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Abstract
Phase-Only Image Synthesis Using Fast Generalized Fourier Family

Transform (FGFT)

The phase components of complex valued transform coefficients retain the

edge information of an image [1]. Fast Generalized Fourier Transform (FGFT)

is a complex, non-redundant, progressive resolution, globally referenced phase

output, time-frequency representation applicable for non-stationary signals [2].

Though the analysis of forward FGFT framework for 1D signal is present in lit-

erature, analysis of synthesis (or reverse) FGFT framework is not available for

1D and 2D signals. An Image (2D signal) synthesized using only phase com-

ponents of FGFT, does not produce edge information. In the process of FGFT,

Fourier Transform (FT) phase coefficients gets mingled together, thus the nor-

malization procedure used to retain phase is ineffective to separate FT phase

coefficients from FGFT samples. This thesis proposes an algorithm to effec-

tively separate FT phase coefficients from FGFT samples and thus reconstruct

image with edge information from phase-only components of FGFT samples.

The amount of information present in phase and magnitude of different trans-

forms is measured. The comparison indicates that FT retains most information

than others in phase-only image reconstruction and Curvelet Transform (CT)

retains most information in magnitude-only image reconstruction compared to

other transforms. In contrast, FGFT retains edge information equally in both

magnitude and phase components.
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1.1 Introduction

SIGNAL is a phenomenon that carries information as varying across an

independent variable. It is a range of values on an independent vari-

able called domain. The signal measured can be anything, could be

voltage measured against time, pressure measured against height or

stock market values measured against each day. A signal whose parameters

such as mean, standard deviation and frequency are same throughout the dura-

tion of signal is called Stationary signal. On the other hand, a signal that violates

the above property is called Non-stationary signal. Most of the real world signals

are non-stationary. A signal can store information in different ways in different

domains such as time, frequency, space, etc. The two domains that are more

interest than others are time and frequency. A same signal presents different

information in time and frequency domain. A tool that performs conversion of

signal between different domains is called a transform.

It is a well proven concept that phase output of several complex valued

transform retains edge information of an image (a 2D signal). Among dif-

ferent transforms, absolutely referenced phase output is provided by General

Fourier Family Transforms. One among General Fourier Family Transforms is

Stockwell Transform (ST), which is a progressive resolution transform. Since

the introduction of ST by Stockwell et al.[3] immense research is in progress in

Windowed Fourier Transforms. However, output of ST for an image is 4-D,

thus storing output and processing is impractical for image signals. That was

overcome by Fast Generalized Fourier Family Transform (FGFT), which was

introduced by R A Brown et al[4]. Though, extensive research work has been

done on 1-D signal, similar development in 2-D signal is not reported in litera-

ture. Although analysis of a signal through FGFT is reported, yet synthesis of a

signal through the same is not.

1.2 Motivation

Detecting edges of an image is crucial in many image processing applica-

tions. Though many different techniques exist for the purpose, detecting edges

using transforms provides more insight into signal properties. Further, image is
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a 2D non-stationary signal, thus applying TF transform would yield more infor-

mation than frequency domain transforms. However, many TF transforms are

redundant, resulting in 4D output. Though this problem could be eliminated

by using FGFT which produces 2D output, synthesizing input image edge in-

formation with phase-only FGFT coefficients is erroneous.

1.3 Literature review

TABLE 1.1: Literature review

Authors Year Contribution Limitations
A. V. Oppenheim and
J. S. Lim [1]

1981 Proved theoretically
and experimentally
that FT phase retains
more edge informa-
tion than magnitude
for 1D and 2D signals

-

Stockwell et al.[3] 1996 Introduced progres-
sive resolution ST for
1D Non-stationary
data signals

• Redundant

• Explanation about
synthesis framework
is not attempted

R.A.Brown et al.[4] 2010 Introduced Non-
redundant ST (i.e)
FGFT

Explanation on synthe-
sis framework is not
attempted

Naghizadeh et al.[5] 2013 Extended 1D FGFT to
2D seismic data sig-
nals

Synthesis of signals is not
reported

1.4 Objective

• To perform detailed study of FGFT analysis coefficients for 2D input im-

age

• To understand FGFT synthesis framework

• To analyse failure on phase-only image reconstruction using FGFT
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• To reconstruct image with edge information from phase-only FGFT coef-

ficients

• To measure amount of edge information in magnitude and phase compo-

nents of FGFT

1.5 Contributions of the thesis

• Study on FGFT synthesis framework

• Proposed an algorithm to reconstruct edge information from phase-only

FGFT coefficients

• Comparison on amount of edge information present in phase and magni-

tude of different transforms

1.6 Thesis overview

This thesis is divided into six chapters:

• Chapters 1 and 2 discusses the current literature in perspective of this

thesis’s objective. Chapter 2, covers the broad classfication of frequency

transform and Time-Frequency(TF) transform. It also presents the pre-

liminary terms, definitions and concepts necessary to proceed through

thesis. Towards end of Chapter 2 comparison of different transforms is

presented. It points out the disadvantage in using FT and the reason why

TF transforms are preferred.

• Chapter 3, presents the analysis of FGFT, its implementation method and

address the reason of non-redundancy in FGFT and further extends the

1D FGFT to 2D FGFT.

