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PHYSICS OF EXCITONIC QUASIPARTICLES: 
BEYOND CONVENTIONAL POLARITONS* 

Joseph L. BIRMAN, Maurizio ARTONI and Bing-Shen WANG 
Physics Department, Oty College of City University of New York, New York 10031, USA 

Abstract: 
Some aspects of post-conventional polariton physics are discussed. In the framework of quantum statistical properties we demonstrate that 

polaritons are intrinsically squeezed. The polariton squeezing is frequency tunable, and can be larger than that in usual atomic systems. The new 
phonoriton excitation, which gives rise to spectrum reconstruction, is reexamined on the basis of a simple model: threshold behavior, new gap 
structure and related properties are discussed. 

O. Dedication 

We are happy to be able to present this contribution to the Festschrift honoring Professor Vladimir 
Moiseevich Agranovich on his 60th birthday. It has been the privilege of one of us (JLB) to have known 
him personally for more than 20 years, and to have followed his work for nearly 30 years. If memory 
serves, we first met at the famous 1969 Conference on Solid State Theory in Moscow organized by our 
revered colleague, Professor Ilya Mikhailovich Lifshitz. But I had followed Vladimir's beautiful work 
some 10 years earlier when, with Professor Vitaly L. Ginzburg [1], he developed the theory of optical 
properties of solids including spatial dispersion effects. In the years since, I admired his work on 
excitonic effects on optical properties of semiconductors, on effects due to boundaries and surface 
waves, and generally on the electrodynamic effects of matter plus radiation. His work has been a model 
of the energetic pursuit of novel effects in solids and he sets a fine example of professionalism, insofar 
as he extracts to the last detail the important physical and mathematical consequences of results 
obtained. To those of my students working on problems of optics I give a standard instruction: read 
[Volodya] Agranovich's papers! We wish Volodya continued excellent health, and vigor and we look 
forward to his contributions to our common field of crystal (condensed matter) optics for a very long 
time to come. 

In this paper we would like to sketch some topics of our group's current interest related to extending 
the polariton concept. Rather than giving a detailed mathematical discussion, which will be presented 
elsewhere [2, 4], we shall indicate the major lines of approach, some results, and some open questions. 

1. Introduction 

The exciton-polariton idea has proven extremely fruitful in the more than 30 years since the 
introduction of this concept for the coupled electromagnetic (photon) and electronic (exciton) degrees 
of freedom. (A comprehensive review including historical references is given in ref. [1].) Among the 
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3 6 8  Electromagnetic interactions in condensed matter 

aspects of polaritons which have been proved experimentally are those related to the dispersion of the 
mixed modes, i.e., the determination of frequency-wave vector characteristics and the weak interac- 
tions of polaritons with phonons via inelastic scattering experiments. Such experiments as the multiple 
interference studies, and resonant Brillouin scattering and resonant Raman scattering gave unequivocal 
confirmation of the existence of polaritons and of their dispersion, and certain of their dynamical 
properties. 

In our recent studies our group's interests have rather turned to some different and for us new and 
exciting directions within the confines of the study of mixed, propagating modes. We have opened an 
investigation into the quantum statistical properties of the polaritons, and discovered some quite 
remarkable features of intrinsic squeezing of polaritons. We are also continuing our studies of 
progagation of optical pulses in resonant polariton media in order to explore in detail the conditions 
(parameter space) permitting propagation of pulses under nonlinear optical excitation and in particular 
possible "polariton-soliton" effects. A new study for us concerns the generalized polariton-type 
excitations consisting of phonoriton and photoriton, which were (to our knowledge) first introduced by 
L.V. Keldysh and his collaborators. In the following section we will describe some of our work on these 
topics. 

2. Polariton squeezing [2] 

Although many aspects of the physics of polaritons have been studied, the statistical properties of the 
mixed mode have been largely ignored. We have investigated this aspect of the formation of polaritons 
inside a crystal and we find that polaritons are intrinsically squeezed quasiparticles, and that the amount 
of squeezing can be varied by frequency tuning, since the squeeze factor depends on the frequency of 
the polariton. The detection of such squeezing is a topic of our present research effort. 

