
Placement of Software-as-a-Service Components

in

Cloud Computing Environment

Alok Kumar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

June 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/80147029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Placement of Software-as-a-Service Components

in

Cloud Computing Environment

Thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Alok Kumar
(Roll No.- 212CS3122)

under the supervision of

Dr. Bibhudatta Sahoo

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2014

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Placement of Software-

as-a-Service Components in Cloud Computing Environment by Alok

Kumar is a record of an original research work carried out by him under my

supervision and guidance in partial fulfilment of the requirements for the award of

the degree of Master of Technology with the specialization of Software Engineering

in the department of Computer Science and Engineering, National Institute of

Technology Rourkela. Neither this thesis nor any part of it has been submitted

for any degree or academic award elsewhere.

Place: NIT Rourkela (Dr. Bibhudatta Sahoo)
Date: May 30, 2014 Professor, CSE Department

NIT Rourkela, Odisha

This thesis is dedicated to
my Parents and Siblings

Acknowledgment

I owe deep gratitude to the ones who have contributed greatly in completion of this

thesis. Foremost, I would like to express my sincere gratitude to my supervisor

Prof. Bibhudatta Sahoo for providing me with a platform to work on challeng-

ing areas of placement of SaaS in cloud computing. His valuable comments and

suggestions were encouraging. He was the one who showed me the path from the

beginning to end.

I am also thankful to Prof. Santanu Kumar Rath, Prof. Sanjay Kumar Jena,

Prof. Banshidhar Majhi, Prof. Durga Prasad Mohapatra, Prof. Ashok Kumar

Turuk, Prof. Pabitra Mohan Khilar and Prof. Manmath Narayan Sahoo for giving

encouragement and sharing their knowledge during my thesis work.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

of Computer Science and Engineering who have been kind enough to help us in

their respective roles.

I would like to thank all my friends, lab mates and research scholars for their

encouragement and understanding. They made my life beautiful and helped me

every time when I was in some problem.

Most importantly, none of this would have been possible without the love and

patience of my family. My family, to whom this thesis is dedicated to, has been

a constant source of love, concern, support and strength all these years. I would

like to express my heart-felt gratitude to them.

Alok Kumar

Roll-212cs3122

Abstract

Cloud computing is an emerging paradigm in which information technology re-

sources are provided over the internet as a service to users. Software-as-a-Service

(SaaS) is offered by cloud, which can be delivered in a composite form, consist-

ing of a set of application and data components, that works together to deliver

higher-level functional software. SaaS components are placed on top of the virtual

machines (VMs) in cloud computing environment, which are deployed on physical

or storage servers. The SaaS placement is an NP-hard problem. The research

problem refers to how a SaaS component is placed on virtual machine to optimize

its performance while satisfying the SaaS resource and response time constraints

with service level agreement (SLA) constraints. This thesis presents SaaS place-

ment problem as an optimization problem, to maximize the profit of the SaaS

providers. Intractability nature of the SaaS placement problem leads to the use of

genetic algorithms to obtain sub-optimal solution for SaaS component placement

on virtual machine. A suitable codification scheme for SaaS component placement

has been proposed for the genetic algorithm. The performance of proposed genetic

algorithm has been compared with first-fit randomized algorithm (First-fit RA)

by varying number of virtual machines and SaaS components by using in-house

simulator. Performance of proposed genetic algorithm has been found to be better

in comparison to First-fit RA.

Keywords: Cloud Computing; Software-as-a-Service; Cloud Modelling; SaaS

Modelling; SaaS Component Placement based on Genetic Algorithm

Contents

Certificate ii

Dedication iii

Acknowledgement iv

Abstract v

List of Figures ix

List of Tables x

Abbreviation xi

1 Introduction 1

1.1 Introduction . 1

1.2 Software as a Service Component 2

1.3 Related work . 3

1.4 Research Motivation . 5

1.5 Problem Statement . 5

1.6 Research Contribution . 6

1.7 Thesis Layout . 6

Abbreviation 1

2 Cloud Infrastructure for SaaS Placement 7

2.1 Introduction . 7

2.2 Cloud Computing . 7

2.2.1 Cloud Architecture . 8

2.2.2 Cloud Service Models . 9

2.2.3 Cloud Deployment Models 9

vi

2.3 Cloud Infrastructure Model . 10

2.4 Cloud software as a service (SaaS) 10

2.4.1 Characteristics of SaaS . 11

2.4.2 SaaS Examples . 12

2.4.3 SaaS Component Model . 12

2.5 Service Level Agreement . 13

2.6 SaaS deployment constraints . 14

2.6.1 Resource constraints: . 14

2.6.2 Placement Constraints: . 14

2.6.3 Execution time constraints: 14

2.6.4 Sequence of migration constraints: 15

2.6.5 Cost Constraints . 15

2.7 Problem Formulation . 16

2.8 Current State of Art of CPP . 19

2.9 Summary . 20

3 GA Framework for SaaS Component Placement 22

3.1 Introduction . 22

3.2 Genetic Algorithms . 23

3.2.1 GA Parameters . 24

3.3 SCPGA . 25

3.3.1 SCPGA Encoding . 26

3.3.2 Infeasible Encoding Problem 27

3.3.3 Genetic Operators . 27

3.3.4 Decision of Stopping Criteria 30

3.4 Results . 33

3.4.1 Profit Finding w.r.t. Number of Virtual Machines 35

3.4.2 Profit Finding w.r.t. Number of SaaS Components 37

3.5 Summary . 40

4 Conclusions 41

4.1 Conclusions . 41

4.2 Future Work . 41

Bibliography 42

List of Figures

2.1 NIST Cloud Computing Reference Architecture (CCRA) [5] 9

2.2 Cloud Stack . 9

2.3 SaaS component model in cloud computing infrastructure [58] . . . 13

3.1 Encoding schema of the SCPGA . 27

3.2 Crossover operation in SCPGA . 29

3.3 Mutation operation in SCPGA . 30

3.4 Profit finding w.r.t. number of iterations 33

3.5 Data set screen shot-1 . 34

3.6 Data set screen shot-2 . 34

3.7 Profit finding via SCPGA and Firstfit RA with fixed number of

SaaS components . 37

3.8 Profit finding via SCPGA and Firstfit RA with fixed number of VMs 40

ix

List of Tables

2.1 Sets and Attributes of Physical Resources in Cloud 17

2.2 Sets, Parameters and Requirements of Software as a Service 18

2.3 State of Art of SaaS Placement . 20

3.1 Genetic Algorithmic Parameter for Profit Finding w.r.t. Number

of Iteration . 31

3.2 Profit finding via GA with fixed number of SaaS components and

VMs for deciding the stopping criteria 32

3.3 Genetic Algorithmic Parameter for Profit Finding w.r.t. Number

of Virtual Machines . 35

3.4 Profit finding via SCPGA and Firstfit RA with fixed number of

SaaS components . 36

3.5 Genetic Algorithmic Parameter for Profit Finding w.r.t. Number

of SaaS Components . 38

3.6 Profit finding via SCPGA and Firstfit RA with fixed number of

SaaS components . 39

x

List of Abbreviations

NIST National Institute of Standard and Technology

VPN Virtual Private Network

IDC International Data Corporation

SLA Service Level Agreement

SaaS Software-as-a-Service

IaaS Infrastructure-as-a-Service

PaaS Platform-as-a-Service

CaaS Communication-as-a-Service

NaaS Network-as-a-Service

AC Application Component

BC Business Component

IC Integration Component

SC Storage Component

CPP Component Placement Problem

CSRSGA Cost-aware Service Request Scheduling based on Genetic Algorithm

NP Non-Probabilistic

VM Virtual Machine

SPLE Software Product Line Engineering

SOA Service Oriented Architecture

GA Genetic Algorithm

RA Randomized Algorithm

CCRA Cloud Computing Reference Architecture

ASP Application Service Provider

w.r.t. with respect to

SCPGA SaaS Component Placement based on Genetic Algorithm

Chapter 1

Introduction

1.1 Introduction

Currently, the need of computing paradigm or utility computing has increased

up to where the IT transformation will have done. Cloud computing [7] is a

computing paradigm, in which applications, data and IT resources are provided

by vendors as a service to users over the broadband network. Cloud comput-

ing provides hardware services, infrastructure services, platform services, software

services, storage services to different Internet applications. NIST defined cloud

as: ”cloud computing is a model which enables the services to the users. These

services are convenient and on-demand or you can say available anywhere through

the network as pay-per-use basis” [26].

Cloud services are categorized by NIST [26] in five different categories. 1) Soft-

ware as a service (SaaS), offers software services to the users on pay-per-use basis.

