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1. INTRODUCTION 

 
 
 
 
 
Beam is a inclined or horizontal structural member casing a distance among one or additional 

supports, and carrying vertical loads across (transverse to) its longitudinal axis, as a purlin,girder or 

rafter. Three basic types of beams are: 

(1) Simple span, supported at both ends  

(2) Continuous, supported at more than two points  

(3) Cantilever, supported at one end with the other end overhanging and free.  

 

There exist two kinds of beams namely Euler-Bernoulli’s beam and Timoshenko beam. By the 

theory of Euler-Bernoulli’s beam it is assumed that 

 Cross-sectional plane perpendicular to the axis of the beam remain plane after deformation.  

 The deformed cross-sectional plane is still perpendicular to the axis after deformation.  

 The theory of beam neglects the transverse shearing deformation and the transverse shear is 

determined by the equation of equilibrium.  

 

In Euler – Bernoulli beam theory, shear deformations and rotation effects are neglected, and 

plane sections remain plane and normal to the longitudinal axis. In the Timoshenko beam 

theory, plane sections still remain plane but are no longer normal to the longitudinal axis.  

 

 

1.2 Objective and Scope of work 

 

In this paper, we will be formulating the equations of motion of a free cantilever beam. The 

natural frequency of continuous beam system will be found out at different variables of beam 

using ANSYS 14.0. The results will be compared further using experimentation by free vibration 

of a cantilever beam. Using those results, we will be able to compare the parameters in Euler-

Bernoulli and Timoshenko beam. 
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2. LITERATURE SURVEY 

 

 
An exact invention of the beam problem was first studied in terms of general elasticity 
equations by Pochhammer (1876) and Chree (1889). They deduced the equations that describe 
a vibration of a solid cylinder. However, it is impractical to solve the full problem because it 
results in more information than actually needed in applications. Therefore, approximate 
solutions for transverse displacement are adequate. The beam theories under consideration all 
generate the transverse displacement equations as a solution. 
  
It was documented by the early investigators that the bending effect is the single most 
important factor in a transversely vibrating beam. The Euler Bernoulli model takes into account 
the strain energy due to the bending effect and the kinetic energy due to the lateral 
displacement. The Euler Bernoulli model goes back to the 18th century. Jacob Bernoulli (1654-
1705) first revealed that the curvature of an elastic beam at any point is relational to the 
bending moment at that point. Daniel Bernoulli (1700-1782), nephew of Jacob, was the first 
one who framed the differential equations of motion of a vibrating beam. Later, Jacob 
Bernoulli's theory was acknowledged by Leonhard Euler (1707-1783) in his investigation of the 
shape of elastic beams subjected to various loading conditions. Many advancements on the 
elastic curves were deduced by Euler. The Euler-Bernoulli beam theory, sometimes called the 
classical beam theory, Euler beam theory, Bernoulli beam theory, or Bernoulli and Euler beam 
theory, is the most commonly used because it is simple and provides realistic engineering 
approximations for many problems. However, the Euler Bernoulli model slightly overestimates 
the natural frequencies. This problem is aggravated for the natural frequencies of the higher 
modes. Also, the prediction is more focused for slender beams than non-slender beams. 

  
Timoshenko (1921, 1922) suggested a beam theory which adds the effect of Shear as well as 
the effect of rotation to the Euler-Bernoulli beam. The Timoshenko model is a major 
enhancement for non-slender beams and for high-frequency responses where shearing and 
rotary effects are considered. Following Timoshenko, several authors have deduced the 
frequency equations and the mode shapes for various boundary conditions.  
         The finite element method devised from the need of solving complex  elasticity and  
structural  analysis equations  in civil and  aeronautical engineering. Its improvement could be 
traced back to the work by  Alexander Hrennikoff (1941) and  Richard Courant (1942). While the 
approach used by these pioneers is different, they all stick to one essential characteristic: mesh 
discretization of a continuous domain into a set of discrete subdomains, usually called 
elements. Starting in 1947,  Olgierd Zienkiewicz from  Imperial College collected those methods 
together into what is called the Finite Element Method, building the revolutionary 
mathematical formalism of the method. 
Hrennikofs work discretizes the domain by using a  lattice analogy, while Courant's approach 
divides the domain into finite triangular sub regions to solve second order elliptic partial  
differential equations (PDEs) that arise from the problem of torsion of a cylinder. Courant's 