The theory proceeds by considering a slightly generalized Hopfield Hamiltonian for the polariton. 
Thus we assume that, when an electromagnetic wave propagates in a bounded spatially dispersive 
nonmagnetic crystal, the propagating polariton excitation consists of the oscillating electromagnetic field 
clothed by the polarization of the medium; this system can be described by a second-quantized 
Hamiltonian, 

H =  E (Hk + H - k )  + h.c. , 
k 

r - , p h  + e x c  + t t • + 0 
H k ~ t: k ak ak + E k bkbk  + Bkaka_ k -- Ckbkb_k  + i A l k a _ k b  k + 1A2kakb k + h k . 

(1) 

Here we have defined E ph = h c k / 2  + B k, E~ Xc = htok/2 - C k and 4h ° = [hck + hto k + 2(B  k - Ck) ]. 
Excitons, as boson normal modes of the electronic polarization, are represented by the annihilation and 
creation operators b k, b+~; similarly photons are represented by the operators a k, a+k. The photon 
frequency is ck  (c is the velocity of light/V~b), while that of the exciton is tok = too + h k 2 / 2 M  (t°o is the 
exciton frequency at k = 0; M is the exciton effective mass). One band of excitons is taken into account; 
others are included in a background dielectric constant e b independent of frequency and wave vector. 
We neglect anistropy, damping and loss. 

Compared to the standard Hopfield Hamiltonian the above H k includes direct exciton-exciton 
coupling and coefficients A lk ~ A2k. 
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As is straightforward to show, there is a Bogoliubov transformation which reduces the Hamiltonian 
(1) to that of a system of uncoupled harmonic oscillator normal modes */±k which diagonalize (1). The 
operators 7/_+ k are: ~?*-k = xa+-k + yb+k + Za+k + Vb~k" On the other hand, mode operators 

2i8 
a+ - ak(Ok)a, k + e ~k(Ok)b+k (2) 

can be defined such that the exciton-radiation Hamiltonian (1) is put into the form of a standard 
two-mode squeeze namiltonian (see, e.g. ,  ref. [3]): Hsq(Ok, ~k, Ok)= Ho + HI, where the free part 
H o Ok(a+a + + a+_a_) and the quadratic interaction H I + + = + =2~k(a+a_ + a a+). To accomplish this 
transformation requires the identifications 

sm ~ / C k / B k + C  k, Ok 2(EkPh+ exc , = ~k Bk + Ck,  Ok • - 1  , t , = ' ' = = E k ) 6 7r/4. (3) 

However, using (3), diagonalization based on [H, l~_+k ] = ~.k~+_k yields a dispersion relation 

2 2 2 
e k = O k - 4 ¢ k .  (4) 

The two modes a+, a are themselves certain mixtures of "bare" modes of the photon and exciton 
polarization field. The eigenenergies e k for the modes rL_ k depend upon the exciton and photon energy 
and the coupling functions Bk, B'k, Ck, C'k (eq. 3). These coupling functions can be determined by 
inverting a measured dispersion curve e k for a given material (e.g. CdS, GaAs). When the Hamiltonian 
is diagonalized and the eigenvector {x, y, z, v} is found, an identification of the coefficients will give 
{x, y, z, v} as F[Ok, Pk, Ok, ek], i.e., a mapping. 

Now let Ink) be number eigenstates of Ho, then number eigenstates In k) ~,, of the full Hamiltonian, 
H 0 + H I, can be constructed as eigenstates of the number operator IX.+IX±, where 

ix+_ = S+ (r, $ )a±S(r ,  ¢~) = a± cosh r + e 2i*-+u~ sinh r ,  

and S is a two-mode squeeze operator [3]. As a consequence, comparing IX+_ with */±k gives 
{x, y, z, v} = G[O k, r, ~b]. Then, comparing the components {x, y, z, v} given in F and G, we derive an 
expression for the squeeze factor r ,  

- 1  
r = tanh (2~k/(O k + ek) ) . (5) 