For example MS office 365, Salseforce.com, Google Docs etc. 2) Infrastructure as

a service (IaaS), offers resources(processing, storage, networks and other funda-

mental computing resources)for computing, which are provided by cloud vendors

to the service provider or users. For example Amazon EC2. 3) Communications

as a service (CaaS), real-time communication and collaboration service capability

provided to the cloud service user. 4) Cloud platform as a service (PaaS), pro-

vides a platform to the cloud service user is to deploy user developed applications

onto the cloud infrastructure using platform tools like .NET, supported by the

cloud service provider. 5) Network as a Service (NaaS), provides capability to the

1

1.2 Software as a Service Component Introduction

cloud user, is to use transport connectivity services and/or inter-cloud network

connectivity services like bandwidth, VPN etc.

SaaS has received most of the attention of IT industries. NIST defines SaaS as

a category of cloud services where the capability provided to the cloud service user

is to use the cloud service providers applications running on a cloud infrastructure.

SaaS is an application model which provides software via Internet[54]. There are

three levels [60] in the cloud: hardware, system, and application level. SaaS fill in

the application level, which provide specific services to the end users.

Now a day, SaaS receives a lot of attention of software service providers. Soft-

ware users also benefit from adaption of SaaS. A report from International Data

Corporation (IDC) states that a significant increase in companies’ subscriptions

will happen due to SaaS practices in future. SaaS market increases every mo-

ment [8] and in 2007 Dubey and Wagle [20] reported that within three years the

IT company’s revenue increased by 18 percent due to adoption of SaaS. IDC re-

ported that in 2009, the worldwide revenue for SaaS was $13.1 billion, and it will

reach $45 billion till 2014 [15]. Gartner also forecasted that total revenue would

reach $22.1 billion by 2015 [31].

The SaaS deployment are the installation to delivery of software services in

cloud computing infrastructure. SaaS deployment is initiated by a cloud ser-

vice provider via a user requesting process, which is generally automated. Al-

ternately, SaaS deployment can be initiated by a third party managed (hosted)

service provider. SaaS deployment is considered complete once a user has the nec-

essary means to access a SaaS offering, regardless of whether or not the consumer

begins using the service at the time it is defined in SLA.

1.2 Software as a Service Component

SaaS is a combination of different type of components; application component

(AC), integration component (IC), business component (BC), and storage compo-

nent (SC) [56] [59]. These components of SaaS represent in tuple form as S(AC, IC,

BC, SC). Each SaaS component AC, IC, BC, and SC have some resource require-

2

1.3 Related work Introduction

ments. SLA specified the maximum response time of the SaaS. SaaS components

are deployed on top of the virtual machines in cloud computing infrastructure

which are provided by cloud vendors to the SaaS provider. A cloud data center

consists two types of servers; computation and storage servers. Each server has

some limited processing capacity, memory size and I/O capacity as well. Several

types of VMs deployed to each physical server.

1.3 Related work

Component placement problem (CPP) is divided into two categories: 1) online

CPP, refers placement problems of short-lived functional components and solved

at runtime of the system [38] and 2) offline CPP, placement of the application

is made in the beginning and takes few minutes or hours [61]. Existing research

formulated CPP as a resource and cost optimization problem [37] [39] [40] [43] [46]

[57], and as a candidate of multiple knapsack problem [52].

A. Karve et al. [37], define application instance placement on a given set of

server machines to satisfy the resource requirement of each application cluster.

Their objective was to with maximization of resource demand, to minimize the

number of placement changes. For this purpose they proposed a middleware clus-

tering technology capable of dynamically allocating resources to web applications

through dynamic application instance placement. This paper also mentioned that

the placement of SaaS is NP-hard problem.

Zhu et al. [61] addressed the placement problem not only for application’s

constraints as well as for storage requirement of the components. The location of

the storage of component is already known before the placement process.

Zimmerova et al. [62] proposed placement method which focused communica-

tion between the components. This communication is captured using automata

language and the placement is based on cost of interaction or communication

between components.

Kichkaylo et al. [39] proposed a placement method similar to Zimmerova,

where the application is defined by its components.

3

1.3 Related work Introduction

Urgaonkar et al. [52] used first-fit approximation algorithm for placement of

component in offline CPP. This algorithm placed the component at the first server

found that can satisfy requirements of a component.

Thomas Kwok et al. [40] tried to maximize cost savings and minimize the num-

ber of servers used. They calculated the resource requirement for multi-tenants

with applied constraints in a shared application instance, and then found the

optimal placement of tenants and instances with maximum cost saving without

violating any requirements of SLA for all tenants in a set of servers.

Zerath Izzah Mohd et al. [57] find out the new placement in the dynamic nature

of the workload in the cloud for composite services which are placed on VM. For

this they had clustered the application components, such that new placement will

minimize the resources’ cost while satisfying the all quality parameters. To solve

the problem they used a genetic algorithm with some modification.

Zerath Izzah Mohd et al. [58] presented the problem of composite SaaS re-

source management in the cloud. They mainly concerned about the initial place-

ment and resource optimization problems to improve the SaaS performance based

on its execution time as well as minimized the resource uses. They focus on

the SaaS requirements, constraints and inter-dependencies.For this they had used

evolutionary algorithms.

Moens et al. [46], defined a feature-based cloud resource management model,

used software product line engineering (SPLE), in which products are composition

of feature instances. These feature instances are developed by service-oriented

architecture. They used the feature-based model from existing services. They

used feature based instances in place of application instances, to increase the

achievable level of multi-tenancy. For the placement purpose they had used meta

heuristic algorithms.

Zhipiao Liu et al. [43] proposed a cloud service request model with consid-

eration of SLA constraints, and present a cost-aware service request scheduling

approach which was based on genetic algorithm (CSRSGA). Their approach lease

and reuse virtual resources as well as minimize the rental cost of overall infras-

4

1.4 Research Motivation Introduction

tructure for maximizing SaaS providers’ profits. They adopt GA for achieving

optimised request scheduling by including the heterogeneity of VMs in terms of

their performance, configuration and pricing.

1.4 Research Motivation

A SaaS delivered as a composite application or as multiple components form, in

which the software components are loosely coupled and components communicate

to each other in order to provide a high-level functional system [23]. To provide

the services via SaaS first there is a requirement to place the SaaS components on

servers. The SaaS placement is an NP-hard problem [36] [37] [40] [44] [56]. So the

overall aim of the research is to develop an efficient, scalable and convenient model

to deliver the SaaS components to provide the services to the users with minimum

revenue cost. Due to NP-hard nature of the problem, the solution of the problem

via conventional algorithms is not possible, hence some heuristic algorithms are

required to solve the problem and provide a sub-optimal solution which is very

near to an optimal result. Most of the researchers used GA to solve this problem.

This research also used Genetic Algorithm (GA) to handle the problems’ chal-

lenges. GA is a stochastic search terminology which applies biological evolutions

or operators in production of solution [25]. GA have been applied in many prob-

lems which are complex, large-scaled, constrained and optimizations in domains

like web services, engineering and technology [9]. These are the main reasons due

to which GA was chosen to solve the problem.

1.5 Problem Statement

As mentioned in previous sections, this research focus upon placement of SaaS

with SLA constraints and resource constraints. In this problem a set of task will

carry out that will place the SaaS component on suitable VMs. First step in SaaS

lifecycle is the placement of SaaS on one or more VMs available in cloud computing

environment. Placement of SaaS carried out during the initial phase of deploy-

ment of SaaS. A composite SaaS deployed in cloud is composed of several type

5

1.6 Research Contribution Introduction

of components like, application component, data component, integration compo-

nents etc. The problem addressed in this thesis is placement of SaaS components

on VMs to maximize the profit. The optimal placement for SaaS components on

VMs are to be carried out such that the performance of SaaS is optimal, while

satisfying SLA constraints and resource constraints. The placement of SaaS com-

ponents are also maximizes the profit of the SaaS provider by minimizing resource

cost, capital expenditure of users, and resources allocated to SaaS components.

1.6 Research Contribution

This thesis formulates Software-as-a-Service placement problem using service level

agreement constraints and resource constraints. In this thesis, Genetic Algorith-

mic framework for Software-as-a-Service placement on virtual machines in Cloud

computing infrastructure has been proposed. The performance of GA based on

Software-as-a-Service placement policy has been compared with First-fit Random-

ized Algorithm.

1.7 Thesis Layout

This thesis is organized as follows:

� Chapter 2 is having detail background information needed for the research

in subsequent chapters. This includes Cloud Computing, Software as a Ser-

vice, and Genetic Algorithms, Current State of Art for SaaS Placement, and

Problem Formulation.

