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Abstract

The index tracking problem is the problem of determining a portfolio of assets whose perfor-
mance replicates, as closely as possible, that of a financial market index chosen as benchmark.
In the enhanced index tracking problem the portfolio is expected to outperform the benchmark
with minimal additional risk. In this paper, we study the bi-objective enhanced index track-
ing problem where two competing objectives, i.e., the expected excess return of the portfolio
over the benchmark and the tracking error, are taken into consideration. A bi-objective Mixed
Integer Linear Programming formulation for the problem is proposed. Computational results
on a set of benchmark instances are given, along with a detailed out-of-sample analysis of the
performance of the optimal portfolios selected by the proposed model. Then, a heuristic proce-
dure is designed to build an approximation of the set of Pareto optimal solutions. We test the
proposed procedure on a reference set of Pareto optimal solutions. Computational results show
that the procedure is significantly faster than the exact computation and provides an extremely
accurate approximation.

Keywords: Enhanced Index Tracking, Mixed Integer Linear Programming, Bi-Objective
Optimization, Bi-Objective Heuristic Framework.

1 Introduction

In modern economies, market indices serve as indicators of the behavior of financial markets but also
as benchmarks in financial trading. Indeed, indices are used, nowadays, as standard benchmarks
for evaluating the performance of fund managers and the number of funds managed by index-based
investment strategies has grown significantly in recent years. Index-based fund management strate-
gies have been traditionally classified into two broad classes: passive and active management. With
passive management a fund manager is expected to create a portfolio of assets whose performance
replicates, as closely as possible, that of a financial market index (i.e., the benchmark) provided by
statistical bureaus like Standard & Poor’s. This strategy is commonly referred to as index track-
ing. The goal is to minimize a tracking error, that measures the deviations of the performance
of the portfolio from the benchmark. With active management a fund manager has the goal of
yielding a higher return than the benchmark. A common active management strategy consists
in underweighting or overweighting stocks compared with the benchmark based on the manager
beliefs (e.g., see Li et al. [38]). Therefore, fund managers adopting an active management strategy



frequently rebalance their portfolio composition in an attempt to beat the benchmark [37], but in-
curring expensive transaction and management costs. Additionally, several researchers highlighted
that the majority of actively managed funds do not outperform the benchmark in the long term
(see, among others, Gruber [23]). Because of these issues, active management strategies are often
adopted over a limited portion of the fund investment, whereas the remaining part is managed by
passive management strategies [38].

Enhanced index tracking, also referred to as enhanced indexation, is a recent management
strategy based upon the idea of combining passive and active management in order to capture
the strengths of both approaches (see [34]). The goal of enhanced index tracking is to slightly
outperform the benchmark with minimal additional risk. On one hand, enhanced index tracking
resembles passive management because the fund manager is not allowed to build portfolios that
significantly deviate from the benchmark. On the other hand, it resembles active management since
the fund manager can engage limited additional risk (i.e., larger deviations from the benchmark)
in order to yield a larger return than the benchmark.

Several studies show that the amount invested in index funds steadily increased in the last two
decades. Frino et al. [20] claim that the total assets benchmarked to the S&P500 Index exceeded
USD 1 trillion. Koshizuka et al. [35] mention that more than half of the total funds traded in
the Tokyo stock exchange are invested into index funds and that a significant amount of funds is
managed by enhanced index tracking approaches. Jorion [34] points out that surveys conducted
among fund managers of US institutional tax-exempt assets indicate that, over the period 1994
to 2000, enhanced index funds have grown from USD 33 to USD 365 billion, a ten-fold factor,
accounting for 24% of total index assets for this group. Jorion [34] also reports that, in the same
period, passively managed funds have grown slower than enhanced index funds. The author relates
the growing popularity of enhanced index funds to two factors: firstly, they developed in response
to the poor performance of actively managed funds and, secondly, they allow investors to maintain
their desired risk profile.

Several market indices are available and their composition is usually publicly accessible. They
mainly differ in terms of geographical region, type of financial market, section of the financial
market, and length of the membership list, which may range from some tens to 2-3 thousands (e.g.,
see [19, 21, 30, 31, 32]).

The seminal work by Markowitz [41] has provided the fundamental basis for a large part of
modern portfolio theory. Markowitz was the first to formalize the portfolio optimization problem
as a risk-return bi-criteria optimization problem where the expected return is maximized and the
variance as a risk measure is minimized. Since then, several alternative portfolio optimization mod-
els have been proposed where a different risk measure than the variance is adopted. Nevertheless,
the Markowitz model is still widely used among both academics and practitioners [39]. The usual
approach to tackle the aforementioned risk-return bi-objective models is to cast them into a mono-
objective formulation, i.e., either minimize the risk for a given level of expected return (the most
common choice) or maximize the expected return for a given level of risk. In recent years a growing
body of work dealing with multi-objective approaches to solve financial problems appeared in the
literature. Among them, multi-objective evolutionary algorithms play a relevant role (see Metaxi-
otis and Liagkouras [44] for a recent overview of these algorithms applied to portfolio optimization
problems).

Several mathematical formulations have been proposed for the index tracking problem. Most of
them are mono-objective as the only goal in index tracking is to minimize the tracking error. On the
contrary, the intrinsic nature of the enhanced index tracking problem is bi-objective: to maximize
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a performance measure of the portfolio while minimizing the tracking error. Nevertheless, also the
enhanced index tracking problem is commonly treated as a mono-objective problem. Some of these
optimization models include several real-life features that are frequently encountered in financial
markets and in the portfolio optimization literature. Indeed, in real-life situations, it is necessary to
consider some trading requirements and other aspects of the portfolio composition. For instance, it
is important (i) to consider transaction costs as they impact on the return of the investment (e.g.,
see [9] and [22]), (ii) to restrict the total number of stocks composing the portfolio (e.g., see [40]
and [48]), and (iii) to limit the amount of capital invested in a stock in order to avoid very small
holdings invested in some assets, or very large holdings invested in one or very few stocks (e.g., see
[48]).

Guastaroba and Speranza [26] introduce Mixed Integer Linear Programming (MILP) formula-
tions for the index tracking and the (mono-objective) enhanced index tracking problems and apply
a heuristic algorithm, called Kernel Search, to solve the index tracking problem. These optimization
models include the real-life features mentioned above, and can deal with the case the investor holds
a current portfolio and wants to rebalance its composition as well as with the case the investor
wants to build a portfolio from scratch. The authors also present an out-of-sample comparison
between the portfolios selected adopting the proposed index tracking formulation and those found
using the approach described in Beasley et al. [8]. Note that rebalancing portfolio optimization
models have appeared in recent literature on portfolio optimization (see [24], [26], [46], [49], [57]
and references therein). Note also that introducing a cardinality constraint increases dramatically
the computational burden (see, among others, Maringer and Oyewumi [40] who study the impact
of such a constraint in an index tracking problem).

The Kernel Search is a heuristic framework with a general and flexible structure applicable to
any MILP problem with binary variables (see [5]). The heuristic is based on the idea of identifying
subsets of the decision variables and then solving MILP subproblems, each subproblem restricted to
a subset of variables. It relies on the high performance of the general-purpose solvers available for
the solution of Linear Programming (LP) and MILP problems, and requires a small implementation
effort. The Kernel Search was introduced by Angelelli et al. in [5] and [6] for the solution of the
multi-dimensional knapsack and a portfolio optimization problem, respectively. Enhancements
overcoming some limitations affecting the original framework were introduced in Guastaroba and
Speranza [26], [27] and [28] where the Kernel Search was successfully applied to the index tracking,
the multi-source capacitated facility location and the single-source capacitated facility location
problems, respectively. In all the aforementioned contributions, the Kernel Search was used to
solve mono-objective optimization problems.

Contributions of the Paper. The contribution of this paper is twofold. Firstly, we propose
a mathematical formulation for the bi-objective enhanced index tracking problem including several
real-life features. We present some valid inequalities and variable reduction procedures in order
to strengthen the mathematical formulation. Secondly, we extend the Kernel Search algorithm
designed in [26] for the index tracking problem to the solution of the bi-objective enhanced index
tracking problem. More precisely, we embed the Kernel Search framework into a simple strategy,
derived from the classic ε-constraint method, in order to approximate the Pareto optimal solutions.
This is the first application of the Kernel Search method to a bi-objective problem. The extension
of the Kernel Search algorithm that we propose is not a straightforward implementation of the
original framework, but is rather designed to take advantage of the bi-objective structure of the
problem to identify the subsets of the decision variables.

