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ABSTRACT 
 
 

Numerous advantages attained by integrating Distributed Generation (DG) in distribution 

systems. These advantages include decreasing power losses and improving voltage profiles. 

Such benefits can be achieved and enhanced if DGs are optimally sized and located in the 

systems. This theses presents a distribution generation (DG) allocation strategy to improve 

node voltage and power loss of radial distribution systems using genetic algorithm (GA). The 

objective is to minimize active power losses while keep the voltage profiles in the network 

within specified limit. In this thesis, the optimal DG placement and sizing problem is 

investigated using two approaches. First, the optimization problem is treated as single-objective 

optimization problem, where the system’s active power losses are considered as the objective 

to be minimized. Secondly, the problem is tackled as a multi-objective one, focusing on total 

power loss as well as voltage profile of the networks. This approach finds optimal DG active 

power and optimal OLTC position for tap changing transformer. Also uncertainty in load and 

generation are considered. Thus, in this work, the load demand at each node and the DG power 

generation at candidate nodes are considered as a possibilistic variable represented by two 

different triangular fuzzy number. A 69-node radial distribution system and 52-node practical 

radial systems are used to demonstrate the effectiveness of the proposed methods. The 

simulation results shows that reduction of power loss in distribution system is possible and all 

node voltages variation can be achieved within the required limit if DG are optimally placed in 

the system. Induction DG placement into the distribution system also give a better performance 

from capacitor bank placement. In modern load growth scenario uncertainty load and 

generation model shows that reduction of power loss in distribution system is possible and all 

node voltages variation can be achieved within the required limit without violating the thermal 

limit of the system. 
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CHAPTER-1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION 

The modern power distribution network is constantly being faced with an ever growing 

load demand, this increasing load is resulting into increased burden and reduced voltage [1]. 

The distribution network also has a typical feature that the voltage at nodes (nodes) reduces if 

moved away from substation. This decrease in voltage is mainly due to insufficient amount of 

reactive power. Even in certain industrial area critical loading, it may lead to voltage collapse. 

Thus to improve the voltage profile and to avoid voltage collapse reactive compensation is 

required [1-2]. The X/R ratio for distribution levels is low compared to transmission levels, 

causing high power losses and a drop in voltage magnitude along radial distribution lines [1-

3]. It is well known that loss in a distribution networks are significantly high compared to that 

in a transmission networks. Such non-negligible losses have a direct impact on the financial 

issues and overall efficiency of distribution utilities. The need of improving the overall 

efficiency of power delivery has forced the power utilities to reduce the losses at distribution 

level. Many arrangements can be worked out to reduce these losses like network 

reconfiguration, shunt capacitor placement, distributed generator placement etc. [1-3]. The 

distributed generators supply part of active power demand, thereby reducing the current and 

MVA in lines. Installation of distributed generators on distribution network will help in 

reducing energy losses, peak demand losses and improvement in the networks voltage profile, 

networks stability and power factor of the networks [3, 4][9-10]. 

Distributed generation (DG) technologies under smart grid concept forms the backbone 

of our world Electric distribution networks [5] [10]. These DG technologies are classified into 

two categories: (i) renewable energy sources (RES) and (ii) fossil fuel-based sources. 

Renewable energy source (RES) based DGs are wind turbines, photovoltaic, biomass, 

geothermal, small hydro, etc. Fossil fuel based DGs are the internal combustion engines (IC), 

combustion turbines and fuel cells [3] [6-7]. Environmental, economic and technical factors 

have a huge role in DG development. In accord with the Kyoto agreement on climate change, 
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many efforts to reduce carbon emissions have been taken, and as a result of which, the 

penetration of DGs in distribution systems rises [8]. Presence of Distributed generation in 

distribution networks is a momentous challenge in terms of technical and safety issues [12-

14]. Thus, it is critical to evaluate the technical impacts of DG in power networks. Thus, the 

generators are needed to be connected in distributed systems in such a manner that it avoids 

degradation of power quality and reliability. Evaluation of the technical impacts of DG in the 

power networks is very critical and laborious. Inadequate allocation of DG in terms of its 

location and capacity may lead to increase in fault currents, causes voltage variations, interfere 

in voltage-control processes, diminish or increase losses, increase system capital and operating 

costs, etc. [13]. Moreover, installing DG units is not straightforward, and thus the placement 

and sizing of DG units should be carefully addressed [13-14]. Investigating this optimization 

problem is the major motivation of the present thesis research. 

DG allocation is basically a complex combinatorial optimization issue which requires 

concurrent optimization of multiple objectives [15], for instance minimizations of real and 

reactive power losses, node voltage deviation, carbon emanation, line loading, and short circuit 

capacity and maximization of network reliability etc. The goal is to determine the optimal 

location(s) and size(s) of DG units in a distribution network. The optimization is carried out 

under the constraints of maximum DG sizes, thermal limit of network branches, and voltage 

limit of the nodes [14-15]. In [17], sensitivity analysis had been used for finding the optimal 

location of DG. In [18], the optimal location of DGs was predicted by finding V-index. In [19], 

Loss sensitivity factor had been used for finding the optimal location of DGs. There are 

numerous optimization techniques used in the literature. In [16], an analytical approach to 

determine the optimal location of DG is presented. In most of the current works, population 

based evolutionary algorithms are used as solution strategies. This includes genetic algorithm 

(GA) [20-24], evolutionary programming [25], and particle swarm optimization [10] [26-29] 

etc. The advantages of population-based meta-heuristics algorithms such as GA and PSO are 

that a set of non-dominated solutions can be found in a single run because of their multi-point 

search capacity. They are also less prone to dimensionality problems; however, convergence is 

not always guaranteed.  
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In most of the planning models, the optimal distribution network is determined based on 

a deterministic load demand which is usually obtained from a load forecast. The optimal DG 

power generation of a distribution network is determined based on the DG generation (i.e., 

electric utilities and customers) and weather forecast in the form of wind or solar power 

generation. However, such a forecast is always subject to some error. Since the operating 

conditions (e.g. node voltage, branch current, illumination of sun, wind speed, etc.) of any 

distribution network depend on the load, a network operating with loads that differ from the 

nominal ones may be subject to violations of the acceptable operating conditions [1-3] [43]. 

Also the placement of the DG units mainly the Renewable energy sources placement, is 

affected by several factors such as wind speed, solar irradiation, environmental factors, 

geographical topography, political factors, etc. For example, wind generators or turbines cannot 

be installed near residential areas, because of the interference in the form of public reactions 

and legislations from environmental organisations. Another issue is application of the plug-in 

electric vehicle (PEV) which is being paid more attention to [44-46]. However, there are 

several factors or uncertainties that can possibly lead to probable risks in determining the 

optimal siting and sizing of DGs in distribution system planning [47]. Some of the 

uncertainties are possibilistic output power of a PEV due to its alteration of 

charging/discharging schedule [48-50], wind power unit due to frequent variable wind speed, 

from a solar generating source due to the possibilistic illumination intensity, volatile fuel 

prices and future uncertain load growth [51-52]. The most essential uncertainty to account for 

the time-varying characteristics of both generation and demand of power are these increasing 

penetrations of variable renewable generators with wind power [47] [53], being the most 

noteworthy of them.   
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1.2 OBJECTIVE OF THE WORK 

An innovative proposal for DG power management approach incorporating optimization 

algorithm for a group of DG units is depicted in this work. A recent load flow technique (i.e. 

Forward/Backward load flow method) for a radial distribution using BIBC and BCBV 

matrix has been used. The objective functions formulated in this work are minimizations of 

network power loss and node voltage deviation. In this study, load demand uncertainty (LDU) 

and DG power generation uncertainty (PGU) is incorporated into network planning to 

investigate its overall influence on planned networks. The load demand and the generation 

uncertainties are modelled by triangular fuzzy numbers, providing degrees of membership to 

all possible values of the load demand and DG power generation for each and candidate node 

respectively. The fuzzified objective functions are defuzzified using fuzzy removal technique 

so as to compare two solutions. GA based on adaptive crossover and mutation probabilities is 

used as the solution strategy. An adaptive GA is also proposed for DG allocation problem.  

Two different types of DG units are considered: (a) synchronous generators and (b) induction 

generators. Their performances are compared. The results obtained with multiple simulation 

runs are shown and statistically analysed. The simulation results of an IEEE 69-node reliability 

test network [24] [35] and a 52-node practical Indian network [34] are shown. 
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1.3 LITERATURE REVIEW 

1.3.1 Distribution Networks and Distributed Generation 

Classically, most distribution systems (DSs) are radial in nature, contain only one power 

source, and serve residential, commercial and industrial loads. DSs are also operated at the 

lowest voltage levels in the overall power networks [1]. Power is delivered in bulk to 

substations. The substation is usually where the transmission and distribution networks meet. 

The backbone of the distribution networks typically is comprised of 3-phase mains. Laterals 

are tapped off these mains and are usually single-phase (unless 3-phase service is required by 

a customer) [1-2]. In addition, the lines used for DSs tend to have a higher resistance to 

impedance ratio (R/X) than the lines in transmission networks [2]. The modern power 

distribution network is constantly being faced with a very rapid growing load demand, this 

increasing load is resulting into increased burden and reduced voltage also effect on the 

operation, planning, technical and safety issues of distribution networks [9-11]. This power 

losses in distribution networks have become the most concerned issue in power losses analysis 

in any power networks. In the effort of reducing power losses within distribution networks, 

reactive power compensation has become increasingly important as it affects the operational, 

economical and quality of service for electric power networks [10-11]. The planning should 

be such that the designed system should economically and reliably take care of spatial and 

temporal load growth, and service area expansion in the planning horizon [12-13]. In [12], 

various distribution networks planning models presented. The proposed models are grouped 

in a three-level classification structure starting with two broad categories, i.e., planning 

without and with reliability considerations. Planning of a distribution system relies on upon 

the load flow study. The load flow  will be  imperative  for  the  investigation  of  

distribution networks,  to  research  the  issues identified with planning, outline and the 

operation and control. Thusly, the load flow result of distribution networks ought to have 

ronodet and time proficient qualities. The load flow for distribution system is not alike 

transmission system due to some in born characteristics of its own. There are few techniques 

are available in literature.  Ghosh and Das [68] proposed a method for the load flow of radial 
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distribution network using the evaluation based on algebraic expression of receiving end 

voltage. Dharmasa et al. [69] present, non-iterative load flow solution for voltage improvement 

by Tap changer Transformer in the distribution networks. Teng et al. [70] has proposed the 

load flow of radial distribution networks employing node-injection to branch-current (BIBC) 

and branch-current to node-voltage (BCBV) matrices. 

With the deregulation of energy markets, escalating costs of fossil fuels, and socio-

environmental pressures, power networks planners are starting to turn away from the 

centralized power networks topology by installing smaller, renewable-powered generators at 

the distribution level [3-5] which is known as distributed generation. These DG technologies 

are classified into two categories: (i) renewable energy sources (RES) and (ii) fossil fuel-based 

sources. Renewable energy source (RES) based DGs are wind turbines, photovoltaic, biomass, 

geothermal, small hydro, etc. Fossil fuel based DGs are the internal combustion engines (IC), 

combustion turbines and fuel cells [3] [6-7] [37]. Distributed generators (DGs) have the 

advantages of having low environmental emissions, being more flexible in installation and 

with shorter gestation periods [37]. The technologies behind these renewable-powered 

generators are evolving to make these generators more utility-friendly (and thus more 

economical). Some of the DG technologies compete with conventional centralized generation 

technologies in operational aspects and cost. DG allocation in distribution system is basically 

a complex combinatorial optimization issue which requires concurrent optimization of multiple 

objectives [15], for instance minimizations of real and reactive power losses, node voltage 

deviation, carbon emanation, line loading, and short circuit capacity and maximization of 

network reliability etc. Presently, a large number of research papers are available on the subject 

of the DG allocation for power loss, voltage improvement, etc. [5-11] [17-18] [30-34]. Kashem 

et al. [9] presented a sensitivity indices to indicate the changes in power losses with respect to 

DG current injection. I Erlich et al. [10] present a new design methodology for managing 

reactive power from a group of distributed generators placed on a radial distribution networks. 

In [17], sensitivity analysis had been used for finding the optimal location of DG. In [18], the 

optimal location of DGs was predicted by finding V-index. In [19], Loss sensitivity factor had 

been used for finding the optimal location of DGs.  
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More and more DGs are currently being integrated into the distribution networks which 

have affected the operation, planning, technical and safety issues of distribution networks [10-

14]. For example, through power electronics, these smaller generators can produce and absorb 

reactive power [40-41]. This issue of reactive power support is of great concern for utilities, 

especially for WEGs [42]. Thus, it is critical to evaluate the technical impacts of DG in power 

networks. Thus, the generators are needed to be connected in distributed systems in such a 

manner that it avoids degradation of power quality and reliability. Evaluation of the technical 

impacts of DG in the power networks is very critical and laborious. Inadequate allocation of 

DG in terms of its location and capacity may lead to increase in fault currents, causes voltage 

variations, interfere in voltage-control processes, diminish or increase losses, increase system 

capital and operating costs, etc. [13]. Moreover, installing DG units is not straightforward, and 

thus the placement and sizing of DG units should be carefully addressed [13-14].  

Optimization is a process by which we try to find out the best solution from set of 

available alternative. In DG allocation problem, DG locations and sizes must be optimize in 

such a way that it give most economical, efficient, technically sound distribution system. In 

general distribution system have many nodes and it is very hard to find out the optimal DG 

location and size by hand. There are numerous optimization techniques used in the literature. 

Among the different solution strategies deterministic algorithm such as dynamic programming, 

mixed integer programming, nonlinear programming and Benders decomposing have been 

used. In [16], an analytical approach to determine the optimal location of DG is presented. 

However, more recent studies have mostly used heuristic algorithms, such as fuzzy 

mathematical programming [43], a genetic algorithm (GA) [20-25], a Tabu search (TS) [54], 

an artificial immune system (AIS) and evolutionary programming [25], partial swarm 

optimization [10] [17] [26-29].The advantages of population-based meta-heuristics algorithms 

such as GA and PSO are that a set of non-dominated solutions can be found in a single run 

because of their multi-point search capacity. They are also less prone to dimensionality 

problems; however, convergence is not always guaranteed.  

Genetic Algorithms offer a ‘one size fits all’ solution to problem solving involving 

search [75]. Unlike other conventional search alternatives, GA’s can be applied to most 
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problems, only needing a good function specification to optimize and a good choice of 

representation and interpretation. This, coupled with the exponentially increasing speed/cost 

ratio of computers, makes them a choice to consider for any search problem.  

Genetic Algorithms (GAs) are versatile exploratory hunt processes focused around the 

evolutionary ideas of characteristic choice and genetics. A genetic algorithm is  

a heuristically guided random search technique that concurrently evaluates  

thousands of postulated solutions. Biased random selection and mixing of the  

evaluated searches is then carried out in order to progress towards better solutions.  

The coding and manipulation of search data is based upon the operation of genetic  

DNA and the selection process is derived from Darwin’s survival of the fittest’.  

Search data are usually coded as binary strings called chromosomes, which 

collectively form populations [75]. Evaluation is carried out over the whole population  

and involves the application of, often complex ‘fitness’ functions to the string of  

values (genes) within each chromosome. Typically, mixing involves recombining  

the data that are held in two chromosomes that are selected from the whole  

population. 

The traditional crossover like partly matched crossover, order crossover and cycle 

crossover, etc. and mutation would make some unfeasible solution to be created. In the 

traditional crossover and mutation, crossover probability and mutation probability are not 

adaptive in nature and which have no flexibility. For this reason when a basic GA optimization 

process trapped in a local minima these crossover and mutation probability cannot emerge from 

the local minima and GA optimization give a premature result. There are numerous adaptive 

techniques used in the literature [76-76]. In [26], based on the mechanism of biological DNA 

genetic information and evolution, a modified genetic algorithm (MDNA-GA) is proposed. 

The proposed adaptive mutation probability is dynamically adjusted by considering a measure 

called Diversity Index (DI). It is defined to indicate the premature convergence degree of the 

population. In [77], an Improved Genetic Algorithm (IGA) is proposed. The self-adaptive 

process have been employed for crossover and mutation probability in order to improve 

crossover and mutation quality. In [78], an Improved Genetic Algorithm (IGA) based on 
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hormone modulation mechanism is proposed in order to ensure to create a feasible solution, a 

new method for crossover operation is adopted, named, partheno-genetic operation (PGO). . 

The adaptive approaches proposed by Vedat Toğan and Ayşe T. Daloğlu [79] for crossover 

and mutation operator of the GA. The performance of genetic algorithms (GA) is affected by 

various factors such as coefficients and constants, genetic operators, parameters and some 

strategies. Member grouping and initial population strategies are also examples of factors. 

While the member grouping strategy is adopted to reduce the size of the problem, the initial 

population strategy have been applied to reduce the number of search to reach the optimum 

design in the solution space. In this study, two new self-adaptive member grouping strategies, 

and a new strategy to set the initial population have been discussed. Chaogai Xue, Lili Dong 

and Junjuan Liu [80] proposed an adaptive approaches for crossover and mutation operator of 

the GA optimize enterprise information system (EIS) structure based on time property. 

1.3.2 Uncertainty in Distribution Planning 

In most of the planning models, the optimal distribution network is determined based on 

a deterministic load demand which is usually obtained from a load forecast. The optimal DG 

power generation of a distribution network is determined based on the DG generation (i.e., 

electric utilities and customers) and weather forecast in the form of wind or solar power 

generation. However, such a forecast is always subject to some error. Since the operating 

conditions (e.g. node voltage, branch current, illumination of sun, wind speed, etc.) of any 

distribution network depend on the load, a network operating with loads that differ from the 

nominal ones may be subject to violations of the acceptable operating conditions [1-2] [43]. 

Also the placement of the DG units mainly the Renewable energy sources placement, is 

affected by several factors such as wind speed, solar irradiation, environmental factors, 

geographical topography, political factors, etc. For example, wind generators or turbines cannot 

be installed near residential areas, because of the interference in the form of public reactions 

and legislations from environmental organisations. Another issue is application of the plug-in 

electric vehicle (PEV) which is being paid more attention to [44-46]. However, there are 

several factors or uncertainties that can possibly lead to probable risks in determining the 
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optimal siting and sizing of DGs in distribution system planning [47]. Some of the 

uncertainties are possibilistic output power of a PEV due to its alteration of 

charging/discharging schedule [48-50], wind power unit due to frequent variable wind speed, 

from a solar generating source due to the possibilistic illumination intensity, volatile fuel 

prices, uncertain electricity price and future uncertain load growth [51-52] [57]. The most 

essential uncertainty to account for the time-varying characteristics of both generation and 

demand of power are these increasing penetrations of variable renewable generators with wind 

power [43] [47] [53], being the most noteworthy of them. In [53], the multiple objective 

functions are aggregated to form a single objective function so as to optimize them. However, 

in [54], the multiple objectives are simultaneously optimized to obtain a set of non-dominated 

solutions, in which no solution is superior or inferior to others. The most of the approaches are 

based on the constant power load model, except in [43], in which voltage dependent load model 

is used. 

1.4 ORGANIZATION OF THE REPORT 

The work carried out in this Report has been summarized in six chapters.  

The Chapter 2 highlights the brief introduction, summary of work carried out by various 

researchers, and the outline of the thesis is also given in this chapter. The Chapter 3 explains 

the Forward/Backward Load Flow Technique of distribution networks using BIBC and 

BCBV matrix, Distributed generator planning, Genetic Algorithm. The Chapter 4 briefly  

describes  how to identify the  candidate  nodes  for  distributed generator placement,  

objective  function  for overall loss minimization of distribute on networks, steps for 

Distributed Generator (DG) Allocation using Genetic  Algorithm, and results and discussion 

pertaining to various test cases. The Chapter 5 details the uncertainty in distribution 

planning. The conclusions and the scope of further work are detailed in Chapter 6.
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CHAPTER-2 

MODELLING AND ALLOCATION OF DG IN 

DISTRIBUTION NETWORKS 
 

2.1 INTRODUCTION 

Loss Minimization in power networks has assumed greater significance, in light of the fact 

that enormous amount of generated power is continuously squandered as losses. Studies have 

demonstrated that 70% of the aggregate networks losses are happening in the distribution 

networks, while transmission lines represent just 30% of the aggregate losses [1]. The 

pressure of enhancing the overall proficiency of  power  delivery  has  forced the  power  

utilities to reduce  the  loss,  particularly  at  the distribution level. The following approaches 

are embraced for reduction of distribution networks losses [1-2]. 

 Reinforcement of the feeders. 

 Reactive power compensation. 

 High voltage distribution networks.  

 Grading of conductor. 

 Feeder reconfiguration. 

 Distributed Generator placement. 

Smart grid concept is expected to become a backbone in Europe future electricity network [10]. 

In achieving a Smart Grid concept, a large number of distributed generators (DG) are needed 

inside distribution network which is prognosed to supply up to 40% of the distribution 

network’s load demand. This substantial number of DG is obliged to take part in enhancing the 

security, reliability and quality of electricity supply by providing active power and other 

subordinate services such as regulating the voltage by providing their reactive supply to the 

network. One of the characteristics of future electricity network under smart grid idea is to 

have an efficient transmission and distribution network that will reduce line losses [3-9]. 

Minimizing losses inside power transport networks will being about easier utilization of fossil 

fuel consequently reduced emanation of air pollutant and greenhouse gasses. Coordinating of 

DG inside distribution network reduces power losses in light of the fact that some share of the 
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required load current from upstream is generously reduce which result lower losses through 

line resistance. Further reduction of losses can be attained by intelligently managing reactive 

power from introduced DG [10]. 

2.2 DISTRIBUTION NETWORK POWER LOSSES 

An active power loss in the line depends on magnitude of the current flows through the line 

and resistance of the line. In ac distribution circuit, due to electric and magnetic field produce 

by the flow of time varying current, inductance and capacitance might be noteworthy. At the 

point when current flow through these two components, reactive power which transmit no 

energy is produced. Reactive current flow in the line adds to extra power losses in addition to 

active power losses mention previously.  Integration of DG already reduced active power losses 

because some portion of power from upstream is already reduced. Losses reduction can be 

further reduced by controlling the voltage profiles in the network. In conventional practice, 

capacitor banks are added in the distribution network to control the flow of this reactive power. 

These capacitor banks can be switched in and out using voltage regulating relay to deliver 

reactive power in steps but it lowered power quality delivered to the customer as it leads to step 

changes in node-bar voltage. 

푃 (푥) = 	 ∑ 3 퐼 푅 															∀푖 = 푁                                    (1.1) 

2.3  DISTRIBUTED GENERATION 

2.3.1 Operational and Planning Issues with DGs 

Distributed Generators (DG) are crisply characterized as "electric power sources joined 

specifically to the distribution system or on the client side of the meter" [3]. This definition 

for the most part obliges a variety of technologies and execution crosswise over diverse utility 

structures, while evading the pitfalls of utilizing more stringent criteria focused around 

standards, for example, power ratings and power delivery area. Distribution planning includes 

the investigation of future power delivery needs and options, with an objective of creating a 

precise course of action of increases to the networks required to attain agreeable levels of 

service at a minimum overall cost [4]. Executing DGs in the distribution system has numerous 
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profits, yet in the meantime it confronts numerous restrictions and limitations. DG units, being 

adaptable, could be built to meet immediate needs and later be scaled upwards in capacity to 

take care of future demand growth. Versatility permits DG units to reduce their capital and 

operations costs and therefore substantial capital is not tied up in investments or in their 

support infrastructure. Investment funds can likewise be accomplished since infrastructure 

updates, (for example, feeder capacity extensions) might be deferred or altogether eliminated. 

From a client perspective, funds may be gathered from the extra decision and flexibility that 

DGs permit with respect to energy purchases [3-6]. On the other hand, then again, installing 

DG in the distribution networks can also increase the complexity of networks planning. DG 

must be satisfactorily introduced and facilitated with the existing protective devices and 

schemes. Higher penetration levels of DG may cause conventional power flows to alter 

(reverse direction), since with generation from DG units, power may be injected at any point 

on the feeder. New planning systems must guarantee that feeders can suit changes in load 

configuration. These limitations and problems must be settled before picking DG as a planning 

alternative. Some of the associated issues in distribution networks with penetration of DG 

units are as discussed next. 

