 

     S=     

 

S[3] = 0,   Therefore, edge (1,3) is not redundant. 
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x y   

0 1 0 0 

1 2 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 0 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 1 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

2 4 1 0 

3 4 1 0 

0 1 1 0 1 



5. Checking  redundancy  for  (2,4): 

                G =  E – (2,4)                                // *   G = E – (u,v)   *// 

                   G = { (0,1), (1,2), (1,3), (3,4) } 

                    Now, set  S[u ] to 1                //  S =  u  *// 

                                     ie:  S[2] = 1;                                   S=   

1st Iteration:     

            

             Count = 0  

                                                                                                  Count = 0  

   

 

             

 

 

       Count = 0  

                                                                                                  Count = 0   

 

       

   

 

   

  

 

 

 Count = 0    

 

  S=                           

0 0 1 0 0 

x y   

0 1 0 0 

1 2 0 0 

1 3 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 0 0 

1 3 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 0 0 

3 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

3 4 1 0 

0 0 1 0 0 



 

S[4] = 0,   Therefore, edge (2,4) is not redundant. 

 

 

6. Checking  redundancy  for  (3,4): 

               G =  E – (3,4)                                // *   G = E – (u,v)   *// 

                   G = { (0,1), (1,2), (1,3), (2,4) } 

                    Now, set  S[u ] to 1                //  S =  u  *// 

                                     ie:  S[3] = 1;                                   S=   

1st Iteration:     

             

           Count = 0  

                                                                                                  Count = 0  

   

 

 

             

 

     

 

   Count = 0  
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0 0 0 1 0 

x y   

0 1 0 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

x y   

0 1 1 0 

1 2 0 0 

1 3 0 0 

2 4 0 0 

x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

2 4 0 0 

x Y   

0 1 1 0 

1 2 1 0 

1 3 0 0 

2 4 0 0 



 

       

     

 

  Count = 0    

  

 

 S=     

S[4] = 0,   Therefore, edge (3,4) is not redundant. 

 

 

INPUT: 
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x y   

0 1 1 0 

1 2 1 0 

1 3 1 0 

2 4 1 0 

0 0 0 1 0 



 EDGE MATRIX  (I/P): 

 

ARRAY S[]: 

   

EDGE MATRIX  (O/P): 
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 OUTPUT: 

 

                           

RESULTANT GRAPH: 

 

 

 

 

 

 

 

 

 

3.3 Computation of static slice. 
 
 
Static Slice is computed by considering the required edges from the input node in two phases 

proposed by Horwitz[3]. DFS search algorithm is employed here as keeping track of the 

visited and unvisited nodes is required using stack.  

 
Phase 1:  In phase 1, we slice without descending into called procedures by marking 

reaching vertices Ie; all the definite order edges and parameter-out edges of the visited nodes. 
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a 

e 

c 

d 

b 



 
Phase 2: In phase 2, we slice called procedures without ascending into call sites by marking 

all definite-order edges, parameter-in edges and the call edges of the visited nodes 

 

A work list is maintained to keep track of the nodes and their corresponding edges. Stack is 

the data structure employed in this process. 

 

Now, we obtain a set of statements which are connected with specific edges mentioned in 

both phases. 

 
 
 

3.4 Computation of Dynamic Slice. 
 
 
We have all the statements selected in Static Slice which effect the statement in the above 

step. Now a table is created for all the statements where in the variables are being 

effected/changed. The Advantages of using a table in runtime are no new nodes need to be 

created and added to the intermediate representation at run-time. No trace files are required to 

be maintained which saves expensive node creation and file i/o steps. Another important 

advantage is when the request for a slice is made , it is already available. 

 
 
 
 Implementation:  
 
   A matrix is generated taking x-coordinates as statement numbers and y-coordinates  as 
variables V during run-time. Variables V1, V2,V3….Vn  represent n variables. 
 
 
    
Consider this example: Let the variables V1, V2, V3, V4 be x, y, z, a respectively. 
 