For ~b = ,r, r is positive. The k-dependence of r is understood. Furthermore, since Ink)r, ~ = 
S(r, ok)In k), it follows that the energy eigenstates of our polariton system Hamiltonian (1) correspond 
to a two-mode squeezing of the energy eigenstates Ink) of H o. We then construct particular 
superpositions of the Ink)~,¢, and use them to represent Glauber states IIxk)r,, for a given standing mode 
of the exciton-photon interacting system (1). These states are squeezed with respect to the Glauber 
states l a k) of the free Hamiltonian H 0. The distinction between In k) and [ix k) ~,, plays a significant role 
in discussing and interpreting the change in frequency from O k to e k (H o versus H)  as related to the 
presence of squeezing [3]. The intrinsic squeezed structure can be displayed by assuming that our model 
system for t < 0 is in a state l ak) and develops into the state IIxk),,, for t >  0, according to the 
Hamiltonian (1) which describes the time evolution for any e k # O k. 

We shall not give details, but simply observe that in terms of time variation, the system is described 
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by a wave packet whose shape is time varying. Two quadratures can be introduced, X~, Xk q , whose 
variances lax l 2 and [AXql 2 measure the width of the packet in momentum and coordinate space, 
respectively. These variances are state dependent. Now if ]a k) is a minimum uncertainty coherent state, 
and Iktk)r,~ is a squeezed state then in time 

<o kl laxq l  2 I o t k ) t  = 1,  (6a) 

l axz l  2 I#k>,,,, = l e-2r  + ½sinh2rsin2(ekt/h), (6b) 

and similarly for X~. 
However, for the states I/Zk)r.~ (r # 0, @ = 7r) the equality in the Heisenberg Uncertainty Principle *) 

holds only whenever cos(2ekt/h ) =--1.  During its evolution, IlZk)r, ~ does not remain a minimum 
uncertainty state; for a certain time interval its variance, due to squeezing, becomes even smaller than 
the value set by the minimum uncertainty state, while the conjugate variance becomes larger. Then, 
over the cycle, the Glauber standing polariton wave excited at the mode o~ k = eg/h and k remains the 
same but its probability distribution changes remarkably. 

As a specific example, we study an exciton-photon system in CdS, that is, an A-excitonic polariton 
in the state I/zk)r,~; we find narrowing of the width of the wavefunction below the constant minimum 
uncertainty state value, twice during each cycle of the excited mode. To demonstrate this we determine 
the couplings B k, B' k, C k, C'~. Making the approximation (eq. 3) (k ~ Bk + Ck and using the parameters 
% = 20 589 cm -t, M = 0.89 m e, e b = 9.3, numerical expressions for B k and C k can be found such that 
the dispersion relation (4) yields the measured energy-wavevector dependence for the upper branch of 
the A-exciton polariton in CdS. Inverting eq. (5) a numerical expression for r can be derived and this is 
shown in fig. 1; r represents the polariton squeeze factor. Using this result we are able to evaluate, e.g. 
at t = 0, the ratio of (6b) to (6a), that is, the amount by which the probability density distribution 
envelope of the polariton field is reduced (squeezed) with respect to the minimum uncertainty state 
value (see fig. 2). Furthermore, if we denote the time interval during which the squeezing occurs by 
ATsq , we can also evaluate it as a function of k. We find, for instance, that AT cds is predicted to be of 
the order of magnitude of half a femtosecond at the crossing point k 0 of the bare exciton and bare 
photon branches. 
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Fig. 1. The wave vector (or frequency) dependence of the squeeze factor r for CdS A-exciton (1 c) polariton upper-branch states. 

*) It requires that ([AX~[2)(IAXkP[ 2) --> 1/16. The strict equality holds for minimum uncertainty states. 
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Fig. 2. Squeezing of the probability density distribution for a Glauber polariton standing wave below the minimum uncertainty state value at a given 
time (t = 0) [see eqs (6)] for the CdS case. Maximum squeezing occurs at the crossing point k 0 of the bare photon and exciton dispersion curves. For 
k ranging in the maximum squeezing region the corresponding energy interval is of the order of 0.1 eV, on the upper polariton branch dispersion 
curve]. 

Examining figs. 1 and 2 convinces one that a quite remarkable amount of intrinsic squeezing (noise 
reduction) is possible for CdS excitonic polaritons. The experimental investigation of these and other 
statistical quantum optical properties of the mixed modes will open a new and interesting chapter of 
polariton physics. 