2.3.2 DG Operation 

There are numerous components influencing DG operation, for example, DG technologies, 

types, operational modes, and others. DGs installed in the distribution network can be owned, 

operated and controlled by either an electric utility or a customer. In the event that DG is 

utility-claimed, then its working cycle is well known as is controlled by the utility. The state 

of the DG working cycle relies on upon the motivation behind its utilization in the distribution 

system [3-9]. For example: 

a) Limited operating time units for peak crest load shaving (Internal combustion engines, small 

fuel cell units). 

b) Limited operating time units to impart the load to diverse operating cycles (Micro-turbines 

and fuel cells). 

c) Base load power supply (Micro-turbines and large fuel cells). 
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d) Renewable energy units influenced by ecological conditions, for example, wind speed and 

sunlight respectively (Wind generators and solar cells) 

On the other hand, customer-owned DG operating cycles are not known to the operators unless 

there is a unit commitment agreement between the electric utility and the customer, which is 

not very likely. Thus, small customer owned DG operating cycles are acknowledged to be 

capricious processes from the perspective of the electric utility. The utility has no control on 

their operation. This uncertainty changes the planning and operation problem from a 

deterministic problem to a non-deterministic one. 

2.3.3 DG Siting 

There are no agreeable limitations on location of DG units in the distribution system, as there 

are no geological limitations as on account of substations. Subsequently, the main limitations 

emerge from electrical necessities. In the event that the DG is client possessed then the utility 

has no control on its location in light of the fact that it is put at the client's site. In the event 

that the DG is utility-possessed then the choice of its location is focused around a few electrical 

factors, for example: 

• Providing the required extra load demand 

• Reducing networks losses 

• Enhancing networks voltage profile and expanding substations capacities 

Likewise, DG units must be put on feeders that don't affect the existing protective device co-

ordinations and ratings. 

2.3.4 DG Sizing 

There are no clear guidelines on selecting the size and number of DG units to be introduced 

in the network. However, a few aspects can be guiding the choice of DG unit size selection:  

a) To enhance the networks voltage profile and reduce power losses, it is sufficient to utilize 

DG units of aggregate capacity in the reach of 10-20% of the aggregate feeder demand [3]. 

While more DG capacity could be utilized to reduce the substation loading [3-9]. 
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b) For reliability purposes if there should arise an occurrence of islanding, the DG size must 

be greater than double the required island load. The DG unit size can affect networks 

protection coordination schemes and devices as it affects the value of the short circuit 

current during fault. 

Hence, as the DG size increases, the protection devices, fuses, re-closers and relays settings 

have to be readjusted and/or overhauled [1-2]. 
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2.4 SUMMARY 

In this chapter discusses the relevant issues and aims at providing a general definition for 

distributed power generation in competitive electricity markets. In general, DG can be defined 

as electric power generation within distribution networks or on the customer side of the 

network. In addition, the terms distributed resources, distributed capacity and distributed utility 

are discussed. 
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CHAPTER-3

INCORPORATION OF DG MODEL IN DISTRIBUTION 

NETWORK LOAD FLOWS

3.1  INTRODUCTION 

The  load flow  of  a  power  system gives  the  unfaltering  state  result  through which 

different  parameters  of  investment  like  currents,  voltages,  losses  and so on  can be 

figured. The load flow  will be  imperative  for  the  investigation  of  distribution 

networks,  to  research  the  issues identified with planning, outline and the operation 

and control. A few provisions like ideal distributed generation placement in distribution 

networks and distribution automation networks, obliges rehashed load flow result. 

Numerous systems such Gauss-Seidel, Newton-Raphson are generally appeared for 

convey the load flow of transmission networks [1]. The utilization of  these systems for  

distribution  networks may not be worthwhile  in light of the fact that  they  will be  

generally  focused around the general  meshed topology  of  a  normal  transmission  

networks  although  most  distribution networks structure are likely in tree, radial or 

weakly meshed in nature. R/X ratio of distribution networks is high respect to 

transmission system, which cause the distribution networks to be badly molded for 

ordinary load flow techniques[1-2].  Some other inborn aspects of electric distribution 

networks are (i) radial or weakly meshed structure, (ii) unbalanced operation and unbalanced 

distributed loads, (iii) large number of nodes and branches, (iv) has wide range of resistance 

and reactance values and (v) distribution networks has multiphase operation. 

The effectiveness of the optimization problem of distribution networks relies on upon the 

load flow algorithm on the grounds that load flow result need to run for ordinarily. Thusly, 

the load flow result of distribution networks ought to have ronodet and time proficient 

qualities. A technique which can discover the load flow result of radial distribution networks 

specifically by utilizing topological normal for distribution system [69-70] [72-74] is 

utilized. In this strategy, the plan of tedious Jacobian matrix or admittance matrix, which are 

needed in customary techniques, is stayed away from. This system is illustrated in a nutshell. 
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3.2  LOAD FLOW OF RADIAL DISTRIBUTION NETWORKS  
A feeder brings power from substation to load points/nodes in radial distribution 

networks (RDN). Single or multiple radial feeders are used in this planning approach. 

Basically, the RDN total power losses can be minimized by minimizing the branch power flow 

or transported electrical power from transmission networks (i.e. some percentage of load are 

locally meeting by local DG). To determine the total power loss of the network or each feeder 

branch and the maximum voltage deviation are determined by performing load flow. The 

Forward/Backward Sweep Load Flow technique is used in this case. The impedance of a feeder 

branch is computed by the specified resistance and reactance of the conductors used in the 

branch construction. The Forward/Backward Sweep Load Flow method consist two steps (i) 

backward sweep and (ii) forward sweep. 

Backward sweep: In this step, the load current of each node of a distribution network having 

N number of nodes is determined as: 

퐼 ̅ (푚) = ( ) ( )
∗( )	

																	[	푚 = 1,2,3 … … …푁]                    (3.1) 

where, 푃 (푚) and 푄 (푚) represent the active and reactive power demand at node m and the 

overbar notation (푥̅) indicates the phasor quantities, such as 퐼 ̅ ,푉∗.		Then, the current in each 

branch of the network is computed as: 

퐼(̅푚푛) = 퐼 ̅ (푛) + ∑ 	퐼 ̅ (푚)∈                            (3.2) 

where,  the set	Γ consists of all nodes which are located beyond the node n [32].  

Forward sweep: This step is used after the backward sweep so as to determine the voltage at 

each node of a distribution network as follows: 

푉(푛) = 푉(푚)− 퐼(̅푚푛)푍(푚푛)                            (3.3) 

where, nodes n and m represent the receiving and sending end nodes, respectively for the branch 

mn and 푍(푚푛) is the impedance of the branch. 

In this work the estimation methodology utilized within the forward/backward load 

flow is based on (i) equivalent current injections (ECI), (ii) the node-injection to branch-

current matrix (BIBC) and (ii) the branch-current to node-voltage matrix (BCBV). In this 

area, the advancement methodology will be depicted in subtle element. Load flow for 
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distribution  networks  under balanced operating condition  with constant  power  load model  

can  be  under  remained through  the accompanying focuses: 

3.2.1 Equivalent Current Injection 

The technique is based on the equivalent current injection of a node in distribution 

networks, the equivalent-current-injection model is more practical [69-70] [73]. For any 

node of distribution networks, the complex load 푆  is expressed by 

푆 = 푃 + 푗푄 																							푖 = 1, … … …푁 																								             (3.4) 

Now, the equivalent current injection is expressed as  

퐼 = 퐼 (푉 ) + 푗퐼 (푉 ) = 				 			 ∗
																		푖 = 1, … … …푁 																						           (3.5) 

For the load flow solution equivalent current injection (ECI) at the k-th iteration at i-th node 

is computed as 

퐼 = 퐼 (푉 ) + 푗퐼 (푉 ) = 				 			
∗
		               (3.6) 

3.2.2 Formation of BIBC Matrix  

The power injections at every node might be transformed into the equivalent current 

injections using the eq. (3.6) and applying Kirchhoff’s Current Law (KCL) at each and 

every node a set of comparisons could be composed. Now each and every branch currents 

of the network can be shaped as a function of the equivalent current injections (ECI) [69-

70] [73]. As shown in Figure 3.1, the branch currents IB5, IB4, IB3, IB2 and IB1 can be 

expressed as: 

퐼퐵 = 퐼                     (3.7) 

퐼퐵 = 퐼                     (3.8) 

퐼퐵 = 퐼 + 퐼                     (3.9) 

퐼퐵 = 퐼 + 퐼 + 퐼 + 퐼                 (3.10) 

퐼퐵 = 퐼 + 퐼 + 퐼 + 퐼 + 퐼                (3.11) 
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From the above equations () the BIBC matrix can be written as: 

⎣
⎢
⎢
⎢
⎡
퐼퐵
퐼퐵
퐼퐵
퐼퐵
퐼퐵 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1	1	1	1	1
0	1	1	1	1
0	0	1	1	0
0	0	0	1	0
0	0	0	0	1⎦

⎥
⎥
⎥
⎤
	

⎣
⎢
⎢
⎢
⎡
퐼
퐼
퐼
퐼
퐼 ⎦
⎥
⎥
⎥
⎤

		               (3.12) 

The general form as of eq. (3.12) can be expressed as: 

[퐼퐵] = [퐵퐼퐵퐶][퐼]                (3.13) 

The detailing of BIBC matrix for distribution networks demonstrated in Figure 3.1 is 

given in eq. (3.13). For general network, the BIBC matrix might be shaped through the 

accompanying steps and the example is done by the help of Figure 3.1:  

Step 1:   Make an initial null BIBC matrix with a dimension of	(푚 × (푛 − 1)). Where m and 

n are the number of branches and nodes available in the network. 

Step 2: initially set i=1 and read the IBi (i=1, 2, 3…m) branch data (i.e. sending end and 

receiving end node) from line-data matrix. If a line section IBi is located between 

Node ‘x’ and Node ‘y’. Check, that the IBi branch section of the network is belongs 

to the first node of the network or not. If it is, then make the (y-1, y-1)-th bit of BIBC 

matrix by ‘+1’. Increment ‘i’ by one or go to the step#3. 

Step 3: If the in step#2 the IBi branch section is not belongs to the first node of the 

network. Then copy the column segment of the ‘(x-1)-th’ node of BIBC matrix 

to the column segment of ‘(y-1)-th’ node and fill (y-1, y-1)-th bit of the BIBC 

 
Figure 3.1.  Simple distribution system 
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matrix by ‘+1’. Increment ‘i’ by one and go to the step#2. This is explained in fig 

3.2 

Step 4: Repeat step#2 and step#3 until all the branches of the network included in to the 

BIBC matrix. 

3.2.3  Formation of BCBV matrix 

The  Branch-Current  to  Node  voltage  (BCBV)  matrix  summarizes  the relation 

between branch  current  and node  voltages.  The relations between the branch currents 

and node voltages can be obtained easily by applying Kirchhoff’s Voltage Law (KVL). 

As shown in Figure 3.1, the voltages of Node 2, 3, and 4 are expressed as: 

푉 = 푉 − 퐼퐵 푍                 (3.14) 

푉 = 푉 − 퐼퐵 푍                 (3.15) 

푉 = 푉 − 퐼퐵 푍                 (3.16) 

Step#1 

0 0 0 0 0 

 i=1 

1 0 0 0 0 

 i=2 

1 1 0 0 0 

→ 

1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  In step#2   Copy 1st column  In step#3 

 

i=3 

1 1 1 0 0 

→ 

1 1 1 0 0 

 i=4 

1 1 1 1 0 

→ 

1 1 1 1 0 
0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Copy 2nd column  In step#3   Copy 2nd column  In step#3 
 

i=5 

1 1 1 0 0 

→ 

1 1 1 1 1 

 

 Branch 
no Sending node Receiving node 

0 1 1 0 0 0 1 1 1 1 
0 0 0 0 0 0 0 1 1 0  1 1 2 
0 0 0 0 0 0 0 0 1 0  2 2 3 
0 0 0 0 0 0 0 0 0 1  3 3 4 

 Copy 2nd column  In step#3 
  4 4 5 
  5 3 6 

 
    Copied column  Updated column 

Figure 3.2. The formation of BIBC matrix, the example is done by the help of Figure 3.1. 
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Substituting equations (3.14) and (3.15) into eqn. (3.16), the voltage of Node 4 can be 

rewritten as:  

푂푟,							푉 = 푉 − 퐼퐵 푍 − 퐼퐵 푍 − 퐼퐵 푍              (3.17) 

From equation it can be seen that the node voltage of the network can be expressed as a 

function of the branch currents, line parameters and main substation voltage. Similar 

approach can be employed for other nodes, and the Branch-Current to Node-Voltage (BCBV) 

matrix can be derived as: 

⎣
⎢
⎢
⎢
⎡
푉
푉
푉
푉
푉 ⎦
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎡
푉
푉
푉
푉
푉 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
푍 					0							0							0						0				
푍 				푍 					0						0						0				
푍 				푍 				푍 			0						0				
푍 				푍 				푍 			푍 		0				
푍 				푍 						0						0					푍 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
퐼퐵
퐼퐵
퐼퐵
퐼퐵
퐼퐵 ⎦

⎥
⎥
⎥
⎤

            (3.18) 

The general form of eq. (3.18) can be expressed as: 

푂푟, [∆푉] = [퐵퐶퐵푉][퐼퐵]               (3.19) 

The formulation of BCBV matrix for distribution networks shown in Figure 3.1 is given eq. 

(3.18) and eq. (3.19). For universal network, the BCBV matrix can be formed through 

the subsequent steps: 

Step 1:   Make an initial null BVBC matrix with a dimension of	((푛 − 1) × 푚). Where m and 

n are the number of branches and nodes available in the network. 

Step 2: initially set i=1 and read the IBi (i=1, 2, 3…m) branch data (i.e. sending end and 

receiving end node) from line-data matrix. If a line section IBi is located between 

Node ‘x’ and Node ‘y’. Check, that the IBi branch section of the network is belongs 

to the first node of the network or not. If it is, then make the (y-1, y-1)-th bit of BVBC 

matrix by the corresponding branch impedance (Zxy). Increment ‘i’ by one or go to the 

step#3. 

Step 3: If the in step#2 the IBi branch section is not belongs to the first node of the 

network. Then copy the row segment of the ‘(x-1)-th’ node of BVBC matrix to 

the row segment of ‘(y-1)-th’ node and fill (y-1, y-1)-th bit of the BVBC matrix 

by the corresponding branch impedance (Zxy). Increment ‘i’ by one and go to the 

step#2. This is explained in Figure 3.2. 
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Step 4: Repeat step#2 and step#3 until all the branches of the network included in the 

BVBC matrix. 

From Figure (3.2) and Figure (3.3), it can be seen that the algorithms for the both BIBC 

and BCBV matrices are virtually identical. Basic formation difference of BIBC  matrix  

and BCBV matrix is that, in BIBC matrix (x-1)-th node column is copied to the column of 

the (y-1)-th node and fill with +1 in the (x-1)-th row and the (y-1)-th node column, while in 

BCBV matrix row of the (x-1)-th node is copied to the row of the (y-1)-th node and fill the 

line impedance (Zxy) in the position of the (y-1)-th node row and the i-th column. 

[BCBV] =

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
1 1 0 0 0
1
1
1

1
1
1

1
1
0

0
1
0

0
0
1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
푍 0
0 푍
0	 			0
0				 0
0				 0

0
0
푍

0
0

0				 0
0				 0
0 				0
푍 0
0 푍 ⎦

⎥
⎥
⎥
⎤
                  (3.20) 

[BCBV] = 	

⎣
⎢
⎢
⎢
⎡
1 1 1 1 1
0 1 1 1 1
0
0
0

0
0
0

1
1
0

1
1
0

0
0
1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
푍 0
0 푍
0	 			0
0				 0
0				 0

0
0
푍

0
0

0				 0
0				 0
0 				0
푍 0
0 푍 ⎦

⎥
⎥
⎥
⎤
                  (3.21) 

[BCBV] = [BIBC][ZD]                               (3.22) 

⎣
⎢
⎢
⎢
⎡
푉
푉
푉
푉
푉 ⎦
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎡
푉
푉
푉
푉
푉 ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
1 1 0 0 0
1
1
1

1
1
1

1
1
0

0
1
0

0
0
1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
푍 0
0 푍
0	 			0
0				 0
0				 0

0
0
푍

0
0

0				 0
0				 0
0 				0
푍 0
0 푍 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
퐼퐵
퐼퐵
퐼퐵
퐼퐵
퐼퐵 ⎦

⎥
⎥
⎥
⎤

          (3.23) 

The general form of eq. (3.23) can be expressed as: 

[∆푉] = [퐵퐶퐵푉][푍퐷][퐼퐵]               (3.24) 

[∆푉] = [퐵퐼퐵퐶] [푍퐷][퐼퐵]               (3.25) 



Chapter 3: Incorporation of DG Model in Distribution System Load Flows  

 

24 
 

 

3.2.4   Solution Methodology 

The development of BIBC and BCBV matrices is clarified in section 3.2.2 and 3.2.3. These 

matrices investigate the topological structure of distribution networks.  Basically the BIBC 

matrix is making an easy relation between the node current injections and branch currents. 

These relation give a simple solution for branch currents variation, which is occurs due to the 

variation at the current injection nodes, these can be obtained directly by using BIBC matrix.   

The BCBV matrix build an effective relations between the branch currents and node voltages. 

The concern variation of the node voltages is produced by the variant of the branch currents. 

These could be discovered specifically by utilizing the BCBV matrix. Joining eqs. (3.13) and 

(3.19),  the  relations  between the  node  current  injections  and node  voltages  could be 

communicated as: 

 [∆푉] = [퐵퐶퐵푉]. [퐵퐼퐵퐶]. [퐼] (3.26) 

Step#1 

0 0 0 0 0 

 i=1 

Z12 0 0 0 0 

 i=2 

Z12 0 0 0 0 

→ 

Z12 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 Z12 0 0 0 0 Z12 Z23 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  In step#2   Copy 1st row  In step#3 
 

i=3 

Z12 0 0 0 0 

→ 

Z12 0 0 0 0 

 i=4 

Z12 0 0 0 0 

→ 

Z12 0 0 0 0 
Z12 Z23 0 0 0 Z12 Z23 0 0 0 Z12 Z23 0 0 0 Z12 Z23 0 0 0 
Z12 Z23 0 0 0 Z12 Z23 Z34 0 0 Z12 Z23 Z34 0 0 Z12 Z23 Z34 0 0 
0 0 0 0 0 0 0 0 0 0 Z12 Z23 Z34 0 0 Z12 Z23 Z34 Z45 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Copy 2nd crow  In step#3   Copy 2nd row  In step#3 
 

i=5 

Z12 0 0 0 0 

→ 

Z12 0 0 0 0 

 

 Branch no Sending 
node 

Receiving 
node Z12 Z23 0 0 0 Z12 Z23 0 0 0 

Z12 Z23 Z34 0 0 Z12 Z23 Z34 0 0  1 1 2 
Z12 Z23 Z34 Z45 0 Z12 Z23 Z34 Z45 0  2 2 3 
Z12 Z23 0 0 0 Z12 Z23 0 0 Z56  3 3 4 

 Copy 2nd row  In step#3 
  4 4 5 
  5 3 6 

 
    Copied row  Updated row 

Figure 3.3. The formation of BVBC matrix, the example is done by the help of Figure 3.1. 
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푁표푤 [퐵퐶퐵푉] = [퐵퐼퐵퐶] . [푍퐷] (3.27) 

∴ [∆푉] = [퐵퐼퐵퐶] . [푍퐷]. [퐵퐼퐵퐶]. [퐼] (3.28) 

∴ [퐷퐿퐹] = [퐵퐶퐵푉][퐵퐼퐵퐶] (3.29) 

∴ [퐷퐿퐹] = [퐵퐼퐵퐶] . [푍퐷]. [퐵퐼퐵퐶] (3.30) 

푇ℎ푒푟푒푓표푟 [∆푉] = [퐷퐿퐹]. [퐼] (3.31) 

The iterative solution for the distribution system load flow can be obtained by solving eqs. 

(3.32)  and (3.33) which are specified below: 

퐼 = 퐼 (푉 ) + 푗퐼 (푉 ) = 				
푃 + 푗푄 			

푉

∗

 (3.32) 

[∆푉 ] = [퐷퐿퐹]. [퐼 ] (3.33) 

[푉 ] = [푉 ] + [∆푉 ] (3.33) 

The new definition as illustrated uses just the DLF matrix to take care of load flow 

problem. Subsequently this strategy is extremely time efficient, which is suitable for on-

line operation and optimization problem of distribution networks. 
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3.3  ALGORITHM FOR DISTRIBUTION NETWORKS LOAD FLOW 

The algorithm steps for load flow solution of distribution networks is given below: 

Step 1: Read the distribution networks line data and bus data. 

Step 2: Calculate the each node current or node current injection matrix. The relationship 

can be expressed as –  

[퐼] =
푆
푉

∗

=
푃 − 푗푄
푉∗  

Step 3: Calculate the BIBC matrix by using steps given in section 3.2.2.   

Step 4: Evaluate the branch current by using BIBC matrix and current injection matrix 

(ECI). The relationship can be expressed as - 

 [퐼퐵] = [퐵퐼퐵퐶][퐼]    

Step 5:  Form the BCBV matrix by using steps given in section 3.2.3.  The relationship 

therefore can be expressed as - 

 [∆푉] = [퐵퐶퐵푉][퐼퐵]    

Step 6: Calculate the DLF matrix by using the eq. (3.30). The relationship will be - 

 [퐷퐿퐹] = [퐵퐶퐵푉][퐵퐼퐵퐶]    

 [∆푉] = [퐷퐿퐹][퐼]    

Step 7: Set Iteration k = 0. 

Step 8: Iteration k = k + 1. 

Step 9: Update voltages by using eqs. (3.32), (3.33), (3.34), as – 

퐼 = 퐼 (푉 ) + 푗퐼 (푉 ) = 				
푃 + 푗푄 			

푉

∗

 

[∆푉 ] = [퐷퐿퐹]. [퐼 ] 

[푉 ] = [푉 ] + [∆푉 ] 

Step 10: If max  (|푉(푘 + 1)|− |푉(푘)|) > 푡표푙푒푟푎푛푐푒  go to step 6. 

Step 11: Calculate branch currents, and losses from final node voltages. 

Step 12: Display the node voltage magnitudes and angle, branch currents and losses. 

Step 13: Stop 

The above algorithm steps are shown in Flowchart given as Figure 3.4. 
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Figure 3.4. Flowchart for load flow solution for radial distribution networks.

START 

Calculate the equivalent current injection matrix; 

Calculate BIBC matrix by the backward sweep method; 

Calculate BCBV matrix by forward sweep method;  

Calculate DLF Matrix and Set iteration k = 0; 

Iteration k = k+1 

|V (k+1)|-|V (k)| 

>tolerance? 

STOP 

NO 

Update Voltages 

YES 

Calculate line flow & losses using final node voltages; 

Read System Input Data; 
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3.4  INCORPORATION OF DG INTO LOAD FLOW 

Assume that a single-source radial distribution networks with NL branches and a DG is 

to be placed at node i and α be a set of branches connected between the source and node i. It is 

known that, the DG supplies active power 	(푃 )	 to the systems, but in case of reactive 

power	(푄 ) it is depend upon the source of DG, either it is supplies to the systems or consume 

from the systems. Due to this active and reactive power an active current		(퐼 )	and reactive 

current	(퐼 )	flows through the system, and it changes the active and reactive component of 

current of branch set α. The current of other branches (∉=α) are unaffected by the DG. 

