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Abstract The investigated cantilever beam is char-

acterized by a constant rectangular cross-section and is

subjected to a concentrated constant vertical load, to a

concentrated constant horizontal load and to a con-

centrated constant bending torque at the free end. The

same beam is made by an elastic non-linear asym-

metric Ludwick type material with different behavior

in tension and compression. Namely the constitutive

law of the proposed material is characterized by two

different elastic moduli and two different strain

exponential coefficients. The aim of this study is to

describe the deformation of the beam neutral surface

and particularly the horizontal and vertical displace-

ments of the free end cross-section. The analysis of

large deflection is based on the Euler–Bernoulli

bending beam theory, for which cross-sections, after

the deformation, remain plain and perpendicular to the

neutral surface; furthermore their shape and area do

not change. On the stress viewpoint, the shear stress

effect and the axial force effect are considered

negligible in comparison with the bending effect.

The mechanical model deduced from the identified

hypotheses includes two kind of non-linearity: the first

due to the material and the latter due to large

deformations. The mathematical problem associated

with the mechanical model, i.e. to compute the

bending deformations, consists in solving a non-linear

algebraic system and a non-liner second order

ordinary differential equation. Thus a numerical

algorithm is developed and some examples of specific

results are shown in this paper.

Keywords Large deflections � Asymmetric

Ludwick constitutive law � Material non-

linearity � Geometrical non-linearity � Cantilever

beam

List of symbols

L Initial length of the beam and length of the

beam neutral curve, (m)

b Width of rectangular cross-section, (m)

h Height of rectangular cross-section, (m)

FV Constant vertical force at the free end of the

beam, (N)

FH Constant horizontal force at the free end of

the beam, (N)

T Constant bending torque at the free end of

the beam, (Nm)

Oxyz Coordinate system of reference

configuration

O0x0y0z0 Coordinate system defined for each cross-

section

h1, h2 Quotes individuating the neutral axis of

cross-section, (m)
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Et Tensile Young modulus, (GPa)

Ec Compressive Young modulus, (GPa)

n Tensile non-linearity coefficient or tensile

strain exponential coefficient

m Compressive non-linearity coefficient or

compressive strain exponential coefficient

rt Tensile stress, (GPa)

rc Compression stress, (GPa)

et Positive strain

ec Negative strain

dh Theoretical horizontal displacement of the

free end, (m)

dv Theoretical vertical displacement of the free

end, (m)

dh1 Horizontal displacement of the free end

calculated by numerical algorithm given in

this paper, (m)

dv1 Vertical displacement of the free end

calculated by numerical algorithm given in

this paper, (m)

dh2 Horizontal displacement of the free end

calculated in Lewis and Monasa [5], (m)

dv2 Vertical displacement of the free end

calculated in Lewis and Monasa [5], (m)

dh3 Horizontal displacement of the free end

calculated in Bayakara et al. [8], (m)

dv3 Vertical displacement of the free end

calculated in Bayakara et al. [8], (m)

dh4 Horizontal displacement of the free end

calculated by ABACUS/CAE�, (m)

dv4 Vertical displacement of the free end

calculated by ABACUS/CAE�, (m)

M Bending moment, (Nm)

S0, S1 Cross-sections delimiting an infinitesimal

portion of the beam

ds Initial length of a horizontal fibre of an

infinitesimal portion of the beam

dh Infinitesimal angle

t Position of a horizontal fibre of an

infinitesimal portion of the beam, (m)

L1 Final length of a deformed horizontal fibre

of an infinitesimal portion of the beam, (m)

q Radius of curvature of the neutral curve, (m)

rs Stress along s axis, (GPa)

es Strain along s axis

f(x) Analytical expression of the neutral curve of

the beam, (m)

1 Introduction

The proposed work is connected with the fruitful

scientific activity present in literature [1, 2]. Bisshopp

and Drucker [3] derived the solution of large deflec-

tion for cantilever beams made of linear elastic

material and subjected to a vertical concentrated load

at the free end. Lo and Gupta [4] examined the bending

problem of a nonlinear rectangular beam with large

deflection; they considered linear elastic behavior for

sections of the beam that deformed elastically, and a

logarithmic function of strain is used for regions

stressed beyond the elastic limit; the logarithmic

function was approximated by a semi-logarithmic

relation, which is only applicable for special cases.