3. Aspects of phonoriton [4] 

The generalization of the polariton concept to the nonlinear optical regime where the resonant 
semiconductor is excited by an intense laser (electromagnetic wave) opens another new chapter of 
generalized polariton physics. (A more extensive discussion is given in ref. [4a, b].) 

This generalization of the well-known exciton-polariton was recently introduced by Ivanov and 
Keldysh to take account of the (non-linear) interaction of intense photon (laser), exciton and phonon 
systems. This is the "phonoriton". (See ref. [5] and ref. [6] for more recent (1983-87) references.) 
Starting from a low optical intensity in a spectral region where the exciton-polariton is the natural 
coupled normal mode of the system, they demonstrated (using a rather dense version of the 
Schwinger-Keldysh (CTPGF) technique) that a number of very interesting, and qualitatively new 
phenomena arise when the optical intensity is increased. At high intensity, a new type of quasiparticle 
exists, and the polariton dispersion equation becomes modified. There is a "reconstruction" which can 
produce new "gaps" or "pseudogaps" in the spectrum, and correspondingly changes in optical 
absorption/transmission above the critical intensity, 

The high-intensity reconstruction of the polariton spectrum exploited by Keldysh et al. has many 
antecedents including work of Haken and Schenzle [7] and others. 

In the course of our work we observed that phonoriton physics is closely related to the theory of 
backward resonant Brillouin scattering (RBS) such as the experiment proposed by Brenig, Zeyherand 
Birman [8]. 

While the previous theory [8] treats scattering of a polariton excited by an external (laser) field (i.e. 
initial polaritons) by phonons, the phonoriton formalism treats both such scattering and the coherent 
rescattering of the scattered polaritons. In a diagrammatic picture, the traditional RBS theory only 
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ko. 
(a) ~ (b) k 

considers the diagram of type (a), while the phonoriton theory considers the diagram of type (b). The 
usual RBS theory neglects processes (b) because of the short lifetime of phonons. But with increasing 
intensity of incident photons, the initial polariton mode becomes "macroscopically occupied", and thus 
the scattering amplitudes of phonon-exciton (polariton) increase accordingly, and processes such as (b) 
must be taken into account. That is to say, when the strength of this coupling is sufficient to compete 
with the lifetime and dephasing effects of the phonon, the phonon and scattered polaritons are 
coherently correlated by the pump polariton, and so spectrum reconstruction occurs. 

To illustrate this argument more explicitly, we introduce a Hamiltonian describing the system of 
interacting photon, exciton and longitudinal phonon, 

H ~ e x  + + • + _ + = h[to e ae ae + %beb e + 1 lO¢(aebe aebe)] 
p 

+ + -t- , + ~ h$2ecec e + ~ [iM(p - q)b;b,(ce_ q + c_(e_,) ) c.c. l 
P P,q 

(7) 

+ + + 

where a e, be, c e and a e, b e, c e are creation and annihilation operators for excitons, photons, and 
c x  phonons, respectively; toe is the energy of the exciton with momentum p; toe is the energy of the 

photon; O e that of the phonon; O~ denotes the photon-exciton interaction, 

to7 4V¢ , (8) 

where /3 is the oscillator strength of the exciton; and i M ( p - q )  is the matrix element of the 
exciton-phonon interaction. At this moment, we can estimate the values of O c. For CdS, M is of the 
order of 10 -4  c m  -1 per mode, but O c is 821 cm -1, so the latter is much stronger. 

The first line of (7) can be diagonalized to the form of polaritons (two branches), and the whole 
Hamiltonian can be written as 

+ • t q- H =  ~ topol(p)BT, pB,,p + ~ hOpcec p + ~ [1Mi,j( p - q)B~,eBj,,(ce_ q + c_<e_,)) + c.c.], 
i,p P i ,] ,p,q 

(9) 