Total Apparent Power at 	푖  node: 

푆 = 푆 _ = ∑푃 _ + 푗푄 _ 	 									푖 = 1, …푁                                          (3.34) 

Current at 	푖  node:  

퐼 = 퐼 _
_ = _

∗
		                                                                       (3.35) 

To incorporate the DG model, the active and reactive power demand at i-th node at which a 

DG unit is placed, is modified by: 

푃 _
_ = 푃 _

_ − 푃 _                                                             (3.36) 

푄 _
_ = 푄 _

_ ∓푄 _                                                           (3.37) 

DG power at 	푖  node: 

푆 _ = ∑푃 _ ± 푗푄 _ 	 																			푖 = 1, 2, 3, …푁                                   (3.38) 

Total new apparent power at 	푖  node:  

푆 = 푆 _ − 푆 _                                                  (3.39) 

So, new current at 	푖  node: 

퐼 = 퐼 _
_ = _ _

∗
                                                                      (3.40) 

Now the updated network power can be expressed in matrix form 

[푆] = 푆 − [푆 ]                        (3.41) 
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3.5 INCORPORATION OF ON-LINE LOAD TAP CHANGER (OLTC) 
INTO LOAD FLOW 

OLTC is generally placed in the line of a distribution system. Let, a OLTC is placed in a 

line and it have the off-nominal tap ratio of (1:a) with a series admittance of YtI as shown in 

Fig.4. We know that there is a direct relations between [ZD] and [B]. If an OLTC is placed in 

a line then the transformer can be represented by a series admittance (YtI) in per unit as per the 

	휋	model representation of OLTC [69-70] [73].  The off-nominal tap ratio of OLTC, per unit 

admittance of both side of the transformer is different, and it force to change the admittance to 

include the effect of off-nominal ratio. It’s have a direct effect of the line current, for 

modification in the line admittance, line current relation need to be modified.  

 

The modified impedance matrix including the per unit series impedance Z2nI of OLTC with the 

line impedance 

      [푍퐷] =
푍 + 0 0 0

0 (푍 + 0) 0
0 0 (푍 + 푍 )/푎

                                               (3.42)                  

 1

2n
aYt

Z





Yt
a

1aVI 2nn0







 


Yt
a

1aVI 220






 



 
Figure 3.5. Network with off-nominal tap changing transformer. 
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In Figure 3.5. 퐼 	푎푛푑	퐼  are non-tap to tap side currents are diverging from nodes i and 

n respectively. The modified equivalent current injection matrix including the off-nominal ratio 

is 

[퐵] = [퐵퐼퐵퐶]
퐼 − 퐼
퐼 	− 0				
퐼 − 퐼

= [퐵퐼퐵퐶]

⎣
⎢
⎢
⎡퐼 − 푌 푉

퐼
퐼 − 푉 푉 ⎦

⎥
⎥
⎤
                                                       (3.43) 

3.6 INCORPORATION OF CAPACITOR BANK INTO LOAD FLOW 

Assume that a single-source radial distribution networks with NB branches and a capacitor 

bank is to be placed at node i. The capacitor bank produces reactive power (푄 _ )	due to this a 

reactive current	(퐼 )	flow through the radial network branches which changes the reactive 

component of current of branch. To incorporate the capacitor bank model, the reactive power 

demand at i-th node at which a capacitor bank unit is placed, is modified by: 

푄 _
_ = 푄 _

_ −푄 _                                                             (3.44) 

[푆] = 푆 − [푆 ]                                                             (3.45) 

3.7 ALGORITHM FOR DISTRIBUTION NETWORKS LOAD FLOW 
WITH DG 

The algorithm steps for load flow solution of distribution networks is given below: 

Step 1: Read the distribution networks line data and bus data. 

Step 2: Calculate DG power and capacitor bank power for each nodes and update the 

system bus data.  

Step 3: Calculate the total power demand with DG or capacitor bank or with both by the 

help of eq. (3.41) (3.45). The relationship can be expressed as – 

[푆] = 푆 − 푆 − [푆 ]                                                     

Step 4: Calculate the each node current or node current injection matrix. The relationship 

can be expressed as –  

[퐼] =
푆
푉

∗

=
푃 − 푗푄
푉∗  
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Step 5: Calculate the modified impedance matrix and modified current injection matrix 

for tap changer by the help of eq. (3.42) (3.43).  

Step 6: Calculate the BIBC matrix by using steps given in section 3.2.2.   

Step 7: Evaluate the branch current by using BIBC matrix and current injection matrix 

(ECI). The relationship can be expressed as - 

 [퐼퐵] = [퐵퐼퐵퐶][퐼]    

Step 8:  Form the BCBV matrix by using steps given in section 3.2.3.  The relationship 

therefore can be expressed as - 

 [∆푉] = [퐵퐶퐵푉][퐼퐵]    

Step 9: Calculate the DLF matrix by using the eq. (3.30). The relationship will be - 

 [퐷퐿퐹] = [퐵퐶퐵푉][퐵퐼퐵퐶]    

 [∆푉] = [퐷퐿퐹][퐼]    

Step 10: Set Iteration k = 0. 

Step 11: Iteration k = k + 1. 

Step 12: Update voltages by using eqs. (3.32), (3.33), (3.34), as – 

퐼 = 퐼 (푉 ) + 푗퐼 (푉 ) = 				
푃 + 푗푄 			

푉

∗

 

[∆푉 ] = [퐷퐿퐹]. [퐼 ] 

[푉 ] = [푉 ] + [∆푉 ] 

Step 13: If max  (|푉(푘 + 1)|− |푉(푘)|) > 푡표푙푒푟푎푛푐푒  go to step 6. 

Step 14: Calculate branch currents, and losses from final node voltages. 

Step 15: Display the node voltage magnitudes and angle, branch currents and losses. 

Step 16: Stop 
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3.8 TEST SYSTEMS 

The proposed technique is applied on two different system to validate the proposed 

scheme. 

System#1: Standard IEEE 69-node Reliability Test System (RTS) [24] [35]. It have a single 

substation system with voltage magnitude of 1 p.u. and all other nodes are load node. From the 

system data it had been found that the load is varying highly (active power is varying from 0 

to 1244kW, and reactive power is varying from 0 to 888kVAR). The system base MVA and 

base kVA are 10MVA and 11kV respectively with one slack node.  

 

System#2: An 11kV Practical Distribution Network from southern India grid. It have total 52 

nodes with 3 main feeders [34] and one main substation with a voltage magnitude of 1 p.u. The 

system base MVA and base kVA are 1MVA and 11kV respectively with one slack node. 
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Figure 3.6. System #1, 69-node radial distribution networks 
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THUKARAM et al.: ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE APPROACH 
 

 

Figure 3.7. System #2, 52-node radial distribution networks 
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3.9 LOAD FLOW SOLUTION FOR BASE CASE 

System #1: The total load of the networks is 4.660MW (3802.19 kW active power and 

2694.6kVAR reactive power) and the slack node is delivering 4.902MW power. The 

distribution loss in the networks is 0.247 MW. The power loss due to active component of 

current is 224.995 kW and power loss due to reactive component of the current is 102.198 

kVAR. All node voltages are within 0.90919 - 1p.u. Also the minimum voltage is 0.90919 p.u. 

is bearing the 65th number node of the system and the maximum branch current 0.49031p.u is 

bearing by the branch 1.The MATLAB® simulation result are shown in Figure 3.8 and Figure 

3.9. The load flow study is carried out with an accuracy level of 10^-9, and maximum iteration 

of 300. The convergence of load flow with the accuracy level occur at 9 iteration.  The Table 

3.1 contains the node voltage magnitudes, branch current magnitudes, and the angle in radian 

of the converged load flow solutions. The results shows that, at the peak load condition system 

performance is not so poor. The system have a poor voltage profile at node 57 to node 65 due 

to the system hugely loaded at 61 node. While some of the node have no load.  

System#2: The total load of the networks is 4.648 MW (4184 kW active power and 2025 

kVAR reactive power) and the slack node is delivering 5.613 MW power. The distribution loss 

in the networks is 0.9658 MW. The power loss due to active component of current is 887.181 

kW and power loss due to reactive component of the current is 381.694 kVAR. All node 

voltages are within 0.68442 - 1p.u. also the minimum voltage of 0.68442 p.u. is occurs at the 

50th node and the maximum branch current of 2.4382 p.u flows through the 31th branch. The 

MATLAB® simulation result are shown in Figure 3.10 and Figure 3.11. In this case also the 

load flow study is carried out with an accuracy level of 10^-9, and maximum iteration of 300. 

The convergence of load flow with the accuracy level also occur at 9 iteration.  The Table 3.2 

contains the node voltage magnitudes, branch current magnitudes, and the angle in radian of 

the converged load flow solutions. The results shows that, at the peak load condition system 

performance is very poor. The system have a poor voltage profile at most of the nodes, basically 

at 5 to 19 and 32 to 52 nodes.  
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Figure 3.8. Base case node voltage magnitudes of system#1 
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Figure 3.9. Base case branch current magnitudes of system#1 
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Figure 3.10. Base case node voltage magnitudes of system#2 
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Figure 3.11. Base case branch current magnitudes of system#2 
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Table 3.1. Base case converged flow solution for system #1. 

Node/ 
Branch 

Voltage Angle Current 

 

Node/ 
Branch  

Voltage Angle Current 
(p.u) (radian) (p.u) (p.u) (radian) (p.u) 

1 1 0 0.49031029 36 0.999919 -5.18E-05 0.019432 
2 0.9999665 -2.14E-05 0.49031029 37 0.999747 -0.00016 0.016238 
3 0.9999330 -4.29E-05 0.45644465 38 0.999589 -0.00021 0.016238 
4 0.9998395 -0.000103 0.35169363 39 0.999543 -0.00022 0.013296 
5 0.9990203 -0.000323 0.35169363 40 0.999541 -0.00022 0.010354 
6 0.9900848 0.0008609 0.35135134 41 0.998843 -0.00041 0.010198 
7 0.9807910 0.0021143 0.34622390 42 0.998551 -0.00049 0.010198 
8 0.9785749 0.0024147 0.33127331 43 0.998512 -0.0005 0.009459 
9 0.9774414 0.0025687 0.09670386 44 0.998504 -0.0005 0.009459 
10 0.9724411 0.0040490 0.09322422 45 0.998405 -0.00054 0.00473 
11 0.9713158 0.0043418 0.07028809 46 0.998405 -0.00054 0.104769 
12 0.9681542 0.0052642 0.04476029 47 0.999789 -0.00013 0.104769 
13 0.9652284 0.0060756 0.04375473 48 0.998543 -0.00092 0.095048 
14 0.9623291 0.0068821 0.04274612 49 0.994699 -0.00334 0.047537 
15 0.9594589 0.0076840 0.04274612 50 0.994154 -0.00369 0.005509 
16 0.9589256 0.0078334 0.03706268 51 0.978539 0.002420 0.000460 
17 0.9580450 0.0080804 0.02982539 52 0.978530 0.002423 0.230766 
18 0.9580360 0.0080829 0.02259646 53 0.974655 0.002951 0.230194 
19 0.9575710 0.0082318 0.02259646 54 0.971412 0.003398 0.226847 
20 0.9572720 0.0083276 0.02247500 55 0.966939 0.004019 0.223794 
21 0.9567898 0.0084825 0.00785879 56 0.962570 0.004630 0.223794 
22 0.9567829 0.0084847 0.00719537 57 0.940096 0.011551 0.223794 
23 0.9567110 0.0085080 0.00719537 58 0.929036 0.015086 0.223794 
24 0.9565546 0.0085588 0.00359816 59 0.924759 0.016500 0.210469 
25 0.9563820 0.0086085 0.00359816 60 0.919734 0.018324 0.210469 
26 0.9563123 0.0086311 0.00179910 61 0.912337 0.019529 0.042940 
27 0.9562927 0.0086375 0.01124029 62 0.912047 0.019576 0.038620 
28 0.9999261 -4.72E-05 0.00804325 63 0.911660 0.019640 0.038620 
29 0.9998544 -9.26E-05 0.00484600 64 0.909759 0.019952 0.007966 
30 0.9997333 -5.55E-05 0.00484600 65 0.909185 0.020045 0.004572 
31 0.9997119 -4.90E-05 0.00484600 66 0.971259 0.004362 0.002286 
32 0.9996050 -1.62E-05 0.00484600 67 0.971258 0.004362 0.007111 
33 0.9993488 6.10E-05 0.00312443 68 0.967824 0.005370 0.003555 
34 0.9990133 0.0001632 0.00072187 69 0.967823 0.005370  
35 0.9989459 0.0001818 0.02262620     
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Table 3.2. Base case converged flow solution for system #2. 

Node/ 
Branch 

Voltage Angle Current 

 

Node/ 
Branch  

Voltage Angle Current 
(p.u) (radian) (p.u) (p.u) (radian) (p.u) 

1 1 0 1.866065 27 0.982427 0.000785 0.261515 
2 0.947626 0.002020 0.159368 28 0.978758 0.000960 0.077368 
3 0.940172 0.002354 1.611831 29 0.976950 0.001044 0.186260 
4 0.925007 0.002949 0.129840 30 0.975459 0.001104 0.108774 
5 0.923185 0.003033 1.352408 31 0.970372 0.001337 2.437959 
6 0.912355 0.003480 0.065779 32 0.908758 0.003349 2.387765 
7 0.911124 0.003537 1.253784 33 0.797069 0.008460 0.057384 
8 0.883032 0.004758 1.084104 34 0.794923 0.008588 0.468122 
9 0.852608 0.006163 0.978664 35 0.781747 0.009387 0.312865 
10 0.806836 0.008465 0.432591 36 0.770045 0.010133 0.117731 
11 0.800766 0.008777 0.244147 37 0.767294 0.010321 0.096907 
12 0.798482 0.008895 0.151022 38 0.779935 0.009492 1.693390 
13 0.793703 0.009152 0.075291 39 0.757467 0.010512 0.158861 
14 0.796017 0.009026 0.131326 40 0.754495 0.010679 1.395190 
15 0.793568 0.009142 0.454050 41 0.724840 0.012352 0.146440 
16 0.800466 0.008826 0.093921 42 0.720731 0.012605 0.233840 
17 0.795197 0.009164 0.266830 43 0.714998 0.012941 0.191932 
18 0.787986 0.009486 0.114713 44 0.706022 0.013496 0.951980 
19 0.783694 0.009717 1.309082 45 0.711483 0.013142 0.127090 
20 0.987756 0.000542 0.617945 46 0.707323 0.013390 0.656427 
21 0.979087 0.000932 0.511059 47 0.696134 0.014092 0.065612 
22 0.964746 0.001579 0.251957 48 0.695214 0.014155 0.482247 
23 0.952963 0.002097 0.126174 49 0.689368 0.014516 0.131335 
24 0.950012 0.002229 0.165920 50 0.684454 0.014819 0.241278 
25 0.960092 0.001816 0.047602 51 0.685983 0.014732 0.066555 
26 0.958311 0.001904 0.569785 52 0.685361 0.014775  
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3.10 SUMMARY 

In this chapter, a simple distribution system load flow approaches has been formulated.  

The Bus Injection to Branch Current (BIBC) matrix and Branch Current  

to Node voltage (BCBV) matrix are the main part of this approaches. This two matrix make 

the relation between the current injections to branch current and branch current to node 

voltage. The matrix formation makes the load flow calculation very easy. The incorporation 

of DG, capacitor bank and OLTTC into the load flow is much simple due to these calculation 

is basically based on matrix addition, subtraction or multiplication. Also the satisfactory 

result is obtained from the load flow approaches which is conducted on two different 

radial distribution systems. With the definition of this load flow of radial distribution 

networks, the highly required foundation has been ready to work in the area of 

distributed generator allocation problem in radial distribution networks.
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CHAPTER-4

OPTIMAL DG ALLOCATION USING GENETIC 

ALGORITHM
 

4.1  INTRODUCTION 

Optimization is a process by which we try to find out the best solution from set of available 

alternative. In DG allocation problem, DG locations and sizes must be optimize in such a way 

that it give most economical, efficient, technically sound distribution system. In general 

distribution system have many nodes and it is very hard to find out the optimal DG location 

and size by hand. There are numerous optimization approaches used in the literature. In most 

of the current works, population based evolutionary algorithms are used as optimization 

approaches (i.e. particle swarm optimization (PSO) [26-29], evolutionary programming [25], 

genetic algorithm (GA) [20-25], etc.). In the project work genetic algorithm is used as the 

solution strategy.  

4.2 GENETIC ALGORITHM 

Genetic Algorithms (GAs) are versatile exploratory hunt processes focused around the 

evolutionary ideas of characteristic choice and genetics. A genetic algorithm is  

a heuristically guided random search technique that concurrently evaluates  

thousands of postulated solutions. Biased random selection and mixing of the  

evaluated searches is then carried out in order to progress towards better solutions.  

The coding and manipulation of search data is based upon the operation of genetic  

DNA and the selection process is derived from Darwin’s survival of the fittest’.  

Search data are usually coded as binary strings called chromosomes, which  

collectively form populations. Evaluation is carried out over the whole population  

and involves the application of, often complex ‘fitness’ functions to the string of  

values (genes) within each chromosome. Typically, mixing involves recombining  
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the data that are held in two chromosomes that are selected from the whole  

population. 

Evolutionary computing was introduced in the 1960s by I. Rechenberg in his work  

"Evolution strategies". His idea was then developed by other researchers. Genetic  

Algorithms (GAs) were invented by John Holland at the University of Michigan.  

This  lead  to  Holland's  book  "Adaptation  in  Natural  and  Artificial  Networks"  

published in 1975. The goals of their research have been twofold: (1) to abstract  

and rigorously explain the adaptive processes of natural networks and (2) to design  

artificial networks software that retains the important mechanisms of natural networks.  

The central theme of research on genetic algorithms has been ronodetness, the  

balance between efficiency and efficacy necessary for survival in many different  

environments. In 1992 John Koza has used genetic algorithm to evolve programs to  

perform certain tasks. He called this method "Genetic Programming" (GP). 

 

4.2.1 GAs vs Conventional Algorithms 

Genetic Algorithms are different from normal optimization and search methods in four ways: 

1. GAs work with coding of the parameter set, not the parameters themselves. 

2. GAs search from a population of points, not a single point. 

3. GAs use payoff (objective function) information, not derivatives or other auxiliary 

knowledge. 

4. GAs use probabilistic transition rules, not deterministic rules. 

4.2.2 Genetic Algorithm Description 

The genetic algorithm is a search algorithm that iteratively transforms a set (called a 

population) of mathematical objects (typically fixed-length binary character strings), each 

with an associated fitness value, into a new population of offspring objects using the 

Darwinian principle of natural selection and using operations such as crossover (sexual 

recombination) and mutation[75]. 
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Algorithm begins with a set of solutions (represented by chromosomes) called  

population. Solutions from one population are taken and used to form a new population. 

This is motivated by a hope, that the new population will be better than  

the old one. Solutions which are then selected to form new solutions (offspring) are  

selected according to their fitness - the more suitable they are the more chances they  

have to reproduce. This is repeated until some condition is satisfied.  

The space of all feasible solutions (the set of solutions among which the desired  

solution resides) is called search space (also state space). Each point in the search  

space represents one possible solution. Each possible solution can be "marked" by  

its value (or fitness) for the problem. With GA we look for the best solution among  

a number of possible solutions. The problem is that the search can be very  

complicated. One may not know where to look for a solution or where to start.  

There are many methods one can use for finding a suitable solution, but these  

methods do not necessarily provide the best solution. 

A simple genetic algorithm that yields good results in many practical problems is composed 

of three operators: 

Reproduction: This operator is an artificial version of natural selection based on Darwinian 

survival of the fittest among string creatures. Reproduction operator can be implemented in 

algorithmic form in a number of ways. 

Crossover: It occurs after reproduction or selection. It creates two new population or strings 

from two existing ones by genetically recombining randomly chosen parts formed by 

randomly chosen crossover point. 

Mutation: It is the occasional random alteration of the value of a string position. Mutation 

creates a new string by altering value of existing string.  

Fitness function: A typical genetic algorithm requires two things to be defined: (1) a genetic 

representation of solutions, (2) a fitness function to evaluate them. The fitness function is 

defined over the genetic representation and measures the quality of the represented solution. 

The fitness function is always problem dependent. Once we had the genetic representation 

and the fitness function defined, GA proceeds to initialize a population of solutions 
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randomly, then improve it through repetitive application of mutation, crossover, and 

selection operators. 

4.2.3 Parameters of GA 

There are two basic parameters of GA - crossover probability and mutation probability. Other 

parameters include population size etc.  

Crossover probability is how often crossover will be performed. If there is no  

crossover, offspring are exact copies of parents. If there is crossover, offspring are  

made from parts of both parent's chromosome. If crossover probability is 100%, then  

all offspring are made by crossover. If it is 0%, whole new generation is made from  

exact copies of chromosomes from old population. Crossover is made in hope that  

new chromosomes will contain good parts of old chromosomes and therefore the  

new chromosomes will be better. 

Mutation probability is how often parts of chromosome will be mutated. If there is  

no mutation, offspring are generated immediately after crossover (or directly copied)  

without any change. If mutation is performed, one or more parts of a chromosome  

are changed. If mutation probability is 100%, whole chromosome is changed, if it is  

0%, nothing is changed. Mutation generally prevents the GA from falling into local  

extremes. Mutation should not occur very often, because then GA will in fact change  

to random search. 

Population size is how many chromosomes are in population (in one generation). If there 

are too few chromosomes, GA have few possibilities to perform crossover and only a small 

part of search space is explored. On the other hand, if there are too many chromosomes, 

GA slows down. 
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4.2.4 Algorithm of Basic GA 

Step 1: Generate random population of 휂 	chromosomes. 

Step 2: Evaluate the objective function 휓(푥)	and fitness 	푓(휓) of each chromosome x in 

the population 

Step 3: Select the pairs of chromosome as parents from the population with giving a 

priority that the better fitness parents will get highest chance to be selected in the 

matting pool. 

Step 4: According to the matting pool parents are crossed over with a crossover probability 

and generate the offspring. 

Step 5: Now the crossed offspring are mutated with a mutation probability where the 

offspring locus are change slightly. 

Step 6: Consider the mutate offspring as a new population and use it for the next 

generation. 

Step 7: If the solution satisfied the end condition, then stop, and display the optmial 

solution. 

Step 8: Go to step 2 

 

The standard procedure of GA is shown in flowchart as shown in Figure 4.1. 
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Figure 4.1. Flowchart for basic GA algorithms 
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4.2.5 Applications of GA 

Problems which give off an impression of being especially suitable for result by hereditary 

calculations (genetic algorithms) incorporate timetabling and scheduling issues, and numerous 

planning programming bundles are focused around GAs. GAs have likewise been connected 

to engineering. Genetic algorithms are regularly connected as a methodology to take care of 

global optimization problems. When in doubt of thumb genetic algorithms may be valuable in 

issue areas that have a complex fitness landscape as mixing, i.e., mutation in consolidation 

with crossover, is intended to move the populace far from local optima that a conventional 

‘hill climbing’ algorithm may get stuck in. Since  GAs  are  mainly  used  in  optimization  

and  give outstanding performance, GAs are treated as function optimiser. But there are many 

other ways to view genetic algorithms in different areas such as:  

• GAs as problem solvers 

• GAs as challenging technical puzzle 

• GAs as basis for competent machine learning 

• GAs as computational model of innovation and creativity  

• GAs as computational model of other innovating networks  

• GAs as guiding philosophy 

Genetic  algorithms  have  been  used  for  difficult  problems (such  as  NP-hard problems), 

for machine learning and also for evolving simple programs. They have been also used for 

some art, for evolving pictures and music. Some of the applications of GAs are: 

• Nonlinear dynamical networks - predicting, data analysis  

• Designing neural networks, both architecture and weights  

• Robot trajectory 

• Evolving LISP programs (genetic programming)  

• Strategy planning 

• Finding shape of protein molecules  

• Signal Processing 

• TSP and sequence scheduling   
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4.3 DG ALLOCATION OPTIMIZATION OBJECTIVE FUNCTION 

In every optimization process must have an objective function on the basis of that the 

optimization will continue. In general, objective functions are two type, (i) single objective and 

(ii) multi objective. In this distribution system planning problem both the single-objective and 

multi-objective optimization problem are consider with the continuous planning decision 

variables. The main objective is to determine an economical yet reliable network with better 

technical features, such as lower power loss, better node voltage profile, and better branch 

current/thermal limit ratio while maximizing DG power (푃 )	in order to reduce the stress of 

excessive active and reactive power demand from transmission networks. Thus, two objective 

functions are formulated: minimization of (i) the total power loss	(푃 )	of the distribution 

network and (ii) maximum node voltage deviation	(푉 ) ratio. Optimization of (i) yields an 

economical and high efficient network and optimization of (ii) results in a reliable network 

with better technical features. 