Structure of the Paper. The remainder of the paper is organized as follows. In Section 2
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we discuss the literature related to enhanced indexation, multi-objective portfolio optimization and
multi-objective solution methods for MILP problems. In Section 3 we introduce a bi-objective
formulation for the enhanced index tracking problem. In Section 4 we describe the bi-objective
Kernel Search framework, whereas in Section 5 we present extensive computational experiments.
Finally, in Section 6 we draw some concluding remarks.

2 Literature Review

In this section, we first survey the literature on the enhanced index tracking problem and on multi-
objective approaches applied to portfolio optimization problems. Then, we provide an overview of
the foremost contributions on multi-objective approaches for MILP problems.

2.1 Enhanced Index Tracking and Multi-Objective Portfolio Optimization

As an extensive overview of the literature on enhanced indexation is provided in Beasley et al.
[8], Canakgoz and Beasley [10], and Guastaroba and Speranza [26], we primarily discuss the ad-
ditional literature not included in those references. Furthermore, we refer the reader interested in
metaheuristics for the index tracking problem to the survey by di Tollo and Maringer [15].

Koshizuka et al. [35] formulate the enhanced index tracking problem as a convex minimization
model with linear objective function and quadratic constraints. The proposed model selects the op-
timal portfolio minimizing the tracking error from an index-plus-alpha portfolio among those with
a composition similar to that of the benchmark. Index-plus-alpha portfolio is a term sometimes
encountered in the literature on enhanced indexation and identifies a portfolio that outperforms
the benchmark by a small amount α. The authors propose two alternative measures of the track-
ing error: the absolute deviation and the downside absolute deviation between the portfolio and
the index-plus-alpha portfolio values. Mezali and Beasley [45] apply quantile regression to index
tracking and enhanced indexation. Their model includes a limit on the total amount spent in
proportional transaction costs (fixed transaction costs are not considered), a cardinality constraint
and lower and upper bounds on the proportion of capital invested in each stock. The resulting
formulation is a MILP model. Valle et al. [55] present a three-stage solution approach for the
problem of selecting an absolute return portfolio, and show how it can be extended to the enhanced
index tracking problem.

The enhanced index tracking problem has been investigated also from a stochastic program-
ming perspective. Lejeune [36] formulates the enhanced index tracking problem as a stochastic
game theoretic model where the probabilistic excess return of the portfolio over the benchmark is
maximized while ensuring that the risk, measured by the downside absolute deviation, does not
exceed a chosen maximum level. Lejeune and Samatlı-Paç [37] introduce a stochastic mixed integer
non-linear model for the enhanced index tracking problem where stock returns and the return co-
variance terms are treated as random variables. Two enhanced index tracking formulations based
on the second-order stochastic dominance are presented in Roman et al. [51]. Both models select
a portfolio whose return distribution dominates the distribution of the benchmark with respect to
the second-order stochastic dominance paradigm. A tutorial on the portfolio optimization prob-
lem, with a more general perspective, but including the index tracking and the enhanced indexation
problems, has been recently provided by Beasley [7].

Some papers recently appeared on approaches to portfolio optimization that consider more
criteria than the classical expected return and variance. In [17] two approaches to the solution
of multi-objective problems for portfolio optimization are compared. A tri-objective optimization
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problem is studied by Chiam et al. [12]. The three objective functions considered are: the mini-
mization of the portfolio variance, the maximization of the expected return and the maximization
of the portfolio Sharpe ratio. The model includes both minimum and maximum cardinality con-
straints, as well as lower and upper bounds on the investment in each stock. An evolutionary
multi-objective algorithm is designed to solve the problem. Hirschberger et al. [29] consider a
general tri-criterion portfolio selection problem comprising two linear objectives, one quadratic
convex objective (portfolio variance), and linear constraints. A special pivoting technique is pro-
posed to describe the resulting piecewise quadratic and convex efficient set. Anagnostopoulos and
Mamanis [3] investigate a tri-objective optimization problem where the portfolio variance and the
number of securities included in the portfolio are minimized, while the portfolio expected return
is maximized. They introduce lower and upper bounds on each stock, as well as lower and upper
class limits (i.e., constraints on the investment in stocks that show common characteristics). The
optimization problem is solved by means of three evolutionary algorithms.

The following contributions propose multi-objective approaches to the problems of index track-
ing and enhanced indexation. Chiam et al. [13] propose a bi-objective formulation for the index
tracking problem in a rebalancing context. The two goals to be simultaneously minimized are the
tracking error and the total amount of transaction costs paid. The model includes both fixed and
proportional transaction costs, minimum transaction lots, and lower and upper bounds on each
stock. A multi-objective evolutionary heuristic is used to solve the problem. Wu et al. [58] propose
a goal programming approach for the bi-objective enhanced index tracking problem. The authors
formulate the tracking error (to be minimized) as the standard deviation of the portfolio return
from the benchmark. The second objective (to be maximized) is the excess portfolio return over the
benchmark. Li et al. [38] formulate the enhanced index tracking problem as a bi-objective optimiza-
tion model where the tracking error, measured by the downside standard deviation of the portfolio
return from the benchmark, is minimized, whereas the excess portfolio return is maximized. The
model includes a cardinality constraint, lower and upper bounds on each stock, and proportional
transaction costs. An immunity-based multi-objective algorithm is presented and tested.

Recently, some researchers showed that the idea of index tracking can also be applied to track
benchmarks for other applications. Andriosopoulos et al. [4] tackle the problem of reproducing
the performance of international market capitalization shipping stock indices and physical shipping
indices. The authors propose a model that aims at optimizing a weighted function of the track-
ing error, measured by the standard deviation of the portfolio return from the benchmark, and
the excess portfolio return over the benchmark. A differential evolution algorithm and a genetic
algorithm are used to solve the problem.

2.2 Multi-Objective Approaches for General MILP Problems

A primary goal in multi-objective optimization is the design of efficient methods for building the
set of Pareto optimal solutions, the so-called Pareto set. Typically, the cardinality of the Pareto set
is very high or even infinite. Finding the complete Pareto set may be computationally challenging
and generate an excessive amount of information. As a consequence, most of the literature focuses
either on finding a representative subset of the Pareto solutions, or on meta-heuristics (mainly
evolutionary algorithms) to generate an approximation of the Pareto set, or on interactive methods,
where the decision maker actively guides the exploration of the Pareto set looking for a small set
of preferred solutions. Several surveys are available in the literature on specific aspects of multi-
objective optimization. In particular, we mention Ruzika and Wiecek [52] for an overview on
approximation methods, Coello Coello et al. [14] for an extensive bibliography on evolutionary
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approaches to general problems, and Alves and Cĺımaco [2] for a review of interactive approaches
for integer and MILP problems. Here, we discuss a few specific references that are more closely
related to our work.

While there is a considerable amount of literature on multi-objective (pure) integer linear pro-
gramming problems, work on Multi-Objective MILP (MOMILP) problems is less common. A few
papers tackle the exact description of the Pareto set for a MOMILP problem. Mavrotas and Di-
akoulaki [42] design a depth-first, binary branch-and-bound method for MOMILP problems with
binary variables. In [43] and [56] the approach proposed in [42] is corrected and improved. Recently,
in [54] a new branch and bound method is presented for solving a class of MOMILP problems, where
only two objectives are allowed, the integer variables are binary, and one of the two objectives has
only integer variables. An exact algorithm is proposed by Özpeynirci and Köksalan [50] to find all
extreme supported efficient points (see Ehrgott [16]) of MOMILP problems. This algorithm uses
a composite linear objective function and finds all the desired points in a finite number of steps
by changing the weights of the objective functions in a systematic way. All the other approaches
to MOMILP problems are focused on finding a representative subset of the Pareto solutions or
on interactive methods. Solanki [53] propose a two-phase method for bi-objective mixed integer
(not necessarily binary) linear optimization, which returns a finite set of points approximating
the complete Pareto set. Points are generated recursively until the maximum possible error is not
larger than a specified threshold value. Alves and Cĺımaco [1] propose an interactive reference point
method. An initial reference point is fixed and a problem is solved in order to find an efficient point
with the smallest Tchebycheff distance from the reference point. Then, according to the preferences
expressed by the decision maker, the reference point is moved and a new efficient point with the
smallest Tchebycheff distance is searched for. This process continues until the decision maker is
satisfied. Each optimization problem is solved by a branch-and-bound algorithm.

3 The Optimization Model

This section is devoted to the enhanced index tracking model. In Section 3.1 we provide a detailed
description of the bi-objective enhanced index tracking formulation we propose. Then, in Section
3.2 we introduce a variable reduction procedure and some valid inequalities in order to strengthen
the mathematical formulation.