• Chapter 4 introduces algorithm to extract edge information from phase-

only FGFT coefficients and points out the implementation procedure along

with review on algorithm.
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• Chapter 5 discusses an application of measuring amount of structural in-

formation present in phase and magnitude using proposed algorithm.

• The thesis ends with Chapter 6 concluding the contributions of this thesis

and discussing the future scope of this work.

• Appendix A presents short introduction on WT and CT.
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2.1 Importance of Phase

IN the complex valued transform representation of signals, importance of

magnitude and phase differs with respect to application. In many situ-

ations, phase part holds more information than magnitude. For exam-

ple, both phase-only and magnitude-only holograms have been reported

in [1]. For phase-only holograms only the phase of the scattered wavefront is

recorded and the magnitude is modified to be constant while in the magnitude-

only hologram the phase is assumed to be zero and only the magnitude of the

scattered wavefront is recorded.

The phase-only hologram reconstruction represents more information about

input objects than magnitude-only reconstruction. In one another context where

phase information is a necessity is Image processing. The phase component of

FT of an image holds the important part of image (i.e) edges. Image recon-

structed with magnitude component alone shows only blurred image.

The relative importance of phase over magnitude is demonstrated using

two images in Figure 2.1. In Figure 2.1, A and B are input images. Phase infor-

mation from A is combined with magnitude information from B, and Inverse

Fast Fourier Transform (IFFT) of the resulting combination is performed to ob-

tain C. The reverse combination of phase from B combined with magnitude

from A, and IFFT of combination results in D. C closely resembles the image

from where the original phase is used, i.e., A but not the image from where

magnitude is used. Same is true for D also. This verifies the concept that phase

retains important information compared to magnitude of FT.

In Phase-only reconstruction, the phase alone is retained and the original

signal is reconstructed back. Some applications are: Edge Detection, since all

the edge information is stored in phase part, its sufficient that phase alone is

processed compared to processing both phase and magnitude.

Another context in which the potential importance of phase-only synthesis

has been recognized is in Blind De-Convolution [1], there may be situations that

image is blurred by a blurring function, A. In some cases, where the A is due to

defocused lens or prolonged exposure to environmental turbulence, A’s phase

function is zero, then the recovered image has same phase information as that
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FIGURE 2.1: Phase vs Magnitude. A - Lena image. B - Parrot image. C - IFFT of
Phase from A and Magnitude from B. D - IFFT of Phase from B and Magnitude

from A.

original scene. Here, phase-only reconstruction could be applied to get original

scene back.

Next application is, Palm-Print Recognition, it is been reported in litera-

ture [6] that many distinct features of palm print could be retrieved from phase

information.

In Image coding [1], the magnitude and phase are separately encoded and

transferred, in receiver section we will reconstruct image by decoding both

magnitude and phase, then apply inverse transform. Phase has to be coded
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with 2 bits more than magnitude and thus it is sufficient that only phase is trans-

ferred and reconstructed at receiver using phase-only reconstruction method-

ologies. The fore mentioned applications highlight the importance of phase

over magnitude of several transforms. There is a loss of information with dis-

carding magnitude part but it is negligible when compared to information stored

in phase.

The prime importance of using phase-only reconstruction is to detect edges

of input signal. This method of using transform domain coefficients to detect

edges is advantageous than time/spatial domain methods, since transforms

represent same signal with less coefficients. Thus number of computations re-

quired is less while operating with transform domain coefficients.

2.1.1 Extracting edges using phase-normalization technique

This section discusses the procedure to retain phase alone and discard mag-

nitude from the complex output of transforms. The output of complex valued

transforms, F has real and imaginary components. F can be expressed as,

F = ak + jbk

where, j =
√
−1, ak and bk are real and imaginary parts of the transform out-

put. This method of representation is called Rectangular form representation of

a complex number. The same can be expressed in terms of Polar form, as below,

F = Mejφ

where, M is the magnitude of F and φ is the angle, which is calculated as fol-

lows,

M =
√
a2
k + b2

k

φ = tan−1 bk
ak
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The phase information alone is retained by making M=1 or by dividing F with

M, which when expressed in polar form,

F ′ = Mejφ

M

F ′ = ejφ

This modified transform coefficients F ′, when applied with inverse transform

will show edge information of input signal.

2.2 Fourier Transform

A signal recorded against time exhibits its characteristics with respect to

time. Though this is desirable, signal might have different information in other

domains. A technique called transformation is applied on the input signal to

produce another signal in different domain. The purpose of using transforms

is to provide clear information in one domain which was obscure in another

domain. For example, measuring frequencies present in a signal is difficult

task in time domain, but becomes very easy once transformed into frequency

domain.

It has been well understood that a given signal can be represented in a

infinite number of different ways. Different signal representations is suitable

for different applications. For example, signals obtained from most engineering

applications are usually functions of time. But when studying or designing the

system, it is often desired to study signals and systems in the frequency domain.

This is because many important features of the signal or system are more easily

characterized in the frequency domain than in the time domain.

Although the number of ways of describing a given signal are countless,

the most important and fundamental variables in nature are time and frequency.