http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Structural_analysis
http://en.wikipedia.org/wiki/Structural_analysis
http://en.wikipedia.org/wiki/Structural_analysis
http://en.wikipedia.org/wiki/Civil_engineering
http://en.wikipedia.org/wiki/Aeronautical_engineering
http://en.wikipedia.org/wiki/Alexander_Hrennikoff
http://en.wikipedia.org/wiki/Richard_Courant
http://en.wikipedia.org/wiki/Olgierd_Zienkiewicz
http://en.wikipedia.org/wiki/Imperial_College
http://en.wikipedia.org/wiki/Lattice_(group)
http://en.wikipedia.org/wiki/Second_order_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Torsion_(mechanics)
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effort was revolutionary, drawing on a large body of earlier results for PDEs developed by  
Rayleigh,  Ritz,  and Galerkin. 
 
Development of the finite element method began in the middle to late 1950s for air frame and  

structural analysis and gained momentum at the  University of Stuttgartthrough the work of  

John Argyris and at  Berkeley through the work of Ray W.  Clough in the 1960’s useful in civil 

engineering. By late 1950s, the key concepts of  stiffness matrix and element assembly existed 

essentially in the form used today. NASA sent a request for proposals for the development of 

the finite element  software NASTRAN in 1965. The method was again provided with a arduous 

mathematical foundation in 1973 with the publication of Strang and Fix An Analysis of The 

Finite Element Method, and has since been generalized into a branch of applied mathematics 

for numerical modeling of physical systems in a wide variety of  engineering disciplines, e.g.,  

electromagnetism and  fluid dynamics. 

 
ANSYS, Inc. is an engineering simulation software (computer-aided engineering, or CAE) 
developer that is headquartered south of Pittsburgh in the Southpointe business park in Cecil 
Township, Pennsylvania, United States. 
 
ANSYS offers engineering simulation solution sets in engineering simulation that a design 

process requires. Companies in a wide variety of industries use ANSYS software. The tools put a 

virtual product through a rigorous testing procedure such as crashing a car into a brick wall, or 

running for several years on a tarmac road before it becomes a physical object. 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
http://en.wikipedia.org/wiki/John_Strutt,_3rd_Baron_Rayleigh
http://en.wikipedia.org/wiki/Walter_Ritz
http://en.wikipedia.org/wiki/Boris_Grigoryevich_Galerkin
http://en.wikipedia.org/wiki/Airframe
http://en.wikipedia.org/wiki/Structural_analysis
http://en.wikipedia.org/wiki/Structural_analysis
http://en.wikipedia.org/wiki/University_of_Stuttgart
http://en.wikipedia.org/wiki/John_Argyris
http://en.wikipedia.org/wiki/John_Argyris
http://en.wikipedia.org/wiki/University_of_California,_Berkeley
http://en.wikipedia.org/wiki/Ray_W._Clough
http://en.wikipedia.org/wiki/Civil_engineering
http://en.wikipedia.org/wiki/Civil_engineering
http://en.wikipedia.org/wiki/Stiffness_matrix
http://en.wikipedia.org/wiki/Stiffness_matrix
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Gilbert_Strang
http://en.wikipedia.org/wiki/George_Fix
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Electromagnetism
http://en.wikipedia.org/wiki/Electromagnetism
http://en.wikipedia.org/wiki/Fluid_dynamics
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3. Numerical formulation  

1. Formulation:  
 

 

EULER BERNOULLI BEAM: 
 
For stiffness matrix: 
 
 
 
 

 

 

 

 

Fig 1: (a) Simply supported beam subjected to arbitrary (negative) distributed load.(b) Deflected beam element.  
   (c) Sign convention for shear force and bending moment. 
 