3.1 The Enhanced Index Tracking Model

We consider a financial market where n stocks are available for the investment and assume that we
observe the financial market over time periods t = 0, 1, . . . , T . These time periods can be seen as
scenarios generated with some techniques, for instance any of the generation techniques considered
in [25]. The enhanced index tracking model we propose aims at determining at time period T
the optimal portfolio composition to hold for a number of time periods immediately following T
(i.e., the investment horizon). To this aim, we use a classic historical look-back approach, that
is, the optimal portfolio composition is determined using the data observed in a number of time
periods prior to the date the portfolio is selected. The assumption here is that past observations
are good predictors of the future. In each time period t, t = 0, 1, . . . , T , and for each stock j,
j = 1, . . . , n, we observe its price, denoted as qjt, and the value of the benchmark, denoted as It.
Stock prices and benchmark values are then used to compute stock and benchmark rates of return.
For each time period t, t = 1, . . . , T , and each stock j, j = 1, . . . , n, we compute its rate of return
as rjt =

qjt−qj,t−1

qj,t−1
, while the rate of return of the benchmark is computed as rIt = It−It−1

It−1
.
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We consider an investor holding a portfolio of stocks, hereafter referred to as the current portfo-
lio. We are interested in rebalancing the current portfolio composition in time period T maximizing
the portfolio average excess return over the benchmark while simultaneously minimizing the track-
ing error. Let the parameters X0

j , j = 1, . . . , n, be the number of units of stock j included in the

current portfolio. The decision variables X1
j , j = 1, . . . , n, represent the number of units of stock j

included in the new portfolio after rebalancing, hereafter referred to as the rebalanced portfolio. We
assume that short sales are not allowed, i.e., both X0

j and X1
j are constrained to be non-negative.

Let us assume that the investor has a capital C available for the investment in time period T .
The value of C is equal to the value of the current portfolio in time period T (i.e.,

∑n
j=1 qjTX

0
j )

plus cash change (denoted as τ), that can be either an additional fund or a withdrawal, i.e.,
C =

∑n
j=1 qjTX

0
j + τ . We assume that the investor can either purchase or sell a stock to rebalance

the current portfolio composition. Selling a stock is possible only up to its amount in the current
portfolio. In case the investor buys X1

j − X0
j units of stock j, i.e., X1

j − X0
j > 0, the investor

pays a transaction cost that is proportional to the value of stock j that has been bought, i.e.,
cbj(X

1
j −X0

j )qjT , where cbj is the proportional transaction cost paid for buying stock j. Conversely,

if X0
j −X1

j > 0, the investor pays a transaction cost that is proportional to the value of stock j that

has been sold, i.e., csj(X
0
j − X1

j )qjT , where csj is the proportional transaction cost paid for selling
stock j. To model these costs, we introduce two non-negative decision variables, denoted as bj and
sj , j = 1, . . . , n, where bj represents the value purchased of stock j, possibly zero, and sj represents
the value sold of stock j, possibly zero. Additionally, whenever stock j is traded (either bought or
sold) a fixed transaction cost, denoted as fj , j = 1, . . . , n, is paid. Let wj , j = 1, . . . , n, be a binary
variable that takes value 1 if the investor buys or sells any fraction of stock j, and 0 otherwise.

We assume that the total transaction cost cannot exceed a fraction ρ of the capital, and that
if stock j is selected in the optimal solution, the fraction of capital must be within a lower bound,
denoted as λj , and an upper bound, denoted as νj . To this aim, we introduce a binary variable yj ,
j = 1, . . . , n, that takes value 1 if the investor holds any unit of stock j, and 0 otherwise. We also
assume that all parameters X0

j fulfill these lower and upper bounds. Finally, in order to maintain
a low portfolio cardinality, we constrain the number of stocks included in the rebalanced portfolio
to be less than or equal to a certain threshold k.

3.1.1 Objective Functions

The enhanced index tracking formulation we propose is bi-objective. On one hand, the model aims
at maximizing the average excess return compared with the benchmark. We formulate the average
excess return objective function as

maximize z1 =
1

T

T∑
t=1

 n∑
j=1

rjtqjTX
1
j − rItC

 , (1)

where
∑n

j=1 rjtqjTX
1
j is the portfolio return in time period t, whereas rItC is the return yielded in

the same time period if the capital C is invested in the benchmark.
On the other hand, we adopt the absolute deviation to measure the tracking error between the

benchmark and the rebalanced portfolio, to be minimized. The tracking error is formulated as

TrE =
T∑
t=1

∣∣∣∣∣∣θIt −
n∑
j=1

qjtX
1
j

∣∣∣∣∣∣ , (2)
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where θ = C/IT is used to scale the value of the benchmark to be tracked. Standard methods
to linearize the absolute deviation (see [26] for further details) lead to a linear formulation of the
second objective function

minimize z2 =
T∑
t=1

(dt + ut) (3)

requiring the introduction of the following constraints

dt − ut =

θIt − n∑
j=1

qjtX
1
j

 t = 1, . . . , T (4)

for non-negative variables dt and ut, t = 1, . . . , T . For a given t, t = 1, . . . , T , dt represents the
downside absolute deviation of the portfolio value compared with the benchmark, whereas ut is the
upside absolute deviation. We chose to formulate the tracking error using the absolute deviation
primarily because of the computational advantages of using a more tractable measure of risk than
other more standard measures of deviations, such as the variance.

3.1.2 Constraints

In addition to (4), the following sets of constraints are needed. Constraints that impose that the
amount of capital invested in each stock respects the minimum and maximum limits chosen are
required. If a stock is not selected (that is if yj = 0) obviously no capital can be invested in the
stock. Constraints are also required to impose that the portfolio does not include a number of stocks
larger than k, i.e., to limit the number of stocks selected in a portfolio. Finally, we need to limit the
investment (the rebalanced portfolio cannot cost more than the capital available, that is the value
of the current portfolio plus cash change) and the transaction costs (that are paid out of a different
account and cannot exceed a percentage of the capital available for the investment). To express
the latter constraint we need variables bj , sj and wj that trigger the proportional transaction costs
charged for buying and for selling stock j, respectively, and the fixed transaction cost.

More formally, constraints

λjCyj ≤ X1
j qjT ≤ νjCyj j = 1, . . . , n (5)

ensure that if stock j is selected in the rebalanced portfolio, i.e. X1
j > 0, then the associated binary

variable yj takes value 1. In this case, the value of stock j in the optimal portfolio is constrained
to be within the user-defined lower and upper bounds λjC and νjC.

The cardinality constraint on the number of stocks included in the rebalanced portfolio can be
formulated as

n∑
j=1

yj ≤ k. (6)

The budget constraint

n∑
j=1

qjTX
1
j = C (7)
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imposes that the capital invested in the rebalanced portfolio is equal to the capital available for
the investment in time period T , that is the value of the current portfolio

∑n
j=1 qjTX

0
j plus cash

change τ .
The two variables bj and sj are defined by means of the following constraints

bj − sj = (X1
j −X0

j )qjT j = 1, . . . , n. (8)

The constraints

bj + sj ≤ νjCwj j = 1, . . . , n (9)

ensure that if stock j is transacted, i.e., either variable bj or sj takes a non-zero value, then variable
wj is forced to take value 1.

The total transaction cost paid by the investor is constrained to be less than or equal to a
proportion ρ of the capital available for investment in time period T by means of the following
constraint

n∑
j=1

(cbjbj + csjsj + fjwj) ≤ ρC. (10)

Finally, the following constraints define the decision variables

X1
j , bj , sj ≥ 0 j = 1, . . . , n (11)

dt, ut ≥ 0 t = 1, . . . , T (12)

yj , wj ∈ {0, 1} j = 1, . . . , n. (13)

The case of an optimal portfolio that has to be selected from scratch (i.e., no current portfolio
is available) is considered setting X0

j = 0, j = 1, . . . , n. If proportional transaction costs for buying

are equal to those for selling, then cbj = csj . If proportional or fixed transaction costs are not present,

cbj or csj or fj are set to 0, as needed. If no cardinality constraint has to be considered, then k = n.

