
DATA DEPENDENCE FOR THE AMPLITUDE EQUATION

OF SURFACE WAVES

PAOLO SECCHI

Abstract. We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic con-

servation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlin-
earity. For example, this equation describes the propagation of nonlinear Rayleigh waves [7], surface

waves on current-vortex sheets in incompressible MHD [1, 2] and on the incompressible plasma-vacuum

interface [13].
The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in

noncanonical variables was shown in [9, 13]. In the present paper we prove the continuous dependence

in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the
problem in the classical sense of Hadamard.

1. Introduction

In the present paper we consider the following equation

ϕt + 1
2H[Φ2]xx + Φϕxx = 0, Φ = H[ϕ] . (1)

Here H denotes the Hilbert transform defined by

H[ϕ](x) =
1

π
p.v.

∫ +∞

−∞

ϕ(y)

x− y
dy,

and such that
F [H[ϕ]] = −i sgn(k)F [ϕ],

for F denoting the Fourier transformation.
This is an asymptotic nonlocal, Hamiltonian evolution equation in one space dimension, with quadratic

nonlinearity. For example, the equation describes the propagation of nonlinear Rayleigh waves [7], surface
waves on current-vortex sheets in incompressible MHD [1, 2] and on the incompressible plasma-vacuum
interface [13], where in the vacuum part the electric and magnetic fields are ruled by the Maxwell equa-
tions. In a sense this is a canonical model equation for nonlinear surface wave solutions of hyperbolic
conservation laws, analogous to the inviscid Burgers equation for bulk waves.

Equation (1) also admits the alternative spatial form

ϕt + [H,Φ]Φxx + H[Φ2
x] = 0 , (2)

where [H,Φ] is the commutator of H with multiplication by Φ, see [10]. The alternative form (2) shows
that (1) is an equation of first order, due to a cancelation of the second order spatial derivatives appearing
in (1).

The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in
noncanonical variables was shown in [9, 13]. In the present paper we prove the continuous dependence
in strong norm of solutions on the initial data. This completes the proof of the well-posedness of (1) in
the classical sense of Hadamard, after existence and uniqueness. As written in Kato’s paper [11], this
part may be the most difficult one, when dealing with hyperbolic problems. Our method is somehow
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inspired by Beirão da Veiga’s perturbation theory for the compressible Euler equations [3, 4], and its
application to the problem of convergence in strong norm of the incompressible limit, see [5, 12]. Instead
of directly estimating the difference between the given solution and the solutions to the problems with
approximating initial data, the main idea is to make a triangularization with the more regular solution
to a suitably chosen close enough problem.

Numerical computations [1, 7] show that solutions of (1) form singularities in which the derivative ϕx
blows up, but ϕ appears to remain continuous. As far as we know, the global existence of appropriate
weak solutions is an open question.

1.1. The kernel. Equation (1) can be written as

ϕ̂t(k, t) + i sgn(k)

∫ +∞

−∞
Λ(k− `, `) ϕ̂(k− `, t) ϕ̂(`, t) d` = 0 , ∀ k 6= 0 , (3)

for ϕ̂ = F [ϕ], with the kernel Λ defined by

Λ(k, `) = − 2|k + `| |k| |`|
|k + `|+ |k|+ |`|

. (4)

Λ(k, `) is perhaps the simplest kernel arising for surface waves. It satisfies the properties

Λ(k, `) = Λ(`, k) (symmetry), (5a)

Λ(k, `) = Λ(−k,−`) (reality), (5b)

Λ(αk, α`) = α2Λ(k, `) ∀α > 0 (homogeneity), (5c)

Λ(k + `,−`) = Λ(k, `) ∀k, ` ∈ R (Hamiltonian). (5d)

The value 2 of the scaling exponent in (5c) is consistent with the dimensional analysis in [2] for surface
waves. It is shown by Al̀ı et al. [2] that (5d) is a sufficient condition for (3), in addition to (5a), (5b), to
admit a Hamiltonian structure, see also [7, 8].

1.2. Noncanonical variables and existence of the solution. As in [9] we introduce the noncanonical
dependent variable ψ(x, t) defined by

ψ(x, t) = |∂x|1/2ϕ(x, t), ψ̂(k, t) = |k|1/2ϕ̂(k, t).