While the time domain function indicates how a signal’s amplitude changes

over time, the frequency domain function tells how often such changes take

place. The bridge between time and frequency domain is the Fourier Trans-

form(FT) developed by J.B.J. Fourier in 18th century. The modified transforms

such as Fast Fourier Transform(FFT), Short-time Fourier Transform(STFT) and
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many other transforms fall under general category called Fourier Family trans-

forms. Transforms can be classified based on their output types and also based

on the type of signals that they are applicable for.

In general, the function of any transform is to represent input signal x in

terms of set of functions called synthesis functions, ek.

x = Σkckek

In the geometrical sense, they provide the co-ordinates ck of the input function

with respect to analysis function ẽk

ck = 〈x, ẽk〉

Analysis functions are related with synthesis functions in following way,

〈ei, ẽj〉 = cδ[i− j]

where c is an arbitary constant and δ[i] is an impulse function.

The fundamental idea behind Fourier’s original work was to decompose

a signal x(t) as the sum of weighted sinusoidal functions. In FT, e−jωt is the

analysis function, with ω denoting the angular frequency measured in radians

per second. The FT coefficients are function of frequencies present in the signal

and is calculated by,

SFT (ω) =
∫ ∞
−∞

x(t)e−jωtdt (2.1)

The input signal is reconstructed back by inverse FT where ejωt is the synthesis

function,

x(t) = 1
2π

∫ ∞
−∞

SFT (ω)ejωtdω (2.2)

FT for 2D signal x(g, h) is as follows,

SFT (u, v) =
∫ ∞
−∞

∫ ∞
−∞

x(g, h)e−j2π(ug+vh)dgdh (2.3)

where (u, v) denotes the spatial frequency in case of images. Though FT pro-

vides information about frequencies present in a signal, that is inadequate when

the signal is real time signals. For example, Electro Encephalogram(EEG) sig-

nal recorded for a subject are short duration signals. These type of real world

signals are not best represented with infinite duration sinusoids of FT.
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Drawback of Fourier transform is that, it produces the time-averaged spec-

trum [8]. This is adequate for stationary time series in which the characteristics

of the time series do not change with time. In most of real world data, how-

ever, stationarity is an unrealized abstract entity. As figure 2.2 shows, spectral

content of the time series that changes with time, and the time-averaged ampli-

tudes found by Fourier methods are inadequate to describe such phenomena.

FT provides information about what frequency is present in signal but not when

the frequency is present and how the frequency changes with respect to time.

FIGURE 2.2: FT and spectrogram of Non-Stationary signal. A - Non-stationary
signal, B - FT of signal and C - Spectrogram of signal

In the figure 2.3, ’a’ is a input chirp signal S1 whose frequency increase

gradually from 0Hz to 200Hz and ’b’ is another chirp signal S2 whose frequency

decrease gradually from 200Hz to 0Hz. Fourier spectrum of both ’a’ and ’b’ are

shown in ’c’ and ’d’, though both of the input signals are different their FT is

same. In order to overcome the above mentioned limitations, Fourier analysis

has given way to more advanced representations known as Joint Time-Frequency

Representations(JTFR).

2.3 Joint Time-Frequency Representations(JFTR)

From the discussion on FT in previous section, it is apparent that FT is not

suitable for non-stationary signals. The profound reason is that basis function



Chapter 2. Background 13

(a) S1 (b) S2

(c) F1 (d) F2

(e) STFT1 (f) STFT2

FIGURE 2.3: a - Increasing frequency chirp signal, b - Decreasing frequency
chirp signal, c - FT of increasing chirp signal, d - FT of decreasing chirp signal,

e - STFT of increasing chirp signal, f - STFT of decreasing chirp signal
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used to represent input signal is not localized, meaning that only events or fre-

quencies which are present in entire duration of the signal will be identified.

Thus, for non-stationary signals where events occur intermittently and only

last for few duration will be overlooked by these infinite duration sinusoidal

functions of FT.

In order to circumvent this problem, Time-Frequency(TF) transforms were

introduced. The key point is to have a localized basis function in time do-

main and calculate frequency present only at that duration. Different TF trans-

forms have different method to achieve this objective. This section gives brief

overview of basic terminology needed to understand TF transforms.

2.3.1 Resolution and Heisenberg’s uncertainty principle

A good time resolution transform is able to identify the time at which

change in frequency happens. A good frequency resolution transform is able

to identify the finest change in frequency of signal. Time and frequency resolu-

tion are related to each other by the following Heisenberg’s uncertainty principle

in equation 2.4. Both good time resolution and good frequency resolution can’t

be obtained simultaneously; a trade-off has to be made in favour of other. The

upper limit of achieving optimum time and frequency resolution is outlined by

Heisenberg’s uncertainty principle.

∆t∆f ≥ 1
2 (2.4)

where, ∆t, ∆f = time and frequency resolution.

Uncertainty principle could be understood in terms of information theory[9].

The questions that need to answered are,

• How much information is needed to estimate the spectrum of a signal?

• How much time one have to observe the signal to collect such informa-

tion?

The total amount of information needed to properly estimate power spectrum

is equal to the spectral complexity of the signal, Cs. The amount of collected
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information, I(t) about the signal is the sum of information density of signal,

D(t) in that observed duration.