3.2 Strengthening the Mathematical Formulation

This section is devoted to the introduction of a variable reduction procedure and some valid in-
equalities aimed at strengthening the above mathematical formulation. Note that if stock j is not
present in the current portfolio (i.e., X0

j = 0), variables wj and yj take the same value: wj = yj = 1
if stock j is bought, or wj = yj = 0 if stock j is not bought. We can then reduce the size of the
model by taking this into account. For each stock j such that X0

j = 0 we replace wj with yj .
Depending on the composition of the current portfolio, the procedure may lead to a remarkable
reduction of the number of binary variables. Constraints (9) are taken from the formulation for the
index tracking problem proposed in [26]. A strengthened formulation can be obtained by replacing
constraints (9) with the following two sets of constraints

bj ≤ (νjC −X0
j qjT )wj j = 1, . . . , n, (14)

sj ≤ X0
j qjTwj j = 1, . . . , n. (15)
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Constraints (14) bound the amount that the investor can further invest in each stock j. Indeed,
for each stock j, given its value in the current portfolio X0

j qjT , and the maximum amount that can

be invested νjC, the investor can increase its investment in stock j by at most (νjC −X0
j qjT ). On

the other hand, for each stock j, constraint (15) ensures that the investor does not sell more than
the amount in the current portfolio. In Section 5.3, we validate constraints (14) and (15) through
computational experiments.

Henceforth, we refer to the optimization model (1)-(13) where constraints (9) are replaced with
inequalities (14) and (15) as the Bi-Objective Enhanced Index Tracking (BOEIT) model. We refer
to the mono-objective formulation obtained by removing objective function (3) from the BOEIT
model and adding the following constraint

T∑
t=1

(dt + ut) ≤ ξC (16)

where ξ is a given parameter, as the EIT model. The procedure mentioned above that replaces
some binary variable wj with the corresponding yj is applied to both optimization models.

4 Kernel Search for the Bi-Objective Enhanced Index Tracking
Model

In this section, we consider the EIT and the BOEIT models. We first describe the main ingredients
of the mono-objective Kernel Search designed for the EIT model, and then we describe in detail
its extension to the BOEIT model.

4.1 Kernel Search for the EIT Model

The basic idea of the Kernel Search is to intensively explore a sequence of relatively small/moderate-
size portions of the solution space. The exploration is guided by the identification of subsets of
decision variables and the subsequent solution of the resulting restricted problems by means of
a general-purpose MILP solver used as a black-box. We apply the Kernel Search framework to
the EIT model along the lines of the Basic Kernel Search designed in [26] for the index tracking
problem. For the sake of brevity, we present here only the basic elements of the framework, and
refer to [26] for further details.

The EIT model may be formulated as follows

max z1 = g(x)
subject to f(x) ≤ ξC

x ∈ X ,
(17)

where x is the vector of variables, g describes the excess return, f is the tracking error, and X is
the feasible region defined by constraints (4)-(8), (10)-(13), (14) and (15).

In the EIT model a set N = {1, . . . , n} of stocks is given. Two binary variables, namely yj
and wj , and three non-negative continuous variables, X1

j , bj and sj , are associated with each stock
j. From now on, we identify stock j with all the former variables associated with it. We denote
as EIT(N ) the EIT model that takes into account the whole set of stocks N (i.e., the original
problem) and LP(N ) the linear relaxation of EIT(N ). We define as kernel, denoted as K, a subset
of stocks.
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The mono-objective Kernel Search is composed of two main phases. In the first phase, called
the initialization phase, problem LP(N ) is solved. If the optimal solution of LP(N ) is integer, then
the algorithm stops. Otherwise, the optimal solution of LP(N ) provides an upper bound on the
optimal cost to the original problem and is used to identify the promising stocks. All the stocks in
set N are sorted and a ranked list R is created such that the stocks that are likely to be selected in
an optimal solution of the original problem are ranked in the first positions. Subsequently, kernel
K is initialized including the first m stocks in list R, where m is a given parameter, whereas the
remaining n −m stocks are partitioned into NB ordered clusters, called buckets and denoted as
{Bh}h=1,...,NB. We create a sequence of disjoint buckets each with cardinality equal to lbuck, a
parameter, with the possible exception of the last one that may contain a smaller number of stocks.
A lower bound is computed by solving problem EIT(K) restricted to the stocks included in the
initial kernel. The second phase, referred to as the solution phase, is iterative. At each iteration
h, with h = 1, . . . , NB, a restricted problem EIT?(K ∪ Bh) is solved, where EIT?(K ∪ Bh) is
EIT(K ∪Bh) with two additional constraints: (i) the lower bound is used as a cutoff value to the
objective function, and (ii) the solution of the restricted problem must include at least one stock
from the current bucket Bh. If EIT?(K ∪ Bh) is feasible, then at least one stock from the current
bucket Bh is selected in its optimal solution. These stocks are added to the kernel. On the other
hand, if a stock in the current kernel has not been selected in the optimal solution of EIT?(K ∪Bh)
and also in p of the restricted problems solved since it has been added to kernel K, where p is a
given parameter, then that stock is removed from the kernel. Finally, if EIT?(K ∪ Bh) is feasible
then the lower bound is updated. We refer to the algorithm described above as the mono-objective
Kernel Search.

4.2 Bi-Objective Kernel Search for the BOEIT model

Using the same notation of model (17), the BOEIT model may be formulated as follows

max z1 = g(x)
min z2 = f(x)

subject to x ∈ X .
(18)

Let Y = {(f(x), g(x)) : x ∈ X} be the image of the feasible set on the 2-dimensional objective
space. Given two points (φ, γ), (φ′, γ′) ∈ Y, we say that (φ, γ) is dominated by (φ′, γ′) if φ ≥ φ′ and
γ ≤ γ′ and at least one inequality is strict. A point (φ, γ) ∈ Y is efficient if it is not dominated
by any point in Y. A feasible solution x ∈ X is Pareto optimal if its image (f(x), g(x)) is efficient.
Let the efficient set E ⊂ R2 be the set of all efficient points for a BOEIT instance.

The solution of the BOEIT model would imply an exact description of E along with the cor-
responding Pareto optimal solutions. However, such a solution would be impracticable from a
computational point of view and would yield an overwhelming amount of information for the deci-
sion maker. A moderate size subset of E might be generated, possibly with an error guarantee on
both objectives, as done in [18]. However, this approach would require the iterative application of
an exact solution method for a mono-objective model derived from BOEIT, such as EIT. Again,
this would be in general impracticable, due to the hardness of EIT and the size of real life in-
stances. For instance, considering the S&P500 index over a time horizon of two-year weekly prices
would result in an EIT model including 1000 binary variables, slightly more than 1700 continuous
variables, and more than 2500 constraints.

Our aim is to find a moderate size set of points in the objective space, each one corresponding
with a feasible solution of BOEIT, which approximates set E . Hereafter, this set of points is
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denoted as AF . Note that we do not require the points to be efficient. Hence, we determine them
by a heuristic method. We pursue the task by embedding a modified version of the mono-objective
Kernel Search described above into a variant of the ε-constraint method, one of the most known and
widely adopted approaches for solving multi-objective optimization problems (see, e.g., [11, 47]).
We call the resulting approach Bi-Objective Kernel Search.

4.3 Initialization Step

The first step in the method is to identify the area in the 2-dimensional objective space where the
search has to take place (e.g., see [18]). With reference to the BOEIT model (18), the ideal point
(φI , γI) is defined as

φI = min
x∈X
{f(x)} and γI = max

x∈X
{g(x)} (19)

and the nadir point (φN , γN ) is defined as

φN = min
x∈X
{f(x) : g(x) ≥ γI} and γN = max

x∈X
{g(x) : f(x) ≤ φI}. (20)

Such points define tight lower and upper bounds on the coordinates of all efficient points [16]. By
construction, the points (φI , γN ) and (φN , γI) are efficient, and every efficient point is contained in
the rectangle having (φI , γN ) as lower left corner and (φN , γI) as upper right corner.

The Bi-Objective Kernel Search approximates the above corner points by heuristically solving
the corresponding optimization problems. More precisely, let xfI and xgI be the solutions obtained
by applying the mono-objective Kernel Search to both problems in (19), respectively. Moreover,

let xfN be the solution obtained by applying the mono-objective Kernel Search to the left problem
in (20), with the unknown right-hand side γI replaced by g(xgI). Finally, let xgN be the solution
obtained by applying the mono-objective Kernel Search to the right problem in (20), with the

unknown right-hand side φI replaced by f(xfI ). Then, the set of points AF is initialized by adding
the approximate corners

(fI , gN ) =
(
f(xgN ), g(xgN )

)
(21)

and
(fN , gI) =

(
f(xfN ), g(xfN )

)
as approximations of (φI , γN ) and (φN , γI), respectively.

4.4 Iteration Step

In general, the ε-constraint method generates a sequence of mono-objective optimization problems,
referred to as ε-constraint problems, by transforming all the objective functions but one (called the
primary objective) into constraints. The choice of which objective is the primary one is usually
driven by the structure of the problem. Since from our point of view the excess return is the most
important objective, we select it as the primary one and constrain the value of the tracking error.
In this way, the mono-objective problem to be solved at each iteration is an EIT model where the
right-hand side of constraint (16) is replaced with a chosen value.