Then rewriting equation (3) in terms of ψ gives

ψ̂t(k, t) + i k

∫ +∞

−∞
S(k − `, `) ψ̂(k − `, t) ψ̂(`, t) d` = 0 , ∀ k 6= 0 , (6)

with kernel S given by

S(k, `) =
Λ(k, `)

|k`(k + `)|1/2
= − 2|k`(k + `)|1/2

|k + `|+ |k|+ |`|
(7)

The definition of S is extended by setting

S(k, `) = 0 if k` = 0 .

S obviously satisfies

S(k, `) = S(`, k) (symmetry), (8a)

S(k, `) = S(−k,−`) (reality), (8b)

S(αk, α`) = α1/2S(k, `) ∀α > 0 (homogeneity), (8c)

S(k + `,−`) = S(k, `) ∀k, ` ∈ R (Hamiltonian). (8d)

Moreover S satisfies
|S(k − `, `)| ≤ min{|k|1/2, |k − `|1/2, |`|1/2}. (9)

The corresponding spatial form of (6) is

∂tψ + ∂xa(ψ,ψ) = 0 , (10)
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where the bilinear form a is defined by

â(ψ, φ)(k, t) =

∫ +∞

−∞
S(k − `, `) ψ̂(k − `, t) φ̂(`, t) d`. (11)

(10) has the form of a nonlocal Burgers equation, like (2.8) in [9], or (1.1) in [6].
We consider the initial value problem for the noncanonical equation (10), (11), supplemented by an

initial condition

ψ(x, 0) = ψ0(x). (12)

The existence and uniqueness of the solution to (10)–(12) easily follows by adapting the proof of Hunter
[9] (given for the periodic setting) to our case.

Theorem 1. For any ψ0 ∈ Hs(R), s > 2, the initial value problem (10)–(12) has a unique local solution

ψ ∈ C(I∗;H
s(R)) ∩ C1(I∗;H

s−1(R))

defined on the time interval I∗ = (−τ∗, τ∗), where

τ∗ =
1

Cs‖ψ0‖1−2/sL2(R) ‖ψ0‖2/sHs(R)

, (13)

for a suitable constant Cs. Moreover ψ satisfies

‖ψ(t)‖L2 = ‖ψ0‖L2 , (14)

‖ψ(t)‖Hs(R) ≤ ‖ψ0‖Hs(R)
(

1− Cs‖ψ0‖1−2/sL2(R) ‖ψ0‖2/sHs(R)|t|
)−s/2

, ∀t ∈ I∗. (15)

For the proof of Theorem 1 we refer the reader to [9, 13], see also [14].

1.3. The main result. Now we state the main result of this paper about the continuous dependence in
strong norm of solutions on the initial data.

Theorem 2. Let s > 2. Let us consider ψ0 ∈ Hs(R) and a sequence {ψn0 }n∈N ⊂ Hs(R) such that
ψn0 → ψ0 strongly in Hs(R), as n→ +∞. Let ψ ∈ C(I;Hs(R))∩C1(I;Hs−1(R)) and ψn ∈ C(I;Hs(R))∩
C1(I;Hs−1(R)) be the solutions of (10), (11), with initial data ψ0 and ψn0 respectively, provided by
Theorem 1, where we may assume without loss of generality that all solutions are defined on a common
time interval I = [−T, T ], with 0 < T < τ∗

1. Then

ψn → ψ strongly in C(I;Hs(R)), as n→ +∞. (16)

Notice that, using the a priori estimate (15) and standard arguments, it is rather easy to show the
continuous dependence of solutions on the initial data in the topology of C(I;Hs−ε(R)), for all small
enough ε > 0. Instead, in Theorem 2 we prove the continuous dependence precisely in the topology of
C(I;Hs(R)).

From Theorem 1 and Theorem 2 we obtain that the initial value problem (10)–(12) is well-posed in
Hs in the classical sense of Hadamard.

The rest of the paper is organized as follows. In Section 2 we introduce some notation and give
preliminary technical results. In Section 3 we prove our main Theorem 2.

1This assumption is a consequence of the convergence ‖ψn
0 ‖Hs → ‖ψ0‖Hs and the formula for the maximal time of

existence (13).
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2. Preliminary results

2.1. Notation. In the paper we denote by C generic positive constants, that may vary from line to line
or even inside the same formula.

For nonnegative real numbers s we consider standard Sobolev spaces Hs = Hs(R) normed by

‖ψ‖Hs =

(∫ +∞

−∞

(
1 + |k|2

)s |ψ̂(k)|2dk
)1/2

, ψ̂ = F [ψ].