 
                 
 
 
                                                      S0 
 
                                                      
                                                      S1 
 
                                                 
                                                      S2 
 
                                                       
                                                      S3 
 
 
 Edge 1 in (S0,y)  represents that there is a change made to the variable in statement  S0. 
Similarly, all the edges are marked and a matrix is generated.  
This matrix is generated during run-time from the graphical representation. This matrix is 
used to compute the dynamic slice and a set of statements are obtained.                    
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x y z a 

0 1 1 0 

1 0 1 0 

1 1 0 0 

1 1 0 1 



Chapter 4 
 
 
 
 
 

Implementation and results 
 
 
 

 

Here, implementation details of each of the four steps are presented with snapshots.  

 

 

4.1 Tools used 
 
These tools are used to execute the four steps of our project (both graphical representation 

and coding purpose): 

 

 MyEclipse 


 Graphviz 

 

4.1.1MyEclipse 
 
MyEclipse Enterprise Workbench is a full-featured, Enterprise-class platform and tool suite 

for developing software applications and systems supporting the full life-cycle of application 

development. Facilities and features usually found only in high-priced, Enterprise-class 

products are included in MyEclipse. Based on open-industry standards and the Eclipse 

platform, MyEclipse redefines software pricing, support and delivery release cycles by 

providing a complete application development environment for J2EE WEB, XML, UML and 

databases and the most comprehensive array of application server connectors (25 target 

environments) to optimize development, deployment, testing and portability. 

4.1.2 Graphviz 
 
Graphviz  pictorially represent a graph. This tool in used in my project for visualization of 

output in a better way. The Graphviz layout programs take descriptions of graphs in a simple 

text language, and make diagrams in useful formats, such as images and SVG for web pages; 

PDF or Postscript for inclusion in other documents; or display in an interactive graph 

browser.  Graphviz has many useful features for concrete diagrams, such as options for 

colors, fonts, tabular node layouts, line styles, hyperlinks, and custom shapes. Graph 

visualization is a way of representing structural information as diagrams of abstract graphs 

and networks. 
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4.2  Implementation of Data Structures(DS) 
 
 
Here in the project, Depth first search is used for traversing and calculating slices. First, 

Static slice is calculated  from the vertices(nodes) and the different types of edges taken as 

input. We have used DFS approach to keep track of the nodes as well as the path.  All the 

slices are calculated by solving a node reachability  problem in the graph. 

 

Why DFS over BFS? 

 

      Analyzing BFS and DFS, the enormous focal point of DFS is that it has much lower 

memory necessities than BFS, in light of the fact that its not important to store the greater 

part of the youngster pointers at each one level. Contingent upon the information and what 

you are searching for, either DFS or BFS could be worthwhile.  

 

Case in point, given a family tree if one were searching for somebody on the tree who's still 

alive, then it might be sheltered to expect that individual might be on the bottom of the tree. 

This implies that a BFS might take quite a while to achieve that last level. A DFS, in any 

case, might discover the objective speedier. At the same time, if one were searching for a 

relative who passed on quite a while prior, then that individual might be closer to the highest 

point of the tree. At that point, a BFS would typically be quicker than a DFS. Along these 

lines, the favorable circumstances of either differ relying upon the information and what 

you're searching for. 

  Classes used are:  

1)  DynamicSlice 

2) Graph 

3) Vertex 

4) StackX 

 

  4.2.1 DynamicSlice: 
 

                 “ DynamicSlice” is our  main class where in all the vertices and edges are 

mentioned. All edges and vertices are given as input using an object “theGraph” in Java. 

                    Edges -- theGraph.addEdge(a,b)   

                   Vertex  -- theGraph.addVertex(a)  
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  4.2.2 Vertex: 

             This  class is used  to keep track of visited and unvisited adjacent nodes based on 

which the nodes are popped and pushed into the Stack. 