� Chapter 3 is having detail about the proposed Framework. This chapter

includes information about the proposed GA framework (like input, fitness

function, encoding schema, and GA operations) and contains the different

experimental results.

� Chapter 4 gives the detailed conclusion of research work and also shows the

future work.

6

Chapter 2

Cloud Infrastructure for SaaS
Placement

2.1 Introduction

In present cloud computing is becoming more popular among IT service providers.

The term cloud was coined by CEO of Google Eric Schmidt, used the term cloud to

describe the Google service [1]. A study held by IDC identified cloud computing as

one of the predominant technology trends in present time [6]. A research conducted

by United Kingdom indicates that there are highly interested organizations in UK,

which use cloud computing services [12].

2.2 Cloud Computing

Buyya et al. [7] Cloud computing is a parallel and distributed computing system

consisting of a collection of interconnected and virtualized computers that are dy-

namically provisioned and presented as one or more unified computing resources

based on service-level-agreements (SLA) established through recognition between

the service provider and consumers. Vaquero et al. [53] had stated that clouds

are a large pool of easily usable and accessible virtualized resources. These can be

dynamically configured to adjust to a scalable load, allowing also for an optimum

resource utilization. In cloud pool of resources is typically exploited by a pay-

per-use model in which guarantees are offered by the infrastructure provider by

means of customized SLAs. McKinsey and Co. Report [21] claims that clouds are

7

2.2 Cloud Computing Cloud Infrastructure for SaaS Placement

hardware-based services offering compute, network, and storage capacity where;

hardware management is highly abstracted from the buyers, buyers incur infras-

tructure costs as variable OPEX, and infrastructure capacity is highly elastic.

Cloud computing enables convenient, on-demand access to a shared group of con-

figurable computing resources (networks, servers, storage, applications, and ser-

vices) that can be rapidly placed and used with minimal managerial effort or

service provider interaction, on to the broadband network [45]. A report from

the university of California Barkeley [22] summarized the characteristics of cloud

computing as:

� the illusion of infinite computing resources.

� the elimination of an up-front commitment by cloud users.

� the ability to pay for use.

Based on the above definitions, in this research, cloud computing will be re-

ferred as:

A pool of computing infrastructure to provide pay-per-use services to the end

users over a broadband network. The cloud’s business model is based on an on-

demand model or on the subscription for a limited period of time. All the services

are provided by service providers to the users as per SLA norms.

2.2.1 Cloud Architecture

As per NIST given Cloud Computing Reference Architecture (CCRA), which is

presented in the following figure 2.1. CCRA identifies the major actors such

as Cloud Consumer, Cloud Service Provider, Cloud Auditor, Cloud Broker, and

Cloud Carrier, and their functions in cloud computing. NIST CCRA is well suited

for describing services, business, or operational relations [5].

8

2.2 Cloud Computing Cloud Infrastructure for SaaS Placement

Cloud
Consumers

Cloud Auditor

Security
Audit

Privacy Impact
Audit

Performance
Audit

Cloud Carrier

SaaS

PaaS

IaaS

S
E
C
U
R
I
T
Y

P
R
I
V
A
C
Y

Cloud BrokerService Layer

Resource Abstraction
and Control Layer

Physical Resource
Layer

Facility

Hardware

Cloud Service
Management

Business
Support

Provisioning/
Configuration

Probability/
Interoperability

Service
Aggregation

Service
Arbitrage

Service
Intermedi
ation

Cloud Provider

Figure 2.1: NIST Cloud Computing Reference Architecture (CCRA) [5]

2.2.2 Cloud Service Models

NIST divides cloud services in five different categories: IaaS, SaaS, PaaS, NaaS,

and CaaS [26]. Most of the researchers categorized cloud services into three main

categories: IaaS, PaaS, and SaaS. These three forms of cloud services are three pil-

lars on top of which cloud solutions are provided to the end users. IaaS is a cloud

model, which allows users to use computing resources for computation, storage,

and networking. For example Amazon EC2 and S3. PaaS is a cloud model which

provides cloud resources and proper software platform to develop, deploy, and

manage the execution of applications. For example Google App Engine, Microsoft

Azure etc. SaaS is a cloud model which refers to browser-initiated applications

over thousands of cloud customers. For example Google Gmail and Docs, Mi-

crosoft SharePoint etc [29].The relationship between these three cloud services

9

2.2 Cloud Computing Cloud Infrastructure for SaaS Placement

is defined by cloud computing stack. Data center or physical plant/building is

the lowest layer of the cloud computing stack and hosted application or suites

of services is the top most layer. In between them, deployment tools and data

management, operating systems, virtualization, servers and storage, and network

firewalls/security are sequentially defined from top to bottom [3].

Figure 2.2: Cloud Stack

2.2.3 Cloud Deployment Models

NIST categorized the cloud computing deployment model into four categories:

private, community, public, and hybrid. 1) Private cloud: it is a cloud infrastruc-

ture, which is operated completely for a single organization. Private cloud may be

managed by the same organization or a third party and may be located premise

or off premise. The reason behind to set up a private cloud within an organization

is having several aspects like: maximize and optimize the utilization of resources,

10

2.3 Cloud Infrastructure Model Cloud Infrastructure for SaaS Placement

security concerns, etc. 2) Community cloud: it is a cloud infrastructure, which

is shared by two or more organizations and supports a specific community that

has shared concerns, policies, requirements, and values. It may be managed by

several organizations or a third party and may be located premise or off premise.

Community cloud develops for democratic equilibrium and economic scalability.

3) Public cloud: it is a cloud infrastructure, which is made available to the general

public or a large industry group. Public cloud is owned by an organization for

providing the cloud services. 4) Hybrid cloud: it is a cloud infrastructure, which

is a composition of two or more private, community, or public clouds that remain

unique entities, but are bound together by standardized or proprietary technol-

ogy that enables data and application portability, for example cloud bursting for

load-balancing between clouds [2] [19] [55].

2.3 Cloud Infrastructure Model

Cloud infrastructure basically stands for the cloud data center. Data centers are

the basic of cloud computing infrastructure, which provide hardware resources

to cloud computing services. Data center consists of thousands of servers and

established in less dense areas with minimum energy rates and lower chances of

natural disasters [50]. Each server has its own processing, input-output, memory,

and storage capacity [46]. Google Inc., Microsoft and Amazon are the examples

of large data centers to support the cloud services [56]. Cloud computing data

centers consist of computation servers and storage servers. These servers are in-

terconnected via physical connections. Each server has one or more VMs installed

on it. VMs are slices of resource capacities of servers.

2.4 Cloud software as a service (SaaS)

SaaS came into the picture before the cloud computing. Initially SaaS had been

placed onto the SaaS vendor’s physical servers or resources and services provided

to the users via web [32]. With the increasing demand of SaaS, SaaS vendors

tried to find out the solution to these growing demands and they found a solution

11

2.4 Cloud software as a service (SaaS) Cloud Infrastructure for SaaS Placement

for this problem to place the SaaS in cloud computing infrastructure because

it provides scalability [35]. NIST defined SaaS as a category of cloud services

where the capability provided to the cloud service user is to use the cloud service

providers applications running on a cloud infrastructure. Software as a Service

application, mostly consumed by web browsers and some are consumed as web

services using other client services like desktop and mobile applications [26]. For

examples: Google Apps, Microsoft Office-365 [29]. Another definition of SaaS

given by Frederick and Gianpaolo [10], Software as a service are placed as a hosted

service and access over the broadband network.

2.4.1 Characteristics of SaaS

SaaS separates the owner of software services and the end users of those services

[4] [51]. Before SaaS there were two different approaches: traditional software

approach and Application Service Provider approach. In traditional software ap-

proach customers bought the software product and install on their own machine.

The software comes in CD installation and its manual package, and its cost in-

cludes maintenance cost by the vendor [56]. ASP is an approach in which, software

still bought by a customer and install at the ASP data centers [34]. In case of SaaS,

the software placed on the cloud vendor’s servers and clients use this software on

pay-per-use basis via internet [42].

SaaS is a business model. In conventional software, providers offer software

to users on the one-time pay basis. This cost includes the license cost to use

that software as well as maintenance cost. In addition, user have to bear the

hardware and its maintenance cost. ASP decreased some of the users cost, by

deploying their software into data centers. In this user charge for software license,

hosting and maintenance [34]. But in case of SaaS user are charged pay-per-use

basis. Users do not have to require to purchase the complete software license as in

ASP and traditional software approach. In SaaS the ownership of hardware and

software shifts from users to the providers. The infrastructure cost is shared by

several users in place of single user in ASP or traditional approach. Due to a large

number of users of the same software the cost becomes too small [56].