We also introduce the homogeneous space Ḣs(R),

Ḣs = Ḣs(R) =

{
ψ : R→ R :

∫ +∞

−∞
|k|2s|ψ̂(k)|2 dk < +∞

}
.

As inner product and norm in Ḣs, we use2

〈ψ, φ〉s =

∫ +∞

−∞
|k|2sψ̂(k)φ̂(−k) dk, ‖ψ‖s =

(∫ +∞

−∞
|k|2s|ψ̂(k)|2dk

)1/2

.

In particular we have

‖ψ‖L2(R) = ‖ψ‖0 =

(∫ +∞

−∞
|ψ̂(k)|2dk

)1/2

.

2.2. The bilinear form. Let us consider the bilinear form a defined by (11). We first recall the properties
of a proven in [9], here adapted to the case on the whole real line.

Proposition 3. Let a(ψ, φ) be defined by (11) and let s > 1. Then

(a) a : Ḣs × Ḣs → Ḣs is a bounded symmetric bilinear form.

(b) For all ψ, φ ∈ Ḣs ∩ Ḣs+1,

a(ψ, φ)x = a(ψx, φ) + a(ψ, φx). (17)

(c) For all ψ, φ,Ψ ∈ L2 ∩ Ḣs,

(ψ, a(φ,Ψ))L2 = (φ, a(Ψ, ψ))L2 (18)

and there is a constant C > 0 such that

|(ψ, a(φ,Ψ))L2 | ≤ C‖ψ‖s‖φ‖0‖Ψ‖0. (19)

Proof. See [9]. �

For the sequel we fix a real number 0 < α < 1, needed for the estimate

‖|k|1/2ĝ‖L1 ≤ C‖g‖H1+α ∀g ∈ H1+α. (20)

In the following proposition we give some more properties of a.

Proposition 4. (a) Given any s ≥ 0 and a fixed real number 0 < α < 1, there exists a constant

C > 0 such that, for all ψ, φ ∈ Ḣs ∩H1+α,

‖a(ψ, φ)‖s ≤ C (‖ψ‖s‖φ‖H1+α + ‖ψ‖H1+α‖φ‖s) . (21)

In particular, if s > 0, there exists a constant C > 0 such that, for all ψ, φ ∈ Hs ∩H1+α,

‖a(ψ, φ)‖Hs ≤ C (‖ψ‖Hs‖φ‖H1+α + ‖ψ‖H1+α‖φ‖Hs) . (22)

(b) There exists a constant C > 0 such that, for all ψ ∈ H2+α,Ψ ∈ H1,

|(a(ψ,Ψ)x,Ψ)L2 | ≤ C‖ψ‖2+α‖Ψ‖20. (23)

2If φ is real then φ̂(k) = φ̂(−k).
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Proof. The proof of (a) is essentially given in [9] and we repeat it for the sake of reader’s convenience.
For the sake of brevity in the following calculations we don’t write explicitly the dependence on time t.
Using (11) we get

‖a(ψ, φ)‖2s =

∫ +∞

−∞
|k|2s

∣∣∣â(ψ, φ)(k)
∣∣∣2 dk =

∫ +∞

−∞
|k|2s

∣∣∣∣∫ +∞

−∞
S(k − `, `) ψ̂(k − `) φ̂(`) d`

∣∣∣∣2 dk. (24)

For s ≥ 0 and k, ` ∈ R, we have

|k|s ≤ Cs(|k − `|s + |`|s).

Using this inequality and (9) in (24) we get

‖a(ψ, φ)‖2s ≤ C
∫ +∞

−∞

∣∣∣∣∫ +∞

−∞
(|k − `|s + |`|s) min{|k|1/2, |k − `|1/2, |`|1/2}|ψ̂(k − `) φ̂(`)| d`

∣∣∣∣2 dk
≤ C

∫ +∞

−∞

∣∣∣∣∫ +∞

−∞

(
|k − `|s|`|1/2 + |k − `|1/2|`|s

)
|ψ̂(k − `) φ̂(`)| d`

∣∣∣∣2 dk
= C

∫ +∞

−∞

∣∣∣(|k|s|ψ̂|) ∗ (|k|1/2|φ̂|) + (|k|1/2|ψ̂|) ∗ (|k|s|φ̂|)
∣∣∣2 dk,

(25)

where we have introduced the convolution

f̂ ∗ ĝ(k) =

∫ +∞

−∞
f̂(k − `)ĝ(`) d`.