I(t) ≤
t0+τr∫
t0

D(ε)dε = Cs (2.5)

Cs is the measure of spectral narrowness(amount of peak thickness in TF graph).

For example, the spectrum of sinusoid input has a thin ridge, an impulse. Thus

its spectral narrowness is so high. The Cs can be calculated as follows,

Cs =
√

max
f

(− δ2

δf 2Ps(f)) (2.6)

where, Ps(f) is the power spectral density of the signal. τr is the time needed to

collect all information to estimate power spectrum.

For the case of stationary signals, the signal measured at time t1 has high

spectral correlation with signal measured at t2, since stationary signals have

same frequency dynamics throughout entire signal duration. Thus longer the

signal was observed, the more information could be gathered and thus high

spectral narrowness (i.e) high frequency resolution.

For the case of non-stationary signals, spectral correlation of signal at t1
and at t2 is less. Since, the frequency dynamics of non-stationary signal keeps

on changing, measurement made at t1 will not help to estimate spectral compo-

nents at t2. Any information collected at time other than t1 must be weighted

with non-unitary correlation factor to indicate relativeness of those informa-

tions with signal at t1.

I t1(t) =
t∫

t0

D(ε)ut1(ε− t1)dε (2.7)

where, ut1(t2−t1) is the non-unitary weighting function. The weighing function

included will provide a upper threshold of maximum amount of useful spec-

tral information that can be collected for signal at t1. This upper limit will be

less for non-stationary signals, as signal changes randomly and only few neigh-

bourhood data points contain similar spectral information.

Progressive resolution is a method by which time and frequency resolution

changes at any moment according to signal dynamics at that moment.
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2.3.2 Short-Time Fourier Transform(STFT)

The problem associated with FT is that, its analysis function uses sinusoids

that are not localized in any instant of time. This is easily overcomed by us-

ing a analysis function that is defined only for a duration. Time localization

is accomplished by introducing a window, w(t) that limits the duration of ba-

sis functions. STFT uses same sinusoid basis functions as that of FT. The STFT

output for an signal x(τ) is a 2D function of (τ, ω) and it is given by,

SSTFT (τ, ω) =
∞∫
−∞

x(t)w(τ − t)e−jωtdt (2.8)

The synthesis of x(τ) from SSTFT (τ, ω) is given by,

x(τ) =
∞∫
−∞

SSTFT (τ, ω)ejωτdω (2.9)

The product of both window and signal, chooses a block of input signal and

FT is applied on that block. Thus only the frequency present in that duration

is calculated. The window function can be rectangular or gaussian depending

on application. Rectangular window provides good time resolution but poor

frequency resolution, whereas gaussian window provide optimal time and fre-

quency resolution. The window width can be reduced to get good time res-

olution but that reduces frequency resolution as per Heisenberg’s uncertainty

princple. Having fixed resolution(see figure 2.7(b)) is the shortcoming of STFT.

To illustrate the process, in Figure 2.4, a 1-D non-stationary chirp signal is

taken, in which frequency changes from 0Hz to 10Hz. The signal is partitioned

by a window function w(t, σ). Window function can be rectangular function or

box car function. A segment of signal is selected by window and FT is applied

on that part under the assumption that it is stationary in that segment. Window

is translated to other parts of signal and process is repeated. The result which

is plotted across frequency Vs time plot, gives the picture of which frequency is

present for what duration.

The output of STFT is shown in figure 2.3 ’e’ and ’f’. The signal in ’e’

shows the spectrogram for chirp signal in ’a’, it can be seen that spectrogram
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FIGURE 2.4: Demonstration of steps involved in Windowed Fourier Transform.

shows that frequency increases as time progresses and reaches 50Hz at time of

1 second. The same is the case of spectrogram in ’f’.

2.3.3 Stockwell Transform(ST)

The S-transform (ST), introduced by Stockwell et al.[3], is similar to STFT

except that ST has progressive resolution. ST combines progressive resolution

property of WT with globally referenced phase output property of FT. ST also

provides frequency invariant amplitude response unlike WT. Absolutely ref-

erenced phase information means that the phase information given by the ST

refers to the argument of the cosinusoid at zero time (which is the same as phase

given by the FT). The progressive resolution is introduced by σ parameter as

given in below equation,

S(τ, υ) =
∞∫
−∞

g(t)w(t− τ, σ)e−i2πυtdt (2.10)

where, τ, υ = shift and frequency coordinates

g(t) = Input signal

w(t, σ) = Gaussian window function = 1√
2π|σ|e

− t2
2σ2
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σ= 1
υ

, Window scaling parameter, controls the width of window

The window width is adjusted according to the frequency content of the sig-

nal, as shown in Figure 2.5, thus high frequency resolution is achieved in low

frequency contents and high time resolution is achieved in high frequency con-

tents. The extention of ST for 2D signal x(g, h) yield a 4D output SST (α, β, u, v).

FIGURE 2.5: Progressive Resolution in ST.

For the images, intensity value gets varied across horizontal, g and vertical di-

rection, h. The result is obtained with respect to spatial frequencies (u, v) and

window shift parameters (α, β).