12

2.4 Cloud software as a service (SaaS) Cloud Infrastructure for SaaS Placement

Multi-tenancy concept of SaaS design separates it from ASP or traditional

software approach. Multi-tenancy is the concept, by exploiting of this, hardware

and software instances are shared between users, hence multiple end users can

utilize the same software and hardware instances. It helps to lowering the cost of

providing software services [46].

2.4.2 SaaS Examples

There are so many companies which offer Software as a Service. In this section

we will discuss about a few of them like Microsoft, Google, Salesforce, and IBM

software as a service [18] [54]. A brief information is given in following paragraphs.

Microsoft offers Microsoft Office Live Small Business [16]. Microsoft Office

Live Small Business offers features like storage manager, an e-commerce tool to

help small business to sell products, and E-mail Marketing Beta, to send emails

[16]. Microsoft also offers Office 365 for home (Rs. 420.0 per month), personal

(Rs. 330.0 per month), and business [17].

Google offers Google Apps for Business. Google Apps includes services for

collaboration and communication designed for all the business of different size.

Google Apps for Business is available for US$10 per-user-per-month with Vault

US$5 per-user-per-month without Vault. Google offers Gmail, Docs, Drive, Hang-

outs, Sites, Vaults, and Spreadsheets etc. as SaaS [13].

Salesforce.com offers CRM services. Salseforce.com charge US$5 per-user-per-

month for Contract Manager, US$25 per-user-per-month for Group, US$65 per-

user-per-month for Professional, US$125 per-user-per-month for Enterprise, and

US$300 per-user-per-month for Performance [33].

IBM offers a SaaS solution under the name ”Blue Cloud”. Blue Cloud will

allow corporate data centers to operate by enabling computing across a distributed

and globally accessible resources. It is based on open-standard and open-source

software supported by IBM [14].

13

2.4 Cloud software as a service (SaaS) Cloud Infrastructure for SaaS Placement

2.4.3 SaaS Component Model

SaaS is delivered in composite part, in which each and every component are loosely

coupled in nature and communicate with each other to provide a high-level func-

tional system to the users [30]. There are two maturity models, proposed by

Microsoft [28] and proposed by Kitagawa et al. [39]. These two maturity mod-

els indicate that SaaS placed in a cloud computing environment with features

like scalability, configurability, elasticity, and multi-tenancy. Hence the complete

functionalities of a service are achieved by composing one or more software compo-

nents in order to develop a SaaS with high-level functionalities [56]. Hence SaaS

is the composition of several software components like; application component

(AC), integration component (IC), business component (BC), and storage com-

ponent (SC) [56] [59]. The components are distributed on physical servers due

to certain constraints; like data components need to be placed on storage servers

and application component needs to be placed on computational servers due to

their on basic requirements. All the components are placed on top of the VM in

cloud computing infrastructure which are deployed on physical or storage servers.

For efficient placement of SaaS it is required that SaaS don’t violates resource

constraints [58] as well as SLA constraints [43].

Figure 2.3: SaaS component model in cloud computing infrastructure [58]

14

2.5 Service Level Agreement Cloud Infrastructure for SaaS Placement

2.5 Service Level Agreement

Service level agreement (SLA) is a contract between end users and service provider.

SLA is having information about all service requirements, that are formally spec-

ified service performance and corresponding revenue cost [43]. In case of cloud

computing trust between customer and provider also comes into consideration,

mainly for enterprise customers that may outsource its critical data. SLA serves

as the base for the expected level of agreed services between the consumer and

the provider. The QoS attributes are generally part of an SLA; response time and

throughput. Due to the QoS parameters change constantly and to enforce the

agreement, these parameters required to take care [48].

2.6 SaaS deployment constraints

SaaS deployment constraints adopted from [43] [57], which are as follows:

2.6.1 Resource constraints:

The total resource requirements for SaaS components that are placed in either

compute servers/storage servers or virtual machines must not exceed the VM’s

resource capacity.

2.6.2 Placement Constraints:

Two types of placement constraints present:

a An anti-location constraint: this determines a set of VMs that should not

host a specific SaaS component.

b An anti-collocation constraint: this determines a set of components that

cannot be deployed on the same VM.

2.6.3 Execution time constraints:

To ensure the optimal performance of the SaaS, the placement of the SaaS com-

ponents is based on its estimated total execution time. For the SaaS resource

15

2.6 SaaS deployment constraints Cloud Infrastructure for SaaS Placement

optimization problem, the execution time is considered as users SLA and given as

an input. The total execution time is calculated based on four numerical attributes

which are:

a. the time taken for transferring data between the storage servers and the

virtual machine,

b. the processing time of a component in a selected virtual machine,

c. the execution time of a path in the SaaS workflow, and

d. the sum of the execution time of the critical path of each workflow multiplied

by its weighting.

Based on these four values, the total execution time of the SaaS is determined.

Total execution time must not exceed the maximum response time of a SaaS as

agreed in the user’s SLA.

total execution time ≤ maximum response time

2.6.4 Sequence of migration constraints:

To change the placement from one VM to another, the solution has to be con-

sidered the sequence SaaS components that need to be replaced based on their

current placement. There are two scenarios consider:

1. Sequential move: A particular component can only be moved when another

one has been completed. This is in the case of where two component’s

migrations cannot be done in parallel because the destination VM contains

another component that’s due to be migrated. As such, the latter component

needs to be moved first to free some resources for the other component.

2. Cyclic move: A set of component’s migration may need an intermediate

destination machine.

This is in the case of when two or more components need to be exchanged places.

This can create a cyclic constraint if the machines involved have insufficient re-

sources.

16

2.7 Problem Formulation Cloud Infrastructure for SaaS Placement

2.6.5 Cost Constraints

The cost efficient VM combination consists, k number of instances. Each and

every VM cost depends upon the resource on which they are deployed. A VM can

be chosen only if, profit of the company maximizes. That means expected revenue

must be greater than the expected cost.

Max profit = expected revenue − expected cost

For choosing any particular VM, to deploy a SaaS component Max profit must be

greater than zero.

2.7 Problem Formulation

In a Cloud infrastructure a set of servers is connected via communication net-

work links. The computing availability of these servers is made available to users

through virtual machines. Virtual machines are placed onto the servers, which

have their own resource capacities; memory, processing, input-output, and stor-

age capacities. There are a set of SaaS components, which needs to be placed onto

the VMs and have their own requirements; memory, processing, input-output, and

storage requirements. The objective is to find out an a optimal set of VMs on

which SaaS components can be deployed and give maximum profit to the ser-

vice provider as well as reduce the charges of customer charged by the service

provider. This optimal set of VMs must satisfy the resource constraints as well as

SLA constraints.

The cloud infrastructure, SaaS component, objective, and constraint formula-

tion are given below:

Cloud Infrastructure, includes cloud data center that means pool of physi-

cal servers PS =
{
ps1, ps2, ps3, ..., psr

}
and set of virtual machines (VMs) VM ={

vm1, vm2, vm3, ..., vmn

}
, deployed on those physical servers. The resource ca-

pacities of VMs are represented in tuple form (PCvmi
, MCvmi

, STvmi
, IOCvmi

),

1 ≤ i ≤ n. Where PCvmi
is processing capacity of vmi, MCvmi

is main memory

capacity of vmi, STvmi
is the storage capacity of vmi, and IOCvmi

is the input-

17

2.7 Problem Formulation Cloud Infrastructure for SaaS Placement

output capacity of vmi.The cloud modelling presents a general information about

VMs and their resource capacities.

Table 2.1: Sets and Attributes of Physical Resources in Cloud

Resources Description

psi ∈ PS The ith physical server psi in PS, where PS is a set of physical server
i ≤ r

vmx ∈
VM

The xth virtual machine vmx in VM, where VM is a set of virtual
machines x ≤ n

PCvmx The processing capacity of xth virtual machine

MCvmx The memory capacity of xth virtual machine

STvmx The storage capacity of xth virtual machine

IOCvmx The Input-output capacity of xth virtual machine

SaaS Component, SC =
{
sc1, sc2, sc3, ..., scm

}
are fixed. Each and every

SaaS component is placed on a single virtual machine. The resource requirements

of SaaS Components are represented in tuple form (TSsci , Msci , SZsci , IOCsci),

1 ≤ i ≤ m and m << n. Where TSsci is task size of sci, Msci is a main

memory requirement of sci, SZsci is size of sci, and IOCsci is an input-output

requirement of vmi. The SaaS modelling presents a general information about

software components and their resource requirements.