Using Young’s inequality

‖f̂ ∗ ĝ‖L2 ≤ ‖f̂‖L2‖ĝ‖L1 ,

and (20), from (25) we readily obtain

‖a(ψ, φ)‖s ≤ C
(
‖|k|sψ̂‖L2‖|k|1/2φ̂‖L1 + ‖|k|1/2ψ̂‖L1‖|k|sφ̂‖L2

)
≤ C (‖ψ‖s‖φ‖H1+α + ‖ψ‖H1+α‖φ‖s) ,

that is (21). The proof of (22) follows combining (21) for s > 0 and for s = 0.
In order to show (23) we proceed as follows. Using integrations by parts and the properties of a given

in Proposition 3 we compute that

(a(ψ,Ψ)x,Ψ)L2 = −(a(ψ,Ψ),Ψx)L2

= −(ψ, a(Ψ,Ψx))L2 = − 1
2 (ψ, a(Ψ,Ψ)x)L2 = 1

2 (ψx, a(Ψ,Ψ))L2 .
(26)

Using (19) with s = 1 + α > 1 in (26) gives

|(a(ψ,Ψ)x,Ψ)L2 | ≤ C‖ψx‖1+α‖Ψ‖20 = C‖ψ‖2+α‖Ψ‖20,

that is (23). �

We conclude this preliminary section with one commutator estimate that will be used in the proof of
the main result Theorem 2.

Proposition 5. Given any s > 2 and a fixed real number 0 < α < 1, there exists a constant C > 0 such
that, for all ψ ∈ Hs ∩H2+α, Ψ ∈ Hs−1 ∩H1+α,

‖[〈∂x〉s−1; a(ψ, ·)x]Ψ‖L2 ≤ C (‖ψ‖Hs‖Ψ‖H1+α + ‖ψ‖H2+α‖Ψ‖Hs−1) , (27)

where 〈∂x〉 = (1 + |∂x|2)1/2 is the Fourier multiplier in the variable x, and the commutator denotes

[〈∂x〉s−1; a(ψ, ·)x]Ψ = 〈∂x〉s−1 (a(ψ,Ψ)x)− a(ψ, 〈∂x〉s−1Ψ)x.
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Proof. From the definition of the commutator we have that its Fourier transform is(
[〈∂x〉s−1; a(ψ, ·)x]Ψ

)∧
(k) = ik〈k〉s−1â(ψ,Ψ)(k)− ik

(
a(ψ, 〈∂x〉s−1Ψ)

)∧
(k)

= ik

∫ +∞

−∞
(〈k〉s−1 − 〈`〉s−1)S(k − l, l)ψ̂(k − `)Ψ̂(`) d`.

(28)

Using (9) and the estimates

|k| ≤ |k − `|+ |`|,

|〈k〉s−1 − 〈`〉s−1| ≤ C|k − `|(〈k〉s−2 + 〈`〉s−2) ≤ C|k − `|(〈k − `〉s−2 + 〈`〉s−2),

|k| |〈k〉s−1 − 〈`〉s−1| ≤ C|k − `|(〈k − `〉s−1 + 〈`〉s−1),

gives∣∣∣([〈∂x〉s−1; a(ψ, ·)x]Ψ
)∧

(k)
∣∣∣ ≤ C ∫ +∞

−∞
|k − `|(〈k − `〉s−1 + 〈`〉s−1)|S(k − l, l)||ψ̂(k − `)Ψ̂(`)| d`

≤ C
∫ +∞

−∞
|k − `|(〈k − `〉s−1 + 〈`〉s−1) min{|k|1/2, |k − `|1/2, |`|1/2} |ψ̂(k − `)Ψ̂(`)| d`

≤ C
∫ +∞

−∞
〈k − `〉s|ψ̂(k − `)| |`|1/2|Ψ̂(`)|+ |k − `|3/2|ψ̂(k − `)| 〈`〉s−1|Ψ̂(`)| d`

= C
(

(〈k〉s|ψ̂| ∗ |k|1/2|Ψ̂|+ |k|3/2|ψ̂| ∗ 〈k〉s−1|Ψ̂|
)
.