Lewis and Monasa [5] solved numerically the problem

of large deflection of cantilever beams made of non-

linear elastic materials of the Ludwick type subjected

to a vertical concentrated load at the free end. A

closed-form solution of large deflection of cantilever

beams made of Ludwick type material subjected to an

end moment was obtained again by Lewis and Monasa

[6]. Lee [7] computed a numerical solution of large

deflection of cantilever beams made of Ludwick type

material subjected to a combined loading consisting of

a uniformly distributed load and a vertical concen-

trated load at the free end. Bayakara et al. [8]

investigated the effect of bimodulus Ludwick type

material behavior on the horizontal and vertical

deflections at the free end of a thin cantilever beam

under an end moment. A semi-exact solution was

obtained by Solano-Carrillo [9] for large deflection of

cantilever beams made of Ludwick type material

subjected to a combined action of a uniformly

distributed load and to a vertical concentrated force

at the free end. Brojan et al. [10] studied the large

deflections of nonlinearly elastic non-prismatic canti-

lever beams made of materials obeying the general-

ized Ludwick constitutive law. Holden [11] obtained

the numerical solution to the problem of finite

deflection of linear elastic cantilever beam with

uniformly distributed load using a fourth order Run-

ge–Kutta method. Byoung et al. [12] investigated

large deflection of linear elastic cantilever beam of

variable cross-section under combined loading by

using Runge–Kutta method. Baker [13] obtained the

large deflection profiles of linear elastic tapered
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cantilever under arbitrary distributed loads through a

weighted residual solution of the governing Bernoulli–

Euler equation. Prataph and Varadan [14] investigated

the non-linear elastic large deflection of a cantilever

beam with a vertical concentrated load at its free end,

where the material of the beam follows a stress–strain

law of the Ramberg–Osgood type. Varadan and

Joseph [15] solved the problem of the large deflection

of a cantilever beam made of Ramberg–Osgood type

material under a moment at the free end. Recently the

large and the small deformations of a non-linear

functionally graded-material cantilever beam sub-

jected to an end force were investigated by Kang and

Li [16]. Chainarong Athisakul et al. [17] present a

large deflection of variable-arc-length beams, which

are made from nonlinear elastic materials, subjected to

its uniform self-weight. The stress–strain relation of

materials obeys the symmetric Ludwick constitutive

law. Brojan et al. [18] study large deflections of

slender, non-prismatic cantilever beams composed of

a nonlinearly elastic Ludwick material with a different

material behavior in tensile and compressive domain

and subjected to a combined loading which consists of

a non-uniformly distributed continuous load and a

concentrated vertical force at the free end of the beam.

Eren [19] calculated horizontal and largest vertical

deflections for uniformly distributed loaded, simply

supported beams made of Ludwick type nonlinear

material. Curvature expression for elastic curve had

been defined according to two different arc length

functions.

The proposed work continues these researches

paying attention to large deflection of a cantilever

beam made of a non-linear elastic Ludwick material

with different behavior in tension and compression.

Different implementation of these results can be

performed for applicative purposes, i.e. in the design

of compliant mechanisms or microactuators with large

deflections [20–22].

2 Problem statement

The investigated cantilever beam of length L has a

rectangular constant cross-section with base b and

height h and is subjected to a concentrated constant

vertical force FV, to a concentrated constant horizontal

load FH and to a concentrated constant bending torque

T at the free end. FH must be always combined with FV

or T, in order to avoid buckling phenomena. In Fig. 1

the transition in large deflection is shown from the

initial configuration to the deformed configuration

subjected to the FV, FH and T loads. The former is the

reference configuration and is placed in the Oxyz

system of reference. The latter is the final configura-

tion and is referred to Oxyz; in this configuration an

O0x0y0z0 coordinate system is defined for each cross-

section with x0 axis orthogonal to the cross-section and

y0 and z0 axes belonging to the cross-section. Partic-

ularly the z0 axis coincides with the neutral axis of the

cross-section, it is defined by the intersection between

the neutral surface of the beam and the cross-section

and it is located by h1 and h2. Both dimensions h1 and

h2 are a priori unknown, they depend on the x

coordinate according to the relation (1).

h1 xð Þ þ h2 xð Þ ¼ h ð1Þ
The beam is made by an elastic non-linear asym-

metric Ludwick type material with different behavior

in tension and compression, as proposed in [8].