18

2.7 Problem Formulation Cloud Infrastructure for SaaS Placement

Table 2.2: Sets, Parameters and Requirements of Software as a Service

Resources Description

sci ∈ SC The ith SaaS component sci in SC , where SC is a set of SaaS
component i ≤ m

mrtsci The maximum response time of sci

TSsci Task size of sci

Msci Memory requirement of sci

SZsci Size of sci

IOCsci Input-output requirement for sci

TETsci Total execution time for sci

mrtsci Maximum response time for sci defined in SLA

Objective: To maximize the profit of SaaS provider via finding the optimum

placement of SaaS components.

Maximize∆Pr =
m∑
j=0

RSscj −
n∑

i=1

m∑
j=1

Cvmi,j

where ∆Pr is the profit of the SaaS provider, RSscj is the revenue cost of jth

SaaS component and Cvmi,j
is the cost of resource when jth component placed on

ith virtual machine.

Cvmi,j
= oi,j ∗ ci ∗ tai

Where oi,j = 1, iff jth component deployed on ith virtual machine, otherwise

oi,j = 0. ci is the rental cost of ith virtual machine, and tai is the time for which

ith virtual machine acquired by the SaaS.

RSscj = rcj ∗ tj

Where rcj is the revenue cost of jth SaaS component per unit time and tj is

the service time of jth SaaS component.

19

2.8 Current State of Art of CPP Cloud Infrastructure for SaaS Placement

Constraints: The placement of SaaS components over VM is depending on

VM’s capacities. We can place a SaaS component over a virtual machine if and

only if the requirements of the SaaS component must be less or equal to that

particular virtual machine. Following equations represents the SaaS component

constraints which include resource and SLA constraints.

∀vmx ∈ VM
∑

sci∈SC TSsci ≤ PCvmx |P (sci) = vmx

∀vmx ∈ VM
∑

sci∈SC Msci ≤MCvmx |P (sci) = vmx

∀vmx ∈ VM
∑

sci∈SC SZsci ≤ STvmx |P (sci) = vmx

∀vmx ∈ VM
∑

sci∈SC IOCsci ≤ IOCvmx |P (sci) = vmx

∀sci ∈ SC TETsci ≤ mrtsci

2.8 Current State of Art of CPP

Component placement problem (CPP) is divided into two categories: 1) online

CPP and 2) offline CPP. The following table illustrates the technique used for

SaaS placement. Our approach of placement is justified by the prior techniques

used for placement purpose.

20

2.9 Summary Cloud Infrastructure for SaaS Placement

Table 2.3: State of Art of SaaS Placement

Researches Technique used

A Karve et
al. [37]

Proposed middleware clustering technique capable to dynamic al-
location of web services

Zhu et al.
[61]

Address the placement problem for application components with
storage components

Zimmerova
et al. [62]

Proposed a placement technique focused on communication be-
tween components and communication was captured by automata
language

Kichkaylo
et al. [39]

Proposed placement technique focused communication between
components and application defined by components

Urgaonkar
et al. [52]

Used first-fit approximation algorithm for offline CPP

Thomas et
al. [40]

Proposed placement technique which maximizes cost saving and
minimizes resources, and calculate resource requirements of multi-
tenant application instances

Zorath Iz-
zah Mohd
et al. [57]

Used GA to find the placement of components with resource con-
straints

Moens et
al. [46]

Define feature-based cloud resource management model for this
they had used SPLE and SOA. They used meta heuristic algorithms
for placement of SaaS

Zhipiao
Lia et al.
[43]

Used GA for cost-aware placement of SaaS

2.9 Summary

The objective of the thesis is to formulate CPP and design algorithm for CPP.

This chapter presented the background of research, cloud modelling, and problem

formulation. The current state of art for CPP, proved that the CPP is a candidate

for genetic algorithm and also gave the idea about different techniques used for

21

2.9 Summary Cloud Infrastructure for SaaS Placement

CPP. The problem formulation showed the cloud modelling, objective function,

and different constraints (resource and SLA), which must not violate.

22

Chapter 3

GA Framework for SaaS
Component Placement

3.1 Introduction

SaaS offers flexible and scalable services to the end users or clients. SaaS can

be expanded or shrink according to the user’s requirements. In each and every

situation, the customization of SaaS can be performed by the end users at client

side or by the service provider at the front end or server side. Two examples of

such scenario are Google Apps offered by Google [13], and Microsoft Office Live

offered by Microsoft [17]. Microsoft offers two different categories of the Microsoft

Office Live, based on the functionalities of its own Microsoft Office Live, where one

is for home users and another is for business users. Microsoft Office Live for Home

is further divided the services into three sub-categories Office 365 Home, Office

365 Personal, and Office Online. Microsoft Office 365 provides different services

like Word, Excel, PowerPoint, Outlook, OneNote, and Lync. Google offers two

different categories of the Google Apps, based on the functionalities of its own

Google Apps, where one is Google Apps for Business without Vault and another

is Google Apps for business with Vault. Google Apps provides different services

like Gmail, Calender, Drive, Docs, Hangouts, Vault, and more other services.

The flexibility and scalability of SaaS are also referred as elasticity of software

as a service. In our research, SaaS is in composite form. The parts of the SaaS

referred as SaaS components, can be placed on its own. Each SaaS component

represents a unique well-defined function of the software. These components can

23

3.2 Genetic Algorithms GA Framework for SaaS Component Placement

be application component (AC), integration component (IC), business component

(BC), and storage component (SC) [56] [59].

The full utilization of SaaS components bring a number of advantages to, SaaS

provider and SaaS users. These advantages include, 1) reduce resource cost, 2)

increase profit of SaaS provider, 3) flexible and scalable, offers of SaaS services,

and 4) reduce the subscription cost of end users. Managing such SaaS components

raises few new challenges. Initial or offline placement of SaaS components in one

of the challenges from them, which finds the appropriate VMs for the deployment

of SaaS components. The problem of SaaS component placement on top of the

virtual machines which are deployed on Cloud servers, is referred to as Component

Placement Problem (CPP). The aim of finding the solution of placement problem

is to find-out which VM can beer which component, such that the resource and

SLA constraints should not violated and it provides flexible services to the users.

The servers on which VMs are deployed, located across the world in a particular

Cloud network.

Component placement problem concerns with finding the optimum set of VMs

on which SaaS components can be placed such that all user requirements should

be satisfied and give maximum profit to the SaaS providers [39] [43] [52] [58]

[61].In CPP, the solution of the problem is subject to a set of resource and SLA

constraints. Although extensive research has been carried out for component

placement problem, their solution does not take account of resource constraints

and SLA constraints both together. This research presents a placement algorithm

that considers both SLA constraints as well as resource constraints and gives

a cost-aware solution for component placement. The CPP has been proven by

researchers as an NP-complete [36] [37] [40] [44] [56], the proposed GA gives a

sub-optimum solution for the problem.

3.2 Genetic Algorithms

Finding an optimal solution to the large scale, complex combinatorial problems

is not a practicable option, due to its vast amount of computing time needed

24

3.2 Genetic Algorithms GA Framework for SaaS Component Placement

to find such solutions. In practical a good solution, obtaining at the reasonably

small computing time by a heuristic, is often the only possibility [49]. It had been

proved that Genetic Algorithm (GA) is suitable to solve such large scale complex

combinatorial problems [9]. Genetic Algorithms were introduced by Fraser and

after that developed by Holland [27]. GA is a stochastic process of searching, which

imitates the process of biological evolution, especially in the selection process as

well as recombination operation [24]. GA finds the best solution manipulating a

set of candidate solutions in which the fittest solution is having higher chance to

survive and the solutions combine with other solutions to get the new solutions

into that population. GA are most suitable for a large scale, complex search

optimization problem as compared to other search algorithms like enumerative or

random search algorithms [56]. Enumerative search technique considers most of

the solutions in the solution space, but it tries to reduce the size of the solution

space by applying some heuristics [41]. Hence it is suitable only if the solution

space is small. GA has a random element (selection procedure) in it, but the

search is directed by the environment. Algorithm starts with a set of solutions

(represented by chromosomes) called a population. In GA solutions are taken

from the parent population and used to generate new or child population. This is

imposed by a wish, that the child population will give a better solution than the

parent population. From the parent solutions populations are selected to produce

child solutions (offspring) are selected on the behalf of their fitness values. That

means, there is more chances of selecting the most suitable solution [47].

3.2.1 GA Parameters

The ability of Genetic Algorithms to find-out sub-optimal solution mainly depends

on its implementation and operations. The GA has eight parameters, which are

1) the genetic representation of candidate solutions, 2) the population size, 3) the

evaluation function, 4) the genetic operators, 5) the selection algorithm, 6) the

generation gap, 7) the amount of elitism used, and 8) the number of duplicates

allowed [47].