The bending strain is: 

( ) /
y

ds dx dx


     

 
The radius of curvature of a curve is given by: 
 

3
2 2

2

2

1
dv

dx

d v

dx



  
  
     

 
The higher order term can be neglected.  
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Timoshenko beam: 
 
The shearing effect in Timoshenko beam element: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Fig 2: Shearing effect in Timoshenko beam 
 
Considering an infinitesimal element of beam of length δx and flexural rigidity El, we have 
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4. Modal analysis using ANSYS 14.0 

 
 
 
Problem Specification 

Considering an aluminum cantilever beam with given dimensions we have, 

Length 4 m 

Width 0.346 m 

Height 0.346 m 

The aluminum used is given by the following properties. 

Density 2,700 kg/m^3 

Young’s Modulus 70x10^9 Pa 

Poisson Ratio 0.35 

Pre-Analysis 

The following given equations have the frequencies of the modes and their shapes and have 

been deduced from Euler-Bernoulli Beam Theory. 
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2 2
2

2 2

( )
{ ( ) } ( ) ( )

d d Y x
EI x m x Y x

dx dx
  

Conclusion from modal analysis  

The results found are presented in the subsequent jpg files. 

Verification and Validation 

For our verification, we will focus on the first 3 modes. ANSYS uses a different type of beam 

element to compute the modes and frequencies, which provides more accurate results for 

short and stubby beams. However, for these beams, the Euler-Bernoulli beam is invalid for 

higher order modes. 

Comparison with Euler-Bernoulli Theory 

From the Pre-Analysis, we obtained frequencies of 17.8, 111.5 and 312.1 Hz for the first three 

bending modes. The ANSYS frequencies obtained for the first three bending modes are 17.7, 

107.0 and 285.2 Hz. In the ANSYS results, the third mode cannot be considered as bending 

mode. This fourth mode given by ANSYS is the third bending mode. The results show 

percentage variances of 0.6%, 4.2% and 8.7% between ANSYS results and the theory. Thus the 

ANSYS outcomes equal quite fit with Euler-Bernoulli beam theory. The ANSYS beam element 

formulation utilized here is built on Timoshenko beam theory that comprises shear-

deformation effects (which was ignored in the Euler-Bernoulli beam theory). 

Comparison 

Next, we check our results with a refined mesh. We have run the simulation for 25 elements a 

replacement for 10. Succeeding the steps drawn in the section of refining mesh of 

the verification of cantilever beam, we refined the mesh. 

We have meshed the beam with 25 elements yielding the subsequent modal frequencies: 
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The modal frequencies are close to ones computed with the mesh of 10 elements, giving that 

our explanation is mesh converged  

 

 

 

Fig 3: Graphical representation of the modal frequencies 
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Fig 4: Total bending moment 

 

 

Fig .5 Directional bending moment 
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Fig 6: direct stress 

 

 
 Fig 7: minimum combined stress 
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Fig 8: maximum combined stress 

 

 
Fig 9: total deformation 
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Fig no.10: Maximum Bending Stress 

 
Fig 11: total deformation mode 1 
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Fig 12: Total Deformation Mode 2 

 

 
Fig 13: Total Deformation Mode 3 

 

 



19 
 

 
Fig 14: Total deformation mode 4 

 
Fig 15: Total deformation mode 5 
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Fig 16: total deformation mode 6 
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5. EXPERIMENTAL VALIDATION 

 
 

Free vibration of a continuous beam system 
 
Objectives of the experiment 
 
To deduce natural frequencies up to the second mode of a cantilever beam experimentally; and 

to observe the system response subjected to a small initial disturbance. 

 

Introduction 

Free vibration takes place when a system oscillates under the action of forces integral in the 

system itself due to initial deflection, and under the absence of externally applied forces. The 

system will vibrate at one or more of its natural frequencies, which are properties of the system 

dynamics, established by its stiffness and mass distribution. 

        In case of continuous system the system properties are functions of spatial coordinates. 

The system possesses infinite number of degrees of freedom and infinite number of natural 

frequencies. 

        In actual practice there exists some damping (e.g., the internal molecular friction, viscous 

damping, aero dynamical damping, etc.) inherent in the system which causes the gradual 

dissipation of vibration energy, and it results in decay of amplitude of the free vibration. 