Namely the constitutive law of the proposed material

is characterized by two different elastic moduli and

two different strain exponential coefficients as indi-

cated in the constitutive law (2), where Et and Ec are

respectively the tensile Young modulus and the

compressive Young modulus and where n and m are

respectively the tensile non-linearity coefficient and

the compressive non-linearity coefficients. Et, Ec, n

and m are strictly positive. The considered constitutive

law does not provide contractions and expansions

along all directions perpendicular to the stress direc-

tion. Conventionally tensile stresses rt are positive,
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T

Fig. 1 Transition in large deflection of a cantilever beam from

the initial configuration to the deformed configuration subjected

to the FV, FH and T loads
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compression stresses rc are negative, positive strains

are indicated with et and negative strains are indicated

with ec.

rt ¼ Et etð Þ1=n

rc ¼ �Ec �ecð Þ1=m ð2Þ

3 Problem formulation

Only thin cantilever beams in large deflection are

considered, and hypothesis of Euler–Bernoulli bend-

ing beam theory are used. Thus cross-sections, after

the deformation, remain plain and perpendicular to the

neutral surface and their shape and area do not change.

For these reasons the beam is modelled by its neutral

curve, that is defined by the intersection between beam

neural surface and the x–y plane, as shown in Fig. 2,

where dh and dv are respectively the horizontal

displacement and the vertical displacement of the free

end.

On the internal stress viewpoint, the shear stress

effect and the axial force effect are considered

negligible in comparison with the bending effect.

Thus, as shown in Fig. 3, in the deformed configura-

tion each cross-section is considered to be subjected

only to a bending moment M(x), that depends on the x

coordinate and is given by the relation (3).

MðxÞ ¼ FVðL� dh � xÞ � FH dV � yð Þ þ T ð3Þ
In order to find the expression of strains, an

infinitesimal portion of the deformed beam is consid-

ered. As shown in Fig. 4, this element of length ds is

contained between the S0 and S1 cross-sections.

The transition of the infinitesimal element is shown

in Fig. 4 from the initial configuration to the deformed

configuration.

The horizontal fibre, shown in Fig. 4, in the

reference configuration is ds long and it is far t from

the neutral curve. After the deformation, its length,

indicated with L1, is given by the relation (4), where q
is the radius of curvature of the neutral curve and is

defined in the expression (5). After combining the Eqs.

(4) and (5), the relation (6) is obtained and it expresses

L1 depending on the initial length ds of the fibre.

L1 ¼ q sð Þ � t½ �dh ð4Þ

LO L-δh 

δv 

x 

y
FV

FH

T

Fig. 2 Neutral curve of the cantilever beam in the initial and

final configuration subjected to the FV, FH and T loads

O L L-δh 

δv 

x 

y 

x 

y
M(x)

M(x) 

FV

FH

T

Fig. 3 Internal actions: each cross-section is considered to be

subjected only to a bending moment M(x)

S
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 )s(M

ds

dθ

ρ

t

t

M(s+ds)

Neutral curve 

Fig. 4 Transition of an infinitesimal element of length ds and

contained between S0 and S1 cross-sections, from the initial

configuration to the deformed configuration and deformation of

one its fibre

Meccanica

123



q sð Þ ¼ ds

dh
ð5Þ

L1 ¼ ds� t

q sð Þ ds ð6Þ

The general definition of strain is enunciated in (7)

and, with the relation (6), it takes the form of the

relation (8).

es ¼
L1 � ds

ds
ð7Þ

es ¼ �
t

q sð Þ ð8Þ

According to hypotheses on internal actions, for

which every cross-section is considered to be sub-

jected only to a bending moment M, relations (9) and

(10) can be written for each cross-section in the

deformed configuration.Z

A

rsdA ¼ 0 ð9Þ

Z

A

rstdA ¼ �M ð10Þ

After distinguishing the compressed area from the

tensile area of a generic cross-section, relations (9) and

(10) can be expressed respectively as in (11) and (12).

b

Z0

�h1

rtdt þ b

Zh2

0

rcdt ¼ 0 ð11Þ

b

Z0

�h1

rttdt þ b

Zh2

0

rctdt ¼ �M ð12Þ

Equations (13) and (14) are obtained substituting

relations (2), (3) and (8) in expressions (11) and (12).

Et

n

nþ 1

h1

q

� �1
n

h1 � Ec

m

mþ 1

h2

q

� �1
m

h2 ¼ 0 ð13Þ

Et

n

2nþ 1

h1

q

� �1
n

h2
1 þ Ec

m

2mþ 1

h2

q

� �1
m

h2
2

¼ FVðL� dh � xÞ � FH dV � yð Þ þ T

b
ð14Þ

Equations (1), (13) and (14) represent a non-linear

algebraic system with three unknown functions h1(x),

h2(x) and q(x). The search of the system solution is

made difficult because dh, dv and y are a priori

unknown.