Single-objective optimization:  In single objective optimization only the power loss of the 

RDS has been considered. The objective function mathematically formulated as 

(i)   Min			휓(Υ ) = 	 ∑ 푃 _ 		                                                            (4.1) 

(ii)   Min 			휓(Υ ) = 	
∑ _

∑ _ 	                                                                     (4.2) 

Multi-objective optimization: In case of multi-objective optimization both minimization of (i) 

the total power loss 	(푃 )	of the distribution network and (ii) maximum node voltage 

deviation	(푉 ) ratio has been considered. 

Min 					휓(Υ ,Υ ) = 푘 ∗	 				( 	 	 _ )
				( 	 _ 	)

+ 푘 ∗ 	
∑ _

∑ _ 	                        (4.3) 

Where      푚푖푛				Υ = 	 				( 	 	 _ )
				( 	 _ )

                                                          (4.4) 

				min 		 Υ =
∑ _

∑ _                                                   (4.5) 

However, the distribution planning problem has five constraints: (i) node voltage constraint, 

(ii) branch thermal limit constraint, (iii) DG power rating constraints (iv) Capacitor bank power 

rating constraints, and (v) OLTC tap ratio settings.  
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Networks constraints:  

a) All node voltage limits  

푣 ≤ 푣 ≤ 푣 																			∀푖 = 푁                                                            (4.6) 

b) Thermal limits   

퐼 _ ≤ 퐼 _ 	_ 																													∀푖 = 푁                                                            (4.7) 

c) DG power limits   

푃 ≤ 푃 _ ≤ 푃 											∀푖 = 푁                                                            (4.8) 

d) Capacitor bank power limits   

푄 ≤ 푄 _ ≤ 푄 											∀푖 = 푁                                                            (4.9) 

e) Transformer tap setting limits   

훼 ≤ 훼 ≤ 훼 																		∀푖 = 푁                                                       (4.10) 

4.4 BASIC GA OPTIMIZATION FOR DG ALLOCATION 

The main objective of optimization is to identifying the sizing and location of a sets of DG to 

be introduced in to the distribution system. In this distribution system planning problem 

optimization is done by genetic algorithm to determine an economical yet reliable network 

with better technical features, such as lower power loss, better node voltage profile, and better 

branch current/thermal limit ratio while maximizing DG power (푃 )	in order to reduce the 

stress of excessive active and reactive power demand from transmission networks. Previously 

discussed a GA is an iterative procedure which begins with an initial population mainly which 

randomly generated. There are several different encoding strategy for the initial population 

which is depend upon the problem to be optimize. Objective function and fitness are calculated 

for each and every chromosome of the population. On the basis of evaluated fitness functions 

of the population, a set of chromosome is selected for the matting pool by the selection 

operators. The selection operator select the chromosome in such a way that the chromosome 

participate in the matting pool has better average fitness then that of initial population while 

maintaining the same number of population in the matting pool. The crossover and mutation 

operator are applied on the selected chromosome to generate new offerings. These process is 

repeated iteratively, as the iteration progress, in most of the cases the process find the 
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improvement in solutions (i.e. offspring have better fitness then parents) and optimal solution 

is obtained. With the above description, a simple Genetic Algorithm for DG allocation 

problem is discussed in details as follow: 

4.4.1  Coding Scheme 

The success of the GA structure will lies on the coding scheme. In genetic algorithm coding 

can be done by two different method (i) binary coding scheme and (ii) real number coding 

schemes. In the study the practical coding scheme is selected for optimization process and 

applied in the both radial distribution networks.  

In this work, both the radial distribution system have one potential nodes. And all others nodes 

are the load nodes. So, DG can be incorporate in any load node available in the network except 

potential node. Also it is applicable for capacitor bank incorporation. But in case of OLTC, it 

can be incorporate at any branch or in between two adjacent node of the networks. 

So, in practical encoding of chromosome the location for DG and capacitor bank can be 

randomly selected from any node except potential node, and for OLTC can be selected 

randomly from any branch available in the network. The flexibility for selection of location 

and size/settings for DG, OLTC and capacitor bank is given for better optimization. 

4.4.2  Initialization  

Initialization is the generation of initial population.  Here, the initial population is generated 

randomly which contains three optimization variables (i.e. locations and rating/settings and 

number of DG or OLTC or Capacitor Bank). The generated value for all decision variable is 

randomly generated. The DGs of different sizes (kW ratings) and CB of different sizes (kVAR 

ratings) to be install at the load nodes except to the substation buss. The population size, 

generation size, cross over probability, mutation probability effects the efficiency and 

performance of the algorithm. Initially in the study it considered randomly some numerical 

value. But for better performance of optimization later stage it is found out by multi run 

process with different values of optimization parameters.  For easy calculation in the study 

minimum three and maximum decision variable is considered in one chromosome together 

(OLTC with DG or Capacitor Bank). 
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Encoding of chromosome: 

In the study total three decision variable had been considered for each DG optimization, OLTC 

optimization, and Capacitor bank optimization as shown below.  

Now in case of DG optimization: 

1. Number of DG have to be consider in a string. 

2. The node number of the networks where DG is to be connected/placed. 

3. Corresponding DG power rating. 

푁  휌  휌  휌  휌  --- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  
      

Number 
of DG ← DG Locations → ← DG Ratings → 

 

Now in case of Capacitor Bank optimization: 

1. Number of CB have to be consider in a string. 

2. The node number of the networks where CB is to be connected/placed. 

3. Corresponding CB rating. 

푁  휌  휌  휌  휌  --- 휌  Φ  Φ  Φ  Φ  Φ  -- Φ  
      

Number 
of CB ← Capacitor Bank 

Locations → ← Capacitor Bank Ratings → 

 

Now in case of OLTC optimization: 

1. Number of OLTC had to be consider in a string. 

2. Branch number of the networks where the OLTC is to be connected/placed. 

3. Corresponding tap setting will be applied to the OLTC. 

푁  휌  휌  휌  휌  --- 휌  α  α  α  α  α  -- α  
      

Number 
of 

OLTC 
← OLTC Locations → ← OLT C Settings → 

These are the optimization variable and it is used in a single chromosome structure. Now 

combination of these three is shown below. 

푁  휌  … 휌  Ρ  … Ρ  푁  휌  … 휌  Φ  … Φ  푁  휌  … 휌  α  … α  
 

← DG → ← Capacitor Bank → ← OLT C → 
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4.4.3 Fitness Function 

After generating population of required size the corresponding load flow solution with 

optimization variable (i.e. DG, OLTC or capacitor bank) for different cases is run to evaluate 

the objective function 휓 Υ ,Υ 	표푟		휓(Υ ) for each and every chromosome. The load flow 

solution, evaluation of objective function and fitness function is repeated for all the strings in 

the population. The procedure to determine the fitness function ‘푓(휓) ’ is very much 

application oriented. It is directly associated with the objective function value in the 

optimization problem.  In the distributed generator placement problem, the objective function 

is the minimization of cost function. After calculating the objective function, the fitness 

function 푓(휓) is calculated using two different method as given below: 

In initial stage of the project, for single-objective optimization, the fitness of the each 

chromosome is calculated using the method of Roulette Wheel and selection of chromosome 

for next generation is selected directly from it. The method is mathematically formulated as 

given below: 

푓(휓) = 	 ( )
∑ ( ) 	

																																									푖 = 1,2,3 … … 푝표푝푠푖푧푒	           (4.11) 

But later stage of project, fitness function in both single-objective as well as multi objective 

optimization is totally different from previous one and which gives the better performance of 

the optimization. Also this fitness function take a major part into the adaptive or improved 

genetic algorithm where the crossover and mutation probability is directly depend upon the 

fitness function of population.    

 푓(휓) = 	
	 ( , )

																													푖 = 1,2,3 … … 푝표푝푠푖푧푒	           (4.12) 

4.4.4 Reproduction 

The first genetic algorithm operator is reproduction. This determines which chromosome of 

the current population will be participate in matting pool to create the next generation 

population.  So, basically this operator is known as the selection operator for breeding.  This 

is done by using some biased random selection approach.  Hence parents are randomly 

selected or chosen from the current population in such a way that the ‘best’ strings in the 
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population have more chance of being selected.  There are so many approach is available for 

this selection process, such as by  Boltzman  selection,  Roulette  Wheel  selection,  

Tournament  selection,  Rank  selection,  Truncation selection, Local selection, etc.  In this 

work Roulette Wheel selection has been used [24]:  

 Reproduction operator copied an old chromosome into a mating pool.  The 

chromosome with a higher fitness value have higher probability of being selected into mating 

pool and contributing one or more offspring in the next generation. One pair of matting 

chromosomes can generate two offspring. But in this study one offspring is considered. The 

following are the steps carried out for the roulette wheel selection process: 

λ = 	 ( )
∑ ( )

																				푖 = 1,2,3 … … 푝표푝푠푖푧푒	                      (4.13) 

Step 1:  Sum the fitness of all the chromosomes present in the population and named as total 

fitness.  

Step 2: Generate a random number (k) between zero and the total fitness. 

Step 3:  Select  a  chromosome whose  cumulative  fitness  obtained from summing its  

fitness  to the  fitness  of  the  proceeding  chromosome is greater than or equal to 

random number (k). 

4.4.5  Crossover 

The second genetic algorithm operator is crossover. Where the two selected parent 

chromosomes is employed in certain fashion or participate breeding process  to generate single 

or more children who bear some of the useful genetic characteristics from both the parents. 

But it is expected that the offspring will bear more genetic characteristics from the best fittest 

parents of the matting pair. In this work single offspring is generated from one pair of parent 

chromosomes. The random selection technique to pick up the parents pair from the existing 

population is described previously in the section of reproduction. After selecting the parents, 

crossover can be carried out using various methods like Single Point Crossover, Multi-point 

Crossover or Uniform Crossover, Half-Uniform Crossover arrangements, three parents 

crossover.  
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In the present work two parents uniform crossover is used. This is illustrated in the following 

example. Let Parent1 and Parent2 be the two parents selected randomly for crossover. Assume 

the strings parent1 and parent2 as given below and, a universal crossover site is selected by 

generating a random number of 0 to 1 with giving same priority (0.5) for both the parents. 

Bothe the parents are shown in different colour for better understanding.  

Parent1 푁 _  휌  휌  휌  휌  휌  -- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  
Cross(>0.5) Y N N Y N Y  Y N N Y N Y  N 

Parent2 푁 _  휌  휌  휌  휌  휌  -- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  
                

 Number 
of DG ← DG Locations → ← DG Ratings → 

For illustration the string length is taken as randomly, but in the thesis work string length 

depends upon the maximum number of DG, OLTC and capacitor bank to be considered into 

RDS.  

Let the crossover site is randomly position. Then single children is generated as below.  

Offspring 푁 _  휌  휌  휌  휌  휌  -- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  
 

 Number 
of DG ← DG Locations → ← DG Ratings → 

 

It is seen that each crossover resulted in the children. In order to control crossover rate also 

there is a parameter known as “Crossover Probability(Ω )” which is discuss details in later 

stage. This probability is used as a decision variable before performing the crossover. This 

probability is known as the crossover rate. Crossover probability lies in the range of 0 - 1. The 

following steps are carried out to perform crossover. 

Step 1:    Form a matting pool of parent’s chromosomes by randomly selection method. The 

size of matting pool must be same with the population size. 

Step 2:    Select one of the parent’s pair from the matting pool and generate random number 

between 0 and 1. 

Step 3:    Set a crossover probability ‘Ω ’. 

Step 4:    If the randomly generated number is greater than crossover probability ‘Ω ’ cross 

over will not occur and the offspring will contained only one parent chromosome. 

The offspring can be selected by two different method (i) best fitness parent 

among the parent pair and (ii) the chromosome belongs the same location or 
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number of the selected parent’s pair location or number in the population and 

matting pool respectively. 

Step 5:  If the randomly generated number is less than crossover probability ‘Ω ’ than 

crossover takes place and a single offspring is generate. 

4.4.6 Mutation 

Selection and crossover efficiently search and recombine the surviving chromosomes. 

Mutation is a genetic operator which is capable of creation new genetic material in the 

population to maintain the population diversity. It is nothing but random alteration of 

chromosome variable or optimize variable (i.e. DG and capacitor bank locations, size, and 

OLTC locations and settings). The following example illustrates the mutation operation. 

Let Mutation site is at 4th position of the string.  

Crossed Offspring:  

Offspring 푁 _  휌  휌  휌  휌  휌  -- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  

Mutate(>0.5) N N N Y N N  N N N N N Y  N 
 

 Number 
of DG ← DG Locations → ← DG Ratings → 

Offspring after mutation  

Offspring 푁 _  휌  휌  휌  휌  휌  -- 휌  Ρ  Ρ  Ρ  Ρ  Ρ  -- Ρ  
 

 Number 
of DG ← DG Locations → ← DG Ratings → 

In the above illustration after getting the mutation site, a random value is generated from 

corresponding allocated value is placed at the mutation site showing (xx). Hence GA can come 

to better solution by using mutation. Mutation occurs during evolution according to a user-

definable mutation probability. This probability should be set low. If it is set too high, the 

search will turn into a primitive random search. Generally the mutation probability ‘(Ω )’ 

must be below 5%. The following steps to be carried out to perform the mutation: 

Step 1: Generate random number between 0 and 1.  

Step 2:    Set a mutation probability ‘(Ω )’. 
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Step 3:   If the randomly generated number is less than mutation probability ‘(Ω )’ than 

mutation is executed on the off-springs which generated after the crossover 

operation. 

4.4.7 Elitism 

When creating a new population by crossover and mutation, there are  

chances that the best chromosome is lost.  Elitism is the name of the method that  

first copies the best chromosome (or few best chromosomes) to the new population.  

The rest of the population is constructed according to GA. Elitism can rapidly  

increase the performance of GA, because it prevents a loss of the best found  

solution. 

4.4.8 Genetic Control Parameter Selection: 

Genetic parameters are the entities that help to tune the performance of the genetic algorithm. 

The selection of values for these parameters plays an important role in obtaining an optimal 

solution. There are some general guidelines, which could be followed to arrive at an optimal 

values for these parameters. There are two basic parameters of GA - crossover probability 

and mutation probability. Other parameters include population size, maximum generation etc.  

Population size: It is the number of chromosomes consist in population or in one generation. 

Genetic algorithm give very poor performance with a very small populations, because the 

population provides an insufficient amount of sample for gating the most optimal result and 

only a small search space is explored. A large population is more likely to contain 

representative from a large number of hyper planes. Hence GAs can perform a more 

informed search. As a result, a large population discourages premature convergence to 

suboptimal solution. On the other hand, a large population requires more evaluations per 

generation, possibly resulting in an unacceptably slow rate of convergence. 

Crossover probability 	(훀풄) : the higher the crossover rate, the more quickly new 

chromosome are introduced into the population. If the crossover rate is too high, high 

performance chromosome are discarded faster than the selection can produced improvements. 

If the crossover rate is low, the search may deteriorate due to the lower exploration rate. 
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Crossover is made in hope that new chromosomes will contain best parts of parent’s 

chromosomes and therefore the child chromosomes will be better in the sense of fitness. 

Mutation probability	(훀풎): If there is no mutation, offspring are generated immediately 

after crossover (or directly copied) without any change. Mutation generally prevents the GA 

from falling into local extremes. A low level of mutation serves to prevent any given bit 

position from getting stuck to a single value or local extremes. Also mutation should not occur 

very often, because then GA will in fact change to random search.  

4.5  ALGORITHM FOR DG ALLOCATION 

The general layout of the Loss minimization and the Genetic calculation for DGs allocation 

issue is discussed in the previous sections. A set of steps have been indicated beneath to tackle 

the DGs allocation problem: 

Step 1: Read the distribution networks line data and bus data (i.e. branch impedance, real 

and reactive power of each load node.) and specify the DG parameters.  

Step 2: Run load flow of distribution networks, and save the all node voltage and all branch 

current magnitudes of the networks and total power loss.  

Step 3:   Set GEN = 0 

Step 4:   Randomly generate the initial population. Where the chromosomes are representing 

the randomly generated values of tap number, tap positions, tap settings, DGs 

number, DG positions, and DG active power value, etc. 

Step 5: Decode the initial population and update the load-data and bus-data (i.e. tap settings, 

and DG ratings.) to the networks matrixes according to their respective positions.  

Step 6:   Run the load flow of distribution networks with updated system data. Also calculate 

total power loss for each population. 

Step 7:   Evaluate the objective function and the fitness value for each and every 

chromosome.  

Step 8: Perform the elitism and save the population.  

Step 9:  GEN = GEN + 1 
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Step 10:  form the matting pool from initial population by using Roulette Wheel Selection 

procedure. 

Step 11:  Perform crossover on the each matting chromosome pair and generate one offspring 

from each parent’s chromosome pair;  

Step 12:  Perform mutation on the offspring produced by the crossover operation. 

Step 13: Decode the set of offspring and and determine the DG location and size for each 

chromosome. 

Step 14: Run foal flow for each offspring to determine the objective function and assign 

fitness to each offspring. 

Step 15:   Perform the elitism and select the 휂 	 best chromosome from the current 

population and the offspring’s. Replace the initial population by selected best 

population and use it for the next generation. 

Step 16:   Go to step 9, till the solution converges. 

Step 17:   STOP 

 

The standard optimization procedure of DG allocation problem is shown in flowchart as 

shown in Figure 4.2. 
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Figure 4.2. Flowchart of DG allocation with basic genetic algorithm 

START 

Input system data and specify GA parameters, population 
size, and maximum generation (휂 ,퐺푒푛 ); 

 Randomly generate initial population; 

Gen = 1; 

Decode the initial population and determine the DG 
location and size for each chromosome; 

Perform Load Flow for each Chromosome to determine 
objective function and assign fitness to each Chromosome; 

Select the Chromosomes in the current population 
by using Roulette Wheel Selection; 

Apply Crossover and Mutation operators to obtain the set 
of offspring from the current population;  

Perform Load Flow for each offspring to determine objective 
function and assign fitness to each offspring; 

Decode the set of offspring and and determine the 
DG location and size for each chromosome; 

Select 휂  number of best chromosomes from the current 
population and from the set of offspring; 

Gen = Gen + 1; 

Converged? 

The best chromosome of the current 
population represents the optimal solution; 

STOP 

Yes 

No 
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4.6 CASE STUDY FOR BASIC GA OPTIMIZATION 

In the project work except base case total nine deferent type of case is considered while two 

different type of DG are considered. Case#1(a) distribution networks performance with only 

unity p.f. DGs; Case#1(b) distribution networks performance with only synchronous type DGs 

operated at 0.8 p.f; Case#1(c) distribution networks performance with only induction type 

DGs operated at 0.8 p.f; case#2 is slightly different from case#1 where OLTC is operated 

along with DG. Case#2(a) distribution networks performance with only unity p.f. DGs along 

OLTC; Case#2(b) distribution networks performance with only synchronous type DGs 

operated at 0.8 p.f along OLTC; Case#2(c) distribution networks performance with only 

induction type DGs operated at 0.8 p.f along OLTC; Case#3 distribution networks 

performance with only capacitor banks, Case#4 distribution networks performance with 

capacitor banks along OLTC; and Case#5 Distribution networks performance with only 

OLTCs. So in the project three different type of DGs operating condition are considered (a) 

DG is operated at unity power factor, (b) DGs are operating at 0.8 power factor with giving 

reactive power to the distribution system (i.e. synchronous DG) and (c) DGs are operating at 

0.8 power factor with consuming reactive power from the distribution system (i.e. induction 

type DG). All algorithm are developed in “MATLAB© 2008 coding” for this problem. First 

load flow is carried out for the system. All experiments are done on an Intel® Core™ i3 CPU 

M380 @ 2.53GHz personal computer (PC) with 6GB memory under 64bit Windows 7. 

In all simulations, the following parameters have been used: 

1. Minimum allowable Voltage 0.95p.u 

2. Maximum allowable Voltage 1p.u 

3. Maximum allowable Branch Current is 130% of its rated capacity. 

4. Maximum allowable DG penetration is 50% of the total load capacity of the networks. 
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4.6.1 Selection of GA Parameter for DG Allocation 

To know the effect of the genetic algorithm parameter on the optimization process the each 

and every parameter had been change for five time and the optimization process continuously 

run for 20 time. After completion of five cycle the data are recorded and also make a 

comparison. In the study four GA parameter is considered. Initially the maximum generation 

(퐺푒푛 )  parameter is varying from 50 generation to 201 generation with an increasing step 

of 40 generation where the other GA parameter are kept fixed, after completing the variation 

process 250 is selected as the optimal maximum generation for future optimization process. 

The next variable GA parameter is population number	(휂 ) which is follow the previous 

method and after completing the variation process 170 is selected as the optimal population 

number for future optimization process. Similarly crossover probability (Ω )	and mutation 

probability	(Ω푚) are also varying with a fixed generation and population which are previously 

chosen by same methods.  After the completing the variation process 0.9 and 0.0005 are 

selected as optimal crossover probability and mutation probability respectively for the future 

optimization process.  

The four GA parameters variable value are given below and the result are shown in the Table 

4.1. 

1. Population size = 50 to 210 with a step of 40 

2. Maximum Generation = 100 to 300 with a step of 50 

3. Crossover probability ‘Ω ’ = 0.9 to 0.5 with a step of 0.1 

4. Mutation Probability ‘Ω ’ = 0.0005 to 0.0105 with a step of 0.0025 

Other parameters had been keep same for this process. 
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Table 4.1. GA parameter selection with system#1 
 

Network 
parameter 

Tap settings limit  = 0.95 to 1.05; 
Maximum DG power  =  500kW; 

Minimum DG power =50 kW; 
DG penetration limit = 1500 kW; 

Maximum no. of Tap = 20; 
Maximum no. of DG = 10; 

Maximum allowable line Current = 40%; 
Minimum Voltage Settings = 0.9 p.u.; 

Maximum run for GA optimization = 20; 
Maximum iteration for load flow = 300; 

Accuracy label in load flow= 10-9 

 

푮풆풏풎풂풙 휼풑풐풑 훀풄 훀풎 
Elite Power Loss (Kw) Average Power 

Loss (Kw) Minimum Fitness 

Minimum Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

Minimum 
Value 

Standard 
Deviation 

100 
150 
200 
250 
300 

50 
50 
50 
50 
50 

0.9 
0.9 
0.9 
0.9 
0.9 

0.0005 
0.0005 
0.0005 
0.0005 
0.0005 

37.578 
41.239 
42.772 
41.646 
43.761 

67.657 
63.135 
65.236 
64.614 
63.556 

13.303 
11.565 
10.937 
11.864 
10.445 

105.400 
98.418 
100.310 
94.891 
93.982 

15.244 
14.176 
13.830 
15.717 
14.801 

0.00215 
0.00166 
0.00238 
0.00288 
0.00295 

0.00121 
0.00090 
0.00098 
0.00132 
0.00093 

250 
250 
250 
250 
250 

50 
90 

130 
170 
210 

0.9 
0.9 
0.9 
0.9 
0.9 

0.0005 
0.0005 
0.0005 
0.0005 
0.0005 

39.196 
25.791 
30.651 
25.929 
24.989 

62.471 
43.281 
44.001 
37.601 
34.079 

13.611 
9.639 
8.253 
7.099 
3.092 

93.504 
74.661 
76.431 
67.873 
66.828 

18.618 
14.123 
13.146 
11.139 
6.5806 

0.00245 
0.00107 
0.00093 
0.00046 
0.00046 

0.00144 
0.00041 
0.00015 
0.00018 
7.6e-005 

250 
250 
250 
250 
250 

170 
170 
170 
170 
170 

0.9 
0.8 
0.7 
0.6 
0.5 

0.0005 
0.0005 
0.0005 
0.0005 
0.0005 

29.274 
25.182 
33.308 
30.371 
39.648 

38.83 
42.943 
45.763 
49.829 
54.160 

6.876 
10.020 
7.274 
10.536 
9.254 

70.846 
79.116 
83.174 
87.064 
94.515 

10.391 
17.193 
12.648 
16.106 
12.711 

0.00057 
0.00063 
0.00065 
0.00069 
0.00072 

0.00020 
0.00017 
0.00016 
0.00013 
0.00018 

250 
250 
250 
250 
250 

170 
170 
170 
170 
170 

0.9 
0.9 
0.9 
0.9 
0.9 

0.0005 
0.0030 
0.0055 
0.0080 
0.0105 

28.943 
23.910 
27.296 
22.930 
17.176 

36.208 
35.894 
35.100 
35.909 
31.753 

5.065 
8.548 
6.909 
7.964 
5.681 

66.532 
65.074 
64.449 
64.879 
60.003 

9.7136 
14.814 
11.366 
11.783 
9.5657 

0.00062 
0.00054 
0.00058 
0.00063 
0.00056 

0.00011 
0.00015 
9.6e-005 
0.00011 
0.00010 
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4.6.2 Single-Objective Optimization with Basic GA 

In this single objective optimization only power loss is consider as objective function. In this 

case two different objective function approach is considered. In the first approach objective is 

mathematically formulated as 		푀푖푛		휓(Υ ) = 	 푃 _ 		 . After calculating the objective 

function, fitness of the population is calculated and this fitness function is directly use as 

selection operator. Here, minimum fitness belongs to the optimal or elite chromosome as per 

the fitness function.  Now to minimize the losses the distributed generator is selected by 

genetic algorithm. The distributed generator placement results in node voltages and reduced 

power losses. A comparison is made between the losses of with distributed generator and 

without distributed generator. These objective function approach is applied on only System#1 

to validate the proposed scheme with basic GA optimization.  