The Bi-Objective Kernel Search is based on the generation of a sequence of ε-constraint prob-
lems, where at each iteration i the problem

max
x∈X
{g(x) : f(x) ≤ εi} (22)
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is created by setting the value of εi equal to its value in the previous ε-constraint problem (fI , if
it is the first problem in the sequence) plus a constant step ∆. Note that (22) is an instance of
the EIT (17). We introduce the integer parameter εCP representing the number of ε-constraint
problems generated in the Iteration Step. The value of ∆ is thus equal to (fN − fI)/(εCP + 1).
Each ε-constraint problem i, i = 1, . . . , εCP , is solved by means of the mono-objective Kernel Search
described above with the following modifications.

Once ε-constraint problem i− 1 is solved, the stocks are sorted. Let us assume that the current
kernel, after solving ε-constraint problem i− 1, contains m′ stocks. A new ranked list R′ is created
where the m′ stocks in the current kernel are placed in the first positions, while the remaining
ones are sorted according to their position in ranked list R before the solution of problem i − 1.
The ranked list R′, along with the value m′, is used by the mono-objective Kernel Search to solve
ε-constraint problem i, where R is set equal to R′ and m is set equal to m′. The ranking R and
the value m for the ε-constraint problem i = 1 are determined, taking as ε-constraint problem
i = 0 the problem that determined the value fI in the initialization step. Then, the kernel K and
the sequence of buckets are generated according to ranked list R and parameter m along the lines
described in Section 4.1 for the mono-objective Kernel Search, and point (f(xi), g(xi)) is added to
AF , where xi is the solution found for ε-constraint problem i.

Finally, note that the best solution found for problem i − 1 is feasible for all the successive
ε-constraint problems. Hence, it is used as the initial solution for the mono-objective Kernel Search
solving ε-constraint problem i.

An illustration of the evolution of the kernel and buckets is shown in Figure 1. Note that in
this example the length of each bucket is chosen equal to the number of variables composing the
initial kernel. Algorithm 1 outlines the Kernel Search for the BOEIT.

Algorithm 1 Bi-Objective Kernel Search for BOEIT.

1: Compute the approximated ideal and nadir points using a mono-objective kernel search
2: Set AF := {(fI , gN ), (fN , gI)}, i := 1 and εi := fI + ∆.
3: Repeat the following while i ≤ εCP

(a) identify the initial kernel K and the sequence of buckets {Bh}h=1,...,NB , using the ranking provided
by the previous iteration;

(b) solve EIT(K) using the best solution found at the previous iteration as initial solution;

(c) for all h = 1, . . . , NB

(i) solve EIT?(K ∪Bh);

(ii) update the current kernel K.

(d) let xi be the best solution found (to problem (22)), add (f(xi), g(xi)) to AF ;

(e) rank the variables according to the information collected during steps (b)-(c);

(f) set εi+1 := εi + ∆ and i := i+ 1.

4.5 Discussion and Comparison with the Literature

Similar to other implementations of the ε-constraint method (see, e.g., Mavrotas and Diak-
oulaki [42]), the Bi-Objective Kernel Search varies the right-hand side of the ε-constraint with
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Figure 1: An illustrative example of the Kernel Search for BOEIT problems. For simplicity, xj
denotes the whole set of variables associated with stock j.

a fixed step ∆. However, there are two important differences between the method we propose and
a straightforward application of a standard ε-constraint method.

Firstly, in a standard ε-constraint method, the right-hand side of the constraint associated with
a minimization objective is reduced from an initial large value in order to cut off previously obtained
points in the objective space. In the Bi-Objective Kernel Search we adopt the opposite direction,
i.e., increase the right-hand side from an initial small value. The main rationale of this choice is
the possibility of taking advantage of the kernel and of the buckets at the end of the solution of
an ε-constraint problem in order to identify the initial kernel and the sequence of buckets to use
for the solution of the following ε-constraint problem. Furthermore, as mentioned above, in the
method we design the best solution found to a given ε-constraint problem is feasible for each of the
following problems in the sequence. Hence, it can be used as initial solution for each of the latter
problems. To the contrary, in a standard ε-constraint method, the best solution found to a given
ε-constraint problem is infeasible for each of the following problems in the sequence.

Secondly, a standard ε-constraint method is usually designed to find efficient points in the
objective space by applying an exact method. In the algorithm we propose, a heuristic method is
applied. As a result, the obtained points are approximations of the efficient ones. Furthermore,
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since we apply a relatively large grid of possible values for the right-hand side of the ε-constraint,
a moderate number of alternative points and solutions is returned. In this way, we are able to
provide a quite accurate description of the trade-off between excess return and tracking error in
reasonable computational time.

5 Experimental Analysis

This section is devoted to the presentation and discussion of the computational experiments. They
were conducted on a PC Intel Xeon with 3.33 GHz 64-bit processor, 12.0 Gb of RAM and Windows
7 64-bit as Operating System. Algorithms and optimization models were implemented in Java.
The LP and MILP problems were solved by means of CPLEX 12.2. After extensive preliminary
experiments, we set the following CPLEX parameters. We set the number of passes that CPLEX
performs when solving the root node of a MILP problem to 1 (parameter CutPass), the relative
MIP gap tolerance equal to 10−6 (parameter EpGap), and we turned off the periodic heuristic
(parameter HeurFreq). All the other CPLEX parameters were kept to their default values.

The present section is organized as follows. In Section 5.1 we briefly describe the testing
environment. In Section 5.2 we describe the settings of the Bi-Objective Kernel Search used in
the computational experiments and introduce the evaluation of its performance. In Section 5.3 we
empirically validate the effectiveness of constraints (14) and (15). In Section 5.4 we validate the
proposed mathematical formulation providing an analysis of the out-of-sample behavior for some
of the optimal portfolios. In Section 5.5 we discuss the quality of the output and computational
times of the Bi-Objective Kernel Search. Finally, in Section 5.6 we compare Algorithm 1 with a
standard implementation of the ε-constraint method.

5.1 Testing Environment

We built two data sets for the computational experiments. Both data sets are derived from the
8 benchmark instances for the index tracking problem currently belonging to the OR-Library.
The instances comprise stocks traded in different stock market indices: the Hang Seng market
index (related to the Hong Kong stock market), DAX100 (Germany), FTSE100 (United Kingdom),
S&P100 (USA), Nikkei225 (Japan), S&P500 (USA), Russell2000 (USA) and Russell3000 (USA).
The number of stocks included in each instance ranges from 31 to 2151. The first five benchmark
instances have been introduced in [8] (data collected from March 1992 to September 1997). The
remaining three benchmark instances have been introduced in [10]. For each security, 291 weekly
prices are provided. We considered the first 105 prices and computed the rate of return of stock j
in time period t, t = 1, . . . , T , as rjt =

qjt−qj,t−1

qj,t−1
, where qjt is the price of stock j in time period t

and is equal to the (t + 1)-th price provided in the original benchmark instance. Rates of return
for the benchmarks have been computed similarly. In our experiments we have used sample data,
following most of the literature we cited. The reader should be aware that using sample data might
impact the out-of-sample performance of any strategy. As a consequence, the results concerning
the out-of-sample validation of the proposed optimization model must be interpreted with care,
since they might contain noise that is difficult to separate from the intrinsic performance of the
proposed methodology.

As already mentioned, we generated two sets of instances. A first set assumes that the investor
does not hold any current portfolio, i.e., X0

j = 0, j = 1, . . . , n. These instances are referred to as
indtrackI, I = 1, . . . , 8 and Table 1 summarizes their main characteristics. Note that parameter k
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in constraint (6) has been set to different values, depending on the instance size.

Instance Benchmark n T k

indtrack1 Hang Seng 31 104 10
indtrack2 DAX100 85 104 10
indtrack3 FTSE100 89 104 10
indtrack4 S&P100 98 104 10
indtrack5 Nikkei225 225 104 10
indtrack6 S&P500 457 104 40
indtrack7 Russell2000 1318 104 70
indtrack8 Russell3000 2151 104 90

Table 1: The main characteristics of the first set of instances.

A second set of instances was generated assuming a current portfolio composed of k stocks
randomly selected in equal proportions, i.e., X0

j = C/k
qjT

for each randomly selected j and X0
j = 0

otherwise. These instances are denoted as indtrackIrand, with I = 1, . . . , 8. Any other character-
istic of each instance in this second set is akin to the corresponding instance in Table 1.

To provide further insights on the BOEIT model, we conducted some experiments on a third
data set that spans different market trends. This data set was introduced in Guastaroba et al.
[25] and a short description is provided in Section 5.4. The three sets of instances are available at
http://or-brescia.unibs.it.