25

3.3 SCPGA GA Framework for SaaS Component Placement

� The genetic representation of candidate solutions, also called popu-

lation and represented by chromosomes.

� The population size, says how many chromosomes are in the population.

� The evaluation function, describe that the fitness of the solution.

� The genetic operators, used to generate new population. Genetic oper-

ators are crossover and mutation operators, which are based on the corre-

sponding probabilities.

� The selection algorithm, describe how to select these chromosomes. There

are few methods for selection procedure as the roulette wheel selection, Boltz-

man selection, tournament selection, rank selection, steady state selection

and some others.

� The generation gap, describes the number of iterations.

� The amount of elitism used, to increase the performance of GA, because

it prevents a loss of the best found solution by copying the best chromosome

to the child population from the parent solution.

� The number of duplicates allowed, used to copy the best solutions.

3.3 SCPGA

In chapter 2, the size of Cloud’s infrastructure is discussed. There are large scale

resources available in Cloud’s infrastructure. Hence Component Placement Prob-

lem can be considered as a large-scale complex combinatorial problem that deals

with finding of VMs for component placement with a set of constraints should be

followed. The goal has optimized the resources and maximize the profit of SaaS

providers.

The SaaS Component Placement based on Genetic Algorithms (SCPGA), is a

search heuristic inspired from the theory of Biological evolution. This technique is

based on population that represents the set of candidate solutions of the problem,

26

3.3 SCPGA GA Framework for SaaS Component Placement

and evolves to generate new candidate solution through GA operations for finding

the optimal solution.

The SCPGA is developed for CPP. The population of SCPGA consists a set

of candidate solutions which represents the placement of SaaS components on

top of the virtual machines. After a number of generations the optimal solution

is achieved. In these numbers of generations, crossover, mutation, and selection

operations are applied in the algorithm. Algorithm 1 describes the SCPGA.

Algorithm 1 SCPGA

Data: Initial Population

Result: Sub-Optimal solution for SaaS Placement

Initialize bestFitness
Random initialize(Population)
while the termination condition is not true do

for P ∈ Population do
if P violates the requirement constraints and SLA constraints then

Repair(P)

end
Calculate rental cost of VMs
Calculate the revenue cost
Calculate the profit of SaaS provider
if ∆Pr > bestF itness then

Replace bestFitness and store P

end
end
Select individuals from Population via roulette wheel selection
Probabilistically apply single point crossover operator to generate new
individuals
Probabilistically select individuals and apply mutation operator to generate
new individuals
Replace the individuals of old population by new individuals

end
output bestFitness and best individuals

3.3.1 SCPGA Encoding

A chromosomes in the SCPGA represents the placement for the SaaS components.

The chromosomes contains m number of genes, each of which corresponds to the

27

3.3 SCPGA GA Framework for SaaS Component Placement

SaaS component, representing the ID of virtual machines where the SaaS compo-

nents should be placed and where m is the number of SaaS components. Figure

3.1 shows the encoding schema of the SCPGA.

Figure 3.1: Encoding schema of the SCPGA

3.3.2 Infeasible Encoding Problem

The representation naturally maps CPP into a chromosome of the SCPGA. The

individuals of chromosome generated randomly in the initial population, and the

genes generated may not be feasible to the placement. For example the VM’s

memory capacity is 4GB and the components memory requirement is 5GB, the

genetic operator may produce that VM’s ID for that particular component, but it is

not possible to place that particular component on the generated VM. To handle

this infeasible encoding problem, a repairing technique is used. The repairing

technique performs checks on each gene to find any infeasible individuals. If any

gene is found infeasible, another random number is generated based on the correct

search space.

3.3.3 Genetic Operators

There are three basic genetic operators involve in generating the optimal solution.

These operators are described in the following sections.

Selection

The selection is roulette wheel selection. The selection process is stochastic se-

lection from the current generation to create the parents for the next generation.

The requirement of the selection process is to choose fittest individuals because

fittest individuals have a greater chance of survival. Hence, weaker individuals

28

3.3 SCPGA GA Framework for SaaS Component Placement

will have less chance to choose as parents. This process of selection is known as

roulette wheel selection.

Crossover

The crossover operation is single point crossover. The crossover operation depends

on the crossover probability, which gives the information about number of chro-

mosomes would be selected for the crossover operation. The point of crossover is

in between the segments of individuals in chromosome and it would be generated

randomly. The crossover operations exchange the sub-string from two selected

parents and generates two children. Figure 3.2 illustrates the crossover operation.

29

3.3 SCPGA GA Framework for SaaS Component Placement

Figure 3.2: Crossover operation in SCPGA

Mutation

The mutation operation is knowledge-based, which changes the VM to a particular

SaaS component with a new VM, such that the new VM is more appropriate for

the placement of that particular component. This new VM reduces the overall

resource cost and maximize the profit of SaaS providers.

The mutation operation is applied on selected genes from the chromosome.

This selection is based on the mutation probability. On the basis of mutation

probability the number of genes from chromosome are selected for mutation oper-

ation. Figure 3.3 illustrates the mutation operation.

30

3.3 SCPGA GA Framework for SaaS Component Placement

Figure 3.3: Mutation operation in SCPGA

3.3.4 Decision of Stopping Criteria

This section decides the stopping criteria of the used SCPGA. The following table

illustrates the list of parameters used.

31

3.3 SCPGA GA Framework for SaaS Component Placement

Table 3.1: Genetic Algorithmic Parameter for Profit Finding w.r.t. Number of
Iteration

Parameters Values

Population size 320

Number of itera-
tion

variable

Selection Roulette wheel selection

Crossover Single point crossover

Crossover proba-
bility

0.90

Mutation Single bit mutation

Mutation proba-
bility

0.05

The experiment run in a cloud with 16 SaaS components and 400 virtual

machines. These values are fixed and the number of iterations varies. Figure 3.4

and Table 3.2 illustrates the profit value of the SCPGA. The figure 3.4 shows the

linear characteristics after 300 iterations. Hence, if we further increase the number

of iterations the results characteristics will not change.

32

3.3 SCPGA GA Framework for SaaS Component Placement

Table 3.2: Profit finding via GA with fixed number of SaaS components and VMs
for deciding the stopping criteria

Number Of Itera-
tions

Profit via SCPGA
(∗106)

50 6.2132
75 7.6020
100 7.9412
125 7.9284
150 8.3316
175 8.9268
200 8.7348
225 8.9268
250 8.9268
275 8.7252
300 8.9268
325 8.9268
350 8.9268
375 8.9268
400 8.9268
425 8.9268
450 8.9268
475 8.9268
500 8.9268
525 8.9268
550 8.9268
575 8.9268
600 8.9268
625 8.9268
650 8.9268
675 8.9268
700 8.9268

33

3.4 Results GA Framework for SaaS Component Placement

Figure 3.4: Profit finding w.r.t. number of iterations

3.4 Results

The placement problem solving SCPGA has been implemented in JAVA in Eclipse

IDE. The experiment evaluates the quality of work. For all experiments, we used

the random dataset generated with the help of Amzon’s and Azore’s datasets [11].

The screen-shots of the dataset are given in figure 3.5 and 3.6. All experiments

are carried out in Dell Inspiron 1545 with Ubuntu 13.10 operating system, Intel

CoreTM2 Duo CPU T6600 @ 2.20GHz x 2, and 3GB RAM.

34

3.4 Results GA Framework for SaaS Component Placement

Figure 3.5: Data set screen shot-1

35

3.4 Results GA Framework for SaaS Component Placement

Figure 3.6: Data set screen shot-2

36

3.4 Results GA Framework for SaaS Component Placement

3.4.1 Profit Finding w.r.t. Number of Virtual Machines

The list of parameters used in this experiment are listed in following table.

Table 3.3: Genetic Algorithmic Parameter for Profit Finding w.r.t. Number of
Virtual Machines

Parameters Values

Population size 320

Number of itera-
tions

300

Selection Roulette wheel selection

Crossover Single point crossover

Crossover proba-
bility

0.90

Mutation Single bit mutation

Mutation proba-
bility

0.05

The experiment run in a cloud with fixed number of SaaS components. The

number of virtual machines varies. Figure 3.5 and Table 3.4, illustrates the profit

value of both SCPGA and First-fit RA. The comparison was based on the cal-

culated profit from objective function. Due to stochastic nature the experiments

repeated several times. It can be seen that for all test cases, the SCPGA has

always a higher profit value than First-fit RA, which implies that SCPGA provide

a better solution for placement of SaaS components.