(29)

Using again Young’s inequality, (20) and Plancherel’s theorem we get

‖[〈∂x〉s−1; a(ψ, ·)x]Ψ‖L2 ≤ C
(
‖〈k〉sψ̂‖L2‖|k|1/2Ψ̂‖L1) + ‖|k|3/2ψ̂‖L1‖〈k〉s−1Ψ̂‖L2

)
≤ C (‖ψ‖Hs‖Ψ‖H1+α + ‖ψ‖H2+α‖Ψ‖Hs−1) ,

(30)

that is (27). �

3. Proof of Theorem 2

From Theorem 1 we can easily obtain the following result.

Proposition 6. Under the assumptions of Theorem 1, given any T such that 0 < T < τ∗, there exist
constants K > 0 and β > 0, depending on T and ‖ψ0‖Hs(R), such that, for all initial data ψ′0 ∈ Hs(R)
with ‖ψ′0 − ψ0‖Hs(R) ≤ β, the solution ψ′ of (10), (11), with initial data ψ′0, satisfies

‖ψ′(t)‖Hs(R) ≤ K‖ψ′0‖Hs(R), ∀t ∈ [−T, T ]. (31)

Proof. For any T such that 0 < T < τ∗, with τ∗ given in (13), we define δ > 0 from

1− Cs‖ψ0‖1−2/sL2(R) ‖ψ0‖2/sHs(R)T = 2δ.

Let β > 0 be such that, if ‖ψ′0 − ψ0‖Hs(R) ≤ β then

1− Cs‖ψ′0‖
1−2/s
L2(R) ‖ψ

′
0‖

2/s
Hs(R)T ≥ δ.

From (15) for ψ′ we get (31) with K = δ−s/2. �

As a consequence of Proposition 6 and convergence of the sequence {ψn0 }n∈N to ψ0 in Hs, from now
on we assume, without loss of generality, that the sequence of solutions {ψn}n∈N is uniformly bounded
in Hs on the common time interval I = [−T, T ], i.e. there exists K ′ > 0 such that

‖ψn(t)‖Hs(R) ≤ K‖ψn0 ‖Hs(R) ≤ K ′, ∀t ∈ I, ∀n. (32)

Proposition 7. Let s > 2. Under the assumptions of Theorem 2 the sequence of solutions {ψn}n∈N
converges to ψ strongly in C(I;Hs−1).
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Proof. We take the difference of equation (10) for ψ and ψn and use the properties of Proposition 3 to
get the equation

(ψ − ψn)t + a(ψ + ψn, ψ − ψn)x = 0 .

Using (23) we compute that∣∣∣∣12 d

dt
‖ψ − ψn‖20

∣∣∣∣ = |(a(ψ + ψn, ψ − ψn)x, ψ − ψn)L2 | ≤ C‖ψ + ψn‖H2+α‖ψ − ψn‖20.

Let α > 0 be small enough so that s ≥ 2 +α. It follows from (32) that the sequence {ψn}n∈N is bounded
in H2+α, uniformly for t ∈ I, and we get∣∣∣∣12 d

dt
‖ψ − ψn‖20

∣∣∣∣ ≤ C‖ψ − ψn‖20. (33)

Applying Gronwall’s lemma we obtain from (33)

‖(ψ − ψn)(t)‖20 ≤ e2CT ‖ψ0 − ψn0 ‖20 t ∈ I,

which gives the strong convergence in C(I;L2). By interpolation and the uniform boundedness in Hs we
get

‖(ψ − ψn)(t)‖Hs−1 ≤ C‖(ψ − ψn)(t)‖1−1/sHs ‖(ψ − ψn)(t)‖1/sL2 ≤ C‖(ψ − ψn)(t)‖1/sL2 , t ∈ I,

which gives the thesis. �

Remark 8. Obviously, by the similar argument with a finer interpolation we could prove the strong
convergence of ψn to ψ in C(I;Hs−α), for all small enough α > 0. However, this is useless for the
following argument.

We take two spatial derivatives of (10) and obtain

ψxxt + 2a(ψ,ψxx)x = −2a(ψx, ψx)x. (34)

For convenience let us denote

F = −2a(ψx, ψx)x.