But, in second approach objective is totally different from first one and it is mathematically 

formulated as			푀푖푛			휓(Υ ) = 	
∑ _

∑ _ 	 . In this approach calculation of fitness and 

selection of chromosomes in the matting pool is similar to the multi-objective optimization 

which is describe in the section (). Here, maximum fitness belongs to the optimal or elite 

chromosome as per the fitness function. Objective function approach is applied on both 

System#1 and System#2 to validate the proposed scheme with basic GA optimization. 

(A) Results of First Approach 

The network and GA parameter consider for this optimization is shown in Table (). 

 
  

Table 4.2. Base case converged cower flow solution for system #1. 

GA parameter Network parameter 

Population size	(휼풑풐풑) 170 DGs power rating range:  50 - 500kW 

Maximum Generation 

(푮풆풏풎풂풙) 
250 Tap change setting range:  0.95 – 1.05 

Crossover probability ‘훀풄’ 0.9 Maximum number of Tap:  20 

Mutation Probability ‘훀풎’ 0.0005 Maximum number of DG:  10 
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Table 4.3. Comparison of various cases optimization operation. 

Total 
no of 
DGs 

Total 
DG 

Power 

No. 
of 

Tap 

Elite 
Power 
Loss 

Average 
Power 
Loss 

Min. 
Node 

Voltage 

Max. 
Node 

Voltage 

Elite 
Fitness 

Max 
Current 

Run 
Time 

 (kW)  (kW) (kW) (Volt) (Volt)  (Amp) (Sec) 
Base case 

0 0 0 224.45 224.45 0.9092 1 0 0.49532 0 
Case#1(a) 

5 1966 0 54.685 101.08 0.96883 1 0.00113 0.33413 431.68 
Case#2(a) 

6 1916 5 45.867 82.478 0.97137 1 0.00064 0.30244 441 

 
Figure 4.3. Node voltage magnitude of system#1; case#1(a), unity p.f. DG; case#2(a), unity 

p.f. DG and OLTC 

0 10 20 30 40 50 60 70
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
1.005

Node Number

V
ol

ta
ge

 M
ag

ni
tu

de
 (p

.u
.)

 

 

Base Case Case#1 Case#2



Chapter 4: Optimal Distributed Generator Allocation Using Genetic Algorithm  

 

65 
 

 
 

 

 
Figure 4.4. Branch current magnitude of system#1; case#1(a), unity p.f. DG; case#2(a), unity 

p.f. DG and OLTC 
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Figure 4.5. Generation wise variation of average and minimum power loss of system#1 for 

case#1(a) unity p.f. DG 
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Figure 4.6. Generation wise variation of average and minimum power loss of system#1 for 

case#2(a) unity p.f. DG and OLTC 

0 50 100 150 200 250
20

40

60

80

100

120

140

160

180

200

Po
w

er
 L

os
s (

kW
)

 

 

Generation

Elite Average

 
Figure 4.7. Comparison of average and minimum power loss in different cases; case#1(a), 

unity p.f. DG; case#2(a), unity p.f. DG and OLTC 
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Table 4.4. Converged Power Flow Solution of case#1(a); case#1(a), unity p.f. DG 

Node/ 
Branch 

Voltage Angle Current  Node/ 
Branch 

Voltage Angle Current 
(p.u) (radian) (p.u)  (p.u) (radian) (p.u) 

1 1 0 0.33413244  36 0.999933 -2.06E-05 0.019432 
2 0.9999735 -5.84E-06 0.33413244  37 0.999761 -0.00013 0.016238 
3 0.9999471 -1.17E-05 0.30251104  38 0.999603 -0.00017 0.016238 
4 0.9998746 -2.48E-05 0.20853272  39 0.999557 -0.00019 0.013296 
5 0.9993968 0.0001323 0.20853272  40 0.999555 -0.00019 0.010354 
6 0.9953527 0.0036349 0.20822975  41 0.998857 -0.00038 0.010198 
7 0.9911637 0.0073101 0.20392146  42 0.998565 -0.00046 0.010198 
8 0.990184 0.0081982 0.19176452  43 0.998526 -0.00047 0.009459 
9 0.9897113 0.0086662 0.09547209  44 0.998518 -0.00047 0.009459 

10 0.9847748 0.0101099 0.09203603  45 0.998419 -0.00051 0.00473 
11 0.9836639 0.0103954 0.0693878  46 0.998419 -0.00051 0.104766 
12 0.9805428 0.0112947 0.04418254  47 0.999825 -5.64E-05 0.104766 
13 0.9776548 0.0120857 0.04318975  48 0.998579 -0.00084 0.095045 
14 0.974793 0.0128718 0.04219404  49 0.994734 -0.00327 0.047536 
15 0.9719599 0.0136532 0.04219404  50 0.994189 -0.00361 0.005444 
16 0.9714335 0.0137988 0.03658378  51 0.990149 0.008203 0.000454 
17 0.9705642 0.0140395 0.02943985  52 0.99014 0.008206 0.12738 
18 0.9705555 0.014042 0.02230417  53 0.989243 0.010161 0.127105 
19 0.9700964 0.014187 0.02230417  54 0.988707 0.011906 0.1257 
20 0.9698013 0.0142804 0.02218428  55 0.988027 0.014341 0.124497 
21 0.9693253 0.0144313 0.00775709  56 0.987417 0.016746 0.124497 
22 0.9693185 0.0144334 0.00710225  57 0.986166 0.029887 0.124497 
23 0.9692476 0.0144561 0.00710225  58 0.985613 0.036376 0.124497 
24 0.9690932 0.0145056 0.00355158  59 0.98542 0.038894 0.113671 
25 0.9689228 0.014554 0.00355158  60 0.984732 0.041714 0.120885 
26 0.968854 0.0145761 0.00177581  61 0.981589 0.044692 0.050929 
27 0.9688347 0.0145823 0.01124013  62 0.981793 0.044979 0.020997 
28 0.9999402 -1.61E-05 0.00804314  63 0.981722 0.045183 0.035853 
29 0.9998685 -6.14E-05 0.00484593  64 0.979958 0.045452 0.007394 
30 0.9997473 -2.43E-05 0.00484593  65 0.979425 0.045533 0.004515 
31 0.999726 -1.78E-05 0.00484593  66 0.983608 0.010415 0.002257 
32 0.9996191 1.50E-05 0.00484593  67 0.983607 0.010415 0.007021 
33 0.9993629 9.22E-05 0.00312438  68 0.980217 0.011398 0.00351 
34 0.9990274 0.0001944 0.00072186  69 0.980216 0.011398  
35 0.99896 0.0002129 0.02262588      
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Table 4.5. Converged Power Flow Solution of case#2(a); case#2(a), unity p.f. DG and OLTC 

Node/ 
Branch 

Voltage Angle Current   Node/ 
Branch 

Voltage Angle Current 
(p.u) (radian) (p.u)   (p.u) (radian) (p.u) 

1 1 0 0.30243529   36 0.999939 -2.40E-05 0.019432 
2 0.9999766 -7.50E-06 0.30243529   37 0.999768 -0.00014 0.016238 
3 0.9999533 -1.50E-05 0.27137821   38 0.999609 -0.00018 0.016238 
4 0.9998897 -3.29E-05 0.17303922   39 0.999563 -0.00019 0.013296 
5 0.9994811 5.19E-05 0.17303922   40 0.999561 -0.00019 0.010354 
6 0.9958186 0.0025579 0.17272026   41 0.998864 -0.00038 0.010198 
7 0.9920205 0.0051847 0.16813566   42 0.998571 -0.00046 0.010198 
8 0.9911346 0.0058175 0.15510393   43 0.998532 -0.00047 0.009459 
9 0.9907117 0.0061488 0.08447434   44 0.998524 -0.00048 0.009459 
10 0.9872132 0.002859 0.09110796   45 0.998426 -0.00051 0.00473 
11 0.9861106 0.0031288 0.0685247   46 0.998425 -0.00051 0.104783 
12 0.9830159 0.003969 0.04340238   47 0.99984 -6.45E-05 0.104783 
13 0.9801619 0.0046764 0.04241291   48 0.998401 -0.00111 0.095062 
14 0.9773343 0.0053773 0.04142059   49 0.994555 -0.00354 0.047544 
15 0.9745356 0.006072 0.04142059   50 0.99401 -0.00389 0.005439 
16 0.973966 0.0060883 0.03648832   51 0.9911 0.005823 0.000454 
17 0.973099 0.0063277 0.029363   52 0.99109 0.005826 0.169748 
18 0.9730902 0.0063301 0.02224591   53 0.989469 0.008067 0.1263 
19 0.9726323 0.0064744 0.02224591   54 0.988871 0.009779 0.124781 
20 0.972338 0.0065673 0.02212633   55 0.988103 0.012167 0.123472 
21 0.9718633 0.0067174 0.00773682   56 0.987406 0.014526 0.123472 
22 0.9718565 0.0067196 0.00708369   57 0.985659 0.027503 0.121986 
23 0.9717858 0.0067422 0.00708369   58 0.984392 0.033759 0.121986 
24 0.9716318 0.0067913 0.0035423   59 0.983922 0.036191 0.115129 
25 0.9714619 0.0068395 0.0035423   60 0.982657 0.038843 0.117693 
26 0.9713932 0.0068615 0.00177117   61 0.97987 0.042021 0.05422 
27 0.9713739 0.0068676 0.01019768   62 0.980096 0.042319 0.028284 
28 0.9999477 -1.99E-05 0.00706337   63 0.980173 0.042601 0.035909 
29 0.9998959 -7.34E-05 0.00402867   64 0.978406 0.042871 0.007406 
30 0.9997914 -8.67E-05 0.00402867   65 0.977872 0.042952 0.004504 
31 0.9997714 -1.01E-04 0.00484571   66 0.986055 0.003148 0.002252 
32 0.9996645 -6.80E-05 0.00484571   67 0.986054 0.003148 0.007003 
33 0.9994083 9.25E-06 0.00312424   68 0.982691 0.004072 0.003502 
34 0.9990728 0.0001114 0.00072183   69 0.98269 0.004072   
35 0.9990054 0.00013 0.02262574           
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Multiple Run Optimal Solution for first approach: 

Optimization result for 10 run:  

 

 

Table 4.6. Optimal Power Flow Solutions for 10 run. 

Total 
no of 
DGs 

Total 
DG 

Power 

No. 
of 

Tap 

Elite 
Power 
Loss 

Average 
Power 
Loss 

Min. 
Node 

Voltage 

Max. 
Node 

Voltage 

Elite 
Fitness 

Max 
Current 

 (kW)  (kW) (kW) (Volt) (Volt)  (Amp) 
Case#2(a), impact of unity p.f. DG and OLTC into the system 

5 2098 19 26.401 48.900 0.97368 1 0.00060 0.25723 
4 2188 18 20.598 44.606 0.97412 1 0.00064 0.21012 
4 2125 14 31.470 62.851 0.9117 1 0.00057 0.26984 
4 2156 13 30.714 67.830 0.9182 1 0.00050 0.26116 
4 2177 19 18.748 53.117 0.97327 1 0.00061 0.24902 
4 2184 19 23.821 51.535 0.97315 1 0.00066 0.25722 
3 2027 16 26.650 56.750 0.97354 1 0.00049 0.26048 
3 2047 17 43.911 67.370 0.96820 1 0.00092 0.31372 
4 2091 17 19.364 51.390 0.97436 1 0.00052 0.23411 
3 1962 18 29.133 60.029 0.97104 1 0.00071 0.22457 

Base case 
0 0 0 224.45 224.45 0.9092 1 0 0.49532 

 

 

Figure 4.8. Run wise variation of minimum and average power losses 
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(B) Results of Second Approach 

 

 

Table 4.7. Comparison of various cases optimization operation. 

System 

Total 
no of 
DGs 

Total 
DG 

Power 

No. 
of 

Tap 

Elite 
Power 
Loss 

Average 
Power 
Loss 

Min. 
Node 

Voltage 

Max. 
Node 

Voltage 

Elite 
Fitness 

Max 
Current 

 (kW)  (kW) (kW) (Volt) (Volt)  (Amp) 

System#1 

Base case 
0 0 0 224.45 224.45 0.90920 1 0 0.49532 

Case#1(a), impact of unity p.f. DG into the system 
5 1957 0 55.895 56.024 0.96877 1 0.80101 0.33487 

Case#2(a), impact of unity p.f. DG and OLTC into the system 
5 1957 13 21.698 22.051 0.97401 1 0.91204 0.26307 

System#2 

Base case 
0 0 0 887.057 887.057 0.68445 1 0 2.4380 

Case#1(a), impact of unity p.f. DG into the system 
6 1951 0 118.63 119.05 0.90012 1 0.88204 1.3091 

Case#2(a), impact of unity p.f. DG and OLTC into the system 
6 1950 15 110.01 110.57 0.88322 1 0.88966 1.3036 

 

 
Figure 4.9. Node voltage magnitude of system#1; case#1(a), unity p.f. DG; case#2(a), unity 

p.f. DG and OLTC 
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Figure 4.10. Branch current magnitude of system#1; case#1(a), unity p.f. DG; case#2(a), 

unity p.f. DG and OLTC 
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Figure 4.11. Comparison of average and minimum power loss in different cases; case#1(a), 

unity p.f. DG; case#2(a), unity p.f. DG and OLTC 
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Figure 4.12. Comparison of average and minimum objective function in different cases; 

case#1(a), unity p.f. DG; case#2(a), unity p.f. DG and OLTC 
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Multiple Run Optimal Solution of Second Approach: 

Optimization result for 10 run:  

 

 

Table 4.8. Converged Power Flow Solution for 10 run. 

Total 
no of 
DGs 

Total 
DG 

Power 

No. 
of 

Tap 

Elite 
Power 
Loss 

Average 
Power 
Loss 

Min. 
Node 

Voltage 

Max. 
Node 

Voltage 

Elite 
Fitness 

Max 
Current 

 (kW)  (kW) (kW) (Volt) (Volt)  (Amp) 
Case#2(a), impact of unity p.f. DG and OLTC into the system 

5 2328 10 21.616 30.115 0.98810 1 0.88288 0.23486 
5 2330 10 28.663 28.937 0.98182 1 0.85925 0.27798 
5 2318 8 23.824 23.831 0.97705 1 0.84798 0.28470 
5 2317 10 21.582 25.638 0.98137 1 0.6331 0.27641 
6 2330 10 33.842 33.936 0.98741 1 0.87373 0.27789 
5 2329 7 28.126 32.139 0.98053 1 0.84841 0.28801 
5 2330 9 31.495 34.354 0.98644 1 0.87361 0.22488 
5 2328 10 31.254 31.687 0.98503 1 0.86817 0.27552 
6 2330 10 33.399 33.553 0.98654 1 0.87084 0.27644 
6 2321 9 26.028 26.062 0.98875 1 0.89304 0.21810 

Base case 
0 0 0 224.45 224.45 0.9092 1 0 0.49532 

 

Figure 4.13. Run wise variation of minimum and average power losses 

 

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Number of Run

Po
w

er
 L

os
s i

n 
kW

 

 

Elite Average



Chapter 4: Optimal Distributed Generator Allocation Using Genetic Algorithm  

 

74 
 

4.6.3 Multi-Objective Optimization with Basic GA 

The main objective of this multi-objective optimization is to determine an economical and 

reliable network with better technical features, such as lower power loss, better node voltage 

profile, and better branch current/thermal limit ratio. Thus, two objective function are 

formulated as (i) the total power loss	(푃 )	of the distribution network and (ii) maximum node 

voltage deviation	(푉 ) ratio. These multi-objective function approach is applied on both 

System#1 and System#2 to validate the proposed scheme with basic GA optimization. The GA 

parameter and network constraints consider for this optimization is shown in Table (4.9). 

 

 

Table 4.9. GA and network parameters considered for the optimization process 

GA parameter Network parameter 

Population size	(휂 ) 100 DGs power rating range 
(푃 ): 50 - 600kW 

Maximum Generation 
(퐺푒푛 ) 300 Tap change setting 

range(훼): 
System#1 = 0.94 – 1.06 
System#2 = 0.90 – 1.10 

Crossover probability ‘Ω ’ 0.9 Maximum number of Tap: System#1 = 10 
System#2 = 20 

Mutation Probability ‘Ω ’ 0.0005 Maximum number of 
DG/Capacitor bank: 10 

 

 
Figure 4.14. Variation of optimal active and reactive power loss of system#1 
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Figure 4.15. Variation of optimal active and reactive power loss of system#2 
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Figure 4.16. Variation of minimum node voltage of system#1 and system#2 

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 
p.f. lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with 
OLTC.; case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, 
capacitor bank with OLTC; case#5, only OLTC. 
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Multiple Run Optimized Load Flow Solution 

 

 

 
Figure 4.17. Variation of maximum branch current of system#1 and system#2 

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. 
lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; 
case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank 
with OLTC; case#5, only OLTC. 
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Table 4.10. Multiple run solution for different case with system#2 

 
Case 

Minimum Active Power 
Loss (kW) 

Average Active 
Power Loss (kW) Minimum Voltage Average Objective 

Function 

Elite Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

Minimum 
Value 

Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

1(a) 57.263 72.875 9.117 73.33 9.305 0.93084 0.94027 0.004699 0.13639 0.005399 

1(b) 65.103 69.613 2.589 69.71 2.544 0.94078 0.94993 0.002367 0.11877 0.004685 

1(c) 507.9 556.56 21.330 562.73 18.613 0.81280 0.83233 0.006841 0.58308 0.006356 

2(a) 42.994 58.747 10.267 59.195 10.329 0.92600 0.94250 0.004800 0.12490 0.006800 

2(b) 57.371 62.750 3.362 63.085 3.281 0.94750 0.95270 0.001800 0.11090 0.004100 

2(c) 469.96 510.137 20.057 515.82 17.268 0.80040 0.84240 0.010700 0.54080 0.012500 

3 778.38 778.66 0.1555 778.69 0.1505 0.71868 0.71887 0.000117 0.88440 0.000254 

4 716.52 722.59 3.329 722.88 3.647 0.78700 0.79550 0.001600 0.79590 0.004300 

5 799.21 807.65 4.518 807.83 4.452 0.72531 0.72784 0.001419 0.88668 0.004574 
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From the Figure 4.14 and Figure 4.15 shows that DG placement in the distribution system is 

profitable. From the above result it can be concluded that the multi-objective optimization 

give the better optimal result then the single-objective optimization. In this multi-objective 

optimization, priority of each objective function can defined separately. In the case study the 

priority for each objective function is same.    

 

 

 

Table 4.11. Multi-objective optimization for different system with basic GA optimization   

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG 
Power No. 

of 
Tap 

No. 
of 

CB 

Total CB 
Reactive 
Power 
(kW) 

Optimal 
Active 
Power 
Loss 
(kW) 

Optimal 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) Active 

Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 224.995 102.198 0.90919 0.49031 
System # 2 - - - - - - 887.181 381.694 0.68442 2.43820 

Case # 1 
(a) 

System # 1 6 2328.0 - - - - 58.796 25.465 0.98262 0.31404 
System # 2 6 2323.0 - - - - 70.072 30.147 0.93635 1.30910 

Case # 1 
(b) 

System # 1 6 1864.0 1398.0 - - - 12.18 10.486 0.98747 0.23480 
System # 2 6 1858.4 1393.8 - - - 68.732 29.571 0.95001 1.30910 

Case # 1 
(c) 

System # 1 4 1639.2 -1229.4 - - - 200.212 88.861 0.94072 0.46945 
System # 2 7 1836.8 -1377.6 - - - 540.792 232.666 0.83178 2.18770 

Case # 2 
(a) 

System # 1 5 2325.0 - 10 - - 35.003 15.000 0.98751 0.28087 
System # 2 7 2322.0 - 19 - - 51.265 22.056 0.94570 1.30270 

Case # 2 
(b) 

System # 1 6 1863.2 1397.4 9 - - 8.052 8.303 0.98946 0.21720 
System # 2 6 1858.4 1393.8 19 - - 59.235 25.485 0.95292 1.30520 

Case # 2 
(c) 

System # 1 3 1433.6 -1075.2 10 - - 161.553 71.863 0.94630 0.43166 
System # 2 6 1854.4 -1390.8 15 - - 535.240 230.278 0.84044 2.05950 

Case # 3 
System # 1 - - - - 4 2329.0 130.231 56.850 0.94073 0.40015 
System # 2 - - - - 5 2324.0 778.845 335.085 0.71878 2.24170 

Case # 4 
System # 1 - - - 8 4 2320.0 132.456 57.386 0.94586 0.39830 
System # 2 - - - 19 5 2324.0 726.877 312.726 0.75302 2.14780 

Case # 5 
System # 1 - - - 10 - - 171.446 78.606 0.91679 0.43205 
System # 2 - - - 20 - - 809.771 348.390 0.72612 2.30250 
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4.7 IMPROVED GENETIC ALGORITHM (IGA) OPTIMIZATION 

The traditional crossover like partly matched crossover, order crossover and cycle crossover, 

etc. and mutation would make some unfeasible solution to be created. In the traditional 

crossover and mutation, crossover probability and mutation probability are not adaptive in 

nature and which have no flexibility. For this reason when a basic GA optimization process 

trapped in a local minima these crossover and mutation probability cannot emerge from the 

local minima and GA optimization give a premature result. In the project study some different 

type of crossover and mutation method is considered to resolve all this problem. Also an 

adaptive crossover probability is proposed. 

GA#1: In [76], based on the mechanism of biological DNA genetic information and evolution, 

a modified genetic algorithm (MDNA-GA) is proposed. They proposed a new mutation named 

adaptive mutation probability which is dynamically adjusted by considering a measure called 

Diversity Index (DI). It is defined to indicate the premature convergence degree of the 

population.  

푓 = ∑ 푓                           (4.14) 

Accordingly [22], the mutation probability is changed according to the following equation: 

Ω = 0.5 ∗ (1 − ) ∗ 퐷퐼               (4.15) 

GA#2: In [77], an Improved Genetic Algorithm (IGA) is proposed. The self-adaptive process 

have been employed for crossover and mutation probability in order to improve crossover and 

mutation quality. The crossover probability and mutation probability is controlled by 

evolutionary degree and is defined by Eq. (4.16) and (4.17).  