Damping has very little influence on natural frequency of the system, and hence, the 

observations for natural frequencies are generally made on the basis of no damping. Damping 

is of great significance in restraining the amplitude of oscillation at resonance. 

        The comparative displacement alignment of the vibrating system for a particular natural 

frequency is known as the Eigen function in continuous system. The mode shape of the lowest 

natural frequency (i.e. the fundamental natural frequency) is termed as the fundamental (or 

the first) mode frequency. The displacements at some points may be zero which are called the 

nodal points. Generally nth mode has (n-1) nodes excluding the end points. The mode shape 

varies for different boundary conditions of a beam. 
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Mathematical analysis 

 For a cantilever beam exposed to free vibration, and the system is considered as continuous 

system considering the beam mass as distributed along with the stiffness of the shaft, the 

equation of motion can be written as  given by the following equations (Meirovitch, 1967), 
2 2

2

2 2

( )
{ ( ) } ( ) ( )

d d Y x
EI x m x Y x

dx dx
  

                                           
                                              

Where, E is the modulus of rigidity of beam material, I  is the moment of inertia of the cross 
section of the beam, Y(x) is displacement in y direction at distance x from fixed end, ω  is the 
circular natural frequency, m is the mass per unit length, m = ρA(x) ,  ρ is the density of the 
material,  x is the distance measured from the fixed end. 

 

 

Fig 17: The beam under free vibration for cantilever case 
 

 

 

Fig.17 shows a cantilever beam having rectangular cross section, which is subjected to bending 

vibration by giving a small initial displacement at the free end; and Fig. 18 depicts a cantilever 

beam under the free vibration. 

 The boundary conditions for a cantilever beam (Fig. 17) are given by; 

                                     
( )

0, ( ) 0, 0
dY x

at x Y x
dx

    

                                     
2 3

2 3

( ) ( )
, 0, 0
d Y x d Y x

at x l
dx dx

    

 
For a uniform beam under free vibration from equation, we get 

                                   
4

4

4

( )
( ) 0

d Y x
Y x

dx
   

 

With                         
2

4 m

EI


   
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The mode shapes for a continuous cantilever beam is given as 

      ( ) sin sinh sin sinh cos cosh cos coshn n n n n n n n n nf x A L L x x L L x x              

Where 

41,2,3.....n and L n     

The circular natural frequency ωnf given in closed form, from above equation of motion and 

boundary conditions can be written as, 

                                                         
2

4 m

EI


   

where, 

                                                1.875,4.694,7.885   

 

Fig 18: mode shapes 
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Calculation of experimental natural frequency 

  

To observe the natural frequencies of the cantilever beam subjected to small initial disturbance 

experimentally up to third mode, the experiment was conducted with the specified cantilever 

beam specimen.The data of time history (Displacement-Time), and FFT plot was recorded. The 

natural frequencies of the system can be obtained directly by observing the FFT plot. The 

location of peak values relates to the natural frequencies of the system. Fig. below shows a 

typical FFT plot. 

 
Fig 19: Typical example of a FFT 

 

Experimental Setup 

In our experiment we will use digital phosphor oscilloscope (model DPO 4034) for data 

acquisition. 

Accelerometer is a kind of transducer to measure the vibration response (i.e., acceleration, 

velocity and displacement). Data acquisition system acquires vibration signal from the 

accelerometer, and encrypts it in digital form. Oscilloscope acts as a data storage device and 

system analyzer. It takes encrypted data from the data acquisition system and after processing 

(e.g., FFT), it displays on the oscilloscope screen by using analysis software.  
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Fig 20:  Experimental setup for a cantilever beam 
 

 

Fig. shows an experimental setup of the cantilever beam. It includes a beam specimen of 

particular dimensions with a fixed end and at the free end an accelerometer is clamped to 

measure the free vibration response. The fixed end of the beam is gripped with the help of 

clamp. For getting defined free vibration cantilever beam data, it is very important to confirm 

that clamp is tightened properly; otherwise it may not give fixed end conditions in the free 

vibration data. 