SST (α, β, u, v) =
∫ ∞
−∞

∫ ∞
−∞

x(g, h)w(α− g, β − h, u, v)e−j2π(ug+vh)dgdh (2.11)

The disadvantage of ST is the redundancy in its output, ST produces 2D

output for its 1D input. Redundancy is introduced because ST does not obey

uncertainty principle. This point is discussed in detail in next chapter.
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2.4 Comparison between different transforms

The Fourier transform (Fourier series counterpart for nonperiodic signals)

provides frequency content information which are present for entire duration

of signal. Thus the need for localized frequency content information is empha-

sized. An attempt to create local Fourier bases is the Gabor transform or STFT.

A smooth window (mostly Gaussian window) is applied to the signal centered

around t = nT0, and a Fourier expansion is applied to windowed signal. The

drawback of STFT is due to fixed window size, which restricts the fine tuning

of time and frequency resolution. The expansion function of STFT is the com-

bination of window(which can be shifted) and complex exponential function,

thus they are function of shift and frequency.

The drawback of STFT was overcome by Stockwell Transform, in which

window can be shifted and scaled, thus enabling to have optimal time and fre-

quency resolution. Operations of ST are similar to Wavelet transform (WT), but

ST provides global phase reference compared to local phase reference of WT.

Mathematically ST is equivalent to WT multiplied by a phase factor[3]. Though

ST provides good time and frequency resolution, application of ST in real time

scenarios need high computation complexity. Inherently, output of STFT and ST

are redundant, since they map a one-variable function (mostly time or space)

into a two-variable function (time-frequency or space-spatial frequency). Thus

a generalized framework for windowed Fourier transform was introduced as

Fast Generalized Fourier transform (FGFT)[4](details of FGFT are given in next

chapter). As seen from Figure 2.6 [2–4, 7, 8, 10], any type of windows can be

used for FGFT implementation. Time complexity and memory complexity for

FGFT is same as that of FFT. For ST and STFT, time and memory complexity are

almost squared as that of FGFT. In Figure 2.6, ‘1+‘ denotes that, corresponding

transform possess that property and ‘1-‘ denotes that, corresponding transform

does not possess that property. The one-to-one property corresponds to the

redundancy of transform.

From figure 2.7, TF resolution for different transforms shows their approach

towards representing signals. In figure 2.7(a) represents the TF localization of

FT, which infers that FT provides good frequency resolution but loses time lo-

calization of signal. In figure 2.7(b) presents TF localization property of STFT

and shows that STFT achieves same time and frequency resolution throughout
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FIGURE 2.6: Comparison between different transforms.

the duration of signal. For ST and FGFT, TF localization is progressive in nature

as shown in figure 2.7(c).
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(a) Fourier Transform

(b) STFT

(c) ST and FGFT

FIGURE 2.7: Time-Frequency resolution of different transforms
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3.1 Introduction

FGFT was introduced by R.A Brown et al.[4] as an improvement over ST

with respect to amount of redundancy and computation time. FGFT

compromises in accuracy of resolution over number of computations

required. FT, STFT and ST can be realized from FGFT with different

window configuration. Initially, FGFT is explained for 1D signal, later all are

extended to 2D image input.

3.2 Mathematical formulation

The FGFT coefficients for an input signal x(t) is obtained by localizing the

input signal at arbitary duration of time and finding FT on that duration. Later,

localized duration is shifted and same process is repeated for whole input se-

quence. The difference from STFT is that, the localized duration changes in

accord with the frequency present in that duration. The FGFT coefficients for

input signal x(t) is calculated as,

FGFT (τ) =
∞∫
−∞

∞∫
−∞

x(t)w(t− τ, f)e−j2πf(t−τ)dfdt (3.1)

where, w(t, f) is the window function which is translated by τ and scaled by f .

Notice the difference between FGFT and ST, ST output is a 2D function of (τ, f)
but FGFT output is a 1D function of τ . Different transforms can be obtained

with different window functions. The transforms and corresponding window

configuration is provided in the table 3.1

TABLE 3.1: Window configurations for different transforms under FGFT

Window function Window length
FT 1 1

STFT Boxcar, Sinc Dyadic
ST Gaussian Dyadic

For illustration, Gaussian window with dyadic length is used in this the-

sis. The term dyadic means incremental size in order of power of two (i.e) 2N .

The Gaussian window is preferred wildly in many applications as they have

desirable characteristics, such as
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• No side lobes

• Frequency domain counterpart has same shape, thus controlling time and

frequency resolution would be easy

The Gaussian window has bell shaped structure, whose width is controlled by

the parameter σ,

w(t, σ) = 1√
2π|σ|

e−
t2

2σ2 (3.2)

Here, σ is made inversely proportional to frequency, thus at high frequency part

of input signal, window contracts in time domain to get good time resolution.

In other words, at dynamic regions of input, window shrinks to capture those

events as shown in figure 3.1. At low frequency part of signal, window width

increases in time domain thus capturing many samples to get good frequency

resolution. The effect of varying τ and σ can be inferred from figure 3.2. FGFT

FIGURE 3.1: Variation of scaling parameter according to frequency dynamics
of input.

can be derived from ST by taking inverse FT on every frequency component, as

follows

FGFT (τ) =
∞∫
−∞

ST (τ, f)ej2πfτdf (3.3)
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FIGURE 3.2: Effect of varying scale and shift parameters on window shape

Finally, the computation of FGFT becomes easier by making use of Fast FT

(FFT). FGFT calculated in frequency domain involves taking FT of input sig-

nal, X(f) and multiplying with frequency spectrum of window,

FGFT (τ) =
∞∫
−∞

∞∫
−∞

X(α + f)e−
2π2α2
f2 ej2π(α+f)τdαdf (3.4)

3.3 Realization of FGFT

The FFT is applied over input image and it is partitioned dyadically in in-

creasing order, 2N [4]. Each partition is multiplied with FT of window function

w(t, σ), where σ is inversely proportional to center frequency of that partition.