We considered a budget available for the investment equal to 105. Furthermore, we chose
λj = 0.01 and νj = 0.1, j = 1, . . . , n. We set cbj = csj = 0.01 and fj = 12, j = 1, . . . , n. Finally, we
used ρ = 0.015 and τ = 0.

5.2 Kernel Search Parameters and Performance Evaluation

An effective implementation of the Bi-Objective Kernel Search framework involves an accurate
calibration of its parameters. After preliminary experiments and based upon the computational
results presented in [26], we made the following choices.

Concerning variable sorting, in the mono-objective Kernel Search used to approximate the ideal
and nadir points we proceeded as follows. Let ĉ(X1

j ) be the reduced cost of variable X1
j in the

optimal solution of LP(N ). The stocks are sorted in non-increasing order of the capital invested in
each stock and, for those stocks not selected in the optimal solution of LP(N ), in non-decreasing
order of absolute values ĉ(X1

j ). In the mono-objective Kernel Search used to solve the ε-constraint
problems, the sorting criterion is driven by the kernel and buckets at the end of the solution of the
previous problem. In order to approximate the ideal and nadir points we set parameter m equal to
the number of stocks with a positive value in the optimal solution of LP(N ). In order to solve the
ε-constraint problems, parameter m is set equal to the number of stocks in the kernel at the end of
the solution of the previous problem. In both cases, we set lbuck = m and therefore NB :=

⌈
n−m
m

⌉
.

We set p = 3, and εCP = 98, so that the number of points in set AF , is not greater than 100. All
the instances were solved setting a threshold on the computational time equal to 3600 seconds for
the solution of each mono-objective problem.

Finally, we compared the set of points AF determined by means of the Bi-Objective Kernel
Search to a reference set, denoted as RS, obtained using CPLEX. More precisely, we applied
Algorithm 1 where each optimization problem is solved by CPLEX. Furthermore, the best solution
for problem i − 1 that CPLEX finds is used as the initial solution for ε-constraint problem i.
The output of the Kernel Search for BOEIT is compared with the reference set using some of the

16



measures proposed by Jaszkiewicz [33] for the evaluation of multi-objective metaheuristics. In order
to complete the assessment, we also compared the computational times required by Algorithm 1
using the Kernel Search heuristics to those required by Algorithm 1 using CPLEX, where the time
threshold for the solution of each mono-objective problem is set equal to 3600 seconds.

5.3 Strengthening the Mathematical Formulation: Computational Validation

In order to validate the effectiveness of inequalities (14) and (15) we computed, for each instance,
two sets of efficient points in the objective space. The points are obtained by applying the procedure
described in Section 5.2 to compute set RS with two exceptions. The first difference is that
we optimize the LP relaxation of either the EIT model (including constraints (14) and (15)) or
the variant of the EIT model where constraints (9) replace inequalities (14) and (15). We call
mEIT model the latter variant of the EIT model. The second difference is that no initial solution
is provided for the solution of any ε-constraint problem i. The results are shown in Table 2
where, for each instance and for each model type, 100 efficient points are computed. In the fourth
column (labeled #Impr.) we give the number of times that the value of the optimal solution of
the LP relaxation of the EIT model improved the optimal solution of the LP relaxation of the
mEIT model. In the following column (labeled Av. Impr.) we show the average improvement,
in percentage, of the EIT model compared with the mEIT model. The average improvement is
computed as 100 · zLP (EIT)−zLP (mEIT)

zLP (mEIT) , where zLP (·) is the optimal value of the LP relaxation of the
corresponding model. The figures in column Max Impr. refer to the maximum improvement, in
percentage, compared with the mEIT model.

mEIT model EIT model
Instance n CPU (secs.) # Impr. Av. Impr. Max Impr. CPU (secs.)

indtrack1 31 1.201 0 0.00 0.00 1.107
indtrack2 85 1.919 0 0.00 0.00 1.779
indtrack3 89 1.872 0 0.00 0.00 2.730
indtrack4 98 2.060 0 0.00 0.00 2.138
indtrack5 225 4.087 0 0.00 0.00 4.274
indtrack6 457 7.129 0 0.00 0.00 7.207
indtrack7 1318 21.668 0 0.00 0.00 21.590
indtrack8 2151 37.191 0 0.00 0.00 37.830
indtrack1rand 31 1.326 0 0.00 0.00 1.108
indtrack2rand 85 2.028 0 0.00 0.00 1.840
indtrack3rand 89 1.934 0 0.00 0.00 1.966
indtrack4rand 98 2.121 0 0.00 0.00 1.997
indtrack5rand 225 3.885 0 0.00 0.00 4.056
indtrack6rand 457 7.285 99 -0.53 -0.78 7.222
indtrack7rand 1318 22.449 99 -1.29 -1.37 24.195
indtrack8rand 2151 39.562 99 -1.80 -1.92 39.451

Average 9.857 -0.23 -0.25 10.031

Table 2: Computational validation of inequalities (14) and (15).

Computing times of the two formulations are similar, but the EIT model slightly improves the
mEIT model in terms of quality of the solution. Though on most instances there is no improvement,
the three largest-scale instances that consider a current portfolio show remarkable improvements
(an improvement occurred for almost all the efficient points). We made a similar test using the
EIT model plus constraints (9). We obtained the same solutions of the EIT model but with longer
computational times.
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5.4 Bi-Objective Enhanced Index Tracking Model: Out-of-Sample Validation

The goal of this section is to provide evidence on the effectiveness of the BOEIT model in guiding
financial decisions under different market conditions. To this aim, we decided to consider the
instances introduced in Guastaroba et al. [25], in addition to the instances built upon those
belonging to the OR-Library. The data set taken from Guastaroba et al. [25] comprises 4 instances
built from historical weekly rates of return, computed by using the closing stock prices of the 100
securities composing the FTSE100 Index at the date of September 25th, 2005. These instances were
generated to span four different market trends. More specifically, the first instance is characterized
by an increasing trend of the market index (i.e., it is moving Up) in the in-sample period as well
as in the out-of-sample period, and is hereafter referred to as instance Up-Up. The second instance
has an increasing trend of the market index in the in-sample period and a decreasing one (i.e., it is
moving Down) in the out-of-sample period, and from now on it is referred to as instance Up-Down.
The third instance (henceforth referred to as instance Down-Up) is characterized by a decreasing
trend in the in-sample period and by an increasing one in the out-of-sample period. Finally, the
last instance (referred to as instance Down-Down) is characterized by a decreasing trend in both
the in-sample and the out-of-sample periods. The temporal positioning of each instance is shown
in Figure 2. Each of the former four instances assumes that the investor does not hold any current
portfolio (i.e., X0

j = 0, j = 1, . . . , n), and was solved setting k = 10. All the other parameters were
set as described in Section 5.1.

Figure 2: The four different market periods in the data set taken from Guastaroba et al. [25].

To illustrate how the portfolios selected by the BOEIT model perform out-of-sample, we ob-
served their behavior in the 52 weeks following the date of portfolio selection and compared it to
that of the benchmark. We divided the presentation of the out-of-sample results into two parts.
We first compare the out-of-sample cumulative returns yielded by the benchmark to those achieved
by some portfolios selected by the BOEIT model. Despite cumulative returns are not one of the
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standard measures used by portfolio managers to compare different strategies, they provide an im-
mediate and easy-to-understand description of the dynamic behavior of the portfolios throughout
the out-of-sample period. Subsequently, we analyze some performance measures computed at two
instants of the out-of-sample period. In both cases, as CPLEX encountered computational problems
when solving the largest instances (see the following section for further details), we considered the
optimal portfolios corresponding with the points composing the reference set RS only for the data
set taken from [25] and the instances indtrack1 to indtrack4 and indtrack1rand to indtrack4rand.
Cumulative returns and performance measures for the remaining instances refer to the portfolios
corresponding with the points composing set AF determined by means of the Bi-Objective Kernel
Search. Finally, cumulative returns, as well as all the performance measures, have been computed
using the capital invested in each security, i.e., the value taken by variable X1

j , j = 1, . . . , n. We
recall that the transaction costs are constrained not to exceed a fraction ρ = 0.015 of the capital
(see inequality (10)). We will show at the end of this section that including the transaction costs
in the ex-post analysis of the optimal portfolios would cause negligible changes.