37

3.4 Results GA Framework for SaaS Component Placement

Table 3.4: Profit finding via SCPGA and Firstfit RA with fixed number of SaaS
components

Number Of VMs Profit via First-fit
RA (∗106)

Profit via SCPGA
(∗106)

100 3.3332 8.7252
200 3.1220 8.7060
300 3.1220 8.9268
400 2.8148 8.9268
500 3.3332 8.9268
600 3.3332 8.9268
700 3.3332 8.9268
800 3.3332 8.9268
900 3.1220 8.9268
1000 3.3332 8.9268
1100 3.3332 8.9268
1200 3.3332 8.7252
1300 3.3332 8.9268
1400 3.1220 8.9268
1500 3.0068 8.9268
1600 3.0068 8.9268
1700 3.3332 8.9268
1800 3.3332 8.9268
1900 3.1220 8.9268
2000 3.1220 8.9268
2100 3.1220 8.9268
2200 3.1220 8.9268
2300 3.1220 8.9268
2400 3.3332 8.9268
2500 3.3332 8.9268

38

3.4 Results GA Framework for SaaS Component Placement

Figure 3.7: Profit finding via SCPGA and Firstfit RA with fixed number of SaaS
components

3.4.2 Profit Finding w.r.t. Number of SaaS Components

The list of parameters used in this experiment are listed in following table.

39

3.4 Results GA Framework for SaaS Component Placement

Table 3.5: Genetic Algorithmic Parameter for Profit Finding w.r.t. Number of
SaaS Components

Parameters Values

Population size variable

Number of itera-
tion

300

Selection Roulette wheel selection

Crossover Single point crossover

Crossover proba-
bility

0.90

Mutation Single bit mutation

Mutation proba-
bility

0.05

The experiment run in a cloud with variable number of SaaS components.

The number of virtual machines is fixed. Figure 3.6 and Table 3.6, illustrates

the profit values of both SCPGA and First-fit RA. The comparison was based

on the calculated profit from objective function. Due to stochastic nature the

experiments repeated several times. It can be seen that for all test cases, the

SCPGA has always a higher profit value than First-fit RA, which implies that

SCPGA provide a better solution for placement of SaaS components.

40

3.4 Results GA Framework for SaaS Component Placement

Table 3.6: Profit finding via SCPGA and Firstfit RA with fixed number of SaaS
components

Number Of VMs Profit via First-fit
RA (∗107)

Profit via SCPGA
(∗107)

16 0.33332 0.89268
32 0.45487 1.56655
48 0.66753 2.24569
64 0.88148 2.49508
80 0.81811 2.75571
96 0.91058 3.26570
112 0.9455704 3.8611704
128 1.1424312 4.0763512
144 1.1631512 4.6717112
160 1.2108016 4.9590416
176 1.5041616 5.5524016
192 1.9840608 6.0954208
208 1.7580208 6.5587408
224 1.9950784 7.2075584
240 2.3939984 8.2271984
256 2.5280784 8.6565584
272 2.9087072 9.2313472
288 2.6767552 9.3515552
304 3.143024 9.225024
320 3.496032 10.024432
336 3.2683808 10.0475808
352 3.4972416 10.4504416
368 3.63948 10.49772
384 3.7689088 11.6405888
400 3.9791616 11.5741216

41

3.5 Summary GA Framework for SaaS Component Placement

Figure 3.8: Profit finding via SCPGA and Firstfit RA with fixed number of VMs

3.5 Summary

This chapter presented, the placement of SaaS components in cloud computing

infrastructure. The CPP introduces new challenges and requirement constraints.

To tackle these challenges in CPP, a heuristic algorithm SCPGA is applied to solve

the CPP. The SCPGA evolves its solution as one population, which represents the

identity of VM w.r.t. that particular component. The performance of SCPGA

was tested in experiments with different number of VMs and SaaS components.

The SCPGA was compared with the performance of First-fit RA. The evaluation

focused on placement of the SaaS components without violating resource and

SLA constraints. The results of experiments showed that the proposed SCPGA

gives better performance in all set of experiments as compared with First-fit RA.

42

3.5 Summary GA Framework for SaaS Component Placement

SCPGA also showed good scalability as problem size increases.

43

Chapter 4

Conclusions

4.1 Conclusions

In existing works, researchers proposed different placement policies for SaaS, which

considered mainly some resource constraints like: processing capacity, memory and

secondary storage. In recent work, researchers proposed a placement policy for

SaaS, which considered SLA constraint for finding the cost of resources and profit

of SaaS providers. Here, in this thesis revenue cost is also calculated. This thesis

formulates Software-as-a-Service placement problem using service level agreement

constraints and resource constraints. Our research developed SaaS Component

Placement based on Genetic Algorithm for Software-as-a-Service placement on

top of the virtual machines in Cloud computing infrastructure. The performance

of SCPGA based on Software-as-a-Service placement policy has been compared

with First-fit Randomized Algorithm. The experimental results verified that the

proposed approach gives better results.

4.2 Future Work

CPP is an NP-hard problem. It is a broad area where very less work had to be

done till now. There is more research required in this area. Our first future work

is to design a general problem model considering more constraints like: number of

cores, number of processors, and communication between SaaS components etc.

And second future work is to design other heuristic frameworks to solve the offline

CPP as well as online CPP.

44

Bibliography

[1] Francesco Maria Aymerich, Gianni Fenu, and Simone Surcis. An approach to

a cloud computing network. In Applications of Digital Information and Web

Technologies, 2008. ICADIWT 2008. First International Conference on the,

pages 113–118. IEEE, 2008.

[2] Lee Badger, Tim Grance, Robert Patt-Corner, and Jeff Voas. Draft cloud

computing synopsis and recommendations. Recommendations of the National

Institute of Standards and Technology, 2011.

[3] Douglas K Barry. Web Services, Service-oriented Architectures, and Cloud

Computing: The Savvy Manager’s Guide. Access Online via Elsevier, 2012.

[4] Marina Berkovich, Sebastian Esch, Jan Marco Leimeister, and Helmut Krc-

mar. Towards requirements engineering for software as a service. Multikon-

ferenz Wirtschaftsinformatik 2010, page 107, 2010.

[5] Robert B Bohn, John Messina, Fang Liu, Jin Tong, and Jian Mao. Nist

cloud computing reference architecture. In Services (SERVICES), 2011 IEEE

World Congress on, pages 594–596. IEEE, 2011.

[6] Lucinda Borovick and Rohit Mehra. Architecting the network for the cloud.

2011.

[7] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented

cloud computing: Vision, hype, and reality for delivering it services as com-

puting utilities. In High Performance Computing and Communications, 2008.

HPCC’08. 10th IEEE International Conference on, pages 5–13. IEEE, 2008.

45

BIBLIOGRAPHY BIBLIOGRAPHY

[8] K Selçuk Candan, Wen-Syan Li, Thomas Phan, and Minqi Zhou. At the fron-

tiers of information and software as services. In New Frontiers in Information

and Software as Services, pages 283–300. Springer, 2011.

[9] Erick Cantu-Paz. Efficient and accurate parallel genetic algorithms, volume 1.

Springer, 2000.

[10] Frederick Chong and Gianpaolo Carraro. Architectures strategies for

catching the long tail, 2006. URL http://msdn.microsoft.com/en-

us/library/aa479069.aspx.

[11] CeCal High Performance Computing. Virtual ma-

chine planning in cloud computing systems. URL

http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP/index.php.

[12] Ron Condon. Forecast: Cloudy. Computer methods in applied mechanics and

engineering, 1(3):15–19, 2011.

[13] Goolge Corporation. Google apps for business.

http://www.google.com/enterprise/apps/business/.

[14] IBM Corporation. Ibm cloud. URL http://www.ibm.com/cloud-

computing/in/en/.

[15] International Data Corporation. Saas revenue to grow five time

faster than traditional packaged software through 2014,2010. URL

http://www.idc.com/about/viewpressrelease.jsp.

[16] Microsoft Corporation. Microsoft office live small business. URL

http://www.smallbusiness.officelive.com.

[17] Microsoft Corporation. Microsoft office live small business. URL

office.microsoft.com/en-IN.

[18] Michael A Cusumano. The changing software business: Moving from products

to services. Computer, 41(1):20–27, 2008.

46

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and

challenges. In Advanced Information Networking and Applications (AINA),

2010 24th IEEE International Conference on, pages 27–33. Ieee, 2010.

[20] Abhijit Dubey and Dilip Wagle. Delivering software as a service. The McK-

insey Quarterly, 6(2007):2007, 2007.

[21] William Forrest and Charlie Barthold. Clearing the air on cloud computing.

Discussion Document from McKinsey and Company, 2009.