The resulting sequence is applied with IFFT. The inverse FGFT is reverse pro-

cess of FGFT, except for multiplying with window in forward process, signal is

divided by window. The overall process is summarised in Figure 3.3.
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FIGURE 3.3: Steps involved in realization of FGFT. A - Forward FGFT. B - Re-
verse FGFT [4].

3.4 Non-redundancy in FGFT

The key characterstic of FGFT over ST is reduction in redundancy. Re-

dundancy in ST is due to the fact that, FT of input signal is multiplied with

windows calculated for every frequency. Since this method of continuous sam-

pling produces high time and frequency resolution at the same time, ST violates

Heisenberg’s uncertainty principle. In contrast, in FGFT, FT of input signal is

multiplied with windows calculated for only discrete frequencies.



Chapter 3. Analysis of FGFT 27

3.5 2D FGFT

The concepts and formulas introduced for 1D signals are extended to 2D

signals using separability theorem. As separability theorem depicts, 2D opera-

tion can be performed as two step procedure. First, apply FGFT along row wise

then secondly, apply in column manner of the result from previous step.

The partition scheme of 2D FGFT is controlled by two frequency param-

eters as depicted in figure 3.4(a). The center frequency fu and fv decides the

width of window along vertical and horizontal directions. The rectangular

blocks shown in figure 3.4(a) just shows the boundary of the window in that

partition, shape of window inside each of those partition is shown in figure

3.4(b). The 2D FGFT output of an image is shown alongside with frequency

spectrum in figure 3.5. From 3.5(c), it is very clear that output of FGFT is in

scale space and in same domain(spatial domain) as that of input as compared

other transform outputs. The scale that is referred here is the height and width

of image.
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(a) Partition scheme in 2D FGFT

(b) 2D Gaussian window

FIGURE 3.4: 2D partition scheme of FGFT and 2D Gaussian window
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(a) Cameraman image (b) Frequency spectrum

(c) FGFT output of cameraman image in Log scale

FIGURE 3.5: Cameraman image, its frequency spectrum and its FGFT output
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4.1 Phase-only reconstruction

IMAGE reconstucted with phase-only FGFT coefficients does not produce

edge information as expected. The summary of problem statement is

shown in figure 4.1. The prime point for the issue being that output of

FGFT is in shift domain, not in frequency domain. This can be seen in

frequency domain implementation of FGFT from equation 3.4 [on page 25] and

in figure 3.5. If we observe how the FT coefficients are modified during the

process of FGFT, then one can conclude that extra phase component is added

due to inherent steps involved in FGFT. The addition of extra phase can be seen

as phase modulation of FT phase. The objective of this chapter is to identify

how the FT phase is getting modulated and to device an algorithm that get

back FT phase.

FIGURE 4.1: Problem Statement. A - Phase-only image reconstruction. B -
Input image. C - Reconstructed image
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In order to understand how FT phase gets modulated, FGFT procedure is

applied mathematically on FT coefficients and effect is deduced. The FT co-

efficients are partitioned dyadically, multiplied with gaussian window and in-

verse FT is applied on each partition separately. The first FGFT coefficient in

each partition is the DC value of Inverse FT of that partition. That coefficient is

calculated by sum of product of FT coefficients and window coefficients in that

partition. For a partition with Pk FT coefficients, inverse FT of that partition will

add new phase components, if hermitian symmetry is not observed in FT (f).

Since window has zero phase component, it does not introduce any new phase.

Window is assumed to be unity, W = 1 and calculations are done for discrete

signal case for ease of understanding. The reason of getting extra phase φm is

due to inverse FT operation that is performed on each dyadic partition. Nei-

ther partioning nor taking inverse FT can be modified or removed to preserve

FT phase. The conclusive solution might be to estimate FT phase from FGFT

samples, then retain edge information which is expained in upcoming section.

4.2 Algorithm

The outline of proposed algorithm involves two stages: First, estimating

FT coefficients from FGFT coefficients. Second, phase normalizing estimated

FT coefficients and generating FGFT coefficients from the result.

The first component of result is FGFT coefficient calculated with zero win-

dow shift, which can be obtained by substituting τ = 0,

FGFTk[0] =
∑
Ω
WkXk

which can be expanded as follows,

FGFTk[0] = Xk[0]Wk[0] +Xk[1]Wk[1] + · · ·+Xk[Pk − 1]Wk[Pk − 1]

In the process, it is assumed that proposed algorithm does not have access to in-

put sequence x. The objective is to findXk from above equation, but there are Pk
unknowns with only one equation. These type of systems with more unknowns

than number of equations are called as under determined systems. They have

infinitely many solutions, unless Pk independent equations are available.
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The proposed algorithm generates Pk different equations with Pk different

windows. Let, W l
k - Window for partition k with lth frequency element as center

frequency, l varies from 1 to Pk.