Ω = 		0.9 − 0.3 ∗ ,													푓 ≥ 푓                    (4.16a) 

Ω = 		0.9,																																																	푓 < 푓                 (4.16b) 

Ω = 			0.1 − 0.099 ∗ ( ) ,						푓 ≥ 푓                  (4.17a) 

Ω = 			0.1,																																															푓 < 푓             (4.17b) 
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Where, 푓 	is the optimum adaptation degree of the father population, 푓 	is the average 

adaptation degree of the whole population, 푓 	is the better of the adaptation degree between two 

individuals, and 푓 	is the fitness degree of the mutating individuals. 

GA#3: In [78], an Improved Genetic Algorithm (IGA) based on hormone modulation 

mechanism is proposed. In order to accelerate evolutional speed and enlarge searching scope 

an adaptive crossover and mutation probability employed and referring to Eq. (4.18) and (4.19).  

Ω = 			 Ω ∗ (1 + 훼 ∗
( ) 	

)              (4.18) 

Ω = 			 Ω ∗ (1 + 훽 ∗
( ) 	

)             (4.19) 

Where, 	푝퐶 	푎푛푑		푝푀  represent initial crossover probability and mutation probability 

respectively, 푓 , 푓 	푎푛푑	푓 		represent the maximal fitness, average fitness and minimal 

fitness of the individual of each generation respectively. 훼,훽, 푛 	푎푛푑	푛 	 are coefficient 

factors. 

GA#4: The adaptive approaches proposed by Vedat Toğan and Ayşe T. Daloğlu [79] for 

crossover and mutation operator of the GA are as follows: 

Ω = ( ) 		,																																		푓 ≥ 푓                    (4.20a) 

Ω = 		0.1 ∗ 푓 		,																																							푓 < 푓                 (4.20b) 

Ω = 0.5 ∗ ( ) 		,																					 		푓 ≥ 푓                  (4.21a) 

Ω = 0.5 ∗ ( ) 		,																							푓 < 푓                                            (4.21b)  

Where, 푓 	, 푓 	and 푓 	are the maximum, average and minimum fitness value of the 

population. 푓 	is the lower of the fitness value of the individuals to be crossed, and 푓 	is the 

fitness value of the mutating individuals. 

GA#5: Chaogai Xue, Lili Dong and Junjuan Liu [80] proposed an adaptive approaches for 

crossover and mutation operator of the GA are as follows:  

Ω = Ω −
( )	∗	 		,								푓 ≥ 푓                   (4.22a) 

Ω = 	 Ω 		,																																															푓 < 푓                (4.22b) 



Chapter 4: Optimal Distributed Generator Allocation Using Genetic Algorithm  

 

80 
 

Ω = Ω −
( )	∗	 		,				푓 ≥ 푓                  (4.23a) 

Ω = 	 Ω 		,																																													푓 < 푓                 (4.23b) 

Where, 푓 	, 푓 	and 푓 	are the maximum, average and minimum fitness value of the 

population. 푓 	is the grater of the fitness value of the two individuals to be crossed, and 푓 	is 

the fitness value of the mutating individuals,	푝퐶 , 푝퐶  and 푝푀 , 푝푀  are initial values for 

calculating self-adaptive crossover and mutation probability respectively. 

GA#7:  combination of two different IGA approach.  Adaptive crossover operator taken from 

[76] and adaptive mutation operator taken from [79].   

GA#8: combination of two different IGA approach.  Adaptive crossover operator taken from 

[76] and adaptive mutation operator taken from [77]. 

 

 

4.7.1 Algorithm of Adaptive GA 

The algorithm of all adaptive genetic algorithm is same with the basic genetic algorithm. In 

basic genetic algorithm the crossover and mutation GA parameters are initialize at the starting 

of the program. But in the adaptive genetic algorithm the crossover and mutation parameter 

are updated in every generation before the crossover and mutation is performed. Because the 

parameter are adaptive in nature. The flowchart for the adaptive genetic algorithm is presented 

below. 
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Figure 4.18. Flowchart of adaptive genetic algorithm for DG allocations 

START 

Input system data and specify GA parameters, population 
size, and maximum generation (휂 ,퐺푒푛 ); 

 Randomly generate initial population; 

Gen = 1; 

Decode the initial population and determine the DG 
location and size for each chromosome; 

Perform Load Flow for each Chromosome to determine 
objective function and assign fitness to each Chromosome; 

Select the Chromosomes in the current population by using Roulette 
Wheel Selection and update GA parameters (Ω 		and	Ω ); 

Apply Crossover and Mutation operators to obtain the set 
of offspring from the current population;  

Perform Load Flow for each offspring to determine objective function 
and assign fitness to each offspring; 

Decode the set of offspring and and determine the DG 
location and size for each chromosome; 

Select 휂  number of best chromosomes from the current 
population and from the set of offspring; 

Gen = Gen + 1; 

Converged? 

The best chromosome of the current 
population represents the optimal solution; 

STOP 

Yes 

No 
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4.8 CASE STUDY FOR ADAPTIVE GA OPTIMIZATION 

 

 

 

Table 4.12. Comparison of various GA optimization for DG allocation with system#1 

Sl.    
No. 

Type of 
Genetic 

Algorithm 

Minimum Active Power 
Loss (kW) 

Average Active 
Power Loss 

(kW) 
Minimum Voltage 

Elite Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

Minimum 
Value 

Mean 
Value 

Standard 
Deviation 

1 Basic GA 49.86       55.131       4.8275       56.709       5.3512 0.96948      0.97423    0.0042605 
2 GA # 1 49.779       58.078       5.5018       58.078       5.5018 0.96955      0.97592    0.0042795 
3 GA # 2 48.001       53.289       4.4681       69.598       4.5672 0.96957      0.97631    0.0039185 
4 GA # 3 50.083       54.701       4.4502       55.221       4.6808 0.96776    0.97190    0.0033094 
5 GA # 4 50.409       76.082       20.646       120.46       56.762 0.92805      0.95856     0.019387 
6 GA # 5 49.784        56.69       5.4992      59.183       6.8042 0.96784      0.97506    0.0045321 
7 GA # 6 50.130       54.884       4.3212       56.453       4.8723 0.96776      0.97322    0.0043029 
8 GA # 7 49.818 58.121 5.1599 58.121 5.1599 0.96957 0.97617 0.0042090 
9 GA # 8 49.755 58.822 5.1633 58.822 5.1633 0.96956 0.97637 0.0039306 
          

 

Figure 4.19. Average objective function of different GA for System#1 
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The Table 4.12 and Figure 4.19 shows the results of various adaptive GA optimization 

approaches. In this case study only case#1(a) is considered (i.e. installed DG are operated at 

unity p.f. on the distribution systems). All the GA a give a well constricted result. But, some of 

the GA give more satisfactory results (i.e. less standard dilation, low minimum power loss in 

the generations, high minimum node voltage compare to other, etc.). The second objective 

function gives the better performance with all the adaptive GA and particularly with basic GA 

compare to first objective function approach. Though the basic GA have a quick convergence 

criteria. Results shows that GA#3 have the best result among all of the GA previously proposed 

by others though the GA is partially adaptive in nature. Table 4.12 is also contained the 

proposed adaptive genetic algorithm results. It shows that the proposed adaptive GA gives the 

most satisfactory and acceptable result among all the GA approach is considered in the study. 

The proposed GA give the better result in all part of optimization (i.e. in case for minimum 

voltage and power loss). The optimized result of GA#3 are discussed briefly in the section 4.8.1 

and proposed GA are discussed letter stage of this thesis.    

4.8.1  Case Study for Adaptive Ga#3 Optimization 

 

Figure 4.20. Convergence of GA#3 for unity p.f. DG optimization with System#1 
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Figure 4.21. Adaptive crossover probability of GA#3 with System#2 
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Figure 4.22. Adaptive mutation probability of GA#3 with System#2 
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Figure 4.23. Node voltage magnitude of GA#3 for system#1 in different cases; 

 

Figure 4.24. Active and Reactive power loss with injected DG and capacitor bank power rating.

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 
p.f. lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with 
OLTC.; case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, 
capacitor bank with OLTC; case#5, only OLTC. 
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Figure 4.25. Node voltage magnitude of GA#3 for System#2 
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Figure 4.26. Node voltage magnitude of GA#3 for System#2; 

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. 
lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; 
case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank 
with OLTC; case#5, only OLTC. 
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Figure 4.27. Variation of optimal active and reactive power loss of system#1 in different cases; 

Base 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 3 4 5
0

50

100

150

200

250

Cases

Po
w

er
 L

os
s i

n 
kW

/k
V

A
R

 

 

Active Power Reactive Power

 
Figure 4.28. Variation of optimal active and reactive power loss of system#2 in different cases;

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. 
lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; 
case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank 
with OLTC; case#5, only OLTC. 
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Table 4.13. Different case study for different system with GA#3 optimization 

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total 
DG 

Power 

Total 
DG 

Power No. 
of 

Tap 

No. 
of 

CB 

Total 
CB 

Reactive 
Power 

(kVAR) 

Optimal 
Active 
Power 
Loss 
(kW) 

Optimal  
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) Active 

Power 
(kW) 

Active 
Power 
(kW) 

Base 
System # 1 - - - - - - 224.995 102.198 0.90919 0.49031 
System # 2 - - - - - - 887.181 381.694 0.68442 2.43820 

Case # 1 
(a) 

System # 1 4 2094.0 - - - - 50.978 23.547 0.96958 0.32700 
System # 2 4 2094.0 - - - - 93.850 40.377 0.89538 1.30910 

Case # 1 
(b) 

System # 1 4 1659.2 1244.4 - - - 20.710 14.538 0.97706 0.26130 
System # 2 6 1674.4 1255.8 - - - 89.718 38.599 0.94084 1.30910 

Case # 1 
(c) 

System # 1 3 1438.4 -1078.8 - - - 190.849 85.898 0.93630 0.46620 
System # 2 5 1648.0 -1236.0 - - - 544.027 234.058 0.82427 2.09880 

Case # 2 
(a) 

System # 1 5 2085.0 - 9 - - 23.267 10.286 0.98302 0.23862 
System # 2 6 2091.0 - 20 - - 78.929 33.957 0.93245 1.30910 

Case # 2 
(b) 

System # 1 5 1678.4 1258.8 10 - - 11.974 10.253 0.98277 0.23927 
System # 2 6 1676.8 1257.6 19 - - 82.762 35.607 0.94343 1.30910 

Case # 2 
(c) 

System # 1 5 1629.6 -1222.2 10 - - 135.960 57.730 0.95038 0.36630 
System # 2 6 1459.2 -1094.4 19 - - 500.888 215.498 0.84141 1.93830 

Case # 3 
System # 1 - - - - 5 2082 125.206 55.427 0.93581 0.40294 
System # 2 - - - - 4 2095 787.116 338.643 0.71616 2.25750 

Case # 4 
System # 1 - - - 9 3 1775 122.123 54.421 0.93815 0.40351 
System # 2 - - - 20 4 2063 720.744 310.088 0.75501 2.13290 

Case # 5 
System # 1 - - - 10 - - 172.001 78.965 0.91645 0.43333 
System # 2 - - - 19 - - 802.015 345.053 0.72977 2.27660 

 

Table 4.14. Position and rating for DG and CB of GA#3 optimization in different cases 

Different 
System 

DG rating kW Capacitor bank rating 
kVAR 

Case # 1(a) Case # 1(b) Case # 1(c) Case # 2(a) Case # 2(b) Case # 2(c) Case # 3 Case # 4 

System # 1 

DG59 = 447 DG18 = 472 DG57 = 598 DG21 = 177 DG16 = 176 DG58 = 567 CB57 = 394 CB 58 = 591 
DG60 = 533 DG60 = 576 DG58 = 600 DG59 = 586 DG59 = 492 DG59 = 589 CB 58 = 542 CB 59 = 588 
DG61 = 596 DG61 = 564 DG59 = 600 DG61 = 529 DG60 = 558 DG60 = 581 CB 59 = 585 CB 60 = 596 
DG63 = 518 DG64 = 462 - DG62 = 307 DG61 = 600 DG63 = 170 CB 60 = 594 - 

- - - DG63 = 486 DG63 = 272 DG65 = 130 CB 64 = 067 - 

System # 2 

DG11 = 596 DG11 = 594 DG16 = 352 DG12 = 375 DG16 = 509 DG18 = 316 CB 49 = 503 CB 47 = 589 
DG45 = 465 DG19 = 180 DG33 = 598 DG18 = 350 DG18 = 239 DG35 = 104 CB 50 = 543 CB 50 = 567 
DG47 = 572 DG36 = 126 DG35 = 372 DG46 = 206 DG37 = 121 DG39 = 426 CB 51 = 599 CB 51 = 424 
DG49 = 461 DG44 = 085 DG41 = 461 DG47 = 597 DG41 = 600 DG41 = 340 CB 52 = 450 CB 52 = 483 

- DG45 = 508 DG47 = 277 DG49 = 502 DG47 = 236 DG51 = 391 - - 
- DG49 = 600 - DG52 = 079 DG51 = 391 DG45 = 417 - - 
- - - - - DG47 = 221 - - 

 

 



Chapter 4: Optimal Distributed Generator Allocation Using Genetic Algorithm  

 

89 
 

4.9 PROPOSED ADAPTIVE GA OPTIMIZATION 

According to the literature review in IGA, crossover and mutation are in adaptive in nature. In 

some cases either crossover or mutation is in adaptive nature. So in some case only crossover 

probability or mutation probability is adaptive where other one is fixed in nature. But in some 

cases both are adaptive. Basically in the most of the IGA, crossover and mutation probability 

is directly related to the fitness function of the population. It can be divided into two category. 

In the first category it depends upon the maximum and minimum fitness of the population. Due 

to this either crossover or mutation or both are in partial adaptive in nature for all population 

of a single generation (i.e. fixed for all matting chromosomes). Or we can say generation wise 

adaptive in nature. But when either crossover or mutation or both depends upon individual 

matting chromosome pair fitness and maximum and minimum fitness of the population it 

become adaptive in nature for all population of a single generation (i.e. different for all matting 

chromosomes). Thus in this second category, crossover and mutation is not only generation 

wise also population wise adaptive in nature.  

By considering all the concept the proposed adaptive GA is based on second category where 

only crossover probability is adaptive in nature and which is used for optimal DG allocation 

and size problem. The adaptive crossover probability is directly depends upon the present 

generation maximum and minimum fitness and the matting chromosome fitness. This adaptive 

crossover probability is mathematically formulated as follows:  

Ω = 푓 − (푓 − 푓 ) ∗ 푒 	,													푓 ≥ 푓                (4.24a) 

Ω = 푓 − 푓 − 푓 ∗ 푒 	,														푓 < 푓               (4.24b) 

Where, 푓 	, 푓 	and 푓 	are the maximum, average and minimum fitness value of the 

population. 푓 	is the grater of the fitness value of the two individuals to be crossed, 푛 		is 

coefficient factor. 
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Figure 4.29. Convergence of GA#6 for unity p.f. DG optimization with System#1 
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Figure 4.30. Adaptive crossover probability of GA#6 with System#2 
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Figure 4.31. Variation of adaptive crossover probability of GA#6 in each and every 
generation with System#2 
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Figure 4.32. Zooming up the adaptive crossover probability of GA#6 up to generation 50 
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Figure 4.33. Compression between basic GA and proposed adaptive GA optimization for 
unity p.f. DG with system#2 
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Figure 4.34. Compression between basic GA and proposed adaptive GA optimization for 0.8 
p.f. DG supplying reactive power with system#2 
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After analysing the above results, it can be summarised that effectively the proposed adaptive 

GA give better results. The convergence criteria of the proposed adaptive GA is well 

acceptable. Figure 4.31 and Figure 4.32 shows that the crossover probability is fully adaptive 

in nature (i.e. it is not only generation wise also population wise adaptive in nature). The 

proposed AGA is tested on both the systems for the all case considered in the study and 

satisfactory results are achieved in all cases. The quick convergence of GA and stuck in a local 

minima can be avoided by this adaptive crossover approach.  

 

Table 4.15. Different case study for different system with GA#6 optimization 

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG  
Power  No. 

of 
Tap 

No. 
of 

CB 

Total 
CB 

Reactive 
Power 
(kW) 

Optimal 
Active 
Power 
Loss 
(kW) 

Optimal 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) 

Active 
Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 224.995 102.198 0.90919 0.49031 
System # 2 - - - - - - 887.181 381.694 0.68442 2.43820 

Case # 1 
(a) 

System # 1 4 2088.0 - - - - 50.557 24.0396 0.96953 0.32060 
System # 2 5 2095.0 - - - - 92.600 39.839 0.92560 1.30910 

Case # 1 
(b) 

System # 1 5 1678.4 1258.8 - - - 17.624 13.135 0.98035 0.25856 
System # 2 6 1679.2 1259.4 - - - 89.619 38.557 0.93813 1.30910 

Case # 1 
(c) 

System # 1 3 1433.6 -1075.6 - - - 190.731 85.864 0.93621 0.46614 
System # 2 4 1650.4 -1237.8 - - - 535.504 230.391 0.82221 2.11770 

Case # 2 
(a) 

System # 1 5 2087.0 - 8 - - 16.598 9.694 0.97902 0.23973 
System # 2 6 2095.0 - 19 - - 77.164 33.059 0.93456 1.30910 

Case # 2 
(b) 

System # 1 5 1676.0 1257.0 9 - - 7.698 4.534 0.98803 0.21735 
System # 2 6 1678.4 1258.8 20 - - 76.789 33.037 0.95106 1.30830 

Case # 2 
(c) 

System # 1 4 1634.4 -1225.8 10 - - 128.582 56.112 0.95070 0.36631 
System # 2 4 1658.4 -1243.8 20 - - 483.191 207.885 0.84036 1.91430 

Case # 3 
System # 1 - - - - 4 2099 128.676 57.0404 0.93814 0.40236 
System # 2 - - - - 4 2096 786.995 338.591 0.71626 2.25760 

Case # 4 
System # 1 - - - 7 4 2091 120.470 56.114 0.94519 0.39981 
System # 2 - - - 20 4 2090 716.607 308.308 0.75746 2.12410 

Case # 5 
System # 1 - - - 10 - - 169.244 77.768 0.91721 0.43167 
System # 2 - - - 20 - - 796.285 342.588 0.73196 2.26360 

 

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. 
lagging; case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; 
case#2(c), DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank 
with OLTC; case#5, only OLTC. 
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4.10 CASE STUDY FOR SELECTION OF UNCROSSED PARENTS 

The offspring can be selected by two different method (i) best fitness parent among the parent 

pair and (ii) the chromosome belongs the same location or number of the selected parent’s 

pair location or number in the population and matting pool respectively. The study is carried 

on the system#2 with GA#6 and the results are shown in the Table 4.16 below. 

 

 

 

Table 4.16. Comparison of various uncrossed parents selection approach of GA 
optimization for dg allocation 

Case Type of 
Approach 

Minimum Active Power 
Loss (kW) 

Average Active 
Power Loss 

(kW) 
Minimum Voltage Average Objective 

Function 

Elite Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

Minimum 
Value 

Mean 
Value 

Standard 
Deviation 

Mean 
Value 

Standard 
Deviation 

1(a) 
First 50.913 66.426 9.165 72.702 8.548 0.93370 0.94500 0.00450 0.12190 0.00540 

Second 45.649 59.642 9.319 65.573 10.720 0.93040 0.93930 0.00450 0.13690 0.00640 

1(b) 
First 62.980 65.120 1.291 68.091 2.366 0.95000 0.95150 0.00190 0.11910 0.00360 

Second 64.601 68.152 2.737 70.879 3.122 0.94130 0.94980 0.00220 0.12330 0.00490 

1(c) 
First 474.75 536.77 22.844 561.35 13.756 0.82425 0.83348 0.00486 0.58249 0.00505 

Second 484.04 540.28 21.109 559.18 15.663 0.78370 0.83064 0.01094 0.58352 0.01514 

2(a) 
First 38.139 50.454 8.756 54.828 8.864 0.94301 0.94979 0.00403 0.11443 0.00410 

Second 41.652 51.656 7.357 56.233 7.688 0.94124 0.94846 0.00391 0.11709 0.00593 

2(b) 
First 50.191 53.987 1.875 57.001 2.794 0.95362 0.95581 0.00268 0.10053 0.00377 

Second 52.423 56.212 2.222 59.661 2.778 0.95300 0.95490 0.00230 0.10980 0.00480 

2(c) 
First 441.61 483.60 16.922 504.74 12.403 0.82323 0.84981 0.00698 0.52509 0.00817 

Second 422.68 471.94 24.719 495.53 21.399 0.82810 0.84880 0.00770 0.52120 0.01160 

3 
First 778.25 778.58 0.1906 779.26 0.5583 0.71840 0.71890 0.00020 0.88520 0.00070 

Second 778.31 778.68 0.2119 779.35 0.5547 0.71820 0.71880 0.00020 0.88540 0.00070 

4 
First 708.69 713.04 2.099 714.54 2.157 0.77970 0.78430 0.00080 0.78630 0.00250 

Second 708.10 712.91 2.643 714.51 2.667 0.75630 0.75870 0.00100 0.78640 0.00310 

5 
First 792.09 797.21 3.284 798.57 3.441 0.72980 0.73100 0.00080 0.87730 0.00320 

Second 792.50 796.18 2.046 797.62 2.146 0.73033 0.73130 0.00052 0.87639 0.00202 

            

case#1(a), unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging; 
case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; case#2(c), DG 
operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank with OLTC; case#5, 
only OLTC. 
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After analysing the above results, it can be summarised that the first approach is better than 

second (i.e. when the crossover criteria is not satisfied then the offspring will bear only 

chromosome belongs the same location or number of the selected parent’s pair location or 

number in the population and matting pool respectively). These selection give better voltage 

profile and low power losses in almost all cases except the case#5 in which only OLTC is 

controlling the voltage and minimizing the power losses. 
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4.11 SUMMARY 

In this chapter, a deterministic method to find the optimal DG sizing and placement in a 

distribution network was proposed, where the total real power loss of the network were 

employed as the objective to be minimised. Both the single-objective and multi-objective 

optimization method was employed for DG allocation issue. After analysing the above results, 

it can be summarised that DG placement in the distribution system is profitable. DG not only 

minimised the power loss of the distribution system also it improved the voltage profile. The 

multi-objective optimization give the better optimal result then the single-objective 

optimization. All the adaptive GA gives a well constricted result. But, some of the GA give 

more satisfactory results (i.e. less standard dilation, low minimum power loss in the 

generations, high minimum node voltage compare to other, etc.). The second objective function 

approach gives the better performance with all the adaptive GA and particularly with basic GA 

compare to first objective function approach. Though the basic GA have a quick convergence 

criteria it can provide considerable optimal results. Results shows that GA#3 have the best 

result among all of the GA previously proposed by others though the GA is partially adaptive 

in nature. The proposed adaptive GA gives the most satisfactory and acceptable result among 

all the GA approach is considered in the study. The proposed GA give the better result in all 

part of optimization (i.e. in case for minimum voltage and power loss).  

The convergence criteria of the proposed adaptive GA is well acceptable. The crossover 

probability of proposed GA is fully adaptive in nature (i.e. it is not only generation wise also 

population wise adaptive in nature). The quick convergence of GA and stuck in a local minima 

can be avoided by this adaptive crossover approach. Synchronous DG are profitable application 

in all type of system also induction DG are considerable profitable though they consumed 

reactive power from the system. Installation of induction DG in a very week distribution system 

is better than the capacitor placement.  
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CHAPTER-5

OPTIMAL DG ALLOCATION UNDER VARIABLE LOAD 

AND GENERATION USING GENETIC ALGORITHM

 

5.1  INTRODUCTION  

Distributed generation (DG) technologies under smart grid concept forms the backbone of our 

world Electric distribution networks [5]. These DG technologies are classified into two 

categories: (i) renewable energy sources (RES) and (ii) fossil fuel-based sources. Renewable 

energy source (RES) based DGs are wind turbines, photovoltaic, biomass, geothermal, small 

hydro, etc. Fossil fuel based DGs are the internal combustion engines (IC), combustion 

turbines and fuel cells. Environmental, economic and technical factors have a huge role in DG 

development [3] [6-7]. In accord with the Kyoto agreement on climate change, many efforts 

to reduce carbon emissions have been taken, and as a result of which, the penetration of DGs 

in distribution systems rises [8]. Presence of Distributed generation in distribution networks 

is a momentous challenge in terms of technical and safety issues [12–14]. Thus, it is critical 

to evaluate the technical impacts of DG in power networks. Thus, the generators are needed 

to be connected in distributed systems in such a manner that it avoids degradation of power 

quality and reliability. Evaluation of the technical impacts of DG in the power networks is 

very critical and laborious. Inadequate allocation of DG in terms of its location and capacity 

may lead to increase in fault currents, causes voltage variations, interfere in voltage-control 

processes, diminish or increase losses, increase system capital and operating costs, etc.[13].  