Thus a numerical algorithm is developed in two

stages, as shown in the flowchart in Fig. 5. The first

stage considers only the FV and T loads and assigns a

tentative value to dh and a mesh on the x axis, then it

solves the non-linear system with the Newton–Raph-

son method for every point of the mesh and obtains

three vectors, contained respectively values of h1(x),

h2(x) and q(x). Successively, it solves, with the Euler

method, the non-liner second order ordinary differen-

tial Eq. (15), which correlates q(x) and the analytic

start

end

read δh

define the mesh

solve the 
nonlinear system

solve the ODE

calculate the length 
Ld of neutral curve

δh:=δh-Δ

|L-Ld|<t

no

yes

read FV, T and FH

FH > 0

δh:=δh+Δ

no

yes

STAGE 2

STAGE 1

FH = 0

δh=initial value

read δh

define the mesh

solve the 
nonlinear system

solve the ODE

calculate the length 
Ld of neutral curve

δh:=δh+Δ

|L-Ld|<t

no

yes

read FV and T

yes

no

Fig. 5 Flowchart of the implemented algorithm
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expression f(x) of the neutral curve of the beam, with

initial conditions (16).

Once vector of f(x) is known, the first stage

proceeds with the evaluation of the used value of dh,

verifying the neutral curve length is different from the

initial length L for a prefixed tolerance. If the

verification is negative, dh increases of a prefixed

value and the first stage starts again. Once the value of

dh due to FV and T is known, the second stage starts

considering FV, T and FH loads and considering final

dh of the first stage as initial value, working in the same

manner of the first stage.

Once the value of dh is known, dv is given by the

relation (17).

1

q
¼

d2f
dx2

1þ df
dx

� �2
h i3=2

ð15Þ

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 0 ð16Þ
dv ¼ f L� dhð Þ ð17Þ

In the case Et and Ec have the same value and non-

linearity coefficients n and m are both equal to one, the

algorithm gives dh and dv values for a classic

cantilever beam in large deflections.

4 Comparison with less reach models

In order to test the algorithm, dh and dv are calculated

for a cantilever beam made of symmetric Ludwick

type material with same behavior in tension and

compression like annealed copper subjected to a

vertical force at the free end. Tables 1 and 2 compare

values respectively of dh and dv calculated by the

proposed algorithm to values indicated in Lewis and

Monasa [5], for some values of the constant vertical

force FV. Values obtained by the proposed algorithm

Table 1 dh values of a cantilever beam made of annealed

copper in large deflection

FV (N) dh1 (m) dh2 (m) (dh1 - dh2)/

dh1 (%)

9.42112 0.00103508 0.00103124 0.37

17.90013 0.01437780 0.01429512 0.58

34.01026 0.09121844 0.09105900 0.17

44.06934 0.140700 0.14001496 0.08

51.98238 0.17213208 0.17206468 0.04

dh1 is dh calculated by numerical algorithm given in this

paper and dh2 is dh calculated in Lewis and Monasa [5], with

FH = 0 N, T = 0 Nm, Et = Ec = 0.46 GPa, n = m = 2.16,

b = 0.0254 m, h = 0.00635 m and L = 0.508 m

Table 2 dv values of a cantilever beam made of annealed

copper in large deflection

FV (N) dv1 (m) dv2 (m) (dv1 - dv2)/

dv1 (%)

9.42112 0.03042169 0.03034284 0.26

17.90013 0.11239629 0.11219180 0.18

34.01026 0.27147425 0.27143964 0.01

44.06934 0.32710396 0.32722312 -0.04

51.98238 0.35573994 0.35593020 -0.05

dv1 is dv calculated by numerical algorithm given in this paper

and dv2 is dv calculated in Lewis and Monasa [5], with

FH = 0 N, T = 0 Nm Et = Ec = 0.46 GPa, n = m = 2.16,

b = 0.0254 m, h = 0.00635 m and L = 0.508 m

Table 3 dh values of a cantilever beam made of annealed

copper in large deflection

Ec (GPa) dh1 (m) dh3 (m) (dh1 - dh3)/dh1 (%)

50 0.09274 0.09371 -1.05

75 0.05976 0.06023 -0.79

125 0.03486 0.03508 -0.63

150 0.02894 0.02912 -0.62

175 0.02481 0.02496 -0.60

dh1 is dh calculated by numerical algorithm given in this paper

and dh3 is dh calculated in Bayakara et al. [8], with

Et = 100 GPa, T = 20 Nm, n = 1, m = 0.8, b = 0.02 m,

h = 0.005 m and L = 0.4 m

Table 4 dv values of a cantilever beam made of annealed

copper in large deflection

Ec (GPa) dv1 (m) dv3 (m) (dv1 - dv3)/dv1 (%)