By solving the Pk independent equations with Pk unknowns, will provide

the FT coefficients Xk for each partition. This procedure is repeated for all np
partitions. The resulting X is in frequency domain, thus phase is retained by

normalizing procedure reported in section 2.1.1 [in page 9],

X́ = X

|X|

X́ is still in frequency domain, which could be converted into FGFT coefficients

by dyadically partitioning, multiplying with window and taking inverse FT on

each partition.

4.3 Implementation

FIGURE 4.2: Overview of Proposed Algorithm
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FIGURE 4.3: Structure of proposed algorithm

As shown in figure 4.3, input to proposed algorithm is length of signal and

FGFT coefficients calculated at different window configuration for each parti-

tion. The working of proposed algorithm assumes black box idea about FGFT.

4.4 Result & Discussion

The proposed algorithm in previous section is applied on 1D and 2D sig-

nals and results are presented in this section. For illustration, results for two 1D

signals and two images are presented here.

In Figure 4.4(a), input signal (signal in blue legend) is an 1D rectangular

pulse of length 250 samples. The dotted signal is the edges detected using pro-

posed algorithm. The amplitude of detected edges are very small as the phase

retains only the change in amplitude of signal not the amplitude itself. In Fig-

ure 4.4(b), a triangular pulse of length 100 samples is used. Figure 4.4(c) shows

performance of proposed algorithm on a 2D image of size 225 × 225. Figure

4.4(d) shows the extracted edge information from a image of size 398 × 341.

4.5 Remarks on algorithm

• The accuracy of estimated FT coefficients becomes less when there are

huge number of equations to solve (occurs when the input size is large)

and absolute value of the coefficients are very less. Though this does not
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(a) Rectangular pulse

(b) Triangular pulse

(c) Lena image

(d) Cameraman image

FIGURE 4.4: Reconstructed edge information from different inputs
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have huge impact in detecting edges, it produces a background noise that

affects the smooth region.

• The execution time for algorithm is approximately around 25 seconds (For

a image of size 512× 512 on a computer with Intel core i5TMprocessor and

4GB RAM) as compared to usual normalization procedure which executes

within 8 milliseconds. The execution time increases exponentially when

size of input is doubled. This is due to huge number of equations to be

solved for estimating FT coefficients.
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ONE possible application using proposed algorithm would be to mea-

sure and compare amount of information in magnitude and phase

of different transforms. The idea of phase retaining more edge in-

formation is verified for frequency domain transforms, but not for

TF transforms. Transforms compared are broadly categorized as: Frequency

domain (FT) and TF domain(FGFT, Wavelet, Curvelet and Curvelet with Wrap-

ping 1) transforms. In this experiment, following questions are answered.

1. Which transform retains more edge information in magnitude and phase

components?

2. Whether each transform stores more information in magnitude or phase

component?

Information measured is mainly the structural correlation between input image

and reconstructed image with phase-only and magnitude-only components of

different transforms. Figure 5.1(a) shows the output images reconstructed with

retaining only magnitude components of all transforms(by making phase zero).

From the figure, it is clear that among all, CT retains more structural informa-

tion. The output of CT shows only smoothness in image and sharp edge tran-

sistions are stored in its phase components. Figure 5.1(b) shows the images

reconstructed with phase-only components of all transforms. Among all, FT

shows clear edge information.

TABLE 5.1: List of Image databases used

Databases Number of Images Image type
Berkeley Segmentation
Dataset(BSDS) [12]

300 JPEG

CalTech Background Image
Dataset[13]

451 JPEG

CMU Pose, Illumination, and Expres-
sion(PIE) database[14]

208 BMP

Laboratory for Image and Video En-
gineering(LIVE) image database[15]

262 JPEG2000

It is observed that except for FGFT all other transforms retain more struc-

tural information in phase than magnitude. For FGFT, more information is

stored in phase for CMU PIE and CalTech databases and more information

1Refer Appendix A for short review on WT and CT.
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(a) Magnitude-only reconstruction

(b) Phase-only reconstruction

FIGURE 5.1: Reconstructed images with magnitude-only and phase-only com-
ponents for different transforms
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stored in magnitude for BSDS300 and LIVE databases. Thus, FGFT almost have

same amount of information in magnitude and phase. This is due to fact that

structural information is mingled in both magnitude and phase of FGFT, and

indicates that magnitude also posses equal importance as that of phase. This

is different from the conventional idea that phase alone retains more structural

information. From the above experimental results, it can be inferred that any

application that require edge information from FGFT have to operate on both

magnitude and phase.
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Non-stationarity property of a signal limits the use of FT, which paved way