For the sake of clarity, in each figure where the cumulative returns are shown three portfolios
are considered: the portfolio with minimum tracking error (denoted as Min Err Portfolio), corre-
sponding with the solution of the right problem in (20); the closest portfolio to the median value
of the tracking error computed over all the points found (denoted as Median Portfolio); and the
portfolio with maximum average excess return (denoted as Max Ret Portfolio), corresponding with
the solution of the left problem in (20). In each figure, the ex-post cumulative returns yielded by
the benchmark are compared with those returned by these portfolios. For the sake of brevity, we
present in the paper only the results concerning the data set from [25] (in Figures from 3(a) to
4(b)) and the instances indtrack2rand and indtrack6 (in Figures 5(a) and 5(b), respectively). The
complete set of figures is available in the electronic supplementary material.

Figures 3 and 4 suggest that, according to the BOEIT model, if the in-sample period is char-
acterized by an increasing trend of the market index, then portfolios with minimum tracking error
are more advisable, whereas if the in-sample period is characterized by a decreasing trend, then
portfolios that privilege the average excess return are preferable.

It is worth noting that in most of the figures, the Min Err Portfolio tracks closely the benchmark
over all the out-of-sample period, performing worse than the other two portfolios in terms of excess
return, as expected. This behavior is especially evident in Figure 5(b) for instance indtrack6. These
results highlight that minimizing the tracking error in-sample by means of the BOEIT model may
provide portfolios that successfully mimic the benchmark in the out-of-sample period. On the
other hand, the figures display that if the investor is willing to take more risk, as measured by the
tracking error, in order to yield larger excess returns, the portfolios selected in-sample by means
of the BOEIT model may outperform the benchmark in the out-of-sample period. Indeed, in the
majority of the instances (see also the electronic supplementary material) both the Median Portfolio
and the Max Ret Portfolio considerably outperform the benchmark as well as the Min Err Portfolio.
On the other hand, the former two portfolios replicate the fluctuations of the benchmark, although
larger changes sometimes occur.

Similar conclusions can be drawn for the values of the performance measures of Table 3. For
the sake of brevity, we present in this table only the performance measures computed for the
Min Err Portfolio and the Median Portfolio. Additionally, we observed the behavior of the two
portfolios after 26 weeks (columns 3 to 8) and 52 weeks (columns 9 to 14). We computed three
performance measures. The first measure (columns with header ER) represents the average out-
of-sample excess return of the portfolio over the benchmark, in percentage and on weekly basis.
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Figure 3: Out-of-sample cumulative returns: BOEIT model solving instances Up-Up and Up-Down.
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Figure 6: In-sample reference set and out-of-sample performance for instance indtrack1.

The second statistic (TE ) gives a measure of the average ex-post tracking error, computed as the
average absolute deviation between the portfolio and the benchmark rates of return. Finally, the
third measure (IR) is a variant of the Information Ratio computed as the average excess return
divided by the downside-standard deviation of the excess return, where the latter deviation is
computed considering only the ex-post periods when the portfolio rate of return was worse than
that yielded by the benchmark. This variant of the Information Ratio measures the average excess
return of a portfolio per unit of downside risk incurred. All the three statistics computed for the
Min Err Portfolios take, on average, smaller values than when calculated for the Median Portfolios.
Hence, the average values confirm the conclusions we drew above: the Min Err Portfolio yields a
worse return than the Median Portfolio (see the average figures for ER) but, on the other side, tracks
more closely the benchmark (see the average figures for TE). Furthermore, the Median Portfolio
achieved an average risk-adjusted return that is larger than that yielded by the Min Err Portfolio
(see the average figures for IR). It is worth noting that the Median Portfolios achieved large excess
returns for the largest instances, that are the instances that refer to the solutions computed by the
Bi-Objective Kernel Search because of the problems caused by CPLEX.

Figure 6 compares the in-sample reference set RS computed for instance indtrack1 and its out-
of-sample performance. The irregularities in the sequence of points composing set RS are explained
by discontinuities in the efficient set, due to the presence of binary variables. For each point of set
RS, we depicted three points that show the ex-post tracking error (computed as in equation (2))
and the ex-post excess return (computed as in objective function (1)), calculated after 17, 34, and
52 weeks, respectively. Note that the tracking error (x-axis) depicted in Figure 6 tends to increase
with the number of weeks. This behavior is mainly due to formula (2) that computes the tracking
error as a summation over time. On the other hand, the excess return (y-axis) tends to decrease
with the number of weeks. This behavior indicates that, sometimes but not on average as mentioned
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above, the performance of a portfolio deteriorates over time. In these cases, an optimization model
such as the BOEIT can be used to rebalance the portfolio composition. A similar analysis of the
out-of-sample performance of the efficient sets is provided in Figure 7 for the 4 instances taken
from Guastaroba et al. [25]. Here, the in-sample reference set is omitted for simplicity.

Finally, Figures 8(a) and 8(b) give examples of the cumulative returns yielded by the optimal
portfolios after the transaction costs paid have been discounted. To the sake of brevity, we report
here only the pictures related to the instances Up-Up and Up-Down. Therefore, the latter two
figures have to be compared with the plots depicted in Figures 3(a) and 3(b), respectively. The
pictures illustrating the cumulative returns for the remaining instances that are shown in this
section are available in the electronic supplementary material. The comparison between Figures
3(a) and 8(a), and between Figures 3(b) and 8(b) show that the differences are negligible. Two
are the main reasons of this outcome. Firstly, transaction costs are paid only once, at the date of
portfolio selection. Hence, they affect only the ‘single-period’ return related to the first week of the
out-of-sample period. Secondly, the small value ρ = 0.015 used in constraint (10) limits the total
amount paid in transaction costs.

5.5 Bi-Objective Kernel Search: Computational Results

In order to test the quality of the output and the computational times of the Bi-Objective Kernel
Search, we now focus on the OR-library instances.

The computational results are organized in two groups. Instances indtrack1-indtrack4 and
indtrack1rand-indtrack4rand are referred to as the small-scale instances, while the remaining in-
stances are denoted as the large-scale instances. In Tables 4 and 5 we show the performance of
the Bi-Objective Kernel Search for the small-scale and the large-scale instances, respectively. We
divided the instances in two groups since CPLEX could not solve within the time limit the left-
hand side problem in (19) for any of the large-scale instances. In these cases, the points found by
CPLEX, if any (since for some instances no feasible solution was found), were dominated by the
corresponding points found by the heuristic. These points were removed from the computation of
the statistics of Table 5.

In Table 4, columns 3 and 4 refer to CPLEX. Specifically, column labeled |RS| gives the
cardinality of the reference set. For each instance, the figures in column CPU (secs.) are the
computational times (in seconds) required by CPLEX to compute the whole reference set. The
following columns refer to the performance of the Bi-Objective Kernel Search. Columns |AF| and
CPU (secs.) give, for each instance, the cardinality of the set of points approximating the efficient
set and the time to compute it, respectively. Statistic Q2 (the notation is taken from [33]) is a
measure of the approximated points not dominated by any point in the reference set RS. It is
computed as

Q2 =
|{(f, g) ∈ AF : @(φ, γ) ∈ RS such that (φ, γ) dominates (f, g)}|

|AF|
.

In Table 5, additional columns are considered, corresponding with the following statistics.
Statistic df is a measure of the average error, in percentage, with respect to objective function
f (i.e., the tracking error). It is computed as

df =
100

|RS|
·
∑

(φ,γ)∈RS

min
(f,g)∈AF

|f − φ|
φ

.
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CPLEX 12.2 Bi-Objective Kernel Search
Instance n |RS| CPU (secs.) |AF| CPU (secs.) Q2

indtrack1 31 42 10.951 42 13.790 1.000
indtrack2 85 64 239.211 64 125.424 1.000
indtrack3 89 81 579.213 81 214.017 1.000
indtrack4 98 76 809.818 76 347.490 1.000
indtrack1rand 31 41 10.327 41 11.232 1.000
indtrack2rand 85 55 157.030 55 90.651 1.000
indtrack3rand 89 83 120.729 83 67.283 1.000
indtrack4rand 98 79 240.225 79 86.517 1.000

Average 65.125 270.938 65.125 119.551 1.000

Table 4: Average statistics for the Bi-Objective Kernel Search (small-scale instances).

Similarly, the percentage average error with respect to objective function g (i.e., the average excess
return) is computed as

dg =
100

|RS|
·
∑

(φ,γ)∈RS

min
(f,g)∈AF

|g − γ|
γ

,

and statistic dz is computed as

dz =
100

|RS|
·
∑

(φ,γ)∈RS

min
(f,g)∈AF

max

{
|f − φ|
φ

,
|g − γ|
γ

}
.

Statistic dmaxz is computed as

dmaxz = 100 · max
(φ,γ)∈RS

min
(f,g)∈AF

max

{
|f − φ|
φ

,
|g − γ|
γ

}
.