The placement of the DG units mainly the Renewable energy sources placement, is affected 

by several factors such as wind speed, solar irradiation, environmental factors, geographical 

topography, political factors, etc. For example, wind generators or turbines cannot be installed 

near residential areas, because of the interference in the form of public reactions and 

legislations from environmental organisations. Another issue is application of the plug-in 

electric vehicle (PEV) which is being paid more attention to [44-46]. However, there are 

several factors or uncertainties that can possibly lead to probable risks in determining the 
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optimal siting and sizing of DGs in distribution system planning [47]. Some of the 

uncertainties are possibilistic output power of a PEV due to its alteration of 

charging/discharging schedule [48-50], wind power unit due to frequent variable wind speed, 

from a solar generating source due to the possibilistic illumination intensity, volatile fuel 

prices and future uncertain load growth. The most essential uncertainty to account for the 

time-varying characteristics of both generation and demand of power are these increasing 

penetrations of variable renewable generators with wind power [47][53], being the most 

noteworthy of them.   

5.2 MULTI-OBJECTIVE PLANNING OF RADIAL DISTRIBUTION 

NETWORKS USING PLGM 

In most of the planning models, the optimal distribution network is determined based on a 

deterministic load demand which is usually obtained from a load forecast and DG generation. 

The optimal DG power generation of a distribution network is determined based on the DG 

generation (i.e., electric utilities and customers) and weather forecast in the form of wind or 

solar power generation. However, such a forecast is always subject to some error. Since the 

operating conditions (e.g. node voltage, branch current, illumination of sun, wind speed, etc.) 

of any distribution network depend on the load, a network operating with loads that differ from 

the nominal ones may be subject to violations of the acceptable operating conditions. In this 

study, load demand uncertainty (LDU) and DG power generation uncertainty (PGU) is 

incorporated into network planning to investigate its overall influence on planned networks. A 

possibilistic (fuzzy-based) approach can be used to model the uncertainty of LDU and PGU. 

Possibilistic approach, ambiguity of load demand and DG power generation can be modelled 

efficiently without any problem-specific knowledge. A fuzzy membership function can be used 

to model this inexplicit and uncertain information, providing degrees of membership to all 

possible values of the load demand and DG power generation for each and candidate node 

respectively. 
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5.2.1  Possibilistic Load and Generation Model (PLGM) 

A fuzzy number is a special case of a convex, normalized fuzzy set representing an 

extension of real numbers. It is used to transform the verbal declaration of an uncertain number 

or an interval into its mathematical form. Fuzzy numbers allow the incorporation of uncertainty 

on parameters, properties, geometry, initial conditions, etc. A fuzzy number can be 

characterized by various mathematical functions [62, 63]. Load demand uncertainty (LDU) and 

DG power generation uncertainty (PGU) typically represented by triangular or trapezoidal 

fuzzy numbers [64], as shown in Figure 5.1 and Figure 5.3. In practice, the most probable load 

for each node of a distribution networks is forecasted by utility companies using it’s high and 

low bounds. In this context, a triangular fuzzy number is a more practical way of translating 

this fuzzy information into an uncertainty range (an interval) plus an interior “most credible” 

value, which is obtained from the forecast [64]. Distributed generation is at present being used 

by customers to various purposes (i.e., to meet some or all of their electricity needs, to reduce 

demand charges by their electric utility, provide backup power, etc.). Also electric utilities are 

using their won controlled DG networks to enhance their distribution networks. Due to some 

electric utility controlled DG and customers uncontrolled DG, DG power generation 

uncertainty (PGU) typically represented by triangular fuzzy numbers. Thus, in this work, the 

load demand at each node and the DG power generation at candidate nodes are considered as 

a possibilistic variable represented by two different triangular fuzzy number. For load demand 

퐿 = (퐿 _ , 퐿 , 퐿 _ ) as shown in Figure 5.1, in which 퐿 _ , 	퐿 		and 퐿 _ 	represent 

the minimum possible load demand, load demand with highest possibility of existence, and 

maximum possible load demand for a node, and for DG power generation 푃 =

(푃 _ ,푃 ,푃 _ )  as shown in Figure 5.2, in which 푃 _ , 	푃 	 and 푃 _  

represent the minimum possible DG power generation, DG power generation with highest 

possibility of existence, and maximum possible DG power generation for a candidate node. 

The objective functions is a function of load demand and DG power generation, which is also 

become possibilistic quantities (i.e., fuzzy numbers).  
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5.2.2  Comparison of Fuzzy Numbers 

Fuzzy numbers forms the objective function for the optimization problem discussed in 

the study as a result of which direct comparison between two solutions is difficult. Hence, a 

suitable de-fuzzification approach is required of which a lot of literatures are available in [65-

66]. The approach used in this study involves transforming of each index of the fuzzy quantities 

into real numbers where there is no need for a reference set or a fuzzy relation. In this case for 

de-fuzzification various approaches can be used (i.e., center of gravity (COG), mean of maxima 

(MOM), total distance criterion (TDC) index and fuzzy removal techniques) [67].COG ascribes 

relatively higher weights to lower membership values whereas MOM neglects lower 

membership values.  TDC and removal techniques are basically equivalent [67]. The TDC or 

removal value is the average of the sum of areas under the left and right sides of the fuzzy 

membership function corresponding to an 훼-level. The method used in this study yields a 

reasonably good representation of a fuzzy set [53, 54]. In the present study, the removal 

Figure 5.1. Possibilistic variable, i.e., possibilistic load demand, as 
a triangular fuzzy number, 

 
Figure 5.2 Possibilistic variable, i.e., possibilistic DG power 

generation, as a triangular fuzzy number, 

Figure 5.3. Fuzzy removal technique for a possibilistic objective 
function. 

 
Figure 5.4. Fuzzy removal technique for a possibilistic objective 

function. 
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technique was used to obtain equivalent crisp values of the fuzzy objective functions. For a 

triangular fuzzy number, the removal {푅푒푚 푓 }  of a fuzzy objective function 푓  

corresponding to an 훼 -cut is defined as (Ramirez-Rosado & Dominiguez-Navarra, 2004) 

(Figure 5.5): 

 푅푒푚 푓 = (푓 + 2 ∗ 푓 + 푓 )/4                (5.1) 

 

Two fuzzy numbers, 푎  and 	푏 , can be compared using their corresponding removal values 

푅푒푚(푎)	and	푅푒푚(푏). The value of 훼 is user specific. 

5.3 OBJECTIVE FUNCTIONS 

 A multi-objective optimization problem is consider in this distribution networks 

planning problem with continuous planning decision variables. The main objective is to 

determine an economical yet reliable network with better technical features, such as lower 

power loss, better node voltage profile, and better branch current/thermal limit ratio. Thus, two 

objective functions are formulated: minimization of (i) the total power loss 	(푃 )	of the 

distribution network and (ii) maximum node voltage deviation	(푉 ) ratio. Optimization of (i) 

yields an economical and high efficient network and optimization of (ii) results in a reliable 

network with better technical features. 

푅푒푚(푓 ) = 	
∑ _

∑ _ 							∀푖 = 푁                          (5.2) 

 

Figure 5.5. Fuzzy removal technique for a possibilistic objective function. 
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푅푒푚(푓 ) = 	 				( 	 	 _ )
				( 	 	 )

                          (5.3) 

The uncertain data are modelled as possibilistic quantities (triangular fuzzy numbers) using 

fuzzy set theory. Thus, the objective function also becomes a possibilistic quantity and the 

fuzzy α-removal approach is used to determine its equivalent crisp quantity. The objective is 

the minimization of the fuzzy removal of total power loss and maximum voltage deviation 

given below. Thus the total objective function become according to fuzzy removal 

representation: 

푀푖푛				푓 = 	 푘 푅푒푚(푓 ) + 푘 푅푒푚(푓 )	                          (5.4) 

However, the distribution planning problem has three constraints: (i) node voltage constraint, 

(ii) branch thermal limit constraint and (iii) DG power rating constraint.  

푣 ≤ 푅푒푚(푣 ) ≤ 푣 																			∀푖 = 푁                          (5.5) 

푅푒푚(퐼 ) ≤ 퐼 _ 																																		∀푖 = 푁                           (5.6) 

푃 	≤ 푅푒푚(푃 _ ) ≤ 푃 												∀푖 = 푁                           (5.7) 

Where, NBr is the branch of the network, NB is the node of the network, 퐼 _  and 퐼  are the 

maximum branch current level and actual branch current, respectively.   

5.4 DG ALLOCATION STRATEGY USING GA 

A feeder brings power from substation to load points/nodes in radial distribution networks 

(RDN). Single or multiple radial feeders are used in this planning approach. Basically, the RDN 

total power losses can be minimized by minimizing the branch power flow or transported 

electrical power from transmission networks (i.e. some percentage of load are locally meeting 

by local DG). To determine the total power loss of the network or each feeder branch and the 

maximum voltage deviation are determined by performing load flow. The forward/backward 

sweep load flow technique is used in this case.  

(A) Forward/Backward sweep load flow with DG 

To study the impact of the DG allocation in distribution networks, the DG model is 

incorporated in the forward-backward sweep load flow algorithm, which consists of two steps: 

Backward sweep: In this step, the load current of each node of a distribution network having 

N number of nodes is determined as: 
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퐼 ̅ (푚) = ( ) ( )
∗( )	

																	[	푚 = 1,2,3 … … …푁]                    (5.8) 

where, 푃 (푚) and 푄 (푚) represent the active and reactive power demand at node m and the 

overbar notation (푥̅) indicates the phasor quantities, such as 퐼 ̅ ,푉∗.		Then, the current in each 

branch of the network is computed as: 

퐼(̅푚푛) = 퐼 ̅ (푛) + ∑ 	퐼 ̅ (푚)∈                            (5.9) 

where,  the set	Γ consists of all nodes which are located beyond the node n. To incorporate the 

DG model, the active and reactive power demand at the node at which a DG unit is placed, say, 

at node i, is modified by: 

푃 _
_ = 푃 _

_ − 푃 _                          (5.10) 

푄 _
_ = 푄 _

_ ∓푄 _                                     (5.11) 

Forward sweep: This step is used after the backward sweep so as to determine the voltage at 

each node of a distribution network as follows: 

푉(푛) = 푉(푚)− 퐼(̅푚푛)푍(푚푛)                          (5.12) 

where, nodes n and m represent the receiving and sending end nodes, respectively for the branch 

mn and 푍(푚푛) is the impedance of the branch. 

(B) GA Optimization for DG allocation 

In this analysis proposed adaptive GA is used for optimization of DG location and size. 

Optimization procedure is same as discussed in section 4.4 and section 4.5. Only the load flow 

is fuzzyfied and the GA is in adaptive in nature. The flowchart for the uncertainty in load and 

generation approach is presented below. 
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Figure 5.6. Flowchart for uncertainty in Load and Generation with GA optimization. 

START 

Input system data and specify GA parameters, population size, and 
maximum generation (휂 ,퐺푒푛 ); 

 Randomly generate initial population; 

Gen = 1; 

Decode the initial population and determine the DG location and size 
for each chromosome; 

Perform Fuzzy Load Flow for each Chromosome to determine de-fuzzyfied objective 
function and assign fitness to each Chromosome; 

Select the Chromosomes in the current population by using Roulette Wheel 
Selection; 

Apply Crossover and Mutation operators to obtain the set of offspring 
from the current population;  

Perform Fuzzy Load Flow for each offspring to determine de-fuzzyfied 
objective function and assign fitness to each offspring; 

Decode the set of offspring and and determine the DG location and 
size for each chromosome; 

Select 휂  number of best chromosomes from the current population 
and from the set of offspring; 

Gen = Gen + 1; 

Converged? 

The best chromosome of the current population 
represents the optimal solution; 

STOP 

Yes 

No 
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5.5 CASE STUDY FOR UNCERTAINTY IN LOAD AND GENERATION 

5.5.1  Deterministic load and generation analysis 

 

Table 5.1 Study for deterministic load of 0.6 p.u. on test systems with Ga#6 optimization  

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG 
Power No. 

of 
Tap 

No. 
of 

CB 

Total CB 
Reactive 
Power 
(kW) 

Minimum 
Active 
Power 
Loss 
(kW) 

Minimum 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) 

Active 
Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 75.5264 34.4477 0.94755 0.28777 
System # 2 - - - - - - 241.251 103.794 0.84120 1.24020 

Case # 1 
(a) 

System # 1 5 1398.0 - - - - 17.115 7.994 0.98560 0.18710 
System # 2 4 1394.0 - - - - 22.128 9.520 0.96155 0.85695 

Case # 1 
(b) 

System # 1 4 1118.4 838.8 - - - 4.032 3.636 0.99234 0.14046 
System # 2 5 1115.2 836.4 - - - 24.488 10.535 0.97053 0.87447 

Case # 1 
(c) 

System # 1 3 1019.2 -764.4 - - - 66.918 29.960 0.96530 0.27684 
System # 2 3 1093.6 -820.2 - - - 125.231 53.878 0.88240 1.36410 

Case # 2 
(a) 

System # 1 4 1397.0 - 10 - - 4.814 2.742 0.99419 0.14526 
System # 2 4 1394.0 - 19 - - 11.874 5.108 0.96789 0.76714 

Case # 2 
(b) 

System # 1 4 1118.4 838.8 10 - - 0.164 2.028 0.99487 0.12917 
System # 2 5 1145.2 836.2 20 - - 14.859 6.393 0.97164 0.78049 

Case # 2 
(c) 

System # 1 3 1115.2 -836.4 9 - - 36.222 16.880 0.97204 0.23973 
System # 2 3 1115.2 -834.4 20 - - 104.621 45.011 0.89680 1.30790 

Case # 3 
System # 1 - - - - 4 1396 41.750 18.292 0.96443 0.23564 
System # 2 - - - - 3 1394 218.801 94.135 0.85533 1.16640 

Case # 4 
System # 1 - - - 10 4 1398 37.337 16.783 0.96768 0.23472 
System # 2 - - - 20 3 1390 200.815 86.397 0.87695 1.10720 

Case # 5 
System # 1 - - - 10 - - 49.156 22.526 0.95545 0.23938 
System # 2 - - - 20 - - 218.739 94.108 0.86491 1.15550 

 

System # 1 and System # 2 with a deterministic load of 0.6 p.u base Load; case#1(a), unity p.f. DG; 
case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging; case#2(a), unity 
p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; case#2(c), DG operating
at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank with OLTC; case#5, only 
OLTC. 
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Table 5.2. Study for deterministic load of 1.0 p.u. on test systems with Ga#6 optimization  

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG  
Power  No. 

of 
Tap 

No. 
of 

CB 

Total CB 
Reactive 
Power 
(kW) 

Minimum 
Active 
Power 
Loss 
(kW) 

Minimum 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) 

Active 
Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 224.995 102.198 0.90919 0.49031 
System # 2 - - - - - - 887.181 381.694 0.68442 2.43820 

Case # 1 
(a) 

System # 1 4 2088.0 - - - - 50.557 24.0396 0.96953 0.32060 
System # 2 5 2095.0 - - - - 92.600 39.839 0.92560 1.30910 

Case # 1 
(b) 

System # 1 5 1678.4 1258.8 - - - 17.624 13.135 0.98035 0.25856 
System # 2 6 1679.2 1259.4 - - - 89.619 38.557 0.93813 1.30910 

Case # 1 
(c) 

System # 1 3 1433.6 -1075.6 - - - 190.731 85.864 0.93621 0.46614 
System # 2 4 1650.4 -1237.8 - - - 535.504 230.391 0.82221 2.11770 

Case # 2 
(a) 

System # 1 5 2087.0 - 8 - - 16.598 9.694 0.97902 0.23973 
System # 2 6 2095.0 - 19 - - 77.164 33.059 0.93456 1.30910 

Case # 2 
(b) 

System # 1 5 1676.0 1257.0 9 - - 7.698 4.534 0.98803 0.21735 
System # 2 6 1678.4 1258.8 20 - - 76.789 33.037 0.95106 1.30830 

Case # 2 
(c) 

System # 1 4 1634.4 -1225.8 10 - - 128.582 56.112 0.95070 0.36631 
System # 2 4 1658.4 -1243.8 20 - - 483.191 207.885 0.84036 1.9143 

Case # 3 
System # 1 - - - - 4 2099 128.676 57.0404 0.93814 0.40236 
System # 2 - - - - 4 2096 786.995 338.591 0.71626 2.25760 

Case # 4 
System # 1 - - - 7 4 2091 120.470 56.114 0.94519 0.39981 
System # 2 - - - 20 4 2090 716.607 308.308 0.75746 2.12410 

Case # 5 
System # 1 - - - 10 - - 169.244 77.768 0.91721 0.43167 
System # 2 - - - 20 - - 796.285 342.588 0.73196 2.26360 

 

System # 1 and System # 2 with a deterministic load of 1.0 p.u Load; case#1(a), unity p.f. DG; case#1(b), 
DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging; case#2(a), unity p.f. DG 
with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; case#2(c), DG operating at 0.8 
p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank with OLTC; case#5, only 
OLTC. 
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Table 5.3. Study for deterministic load of 1.6 p.u. and 1.2 p.u. of base load on test systems 
with Ga#6 optimization  

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG 
Power No. 

of 
Tap 

No. 
of 

CB 

Total CB 
Reactive 
Power 
(kW) 

Minimum 
Active 
Power 
Loss 
(kW) 

Minimum 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) 

Active 
Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 867.295 390.191 0.82031 0.93235 
System # 2 - - - - - - 1724.970 742.139 0.53900 3.51230 

Case # 1 
(a) 

System # 1 8 3728.0 - - - - 157.370 68.993 0.96992 0.50919 
System # 2 7 2788.0 - - - - 105.976 45.594 0.93377 1.58111 

Case # 1 
(b) 

System # 1 8 2981.6 2236.2 - - - 15.078 10.350 0.98913 0.31447 
System # 2 9 2230.4 1672.8 - - - 98.570 42.408 0.94893 1.49520 

Case # 1 
(c) 

System # 1 5 2373.6 -1780.2 - - - 568.087 251.991 0.89789 0.77161 
System # 2 6 2157.6 -1618.2 - - - 904.432 389.116 0.78680 2.71010 

Case # 2 
(a) 

System # 1 8 3728.0 - 10 - - 75.704 33.194 0.97236 0.40575 
System # 2 7 2788.0 - 20 - - 68.896 29.641 0.93155 1.58110 

Case # 2 
(b) 

System # 1 9 2982.4 2236.8 10 - - 14.111 9.560 0.98427 0.31691 
System # 2 8 2230.4 1672.8 20 - - 84.1938 36.222 0.94464 1.58060 

Case # 2 
(c) 

System # 1 8 2982.4 -2236.8 10 - - 494.946 221.613 0.90879 0.74154 
System # 2 8 2229.6 -1672-2 20 - - 773.428 332.754 0.80058 2.46760 

Case # 3 
System # 1 - - - - 6 3458.0 374.286 163.569 0.89791 0.66296 
System # 2 - - - - 6 2788.0 1383.72 595.321 0.61354 3.05070 

Case # 4 
System # 1 - - - 9 8 2346.0 374.635 163.135 0.90894 0.65430 
System # 2 - - - 20 7 2785.0 1204.72 518.309 0.67753 2.79410 

Case # 5 
System # 1 - - - 10 - - 508.278 230.667 0.85667 0.72103 
System # 2 - - - 20 - - 1052.34 452.751 0.68671 2.63640 

 

System # 1 and System # 2 with a deterministic load of 1.6 p.u. and 1.2 p.u. load respectively; case#1(a), 
unity p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging; 
case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; case#2(c), 
DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank with OLTC; 
case#5, only OLTC. 
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5.5.2  Possibilistic load and generation analysis 

 

 

 

 

 

Table 5.4. Study for possibilistic load of 0.4 p.u to 1.4 p.u. on test systems with Ga#6 
optimization  

Different 
Cases 

Different 
systems 

No. 
of 

DG 

Total DG 
Power No. 

of 
Tap 

No. 
of 

CB 

Total CB 
Reactive 
Power 
(kW) 

Minimum 
Active 
Power 
Loss 
(kW) 

Minimum 
Reactive 
Power 
Loss 

(kVAR) 

Min. 
Node 

Voltage 
(Volt) 

Max 
Current 
(Amp) 

Active 
Power 
(kW) 

Reactive 
Power 

(kVAR) 

Base 
System # 1 - - - - - - 201.193 91.435 0.91416 0.46444 
System # 2 - - - - - - 764.177 328.774 0.70890 2.25270 

Case # 1 
(a) 

System # 1 7 2213.0 - - - - 49.174 21.871 0.98114 0.29830 
System # 2 7 2207.0 - - - - 59.896 25.769 0.94218 1.24160 

Case # 1 
(b) 

System # 1 6 1770.4 1327.8 - - - 10.003 9.095 0.98860 0.22293 
System # 2 9 1765.6 1324.2 - - - 58.806 25.300 0.95715 1.18690 

Case # 1 
(c) 

System # 1 4 1529.6 -1147.2 - - - 176.867 78.843 0.94305 0.44430 
System # 2 6 1759.2 -1319.4 - - - 480.434 206.698 0.83001 1.88320 

Case # 2 
(a) 

System # 1 6 2213.0 - 10 - - 12.781 6.527 0.98875 0.19997 
System # 2 6 2206.0 - 18 - - 39.247 16.885 0.94462 1.24160 

Case # 2 
(b) 

System # 1 5 1766.4 1324.8 10 - - 4.004 2.892 0.99454 0.18590 
System # 2 8 1765.6 1324.2 19 - - 47.984 20.644 0.95665 1.24280 

Case # 2 
(c) 

System # 1 5 1700.0 -1275.0 10 - - 133.115 59.834 0.95312 0.40433 
System # 2 5 1763.2 -1322.4 20 - - 436.000 187.581 0.86231 1.87720 

Case # 3 
System # 1 - - - - 5 2213.0 116.100 50.726 0.94395 0.37919 
System # 2 - - - - 4 2207.0 675.519 290.630 0.73967 2.08190 

Case # 4 
System # 1 - - - 8 5 2212.0 108.008 47.871 0.94566 0.37645 
System # 2 - - - 20 5 2203.0 621.814 267.525 0.77587 1.97270 

Case # 5 
System # 1 - - - 10 - - 148.999 68.500 0.92255 0.40624 
System # 2 - - - 20 - - 691.949 297.699 0.75144 2.10830 

 

System # 1 and System # 2 with a possibilistic load of 0.4 p.u to 1.4 p.u. base Load; case#1(a), unity 
p.f. DG; case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging; 
case#2(a), unity p.f. DG with OLCT; case#2(b), DG operating at 0.8 p.f. leading with OLTC.; case#2(c), 
DG operating at 0.8 p.f. lagging with OLTC; case#3, capacitor bank; case#4, capacitor bank with 
OLTC; case#5, only OLTC. 
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5.5.3  Multiple run for deterministic and possibilistic load and generation 

  

 

Figure 5.7. System #1, DG location repetition probability for multiple run for the case#1(b); 
case#1(b), DG operating at 0.8 p.f. leading; 

 

Figure 5.8. System #1, DG location repetition probability for multiple run for the case#1(c); 
case#1(c), DG operating at 0.8 p.f. lagging; 
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Figure 5.9. System #1, DG power rating variation for candidate nodes in multiple run for the 
case#1(b); case#1(b), DG operating at 0.8 p.f. leading; 
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Figure 5.10. System #1, DG power rating variation for candidate nodes in multiple run for the 
case#1(c); case#1(c), DG operating at 0.8 p.f. lagging; 
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Figure 5.11. System #2, DG location repetition probability for multiple run for the case#1(b); 

case#1(b), DG operating at 0.8 p.f. leading 

 

 
Figure 5.12. System #2, DG power rating variation for candidate nodes in multiple run for the 

case#1(c); case#1(c), DG operating at 0.8 p.f. lagging 
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Figure 5.13. System #2, DG power rating variation for candidate nodes in multiple run for the 
case#1(b); case#1(b), DG operating at 0.8 p.f. leading; 
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Figure 5.14. System #2, DG power rating variation for candidate nodes in multiple run for the 
case#1(c);.; case#1(c), DG operating at 0.8 p.f. lagging; 
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5.5.4  Multiple run uncertainty analysis with different system and GA 

parameter 

With a new system and GA parameter the optimization is carried out for three different cases 

(i.e. case#1(a), case#1(b), and case #1(c)). This system and GA parameter are also taken for 

the analysis of uncertainty with different DG rating.  