          

                 

                    

                                                                                                                                                                                                                                                                                                   

4.2.3 StackX: 

             When a node is visited visited, it is pushed into the stack and based on visited and 

unvisited adjacent nodes pop() and push() operations are done . Functions used here are 

                        push(), pop(), peek() and isEmpty()  

 

4.2.4 Graph: 

             Graph is the object used here. Functions implemented here are : 

                                                       i)  addVertex(String) 

                                                      ii)  addEdge(int) 

                                                     iii) displayVertex(int) 

                                                     iv) dfsSearch1(int) 

                                                     v)  getAdjUnvisitedVertex(int) 
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4.3 Screenshots of implementation 
 
Different screenshots of the implementation of the various dependence graphs have been 

shown taking a few examples. 

                                                                                   
                                                                                   Fig 4.1: A sample program 
main() { 
 

int x= 10, y=20; 

LCM(x,y);  } 
 
int LCM(int a, int b) { int z; 

z = a + b; 

     return z; 

LCM(z,x); 
 

}                                             Fig 4.2: A sample program  

                                                                                                                                        

 4.3.1 Implementation of CFG  { Fig 4.3: CFG of sample program in Fig 4.1 } 
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4.3.2 Implementation of PDG 
 

 
 

 

Fig 4.4: PDG of program in example 4.2 

 

4.3.2 Implementation of ClDG 
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Fig 4.5: A sample program 

 
 Fig 4.6: ClDG of program in Fig 4.5 
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4.3.3 Redundant Edge Removal : 

 
 

 
 

Fig 4.7: Reduced graph of Fig 4.6 

 

 

4.3.4 Static Slice Computation: 

 

 
                                    Fig 4.8: Slicing for S(15,V) of Fig 4.6 
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                                              Fig 4.9: Slicing for S(5,V) for Fig 4.6 

 

 

 

 
 

 
                                               Fig 4.10: Slicing for S(20,V) for Fig 4.6 

 

 

5.3.5 Dynamic Slice Computation: 

 

 

 
 
                                         Fig 4.11: Dynamic Slice for S(5,a) of Fig 4.8 
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                                                 Fig 4.12: Dynamic Slice for S(15,a) of Fig 4.9 

 

 

                                                    Fig 4.13: Dynamic Slice for S(20,c) of Fig 4.10 

 

4.4 Results obtained after dynamic slicing: 

 

S. No.        No. of Statements 

Average time for obtaining dynamic 

slice( in µs) 
   

1 5 2142.20 
   

2 10 2174.75 
   

3 20 2305.91 
   

4 30 2443.86 
   

5 40 2618.70 
   

 

Graph: 

                  

Fig 4.14: Graphical representation of results 
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Results:  

These results depict that for programs with small number of statements (below 10), the 

change is average dynamic slice time has a very slight increase almost doesn’t change much 

when compared to individual programs. Here the slight increase is significant beacause we 

are considering the average time. 

 

For programs with more than 10 statements, the increase in average time is quite significant 

upto 30 statements 

 

For programs with statements more than 30 statements, we can see that there is slight slant 

upwards. This shows that average dynamic slice increase is more than of those programs with 

10-30 statements. 

 

Graph Conclusion:  

   As number of statements of input program increases, average dynamic slice time  increases 

up to a certain number of statements. After that, there is quite an increase in time.    
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Chapter 5 
 
 
 
 
 

Conclusion and future work 
 
 
 

 

5.1 Conclusion 
 
 
I have taken a sample program and represented it’s ClDG proposed by Larsen and Harold[5] 

as intermediate representation. I implemented the Redundant Edge Removal Algorithm to 

remove the redundant edges from the intermediate graph representation. Once an intermediate 

representation is obtained, I implemented the two-phase algorithm proposed by Larsen and 

Harrold[5] to compute a static backward slice for a sample input program and further 

computed dynamic slice for required variables. I have computed average time it takes to 

compute dynamic slice for programs with different number of statements and thus plotted a 

graph based on the obtained values. Results are thus concluded after obtaining. 

 

 
 

5.2 Future Work: 

 
  Dynamic slicing of object-oriented programs is done but work needs to be done on 

Concurrent object-oriented programs, Distributed object-oriented programs and Web-based 

applications. With the increase in significance of these programs in today’s world, there is a 

strong need for more research work in these areas. 
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