[22] Armando Fox, Rean Griffith, A Joseph, R Katz, A Konwinski, G Lee, D Pat-

terson, A Rabkin, and I Stoica. Above the clouds: A berkeley view of cloud

computing. Dept. Electrical Eng. and Comput. Sciences, University of Cali-

fornia, Berkeley, Rep. UCB/EECS, 28:13, 2009.

[23] Borko Furht. Cloud computing fundamentals. In Handbook of cloud comput-

ing, pages 3–19. Springer, 2010.

[24] David E Goldberg and John H Holland. Genetic algorithms and machine

learning. Machine learning, 3(2):95–99, 1988.

[25] David Edward Goldberg et al. Genetic algorithms in search, optimization,

and machine learning, volume 412. Addison-wesley Reading Menlo Park,

1989.

[26] M Hogan, F Liu, A Sokol, and J Tong. Nist cloud computing standards

roadmap-version 1.0, special publication 500–291, december 2011, 2011.

[27] John H Holland. Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. U

Michigan Press, 1975.

[28] Anand V Hudli, Balasubrahmanya Shivaradhya, and Raghu V Hudli. Level-4

saas applications for healthcare industry. In Proceedings of the 2nd bangalore

annual compute conference, page 19. ACM, 2009.

47

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Kai Hwang, Jack Dongarra, and Geoffrey C Fox. Distributed and cloud com-

puting: From parallel processing to the internet of things. Morgan Kaufmann,

2013.

[30] Cisco System Inc. Cisco service-oriented network architecture: Support and

optimise soa and web2.0 applications, 2008. URL http://www.cisco.com/.

[31] Gartner Inc. Gartner says worldwide software-as-a-

service revenue to reach $14.5 billion in 2012,2012. URL

http://www.gartner.com/it/page.jsp?id=1963815.

[32] Gartner Inc. Introducing saas-enabled application plateforms: Features, roles

and futures, 2007.

[33] Salseforce.com Inc. Salseforce crm. URL

http://www.salesforce.com/in/service-cloud/overview.

[34] Luit Infotech. Difference between the asp model and the saas model. URL

http://www.luitinfotech.com/kc/saas-asp-difference.pdf.

[35] Thomas Plan K. Sel Chandan, Wen-Syan Li and Minqi Zhou. Frontiers in

information and software as a service. In In Proceeding of the IEEE 25th

International Conference on Data Engineering, pages 357–377. IEEE, 2010.

[36] Magnus Karlsson and Christos Karamanolis. Bounds on the replication cost

for qos. Technical report, Citeseer, 2003.

[37] A Karve, Tracy Kimbrel, Giovanni Pacifici, Mike Spreitzer, Malgorzata Stein-

der, Maxim Sviridenko, and A Tantawi. Dynamic placement for clustered web

applications. In Proceedings of the 15th international conference on World

Wide Web, pages 595–604. ACM, 2006.

[38] Tatiana Kichkaylo. Timeless planning and the component placement problem.

In ICAPS Workshop on Planning and Scheduling for Web and Grid Services,

2004.

48

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Tatiana Kichkaylo, Anca Ivan, and Vijay Karamcheti. Constrained com-

ponent deployment in wide-area networks using ai planning techniques. In

Parallel and Distributed Processing Symposium, 2003. Proceedings. Interna-

tional, pages 10–pp. IEEE, 2003.

[40] Thomas Kwok and Ajay Mohindra. Resource calculations with constraints,

and placement of tenants and instances for multi-tenant saas applications. In

Service-Oriented Computing–ICSOC 2008, pages 633–648. Springer, 2008.

[41] Rosana SG Lanzelotte and Patrick Valduriez. Extending the search strategy

in a query optimizer. In VLDB, pages 363–373, 1991.

[42] Phillip A Laplante, Jia Zhang, and Jeffrey Voas. Distinguishing between

software oriented architecture and software as a service: What’s in a name?

IEEE IT Professional, 10(3):46–50, 2008.

[43] Zhipiao Liu, Shangguang Wang, Qibo Sun, Hua Zou, and Fangchun Yang.

Cost-aware cloud service request scheduling for saas providers. The Computer

Journal, 57(2):291–301, 2014.

[44] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive distributed

data replication using genetic algorithms. Journal of Parallel and Distributed

Computing, 64(11):1270–1285, 2004.

[45] P Mell and T Grance. Draft nist working definition of cloud computing-v15.

21. Aug 2009, 2009.

[46] Hendrik Moens, Eddy Truyen, Stefan Walraven, Wouter Joosen, Bart

Dhoedt, and Filip De Turck. Cost-effective feature placement of customiz-

able multi-tenant applications in the cloud. Journal of Network and Systems

Management, pages 1–42, 2013.

[47] Marek Obitko. Introduction to genetic algorithms. URL

http://www.obitko.com/tutorials/genetic-algorithms/parameters.php.

49

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth. Service level agreement

in cloud computing. 2009.

[49] Colin R Reeves. A genetic algorithm for flowshop sequencing. Computers &

operations research, 22(1):5–13, 1995.

[50] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. Service-oriented cloud com-

puting architecture. In Information Technology: New Generations (ITNG),

2010 Seventh International Conference on, pages 684–689. IEEE, 2010.

[51] Mark Turner, David Budgen, and Pearl Brereton. Turning software into a

service. Computer., 36(10):38–44, 2003.

[52] Bhuvan Urgaonkar, Arnold L Rosenberg, and Prashant Shenoy. Application

placement on a cluster of servers. International Journal of Foundations of

Computer Science, 18(05):1023–1041, 2007.

[53] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A

break in the clouds: towards a cloud definition. ACM SIGCOMM Computer

Communication Review, 39(1):50–55, 2008.

[54] Toby Velte, Anthony Velte, and Robert Elsenpeter. Cloud computing, a prac-

tical approach. McGraw-Hill, Inc., 2009.

[55] Xiaolong Yang and Huimin Zhang. Cloud computing and soa convergence

research. In Computational Intelligence and Design (ISCID), 2012 Fifth In-

ternational Symposium on, volume 1, pages 330–335. IEEE, 2012.

[56] Mohd Yusoh and Zeratul Izzah. Composite saas resource management in

cloud computing using evolutionary computation. 2013.

[57] Zeratul Izzah Mohd Yusoh and Maolin Tang. A penalty-based genetic algo-

rithm for the composite saas placement problem in the cloud. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

50

BIBLIOGRAPHY BIBLIOGRAPHY

[58] Zeratul Izzah Mohd Yusoh and Maolin Tang. Composite saas placement and

resource optimization in cloud computing using evolutionary algorithms. In

Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on,

pages 590–597. IEEE, 2012.

[59] Longwen Zhao and Jinyu Liu. Component-oriented saas integration frame-

work research based on ofbiz. In Management and Service Science (MASS),

2011 International Conference on, pages 1–3. IEEE, 2011.

[60] Minqi Zhou, Rong Zhang, Dadan Zeng, and Weining Qian. Services in the

cloud computing era: A survey. In Universal Communication Symposium

(IUCS), 2010 4th International, pages 40–46. IEEE, 2010.

[61] Xiaoyun Zhu, Cipriano Santos, Dirk Beyer, Julie Ward, and Sharad Sing-

hal. Automated application component placement in data centers using

mathematical programming. International journal of network management,

18(6):467–483, 2008.

[62] Barbora Zimmerova et al. Component placement in distributed environment

wrt component interaction. In Proceedings of the 2nd Doctoral Workshop on

Mathematical and Engineering Methods in Computer Science, pages 260–267,

2006.

51

	Certificate
	Dedication
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviation
	Abbreviation
	Introduction
	Introduction
	Software as a Service Component
	Related work
	Research Motivation
	Problem Statement
	Research Contribution
	Thesis Layout

	Cloud Infrastructure for SaaS Placement
	Introduction
	Cloud Computing
	Cloud Architecture
	Cloud Service Models
	Cloud Deployment Models

	Cloud Infrastructure Model
	Cloud software as a service (SaaS)
	Characteristics of SaaS
	SaaS Examples
	SaaS Component Model

	Service Level Agreement
	SaaS deployment constraints
	Resource constraints:
	Placement Constraints:
	Execution time constraints:
	Sequence of migration constraints:
	Cost Constraints

	Problem Formulation
	Current State of Art of CPP
	Summary

	GA Framework for SaaS Component Placement
	Introduction
	Genetic Algorithms
	GA Parameters

	SCPGA
	SCPGA Encoding
	Infeasible Encoding Problem
	Genetic Operators
	Decision of Stopping Criteria

	Results
	Profit Finding w.r.t. Number of Virtual Machines
	Profit Finding w.r.t. Number of SaaS Components

	Summary

	Conclusions
	Conclusions
	Future Work

	Bibliography