 
Fig 21: A Closed View Of Accelerometer 
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 Experimental Procedure 

 

     1. A beam of a particular material (steel, aluminum or copper), dimensions (L, w, d) and 

transducer (i.e., measuring device, e.g. strain gauge, accelerometer, laser vibrato meter) was 

chosen. 

  
    2.  One end of the beam was clamped as the cantilever beam support. 

  
    3.  An accelerometer (with magnetic base) was placed at the free end of the cantilever beam , 

to observe the free vibration response (acceleration). 

  
    4.  An initial deflection was given to the cantilever beam and allowed to oscillate on its own. 

To get the higher frequency it is recommended to give initial displacement at an arbitrary 

position apart from the free end of the beam (e.g. at the mid span). 

  
    5.  This could be done by bending the beam from its fixed equilibrium position by application 

of a small static force at the free end of the beam and suddenly releasing it, so that the beam 

oscillates on its own without any external force applied during the oscillation. 

  
    6.  The free oscillation could also be started by giving a small initial tap at the free end of the 

beam. 

  
    7.  The data obtained from the chosen transducer was recorded in the form of graph 

(variation of the vibration response with time). 

  
    8.  The procedure was repeated for 5 to 10 times to check the repeatability of the 

experimentation. 

  
    9.  The whole experiment was repeated for different material, dimensions, and measuring 

devices. 

  
  10.  The whole set of data was recorded in a data base. 
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Results 

Good agreement between the theoretically calculated natural frequency and the experimental 

one is found. The correction for the mass of the sensor will improve the correlation better. The 

present theoretical calculation is based on the assumption that one end of the cantilever beam 

is properly fixed. However, in actual practice it may not be always the case because of flexibility 

in support. 

              The experimental values obtained are 5.21 Hz and 32.4 Hz for first and second modes 

respectively. 

 
Fig 22: FFT plot obtained 
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Verification and validation  

A mild steel beam that is clamped at one end, with the following dimensions. 

Length 0.48 m 

Width 0.032 m 

Height 0.002 m 

The mild steel used for the beam has the following material properties. 

Density 7856 kg/m^3 

Young’s Modulus 210x10^9 Pa 

Poisson Ratio 0.3 

 

The theoretical values of the natural frequencies were found to be 4.56 Hz and 28.55 Hz for first 
and second mode with an error of 14.3% and 13.48% respectively. 
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6. CONCLUSION 
 
 
In this report, we compared the Euler-Bernoulli and Timoshenko models by using ANSYS and 
experimentally .The equation of motion and the boundary conditions were obtained and the 
natural frequencies were also obtained for different modes. 
                      It can be found out that Euler-Bernoulli equation is valid for long and slender 
beams where we neglect shear deformation effects and rotational effects. Timoshenko beam 
theory is valid for short and clubby beams. In this model shear deformation is taken into 
account. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



30 
 

 
References 
 
 
 
1. SEON M. HAN, HAYM BENAROYA AND TIMOTHY WEI, 
DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES:   
Mechanical and Aerospace Engineering, Rutgers, the State University of New Jersey, 
Piscataway, NJ 08854; S.A.  
Journal of Sound and vibration (1999) 225(5), 935}988 

 

2. Majkut, Leszek 
 
FREE AND FORCED VIBRATIONS OF TIMOSHENKO BEAMS DESCRIBED BY SINGLE DIFFERENCE 
EQUATION  
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 
Cracow, Poland 

JOURNAL OF THEORETICAL AND APPLIED MECHANICS 47, 1, pp. 193-210, Warsaw 2009 

 
3.R. DAVIS. R. D. HENSHELL AND G. B. WARBURTON A TIMOSHENKO BEAM ELEMENT 
 
Department of Mechanical Engineering, University of Nottingham, Nottingham NG7 2RD, 
England (Received 20 March 1972)  
Journal of Sound and Vibration (1972) 22 (4), 475-487 

 

4. Sampaio, Rubens; Cataldo, Edson 
 
Timoshenko Beam with Uncertainty on the Boundary      Conditions Paper accepted September, 
2008. 
 
5. Cornell.edu.in 
 Ansys tutorials 
 
6. Vlab.co.in 
 Virtual experimentation for free vibration of cantilever beam. 