50 0.21580 0.21670 -0.42

75 0.17906 0.17977 -0.40

125 0.14004 0.14055 -0.36

150 0.12831 0.12877 -0.36

175 0.11925 0.11967 -0.35

dv1 is dv calculated by numerical algorithm given in this paper

and dv3 is dv calculated in Bayakara et al. [8], with

Et = 100 GPa, T = 20 Nm, n = 1, m = 0.8, b = 0.02 m,

h = 0.005 m and L = 0.4 m
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are indicated with dh1 and dv1. Values obtained in

Lewis and Monasa [5] are indicated with dh2 and dv2.

Values obtained by the proposed algorithm and values

indicated in Lewis and Monasa [5] are very close.

A similar test is performed for a cantilever beam

made of an asymmetric Ludwick type material

subjected to a bending torque at the free end. Tables 3

and 4 compare values respectively of dh and dv

calculated by the proposed algorithm to values indi-

cated in Bayakara et al. [8], for some values of the

compressive Young modulus Ec. Values obtained by

the proposed algorithm are indicated with dh1 and dv1.

Values obtained in Bayakara et al. [8] are indicated

with dh3 and dv3. Values obtained by the proposed

algorithm and values indicated in Bayakara et al. [8]

are very close.

5 FEM validation

In order to validate the numerical algorithm given in

this paper, the horizontal displacement dh and the

vertical displacement dv are calculated using the FEM

software ABACUS/CAE� for a beam made of

annealed copper subjected to a vertical force FV at

the free end. In ABACUS/CAE� the investigated

cantilever beam is discretized using the Hex method,

i.e. the beam is subdivided in parallelepipeds. The

constrain section is realized by blocking all nodes of

that section. The vertical constant load is realized by

four equal forces applied on the nodes of the four

corners of the free section. Each of the four forces is

equal to a quarter of FV. In order to characterize

annealed copper material, Marlow form of the

potential energy is used in ABACUS/CAE�, as shown

in Fig. 6.

Values obtained by the proposed algorithm, indi-

cated with dh1 and dv1, and values calculated by

ABACUS/CAE�, indicated with dh4 and dv4, are very

close, as shown in Figs. 7, 8. Some slight differences

are due to the Marlow form of the potential used to

characterize the proposed materials.

6 Numerical results and discussion

Some numerical results of dh and dv, for a cantilever

beam made of an asymmetric Ludwick type material

subjected to T, FV and FH at the free end, computed

with the proposed algorithm and indicated with dh1

and dv1, are presented in Tables 5, 6, 7, 8, 9, 10, 11, 12,

13 and 14 to examine the role of the main geometrical

and mechanical parameters that characterize the

Fig. 6 Diagram stress–strain of annealed copper (squares)

characterized using Marlow form of potential energy (circles) in

ABACUS/CAE�

Fig. 7 Graphical comparison between dh1 (circle line) and dh4

(square line) values of a cantilever beam made of annealed

copper in large deflection. dh1 is dh calculated by numerical

algorithm given in this paper and dh4 is dh calculated by

ABAQUS/CAE�

Fig. 8 Graphical comparison between dv1 (circle line) and dv4

(square line) values of a cantilever beam made of annealed

copper in large deflection. dv1 is dv calculated by numerical

algorithm given in this paper and dv4 is dv calculated by

ABAQUS/CAE�
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system. Specifically, Table 5 reports that dh1 and dv1

increase with increasing values of initial length L of

the beam. Table 6 reports that dh1 and dv1 decrease

with increasing values of height h of rectangular cross-

section. Table 7 report that dh1 and dv1 decrease with

increasing values of the width b of rectangular cross-

section. Table 8 reports that dh1 and dv1 decrease with

increasing values of tensile Young modulus Et.

Table 9 reports that dh1 and dv1 decrease with

increasing values of compressive Young modulus Ec.