The last four statistics are not given in Table 4 because their value is systematically null. In
Table 5, for each instance, the figure in the fourth column shows the percentage error generated by
CPLEX solving the left-hand side problem in (19), i.e., computing the first coordinate of the ideal
point in reference set RS. The error is computed as

d̂f = 100 · φ̂I − fI
fI

,

where φ̂I is the f -value of the best solution found by CPLEX within the given time limit (Inf.
identifies the instances where the solver did not find any feasible solution), and fI is the f -value
of the approximated ideal point computed by the mono-objective Kernel Search (see (21)). This
statistic gives a measure of the error generated by CPLEX solving the large-scale instances (see
the beginning of the present section).

Finally, statistics Fr. d′z < 1.0%, Fr. d′z < 0.5% and Fr. d′z < 0.1%, in the last three columns,
count the number of times that, in percentage, the error

d′z = 100 · min
(f,g)∈AF

max

{
|f − φ|
φ

,
|g − γ|
γ

}
was smaller than 1.0%, 0.5% and 0.1%, respectively.

Looking at Tables 4 and 5, we see that the Bi-Objective Kernel Search is faster than CPLEX: the
time reduction is on average 56% on the small-scale instances and 44% for the large-scale instances.
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CPLEX 12.2 Bi-Objective Kernel Search
(standard ε-constraint) (standard ε-constraint)

Instance n |RS| CPU (secs.) |AF| CPU (secs.) Q2

indtrack1 31 35 9.953 35 9.890 1.000
indtrack2 85 52 319.598 52 804.551 1.000
indtrack3 89 62 941.192 62 206.184 1.000
indtrack4 98 62 1140.440 62 1643.931 1.000
indtrack1rand 31 33 8.253 33 7.613 1.000
indtrack2rand 85 46 221.115 46 180.960 1.000
indtrack3rand 89 65 209.275 65 357.693 1.000
indtrack4rand 98 61 475.427 61 553.505 1.000

Average 52.000 415.657 52.000 470.541 1.000

Table 6: Average statistics for a standard ε-constraint approach (small-scale instances).

The Bi-Objective Kernel Search provides high quality approximations. In particular, for the small-
scale instances (see the figures in Table 4) set AF determined by means of the Bi-Objective Kernel
Search comprises the same set of points included in the reference set RS (see, in particular, the
values of Q2). For the large-scale instances (see Table 5), out of a total of 657 points computed the
maximum attained error on one of the objectives is 5.423% (see statistic dmaxz ). However, 98% of
the points are within an error of 1% on both objectives, and more than 95% are within a negligible
error of 0.1% (see statistics Fr. d′z < 1% and Fr. d′z < 0.1%, respectively).

5.6 Bi-Objective Kernel Search: A Computational Comparison with a Standard
ε-Constraint Method

In order to assess the modified, with respect to the standard, ε-constraint method (see Section 4.5),
we performed some computational experiments where both CPLEX and the Bi-Objective Kernel
Search are embedded into a standard ε-constraint method. The results are given in Table 6 for
small-scale instances and in Table 7 for large-scale instances.

Both CPLEX and the Bi-Objective Kernel Search turned out to be slower when embedded into
a standard ε-constraint method. This is especially true for the small-scale instances (see Table 6).
Here, with a standard ε-constraint implementation, the Bi-Objective Kernel Search is actually
slower than CPLEX. Statistics df , dg, dz, and dmaxz are not shown in Table 6 since their value
is systematically null. As long as the large-scale instances are concerned (Table 7), both CPLEX
and Bi-Objective Kernel Search slowed down, but still the latter is the fastest. The standard
implementation of the Bi-Objective Kernel Search returns negligible improvements of the efficient
frontier, when compared with the non-standard implementation (the average errors achieved by
the latter implementation are indeed quite small) with the exception of the largest errors (statistic
dmaxz ). Nevertheless, the slight improvements in terms of solution quality do not justify the longer
computational times taken by the standard implementation. This is especially true if one considers
the small-scale instances where both implementations of the Bi-Objective Kernel Search return
the exact reference set, while the standard implementation is nearly 4 times slower than the non-
standard one.

Finally, statistic d̂f , in Table 5, is not shown in Table 7. The reason is that this statistic is not
influenced by the implementation of the ε-constraint method.
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6 Conclusions

In this paper we have introduced a bi-objective approach for enhanced index tracking problems,
where the considered objectives are the average excess return and the deviation from a financial
market index, respectively. We have proposed a bi-objective Mixed Integer Linear Programming
formulation for the problem that includes several real-life features, and shown that this optimization
model selects portfolios providing good results under different market conditions. The results
related to a set of instances generated to span different market trends suggest that, according to
the proposed bi-objective model, if the in-sample period is characterized by an increasing trend
of the market index, then portfolios with minimum tracking error are more advisable, whereas
if the in-sample period is characterized by a decreasing trend, then portfolios that privilege the
average excess return are preferable. The results obtained solving a set of benchmark instances
also highlight that minimizing the tracking error in-sample by means of the proposed model often
provides portfolios that successfully mimic the market index in the out-of-sample period. On the
other hand, they indicate that if the investor is willing to take more risk, as measured by the
tracking error, in order to yield larger excess returns, the portfolios selected in-sample by means
of the model may outperform the market index in the out-of-sample period. We have designed a
solution approach that combines the Kernel Search (a heuristic framework for MILP problems) and
a modified ε-constraint method. During the execution, a sequence of mono-objective optimization
problems is solved, and the results obtained for every problem are exploited in the solution of
the following one. Testing on benchmark instances shows that the proposed approach is able to
compute in reasonable computational time a very accurate approximation of the trade-off curve
between the two objectives, where each point of the curve is associated with an actual portfolio
composition. The approximated curve may allow a fund manager to decide more carefully the most
suitable portfolio composition.

Future work may take two directions. The first is the application of the approach to different
bi-objective portfolio optimization problems. The second is the extension of the method to general
bi-objective or multi-objective MILP problems.
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[2] M.J. Alves and J. Cĺımaco. A review of interactive methods for multiobjective integer and
mixed-integer programming. European Journal of Operational Research, 180(1):99–115, 2007.

[3] K.P. Anagnostopoulos and G. Mamanis. A portfolio optimization model with three objectives
and discrete variables. Computers & Operations Research, 37(7):1285–1297, 2010.

32



[4] K. Andriosopoulos, M. Doumpos, N.C. Papapostolou, and P.K. Pouliasis. Portfolio optimiza-
tion and index tracking for the shipping stock and freight markets using evolutionary algo-
rithms. Transportation Research Part E: Logistics and Transportation Review, 52(0):16–34,
2013.

[5] E. Angelelli, R. Mansini, and M.G. Speranza. Kernel search: A general heuristic for the
multi-dimensional knapsack problem. Computers & Operations Research, 37(11):2017–2026,
2010.

[6] E. Angelelli, R. Mansini, and M.G. Speranza. Kernel search: A new heuristic framework for
portfolio selection. Computational Optimization and Applications, 51(1):345–361, 2012.

[7] J.E. Beasley. Portfolio optimisation: Models and solution approaches. In Topaloglu H., editor,
Tutorials in Operations Research, Vol. 10, pages 201–221. INFORMS, 2013.

[8] J.E. Beasley, N. Meade, and T.-J. Chang. An evolutionary heuristic for the index tracking
problem. European Journal of Operational Research, 148(3):621–643, 2003.

[9] I.R.C. Buckley and R. Korn. Optimal index tracking under transaction costs and impulse
control. International Journal of Theoretical and Applied Finance, 1(3):315–330, 1998.

[10] N.A. Canakgoz and J.E. Beasley. Mixed-integer programming approaches for index tracking
and enhanced indexation. European Journal of Operational Research, 196(1):384–399, 2009.

[11] V. Chankong and Y.Y. Haimes. Multiobjective Decision Making: Theory and Methodology.
North-Holland, 1983.

[12] S.C. Chiam, K.C. Tan, and A. Al Mamum. Evolutionary multi-objective portfolio optimization
in practical context. International Journal of Automation and Computing, 5(1):67–80, 2008.

[13] S.C. Chiam, K.C. Tan, and A. Al Mamun. Dynamic index tracking via multi-objective evolu-
tionary algorithm. Applied Soft Computing, 13(7):3392–3408, 2013.

[14] C.A. Coello Coello, G.B. Lamont, and D.A. Van Veldhuizen. Evolutionary Algorithms for
Solving Multi-Objective Problems. Springer, 2nd edition, 2007.

[15] G. di Tollo and D. Maringer. Metaheuristics for the index tracking problem. In M.J. Geiger,
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