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Abstract:  We describe the physics and modelling of frequency combscamgsponding
temporal patterns in coherently driven, quadraticallylimear resonators.

OCIS codes: 190.4975 Parametric processes, 230.5750 Resonators.

High-Q microresonators driven with continuous wave (c\8ela have recently emerged as an attractive new platform
for the generation of coherent optical frequency conipsThey possess the ability to create frequency combs with
very large line spacing and power per mode, thus making thutiadxde for a diversity of applications that cannot easily
be accessed using conventional mode-locked laser fregueenabs PJ.

Microresonator frequency combs studied to date arise irid-tirder optical “Kerr” nonlinear effects][; the under-
lying physics is intimately related to dynamics of cohelgwlriven fibre ring resonatorgl]. Unfortunately, third-order
effects do not easily permit the creation of frequency comiparticular key regions of the electromagnetic spectrum:
material dispersion obstructs the creation of combs in isible, whilst access to mid-infrared demands for complex
and expensive pump sources. Access to those spectral segpaid be viable by leveraging second-orgé& non-
linear interactions, such as second-harmonic generatidfoaparametric down-conversion. Experiments in silicon
nitride [5] and aluminium nitride §] microresonators have indeed demonstrated that a w&&lcan lead to the in-
tracavity conversion of a Kerr frequency comb to shorterel@wgths. More significantly, however, experiments in
bulk free-space cavities have demonstrated that frequencysoarbarisurelythrough second-ordert® nonlinear
effects [7, 8], thereby alluding to a fundamentally new paradigm of freigqey comb generation. The exploration of
this new paradigm calls for theoretical models that can itely describe the underlying physics. Although many
theoretical studies have been reported on cw-driven qtiedlig nonlinear cavities, the investigations have hitbe
involved only a small number (typically up to 4) frequencyrqmonents, or explored parameter regimes that may not
be relevant for realistic dispersive systems.

In this talk, we present model equations that enable aceumamerical studies and concise theoretical analysis
of frequency comb generation in dispersive, quadraticadiglinear resonator®[10]. We apply our models to the
particular case of frequency comb generation in intrage®iG, where experiments have recently been repo#ied [
and obtain simulation results that are in excellent agre¢nvéh measurements. Our study reveals that the onset of
frequency comb formation is activated by the large walkbetiveen the fundamental and the second-harmonic fields.

We consider slowly-varying electric field envelopeandB centred atw and 2w, circulating in a dispersive ring
resonator that is driven with a cw fielg, at . We assume, for simplicity, that the resonator is madeegtaf ax (2
medium with length_, that the SHG processy + ap = 2ay is almost phase-matched, and that the resonator has high
finesse (at least) around the fundamental frequency. Wefbewe that, under these conditions, the second-harmonic
field is dynamically slaved to the fundamental field acrossidewange of realistic condition®,[10]. Moreover,
restricting the more generai® model equations to the case of intracavity SHG, we have eeritrie following
mean-field equation for the the field envelope at the fundaah&equency:
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Heretg is the roundtrip timeg represents half the total cavity lossexat & = 2ml — @ is the phase detuning of
the driving field with respect to the closest cavity resomeafvith orderl), B¢ are the dispersion coefficients around
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wop, andB is the power transmission coefficient of the coupler usedjert the driving fieldA;, into the cavity. The
continuous variablé is aslow timethat measures the evolution of the field envelope over serauadtrips, whilst

T is afast timevariable that allows for the description of the field profiedescribes the strength of the quadratic
nonlinearity,® denotes convolution anid ) is a nonlinear response function that incorporates thengegocavity
configuration as well as the interaction with the seconawrenic field (including walk-off). Notably, the functional
form of I (1) is different for singly and doubly resonant cavity constiores (see 9] and [10] for details).

Equation () governs the temporal and spectral dynamics of intracéiys. We have confirmed its validity by
comparing its predictions against experimental obsevaatieported in a singly resonant free-space intracavit$ SH
system. To this end, Fid. shows experimentally measure®] fnd numerically simulated spectra around the funda-
mental frequency for two different sets of cavity parame({see 9]). Clearly, the simulation results are in excellent
guantitative agreement with experimental observatidnss torroborating the validity of EqL). At this point we
remark that the individual comb lines are not visible in Fig®) and (d) due to their dense 493 MHz spacing.
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Fig. 1. (a, b) Experimentally measured spectra around tigsfonental frequency in a singly resonant
cavity SHG system (adapted frolj]. (c, d) Corresponding results from numerical simulasiorhe
pump-cavity parameters are differentin (a, ¢) and (b, dj.nkore details, see.

Closer analysis of the simulation results reveals that trabcformation initiates from a modulation instability
(MI) that is driven by the well-known “internally-pumped®D processqd]. To gauge the conditions under which Ml
(hence, comb formation) manifests itself, we have also éxadithe linear stability of Eq.1). Our analysis shows
that the temporal walk-off between the fundamental and &eesd-harmonic fields plays a decisive role in the Ml
dynamics. For example, in the singly-resonant case, wetietdM | only emerges for sufficiently large walk-off values.

In conclusion, we have theoretically examined the geramadif frequency combs and corresponding temporal
patterns in dispersive, quadratically nonlinear cavif®4.0]. Considering cavity-enhanced SHG as a representative
example, we have derived a single mean-field equation tisatites the intracavity dynamics. Results from numerical
simulations show excellent agreement with experimentakplations. Although we have focussed on intracavity
SHG, we expect our general equations and results to resaci@ss various configurations.
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