Table 10 reports that dh1 and dv1 decrease with

increasing values of tensile non-linearity coefficient

Table 5 dh1 and dv1 calculated for different values of initial

length L of the beam, with b = 0.02 m, h = 0.005 m, n = 1.2,

m = 0.8, Et = 100 GPa, Ec = 125 GPa, FV = 30 N, FH =

30 N, T = 15 Nm

L (m) dh1 (m) dv1 (m)

0.2 0.0019406 0.024675

0.3 0.0073280 0.057860

0.4 0.018064 0.10449

0.5 0.035442 0.16208

0.6 0.059317 0.22778

Table 6 dh1 and dv1 calculated for different values of height h

of rectangular cross-section, with L = 0.4 m, b = 0.02 m,

n = 1.2, m = 0.8, Et = 100 GPa, Ec = 125 GPa, FV = 30 N,

FH = 30 N, T = 15 Nm

h (m) dh1 (m) dv1 (m)

0.0040 0.049045 0.16662

0.0045 0.029608 0.13175

0.0050 0.018064 0.10449

0.0055 0.011369 0.083451

0.0060 0.0073502 0.067376

Table 7 dh1 and dv1 calculated for different values of the width

b of rectangular cross-section, with L = 0.4 m, h = 0.005 m,

n = 1.2, m = 0.8, Et = 100 GPa, Ec = 125 GPa, FV = 30 N,

FH = 30 N, T = 15 Nm

b (m) dh1 (m) dv1 (m)

0.010 0.048749 0.16617

0.015 0.027813 0.12807

0.020 0.018064 0.10449

0.025 0.012846 0.088418

0.030 0.0095927 0.076851

Table 8 dh1 and dv1 calculated for different values of tensile

Young modulus Et, with L = 0.4 m, h = 0.005 m, b = 0.02 m,

n = 1.2, m = 0.8, Ec = 125 GPa, FV = 30 N, FH = 30 N,

T = 15 Nm

Et (GPa) dh1 (m) dv1 (m)

50 0.025289 0.12270

75 0.020586 0.11115

100 0.018064 0.10449

125 0.016583 0.099984

150 0.015496 0.096759

Table 9 dh1 and dv1 calculated for different values of com-

pressive Young modulus Ec, with L = 0.4 m, h = 0.005 m,

b = 0.02 m, n = 1.2, m = 0.8, Et = 100 GPa, FV = 30 N,

FH = 30 N, T = 15 Nm

Ec (GPa) dh1 (m) dv1 (m)

75 0.031567 0.13590

100 0.023120 0.11740

125 0.018064 0.10449

150 0.014812 0.094833

175 0.012457 0.087358

Table 11 dh1 and dv1 calculated for different values of com-

pressive non-linearity coefficient m, with L = 0.4 m, h =

0.005 m, b = 0.02 m, n = 1.2, Et = 100 GPa, Ec = 125 GPa,

FV = 30 N, FH = 30 N, T = 15 Nm

m dh1 (m) dv1 (m)

0.70 0.047186 0.16326

0.75 0.029271 0.13116

0.80 0.018064 0.10449

1.0 0.0029865 0.043378

1.2 0.00069780 0.021601

Table 10 dh1 and dv1 calculated for different values of tensile

non-linearity coefficient n, with L = 0.4 m, h = 0.005 m,

b = 0.02 m, m = 0.8, Et = 100 GPa, Ec = 125 GPa, FV =

30 N, FH = 30 N, T = 15 Nm

n dh1 (m) dv1 (m)

0.8 0.069946 0.19411

1.0 0.030664 0.13418

1.2 0.018064 0.10449

1.4 0.013279 0.089781

1.6 0.011027 0.082024
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n. Table 11 reports that dh1 and dv1 decrease with

increasing values of compressive non-linearity coef-

ficient m. Table 12 reports that dh1 and dv1 increase

with increasing values of constant vertical force FV at

the free end of the beam. Table 13 reports that dh1 and

dv1 decrease with increasing values of constant

horizontal force FH at the free end of the beam.

Table 14 reports that dh1 and dv1 increase with

increasing values of constant bending torque T at the

free end of the beam.

7 Conclusions

The finite horizontal and vertical displacement in large

deflections are obtained in this work for the free end of

a cantilever beam, made of asymmetric Ludwick type

material and subjected to a vertical constant force, to a

horizontal constant force and to a bending constant at

the free end. The problem involves both material and

geometrical non-linearity and solution to such prob-

lems can be found with numerical methods. The

proposed algorithm proved to be a technique to solve

the resulting the non-linear algebraic system and the

non-liner second order ordinary differential equation

governing the problem. After verifying a proper

agreeing with the literature and obtaining a validation

by FEM software ABACUS/CAE�, in order to

investigate the effect of the different material behavior

on the horizontal and vertical displacements of the free

end cross-section, numerical results are computed for

different values of the applied loads.
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