for JTFR that was developed exclusively for these type of signals. The STFT

and WT have few disadvantages. Though those disadvantages are overcomed

by ST, it is redundant. This led to the development of FGFT, which is a general

framework to realize FT, STFT and ST with quicker computations. The output

of FGFT is complex with magnitude and phase components. Phase component

of FGFT do not retain edge information of input image. This thesis proposed a

method (in Chapter 4) to extract edge information from phase components of

FGFT. The analysis of results from experiments outlined in this thesis, suggests

the following conclusions

• The edge information of input image is spread in both magnitude and

phase of FGFT. Thus, usual phase normalization technique is ineffective

to segregate edge information from FGFT samples

• The edge information of image is extracted from phase-only FGFT coeffi-

cients using proposed algorithm

• Among FT, FGFT, WT and CT, FT retains more edge information in phase

part and CT retains more edge information in magnitude part

• FGFT stores almost equal structural information in both magnitude and

phase components

The future scope of this work would be to,

• Reduce the computation time and complexity of proposed algorithm as to

make it suitable for real time applications

• Improve the detected edges by increasing accuracy of estimated FT coef-

ficients and thus suppress jitter in smooth regions of reconstructed image

• Investigate on Space - Spatial Frequency characteristics of FGFT output

for an image

• Analysis and application of FGFT scale-space representation of an image



A
Wavelet and Curvelet Transforms

In this appendix a short review on both Wavelet Transform(WT) and Curvelet

Transform(CT) is presented.

A.1 Wavelet Transform

WAVELETS are short duration pulses with high frequency contents

to provide high time resolution at high frequencies and high

frequency resolution at low frequencies (also called as Progres-

sive resolution). Continuous WT(CWT) was developed by Mal-

lat in 1984 as an alternative to fixed resolution STFT. The input signal x(t) is

expanded as functions of shifted and streched real valued bandpass wavelets

ψ(t) as given by,

W (u, s) =
∞∫
−∞

x(t) 1√
s
ψ∗(t− u

s
)dt (A.1)

The output of WT is a 2D function of shift and scale (inverse of frequency).

The functions ψ(t) are also called as Mother Wavelets. A function to be used as

43



Appendix B. WT and CT 44

mother wavelet(zero average pulses) should satisfy below admissibility condi-

tion,
∞∫
0

|Ψ(ω)|2
ω

dω <∞

The WT is very similar to ST, except for a phase correcting term. WT provides

locally referenced phase as compared to globally refrenced phase by ST. WT

basis function(mother wavelet) shifts along the signal and thus the reference

point to calculate phase also shifts. In contrast, for ST, window shifts while

basis function(sinusoids) is not moving, thus the reference point is t=0. The

primary application on WT include signal compression and image denoising.

The CWT is redundant as it is calculated for huge scale and shift val-

ues. Redundancy is reduced by discretizing s and u, which results in Discrete

WT(DWT). DWT suffers from following disadvantages,

• Lack of shift invariance - translation of input causes sporadic changes in

output.

• Lack of symmetry of mother wavelet

• Poor directional selectivity

Implementation of DWT was introduced by Mallat, as several stages of filter

banks. Every stage produces approximation and detail coefficients. Approxi-

mation coefficients are calculated by filtering the original signal. Detail coeffi-

cients are calculated by subsampling the original signal [16].

One of the particularity of DWT is that, amplitude response is deteriorated

for high frequencies. This is not observed in FT, because the basis function

is a complex exponential extending from negative infinity to positive infinity.

Thus to overcome the disadvantage of DWT, a transform with complex mother

wavelet was implemented by Kingsbury et al. namely Dual Tree based Complex

WT(DT CWT). In Kingsbury et. al.[17] paper , it is outlined that shift invariance

in DWT can be eliminated by increasing sampling rate by 2. This idea is imple-

mented by having two trees with separate mother wavelet(one is hilbert trans-

form of other). Dual Tree based CWT(DT CWT) is a complex-valued transform,

meaning that coefficients from 1st and 2nd tree is the real and imaginary part of

a single DWT. The implementations of several WT can be found at [18] [19] [20].
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A.2 Curvelet Transform

FT expansion of a signal cannot accurately model the point discontunities,

which was possible in WT. WT suffers from line discontinuties like curves. Thus

Curvelet Transform(CT) was introduced by Emmanuel Candès et. al.[21] to ef-

fectively represent curves in images(or any 2D and higher dimensional signals).

CT follows anisotropic scaling which is not possible in WT. Curvelet coefficients

are calculated as [21],

CD(j, l, k) =
∑

0≤t1,t2<n
f [t1, t2]ϕDj,l,k[t1, t2] (A.2)

where, ϕDj,l,k[t1, t2] is digital curvelet waveform. The output of CT is a function

of scale(j), orientation(l) and space(k). The CT implementations are performed

in frequency domain in two variants as given below:

1. Digital CT based on Unequally-Spaced fast FT(USFFT)

2. Digital CT with wrapping

Both of the above mentioned methods differ by spatial window in frequency

domain on which curvelet coefficients are calculated. Wrapping method is com-

puted faster than USFFT method.

Implementation of curvelet based on USFFT is as follows [21],

• Find frequency spectrum of image using 2D FFT

• Interpolate for each angle/scale pair

• Multiply interpolated samples with parabolic window

• Apply inverse 2D FFT on the result from previous step

The steps involved in calculating CT with wrapping are [21]:

• Find frequency spectrum of image using 2D FFT

• Partition frequency spectrum into different wedge shaped regions
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• Wrap each of the wedges into rectangular region around the origin

• Apply inverse 2D FFT on the wrapped window

The MATLAB implementations of different version of CT is available at [22].
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