Using Proposition 4 we compute

‖F‖Hs−2 ≤ 2‖a(ψx, ψx)‖Hs−1 ≤ C‖ψx‖H1+α‖ψx‖Hs−1 ≤ C‖ψ‖H2+α‖ψ‖Hs , (35)

for α > 0 such that 2 + α ≤ s, and we deduce that F ∈ C(I;Hs−2). Moreover ψ0xx = ∂2xψ0 ∈ Hs−2.
Given ε > 0, let us take Ψε

0 ∈ Hs−1, F ε ∈ L1(I;Hs−1) such that

‖Ψε
0 − ψ0xx‖Hs−2 + ‖F ε − F‖L1(I;Hs−2) ≤ ε. (36)

Let us consider the Cauchy problem{
Ψε
t + 2a(ψ,Ψε)x = F ε, x ∈ R, t ∈ I,

Ψε(x, 0) = Ψε
0(x), x ∈ R.

(37)

Lemma 9. Let s > 2. For any ε > 0, the Cauchy problem (37) has a unique solution Ψε ∈ C(I;Hs−1)
and

‖Ψε‖C(I;Hs−1) ≤ eC‖ψ‖C(I;Hs)T
{
‖Ψε

0‖Hs−1 + ‖F ε‖L1(I;Hs−1)

}
. (38)

Proof. We apply 〈∂x〉s−1 to (37) and obtain

(〈∂x〉s−1Ψε)t + 2a(ψ, 〈∂x〉s−1Ψε)x + 2[〈∂x〉s−1; a(ψ, ·)x]Ψ = 〈∂x〉s−1F ε. (39)

Applying Proposition 4 gives∣∣(a(ψ, 〈∂x〉s−1Ψε)x, 〈∂x〉s−1Ψε)L2

∣∣ ≤ C‖ψ‖H2+α‖〈∂x〉s−1Ψε‖20 = C‖ψ‖H2+α‖Ψε‖2Hs−1 , (40)

and applying Proposition 5 gives

‖[〈∂x〉s−1; a(ψ, ·)x]Ψε‖L2 ≤ C (‖ψ‖Hs‖Ψε‖H1+α + ‖ψ‖H2+α‖Ψε‖Hs−1) . (41)
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Let α be small enough so that s ≥ 2 + α. From (39)–(41) we get∣∣∣∣12 d

dt
‖Ψε‖2Hs−1

∣∣∣∣ ≤ C‖ψ‖Hs‖Ψε‖2Hs−1 + ‖F ε‖Hs−1‖Ψε‖Hs−1 ,

and applying the Gronwall’s lemma we obtain (38). Given the a priori estimate (38), the existence and
uniqueness of the solution follows by standard arguments. �

Now we estimate the difference Ψε − ψxx, which solves the linear problem{
(Ψε − ψxx)t + 2a(ψ,Ψε − ψxx)x = F ε − F, x ∈ R, t ∈ I,
(Ψε − ψxx)(x, 0) = Ψε

0(x)− ψ0xx(x), x ∈ R.
(42)

Lemma 10. Let s > 2. For any ε > 0, the difference Ψε − ψxx satisfies the estimate

‖Ψε − ψxx‖C(I;Hs−2) ≤ Cε. (43)

Proof. As for (38) we obtain

‖Ψε − ψxx‖C(I;Hs−2) ≤ eC‖ψ‖C(I;Hs)T
{
‖Ψε

0 − ψ0xx‖Hs−2 + ‖F ε − F‖L1(I;Hs−2)

}
. (44)

Thus (43) follows from (36). �

Finally we estimate the difference between ψnxx and Ψε. The difference of the corresponding problems
is {

(Ψε − ψnxx)t + 2a(ψn,Ψε − ψnxx)x = Gn,ε, x ∈ R, t ∈ I,
(Ψε − ψnxx)(x, 0) = Ψε

0(x)− ψn0xx(x), x ∈ R,
(45)

where we have set

Gn,ε = 2a(ψn − ψ,Ψε)x + F ε − Fn, Fn = −2a(ψnx , ψ
n
x )x.

Lemma 11. Let s > 2. For any ε > 0, there exists M(ε) > 0 such that, for any n the difference Ψε−ψnxx
satisfies the estimate

‖(Ψε − ψnxx)(t)‖Hs−2

≤ C
{
ε+ ‖ψ0 − ψn0 ‖Hs +M(ε)‖ψ − ψn‖C(I;Hs−1) +

∣∣∣∣∫ t

0

‖(ψ − ψn)(τ)‖Hsdτ
∣∣∣∣} , (46)

for any t ∈ I.