 

Table 5.5. Effective nodes DG ratings median value for various cases  

System #1 (69 node) System #2 (52 node) 
Case#1(b) Case#1(b) 

Node 
no. #AA #BB #CC #DD Node 

no. #AA #BB #CC #DD 

21 293.5 262.5 325.5 300.5 18 282.5 217 288 233 
59 351 337 382 324 36 303 218 260 258.5 
60 373.5 365 356 366 44 140 107.5 170.5 108 
61 377.5 363 385 371 45 284.5 141 336 129.5 
62 362 373 343 328 49 454 452 460 389 
63 155.5 124 277.5 139.5      
64 368.5 369 376 374      

Case#1(c) Case#1(c) 
57 397.5 395 397.5 395 16 149.5 0 0 0 
58 398 398 398 398 33 557.5 425.5 480.5 322.5 
59 397 397 397 397 39 369.5 401 351.5 392 
60 357.5 384.5 357.5 384.5 41 100 37 317.5 241 
64 364 361 364 361 47 115.5 159.5 0 0 

Case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging and 
#AA; Deterministic Load and Generation; #BB; Possibilistic Load; #CC; Possibilistic
Generation; #DD; Possibilistic Load and Generation 
 

Table 5.6. GA and network parameters considered for the optimization process 

GA parameter Network parameter 
Population size (Ƞmax) 80 DGs power rating range (PDG): (50 – 600) kW 
Maximum Generation 

(Genmax)      
270 Minimum Voltage (Vmin): System#2: 0.90 p.u. 

Crossover probability (Ωc) adaptive Maximum Thermal Limit 
(Imax): 

System#2: 1.2 p.u. 

Mutation Probability (Ωm) 0.005 Maximum number of DG (ψn): 5 
Maximum iteration for load 

flow  300 DG penetration limit  Max 50% of total load 

Accuracy label in load flow 10-9   
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Table 5.7. Effective nodes DG ratings median value for various cases  

System #2 (DG range 50-600) 
Case#1(a) 

Node no. #AA #BB #CC #DD 
11 0 0 147.5 0 
16 0 483.5 249 0 
18  329.5 0 117.5 198 
36   0 0 0 0 
45   519 502.5 445.5 528.5 
47 501.5 466.5 508.5 453.5 
49 540.5 543 554.5 518.5 

 

Power Loss 133.03 110.56 103.15 182.39 
Minimum 
Voltage 0.85937 0.88407 0.89363 0.83514 

Case#1(b) 
11 217 439.5 225 446 
16 463 0 466.5 0 
18  0 278.5 0 114.5 
36   311.5 0 184.5 208 
41   0 510 471.5 529 
49 527 552 557.5 552 

 

Power Loss 194.04 132.47 113.38 122.78 
Minimum 
Voltage 0.86286 0.90697 0.92554 0.90436 

Case#1(c) 
33 506.5 347.5 263.5 550.5 
39 139 512.5 50.5 488.5 
41 439.5 78.5 546 114.5 
47 0 298.5 0 0 

 

Power Loss 592.16 563.34 626.14 584.27 
Minimum 
Voltage 0.78064 0.78370 0.76967 0.77897 

Case#1(b), DG operating at 0.8 p.f. leading; case#1(c), DG operating at 0.8 p.f. lagging and 
#AA; Deterministic Load and Generation; #BB; Possibilistic Load; #CC; Possibilistic
Generation; #DD; Possibilistic Load and Generation 
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5.5.5  Multiple run uncertainty analysis with different DG rating limit 

 

 

Figure 5.15. Percentage of repetition as DG location in multiple runs for System #2 with a DG 
rating limit of (50-600) kW 

 

Figure 5.16. Percentage of repetition as DG location in multiple runs for System #2 with a DG 
rating limit of (50-600) kW 
 Case#1(b), DG operating at 0.8 p.f. leading; and Case# A, Deterministic Load and Generation; 
Case# B, Possibilistic Load; Case# C, Possibilistic Generation; Case# D, Possibilistic Load and 
Generation 
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In uncertainty analysis with different DG rating limit it is concluded that the location of DG is 

changes with the DG ratings. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Percentage of repetition as DG location in multiple runs for System #2 with a DG 
rating limit of (50-200) kW 

Case#1(b), DG operating at 0.8 p.f. leading; and Case# A, Deterministic Load and Generation; 
Case# B, Possibilistic Load; Case# C, Possibilistic Generation; Case# D, Possibilistic Load and 
Generation 
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5.5.6  Violation of system constraint in overloading condition 

System#2 is step wise overloaded with DGs, DGs are incorporated into the system with the 
data got from the uncertainty analysis shown in Table 5.7.  

 

 

(A) 

 

(B) 

Figure 5.18. Average voltage violation with per unit overload of system #2 with a DG rating 
limit of (50-600)kW; (A) average voltage violation with per unit overload for case#1(b), (B) 
average voltage violation with per unit overload for case#1(c) 
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(A) 

 

(B) 

Figure 5.19. Maximum voltage violation with per unit overload of system #2 with a DG rating 
limit of (50-600) kW 

(A) Maximum voltage violation with per unit overload for case#1(b), (B) maximum voltage
violation with per unit overload for case#1(c) 
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(A) 

 

(B) 

Figure 5.20. Average current violation with per unit overload of system #2 with a DG rating 
limit of (50-600) 

(A) Average current violation with per unit overload for case#1(b), (B) average current 
violation with per unit overload for case#1(c) 
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(A) 

 

(B) 

Figure 5.19. Maximum current violation with per unit overload of system #2 with a DG rating 
limit of (50-600) 

(A) Maximum current violation with per unit overload for case#1(b), (B) maximum current 
violation with per unit overload for case#1(c) 
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5.6 SUMMARY 

In this chapter, a multi-objective optimization method to find the optimal DG sizing and 

placement in a distribution network was proposed, where the total real power loss of the 

network were employed as the objective to be minimised. Thus, the load demand at each node 

and the DG power generation at candidate nodes are considered as a possibilistic variable 

represented by two different triangular fuzzy number. An IEEE 69-node radial test distribution 

system and 52-node practical radial systems are used to demonstrate the effectiveness of the 

proposed methods. The simulation results shows that reduction of power loss in distribution 

system is possible and all node voltages variation can be achieved within the required limit if 

DG are optimally placed in the system. Induction DG placement into the distribution system 

also give a better performance from capacitor bank placement. In modern load growth 

scenario uncertainty load and generation model shows that reduction of power loss in 

distribution system is possible and all node voltages variation can be achieved within the 

required limit without violating the thermal limit of the system.  
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CHAPTER-6 

CONCLUSION AND SCOPE FOR FUTURE WORK 
 

6.1 CONCLUSIONS 

The installation of DG units in power distribution networks is becoming more 

prominent. Consequently, utility companies have started to change their electric infrastructure 

to adapt to DGs due to the benefits of DG installation on their distribution systems. These 

benefits include reducing power losses, improving voltage profiles, reducing emission impacts 

and improving power quality. Additional benefits are avoiding upgrading the present power 

systems and preventing a reduction of T&D network capacity during the planning phase. 

Nevertheless, achieving these benefits depends highly on the capacity of the DG units and 

their installation placement in the distribution systems. 

In this work, an innovative approach for management of DG power is represented. The 

proposed method deals with optimal selection of nodes for the placement and size of the DG 

by using GA. The load flow problem has been solved by forward/backward load flow 

methodology. The rating and location has been optimised using Genetic Algorithm. In GA, 

coding is developed to carry out the  allocation  problem,  which  is  identification  of  location  

and  rating  by  one dimensional array. The effectiveness of the approach is demonstrated on 

the IEEE 69-node reliability test system and a practical 52-node system.  

If DGs are connected to the system, the simulation results concludes that reduction of 

active power loss in distribution system is possible and all node voltages variation can be 

achieved within the required limit. Multi-objective optimization give the better optimal result 

then the single-objective optimization. Induction DGs are connected into the systems power 

loss and voltage profile is better from when the capacitor bank is connected into the systems, 

though the induction DGs are consuming reactive power from the system where extra amount 

of power loss is occur due to reactive power flow through the line. 

In some of the IGA have only adaptive crossover probability or mutation probability 

where other one is fixed. But in some cases both are adaptive. Basically in the most of the IGA, 
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crossover and mutation probability is directly related to the fitness function of the population. 

It can be divided into two category. In the first category it depends upon the maximum and 

minimum fitness of the population. Due to this either crossover or mutation or both are in 

partial adaptive in nature for all population of a single generation (i.e. fixed for all matting 

chromosomes). Or we can say generation wise adaptive in nature. But when either crossover 

or mutation or both depends upon individual matting chromosome pair fitness and maximum 

and minimum fitness of the population it become adaptive in nature for all population of a 

single generation (i.e. different for all matting chromosomes). Thus in this second category, 

crossover and mutation is not only generation wise also population wise adaptive in nature. By 

considering all the concept the proposed adaptive GA is based on second category where only 

crossover probability is adaptive in nature and which is used for optimal DG allocation and 

size problem. The adaptive crossover probability is directly depends upon the present 

generation maximum and minimum fitness and the matting chromosome fitness.  

The proposed adaptive GA gives the most satisfactory and acceptable result among all 

the GA approach is considered in the study. The proposed GA give the better result in all part 

of optimization (i.e. in case for minimum voltage and power loss). The convergence criteria of 

the proposed adaptive GA is well acceptable. The crossover probability of proposed GA is fully 

adaptive in nature (i.e. it is not only generation wise also population wise adaptive in nature). 

The quick convergence of GA and stuck in a local minima can be avoided by this adaptive 

crossover approach. Synchronous DG are profitable application in all type of system also 

induction DG are considerable profitable though they consumed reactive power from the 

system. Installation of induction DG in a very week distribution system is better than the 

capacitor placement.  

In modern load growth scenario probabilistic load and generation model shows that the 

system, reduction of power loss in distribution system is possible and all node voltages 

variation can be achieved within the required limit without violating the thermal limit of the 

system. From the analysis of load and generation uncertainty, system#1 gives a better 

performance for both synchronous and induction DG. Though the system#2 give a better 

performance with synchronous DG but with induction DG it give very poor performance. In 



Chapter 6: Conclusions And Scope For Future Work 

 

126 
 

normal operating condition system#2 have huge power loss with a very poor voltage profile. 

Due to this when then the induction DG are connected to the system it consumed a large amount 

of reactive power from the system and it over loaded the system where the system is already 

hugely over loaded. The management approach presented in work is suitable to be integrated 

into energy management scheme under smart grid concept. From the study the following 

conclusions are drawn. 

1. The compensation is yielding leading to increase in voltage profile, reduction in losses. 

2. The developed algorithm is effective in interpreting the allocation of distributed 

generator for different number of candidate nodes and distributed generator sizes. 

3. The developed algorithm is also effective in interpreting the allocation of tap changing 

transformer for different number of candidate branch’s and tap settings. 

4. Even without DG reactive power the voltage could be maintain within ±5 % of the rated 

voltage. This is due to the fact that even DG injecting power, voltage drop in the line is 

smaller due to smaller current flowing from upstream and the action of main substation 

transformer OLCT.  

5. Induction DGs placement is better from the capacitor bank placement distribution 

system. 

6. Adaptive GA have better performance over basic GA on the issue of DG allocation. 

7. In very weak system placement of induction DG are not favourable. 
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6.2 SCOPE FOR FUTURE WORK 

The completion of research project opens the avenues for work in many other related areas. 

The following areas are identified for future work: 

1. The same work can be extended to 119 node networks or more. 

2. Optimization process has been carried out on basic genetic algorithm optimization 

process. The improved version of genetic algorithm is available and can be applied in 

this networks for better optimization. 

3. The study has been carried out on balanced distribution networks. The DGs allocation 

problem can be extended to unbalanced distribution networks. 

4. The boundary conditions (tap change settings, DGs rating, total DGs power injection) 

can be modified and applied into the networks. 

5. The DGs allocation problem can be extended for DGs reactive power optimization. 

DG technology that fit this requirement for example are micro-turbines generation 

networks and fuel cell. These two technologies can be used to generate both electricity 

and thermal power. 
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APPENDIX A 
 

69-Node Radial Distribution Networks Data 

This Appendix contains the data for the 69-node RDS used for this thesis project. This networks 

was also used in [34].  

 

Table A.l gives the Node data for the 69-node RDS. Table A.2 gives the Line data for the 

different loops within the 69-node RDS. 

Table A.1: The 69-node radial distribution networks Line data. 

Node 
No. 

Node 
code 

Voltage 
Mag. 

Angle 
Degree 

Load Generator Injected  
kW kVAR MW MVAR Qmin Qmax MVAR  

1 1 1 0 0 0 0 0 0 0 0 1 
2 0 1 0 0 0 0 0 0 0 0 1 
3 0 1 0 0 0 0 0 0 0 0 1 
4 0 1 0 0 0 0 0 0 0 0 1 
5 0 1 0 0 0 0 0 0 0 0 1 
6 0 1 0 2.6 2.2 0 0 0 0 0 1 
7 0 1 0 40.4 30 0 0 0 0 0 1 
8 0 1 0 75 54 0 0 0 0 0 1 
9 0 1 0 30 22 0 0 0 0 0 1 

10 0 1 0 28 19 0 0 0 0 0 1 
11 0 1 0 145 104 0 0 0 0 0 1 
12 0 1 0 145 104 0 0 0 0 0 1 
13 0 1 0 8 5.5 0 0 0 0 0 1 
14 0 1 0 8 5.5 0 0 0 0 0 1 
15 0 1 0 0 0 0 0 0 0 0 1 
16 0 1 0 45.5 30 0 0 0 0 0 1 
17 0 1 0 60 35 0 0 0 0 0 1 
18 0 1 0 60 35 0 0 0 0 0 1 
19 0 1 0 0 0 0 0 0 0 0 1 
20 0 1 0 1 0.6 0 0 0 0 0 1 
21 0 1 0 114 81 0 0 0 0 0 1 
22 0 1 0 5.3 3.5 0 0 0 0 0 1 
23 0 1 0 0 0 0 0 0 0 0 1 
24 0 1 0 28 20 0 0 0 0 0 1 
25 0 1 0 0 0 0 0 0 0 0 1 
26 0 1 0 14 10 0 0 0 0 0 1 
27 0 1 0 14 10 0 0 0 0 0 1 
28 0 1 0 26 18.6 0 0 0 0 0 1 
29 0 1 0 26 18.6 0 0 0 0 0 1 



Appendix A 

 

139 
 

30 0 1 0 0 0 0 0 0 0 0 1 
31 0 1 0 0 0 0 0 0 0 0 1 
32 0 1 0 0 0 0 0 0 0 0 1 
33 0 1 0 14 10 0 0 0 0 0 1 
34 0 1 0 19.5 14 0 0 0 0 0 1 
35 0 1 0 6 4 0 0 0 0 0 1 
36 0 1 0 26 18.55 0 0 0 0 0 1 
37 0 1 0 26 18.55 0 0 0 0 0 1 
38 0 1 0 0 0 0 0 0 0 0 1 
39 0 1 0 24 17 0 0 0 0 0 1 
40 0 1 0 24 17 0 0 0 0 0 1 
41 0 1 0 1.2 1 0 0 0 0 0 1 
42 0 1 0 0 0 0 0 0 0 0 1 
43 0 1 0 6 4.3 0 0 0 0 0 1 
44 0 1 0 0 0 0 0 0 0 0 1 
45 0 1 0 39.22 26.3 0 0 0 0 0 1 
46 0 1 0 39.22 26.3 0 0 0 0 0 1 
47 0 1 0 0 0 0 0 0 0 0 1 
48 0 1 0 79 56.4 0 0 0 0 0 1 
49 0 1 0 384.7 274.5 0 0 0 0 0 1 
50 0 1 0 384.7 274.5 0 0 0 0 0 1 
51 0 1 0 40.5 28.3 0 0 0 0 0 1 
52 0 1 0 3.6 2.7 0 0 0 0 0 1 
53 0 1 0 4.35 3.5 0 0 0 0 0 1 
54 0 1 0 26.4 19 0 0 0 0 0 1 
55 0 1 0 24 17.2 0 0 0 0 0 1 
56 0 1 0 0 0 0 0 0 0 0 1 
57 0 1 0 0 0 0 0 0 0 0 1 
58 0 1 0 0 0 0 0 0 0 0 1 
59 0 1 0 100 72 0 0 0 0 0 1 
60 0 1 0 0 0 0 0 0 0 0 1 
61 0 1 0 1244 888 0 0 0 0 0 1 
62 0 1 0 32 23 0 0 0 0 0 1 
63 0 1 0 0 0 0 0 0 0 0 1 
64 0 1 0 227 162 0 0 0 0 0 1 
65 0 1 0 59 42 0 0 0 0 0 1 
66 0 1 0 18 13 0 0 0 0 0 1 
67 0 1 0 18 13 0 0 0 0 0 1 
68 0 1 0 28 20 0 0 0 0 0 1 
69 0 1 0 28 20 0 0 0 0   
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Table A.2: The 69-node radial distribution networks Line data. 
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1 1 2 0.0005 0.0012 0 1  35 3 36 0.0044 0.0108 0 1 
2 2 3 0.0005 0.0012 0 1  36 36 37 0.064 0.1565 0 1 
3 3 4 0.0015 0.0036 0 1  37 37 38 0.1053 0.123 0 1 
4 4 5 0.0251 0.0294 0 1  38 38 39 0.0304 0.0355 0 1 
5 5 6 0.366 0.1864 0 1  39 39 40 0.0018 0.0021 0 1 
6 6 7 0.3811 0.1941 0 1  40 40 41 0.7283 0.8509 0 1 
7 7 8 0.0922 0.047 0 1  41 41 42 0.31 0.3623 0 1 
8 8 9 0.0493 0.0251 0 1  42 42 43 0.041 0.0478 0 1 
9 9 10 0.819 0.2707 0 1  43 43 44 0.0092 0.0116 0 1 

10 10 11 0.1872 0.0691 0 1  44 44 45 0.1089 0.1373 0 1 
11 11 12 0.7114 0.2351 0 1  45 45 46 0.0009 0.0012 0 1 
12 12 13 1.03 0.34 0 1  46 4 47 0.0034 0.0084 0 1 
13 13 14 1.044 0.345 0 1  47 47 48 0.0851 0.2083 0 1 
14 14 15 1.058 0.3496 0 1  48 48 49 0.2898 0.7091 0 1 
15 15 16 0.1966 0.065 0 1  49 49 50 0.0822 0.2011 0 1 
16 16 17 0.3744 0.1238 0 1  50 8 51 0.0928 0.0473 0 1 
17 17 18 0.0047 0.0016 0 1  51 51 52 0.3319 0.1114 0 1 
18 18 19 0.3276 0.1083 0 1  52 9 53 0.174 0.0886 0 1 
19 19 20 0.2106 0.0696 0 1  53 53 54 0.203 0.1034 0 1 
20 20 21 0.3416 0.1129 0 1  54 54 55 0.2842 0.1447 0 1 
21 21 22 0.014 0.0046 0 1  55 55 56 0.2813 0.1433 0 1 
22 22 23 0.1591 0.0526 0 1  56 56 57 1.59 0.5337 0 1 
23 23 24 0.3463 0.1145 0 1  57 57 58 0.7837 0.263 0 1 
24 24 25 0.7488 0.2745 0 1  58 58 59 0.3042 0.1006 0 1 
25 25 26 0.3089 0.1021 0 1  59 59 60 0.3861 0.1172 0 1 
26 26 27 0.1732 0.0572 0 1  60 60 61 0.5075 0.2585 0 1 
27 3 28 0.0044 0.0108 0 1  61 61 62 0.0974 0.0496 0 1 
28 28 29 0.064 0.1565 0 1  62 62 63 0.145 0.0738 0 1 
29 29 30 0.3978 0.1315 0 1  63 63 64 0.7105 0.3619 0 1 
30 30 31 0.0702 0.0232 0 1  64 64 65 1.041 0.5302 0 1 
31 31 32 0.351 0.116 0 1  65 11 66 0.2012 0.0611 0 1 
32 32 33 0.839 0.2816 0 1  66 66 67 0.0047 0.0014 0 1 
33 33 34 1.708 0.5646 0 1  67 12 68 0.7394 0.2444 0 1 
34 34 35 1.474 0.4873 0 1  68 68 69 0.0047 0.0016 0 1 
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52-Node Practical Radial Distribution Networks Data 

This Appendix contains the data for the 52-node RDS used for this thesis project. This networks 

was also used in [34]. Table A.3 gives the Node data for the 52-node RDS.  

Table A.3: The 52-node radial distribution networks data. 

Branch 
code 

Node 
nl 
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nr 
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Length 
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Load 
 Branch 

code 
Node 

nl 
Node 

nr 

Line 
Length 
(kms) 

Load 

kW kVAR kW kVAR 

Feeder 1  Feeder 3 
1 1 2 3.0 81.0 39.0  31 1 32 4.0 41.0 20.0 
2 2 3 5.0 135.0 65.0  32 32 33 5.0 121.0 59.0 
3 2 4 1.5 108.0 52.0  33 33 34 4.0 41.0 20.0 
4 4 5 1.5 108.0 52.0  34 33 35 3.5 41.0 20.0 
5 4 6 1.0 27.0 13.0  35 35 36 4.0 135.0 66.0 
6 6 7 2.0 54.0 26.0  36 36 37 2.5 81.0 40.0 
7 6 8 2.5 135.0 65.0  37 35 38 2.0 68.0 33.0 
8 8 9 3.0 81.0 39.0  38 33 39 2.5 95.0 46.0 
9 9 10 5.0 67.0 32.0  39 39 40 2.0 108.0 52.0 

10 10 11 1.5 27.0 13.0  40 39 41 2.5 41.0 20.0 
11 11 12 1.0 27.0 13.0  41 41 42 3.0 95.0 46.0 
12 11 15 5.0 108.0 52.0  42 41 43 4.5 27.0 13.0 
13 12 13 3.5 54.0 26.0  43 43 44 5.0 122.0 59.0 
14 12 14 4.0 94.0 45.0  44 41 45 1.5 108.0 52.0 
15 10 16 1.5 67.0 33.0  45 45 46 3.5 81.0 39.0 
16 16 17 6.0 67.0 33.0  46 45 47 2.5 68.0 33.0 
17 16 18 5.0 108.0 52.0  47 47 48 1.5 41.0 20.0 
18 18 19 4.0 81.0 39.0  48 47 49 1.5 68.0 33.0 

Feeder 1  49 49 50 4.0 81.0 39.0 
19 1 20 1.0 108.0 52.0  50 49 51 1.5 108.0 52.0 
20 20 21 1.5 94.0 46.0  51 51 52 1.0 41.0 20.0 
21 21 22 3.0 81.0 39.0        
22 22 23 5.0 108.0 52.0        
23 23 24 2.5 108.0 52.0        
24 22 25 3.0 102.0 50.0  Base kVA 1000 
25 25 26 4.0 41.0 20.0  Base kV 11 
26 20 27 1.0 108.0 52.0  Line Resistance 0.0086 p.u./km 
27 27 28 1.5 162.0 79.0  Line Reactance 0.0037 p.u./km 
28 28 29 2.5 68.0 33.0  Conductor Type ACSR 
29 27 30 4.0 68.0 33.0        
30 30 31 5.0 95.0 46.0        

 


