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Abstract: We describe the physics and modelling of frequency combs andcorresponding
temporal patterns in coherently driven, quadratically nonlinear resonators.
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High-Q microresonators driven with continuous wave (cw) lasers have recently emerged as an attractive new platform
for the generation of coherent optical frequency combs [1]. They possess the ability to create frequency combs with
very large line spacing and power per mode, thus making them suitable for a diversity of applications that cannot easily
be accessed using conventional mode-locked laser frequency combs [2].

Microresonator frequency combs studied to date arise via third-order optical “Kerr” nonlinear effects [3]; the under-
lying physics is intimately related to dynamics of coherently-drivenfibre ring resonators [4]. Unfortunately, third-order
effects do not easily permit the creation of frequency combsin particular key regions of the electromagnetic spectrum:
material dispersion obstructs the creation of combs in the visible, whilst access to mid-infrared demands for complex
and expensive pump sources. Access to those spectral regions could be viable by leveraging second-orderχ (2) non-
linear interactions, such as second-harmonic generation and/or parametric down-conversion. Experiments in silicon
nitride [5] and aluminium nitride [6] microresonators have indeed demonstrated that a weakχ (2) can lead to the in-
tracavity conversion of a Kerr frequency comb to shorter wavelengths. More significantly, however, experiments in
bulk free-space cavities have demonstrated that frequency combs can arisepurelythrough second-orderχ (2) nonlinear
effects [7, 8], thereby alluding to a fundamentally new paradigm of frequency comb generation. The exploration of
this new paradigm calls for theoretical models that can accurately describe the underlying physics. Although many
theoretical studies have been reported on cw-driven quadratically nonlinear cavities, the investigations have hitherto
involved only a small number (typically up to 4) frequency components, or explored parameter regimes that may not
be relevant for realistic dispersive systems.

In this talk, we present model equations that enable accurate numerical studies and concise theoretical analysis
of frequency comb generation in dispersive, quadraticallynonlinear resonators [9, 10]. We apply our models to the
particular case of frequency comb generation in intracavity SHG, where experiments have recently been reported [8],
and obtain simulation results that are in excellent agreement with measurements. Our study reveals that the onset of
frequency comb formation is activated by the large walk-offbetween the fundamental and the second-harmonic fields.

We consider slowly-varying electric field envelopesA andB centred atω0 and 2ω0, circulating in a dispersive ring
resonator that is driven with a cw fieldAin atω0. We assume, for simplicity, that the resonator is made entirely of aχ (2)

medium with lengthL, that the SHG processω0+ω0 = 2ω0 is almost phase-matched, and that the resonator has high
finesse (at least) around the fundamental frequency. We havefound that, under these conditions, the second-harmonic
field is dynamically slaved to the fundamental field across a wide range of realistic conditions [9, 10]. Moreover,
restricting the more generalχ (2) model equations to the case of intracavity SHG, we have derived the following
mean-field equation for the the field envelope at the fundamental frequency:
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HeretR is the roundtrip time,α represents half the total cavity losses atω0, δ0 = 2π l − φ0 is the phase detuning of
the driving field with respect to the closest cavity resonance (with orderl ), βk are the dispersion coefficients around
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ω0, andθ is the power transmission coefficient of the coupler used to inject the driving fieldAin into the cavity. The
continuous variablet is aslow timethat measures the evolution of the field envelope over several roundtrips, whilst
τ is a fast timevariable that allows for the description of the field profile.κ describes the strength of the quadratic
nonlinearity,⊗ denotes convolution andI(τ) is a nonlinear response function that incorporates the resonant cavity
configuration as well as the interaction with the second-harmonic field (including walk-off). Notably, the functional
form of I(τ) is different for singly and doubly resonant cavity constructions (see [9] and [10] for details).

Equation (1) governs the temporal and spectral dynamics of intracavitySHG. We have confirmed its validity by
comparing its predictions against experimental observations reported in a singly resonant free-space intracavity SHG
system. To this end, Fig.1 shows experimentally measured [8] and numerically simulated spectra around the funda-
mental frequency for two different sets of cavity parameters (see [9]). Clearly, the simulation results are in excellent
quantitative agreement with experimental observations, thus corroborating the validity of Eq. (1). At this point we
remark that the individual comb lines are not visible in Figs. 1(b) and (d) due to their dense 493 MHz spacing.
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Fig. 1. (a, b) Experimentally measured spectra around the fundamental frequency in a singly resonant
cavity SHG system (adapted from [8]). (c, d) Corresponding results from numerical simulations. The
pump-cavity parameters are different in (a, c) and (b, d). For more details, see [9].

Closer analysis of the simulation results reveals that the comb formation initiates from a modulation instability
(MI) that is driven by the well-known “internally-pumped” OPO process [8]. To gauge the conditions under which MI
(hence, comb formation) manifests itself, we have also examined the linear stability of Eq. (1). Our analysis shows
that the temporal walk-off between the fundamental and the second-harmonic fields plays a decisive role in the MI
dynamics. For example, in the singly-resonant case, we find that MI only emerges for sufficiently large walk-off values.

In conclusion, we have theoretically examined the generation of frequency combs and corresponding temporal
patterns in dispersive, quadratically nonlinear cavities[9, 10]. Considering cavity-enhanced SHG as a representative
example, we have derived a single mean-field equation that describes the intracavity dynamics. Results from numerical
simulations show excellent agreement with experimental observations. Although we have focussed on intracavity
SHG, we expect our general equations and results to resonateacross various configurations.
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