Proof. As for (44) we first obtain for every t

‖(Ψε − ψnxx)(t)‖Hs−2 ≤ eC‖ψ
n‖C(I;Hs)T

{
‖Ψε

0 − ψn0xx‖Hs−2 +

∣∣∣∣∫ t

0

‖Gn,ε(τ)‖Hs−2dτ

∣∣∣∣} . (47)

Applying (21) we get for every τ

‖Gn,ε‖Hs−2 ≤ 2‖a(ψn − ψ,Ψε)x‖Hs−2 + ‖F ε − Fn‖Hs−2

≤ C‖ψn − ψ‖Hs−1‖Ψε‖Hs−1 + ‖F ε − F‖Hs−2 + ‖F − Fn‖Hs−2 ,

and integrating this inequality in τ between 0 and t gives∣∣∣∣∫ t

0

‖Gn,ε‖Hs−2dτ

∣∣∣∣ ≤ CTM(ε)‖ψn − ψ‖C(I;Hs−1)

+

∣∣∣∣∫ t

0

‖F ε − F‖Hs−2dτ

∣∣∣∣+

∣∣∣∣∫ t

0

‖F − Fn‖Hs−2dτ

∣∣∣∣ , (48)

where we have denoted

M(ε) := eC‖ψ‖C(I;Hs)T
{
‖Ψε

0‖Hs−1 + ‖F ε‖L1(0,T ;Hs−1)

}
,

that is the right-hand side of (38). On the other hand, we have

‖F − Fn‖Hs−2 ≤ 2‖a(ψx − ψnx , ψx + ψnx )‖Hs−1 ≤ C‖ψx − ψnx‖Hs−1‖ψx + ψnx‖Hs−1
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for all τ , which yields, thanks to the uniform boundedness of ψn in C(I;Hs),∣∣∣∣∫ t

0

‖F − Fn‖Hs−2dτ

∣∣∣∣ ≤ C ∣∣∣∣∫ t

0

‖ψ − ψn‖Hsdτ
∣∣∣∣ . (49)

Using (36), (48), (49) we get

‖Ψε
0 − ψn0xx‖Hs−2 +

∣∣∣∣∫ t

0

‖Gn,ε(τ)‖Hs−2dτ

∣∣∣∣
≤ ε+ ‖ψ0 − ψn0 ‖Hs + CTM(ε)‖ψn − ψ‖C(I;Hs−1) + C

∣∣∣∣∫ t

0

‖(ψ − ψn)(τ)‖Hsdτ
∣∣∣∣ . (50)

Using again the uniform boundedness of ψn in C(I;Hs), from (47), (50) we get (46). �

Proof of Theorem 2. Adding (43), (46) gives

‖(ψxx − ψnxx)(t)‖Hs−2 ≤ ‖(Ψε − ψxx)(t)‖Hs−2 + ‖(Ψε − ψnxx)(t)‖Hs−2

≤ C
{
ε+ ‖ψ0 − ψn0 ‖Hs +M(ε)‖ψ − ψn‖C(I;Hs−1) +

∣∣∣∣∫ t

0

‖(ψ − ψn)(τ)‖Hsdτ
∣∣∣∣} . (51)

Using the estimate

‖ψ − ψn‖Hs ≤ ‖ψ − ψn‖Hs−1 + ‖ψxx − ψnxx‖Hs−2 ,

and applying the Gronwall lemma in (51) we obtain

‖ψxx − ψnxx‖C(I;Hs−2) ≤ C
{
ε+ ‖ψ0 − ψn0 ‖Hs + (M(ε) + 1)‖ψ − ψn‖C(I;Hs−1)

}
. (52)

Given any δ > 0, let ε = ε(δ) be such that Cε < δ/3. With this fixed ε in M(ε), and taking account of
Proposition 7, let n0 be such that, for any n ≥ n0,

C
{
‖ψ0 − ψn0 ‖Hs + (M(ε) + 1)‖ψ − ψn‖C(I;Hs−1)

}
< δ/3.

It follows that

‖ψxx − ψnxx‖C(I;Hs−2) < 2δ/3 ∀n ≥ n0.
Combining again with Proposition 7 we get, for a suitable n′0 ≥ n0,

‖ψ − ψn‖C(I;Hs) < δ ∀n ≥ n′0,
which concludes the proof of Theorem 2.

�
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