-I- t where Bi. p is the creation operator of the ith branch of polariton with wave vector p. The Mi, j a r e  

renormalized polariton-phonon interaction matrix elements. 
Now, suppose a beam of light with frequency to o enters the system. Then the wave propagating 

within the semiconductor is a polariton. For the sake of simplicity we restrict ourselves to the case that 
there is only one branch of polariton corresponding to the frequency too. We denote this wave as 
toO = topoi(k0) w h e r e  topoi(k) is the dispersion of the polariton. When the intensity of the beam is high, 
the polariton mode k = k 0 will be "macroscopically occupied". But for all other modes, the occupation 
number is near zero. We divide the system into three parts: incident polariton, phonon and scattered 
polariton. First we concentrate on the scattered polaritons and phonons. They are coupled by the 
polariton-phonon interaction MBk+o and MBko. If the light is coherent and the intensity high enough, we 
can with good approximation replace the operator Bk+0 or B k in the interaction term by their 

• + . 0 

expectation values (Bk0) and (Bk0), i.e. c-numbers, and also 
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( EgV 11/2 
a*(t) = k ~ /  P0 e- i%'= a,oe-i°t°' 

( E g V ]  1/2 

ako = \2-~Vt~ / ' 

[ egV \1 /2  _itojt0t _itok0 t 
a(t) = k ~ )  Poe =%e 

(10) 

where o t is the group velocity of the polariton,/3 is the oscillator strength of the exciton, P0 is the 
macroscopic polarization amplitude and e s is the dielectric constant of the background. Actually, 
(Bk +) and (Bko) come from the "eigenvalues" of the annihilation operator Bk0 acting on a coherent 

. . . .  _i¢ok t 
state of polariton mode k o. After ehmmatmg the time dependent factor e o via a unitary transforma- 
tion " + ' expOtoko B kBk ), we can obtain 

+ + 
Hk= E h(tov,, - to,o)BvB , + ~ h a , _ k c p _ , c t , _  k + H~s + Hs ,  (11) 

P P 

where 

Has E "  t + + = ibM (p  - k)ako(B,cp_ko - B, cp_,0), 
P 

Hs= 2 i t t M ' ( p -  k)a,o(Br, c,o_ p - B+pCk+o_p) , 
P (12) 

are anti-Stokes and Stokes scattering Hamiltonians, respectively. Here 

M ; . / ( p -  q)= ~/~X(p)~X(q) M ( p -  q) (13) 

is the matrix element between polariton and phonon and ff~x is the weight of the exciton in the 
polariton in the ith branch. The expression for these factors will be given later. 

Now, if we only consider Ha~ , it becomes effectively a simple two-level system. The "scattered 
polariton" mode %,i - tok0 (i.e. the energy with respect to incident light) and phonon 12p_ko are coupled 

through the interaction V~0 M : , j ( p -  ko), and this interaction is proportional to the square root 
of the strength of the incident macroscopicaUy filled polariton mode. Using a standard procedure, we 
introduce a linear combination of the annihilation operators of the polariton and phonon, 

D = XBp + ycp_ k , (14) 

and demand that 

[ D, H] = - h t o  D . (15) 

We can write down the secular equation 

to - % + toko 

- iV~,?(~')q'?(k) m(p - k0) 

i V , 7 ( p ) , T x ( k )  - ko) 

to ~ ~'~P_ko 
=0 .  (16) 

The eigenvalue equation is 
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-- -- ~//i ( P ) q / i  ( ) Q  
(O, 0,. + % ) ( ~ ,  a . _ . )  = ox ox k 2,  

Q = a t M ( p  - k )  = ( V N o ) I / 2 M ( p  - k ) ,  

(17) 

(18) 

where N O is the occupation number of the incident polariton. Note that near the exciton resonance 
~O~X(k) is practically unity. The solution of this equation gives the reconstructed spectrum, or 
"phonoriton", 

tOa,z(p) = ½[% + Oko_ J, - %0 ] -+ ½~/[% - O~,_ko - %32 + ~b'"(p)Q 2 . (19) 

_1_ 2 ex 2 1 /2  A new gap, [ ( % -  Op-ko %o) + ~O ( p ) Q  ] , appears, generalizing the gap OJe0- oJt0 of the 
polariton. The new gap depends not only on the properties of the material, but is also proportional to 
the strength of the pump light. This is a salient feature of the phenomenon. 

For the case of Stokes scattering, we can introduce 

+ 
D = xBp + YCko_ p . 

The basic equation is the same as for the anti-Stokes scattering case but with some changes of the signs, 

a , -  % + a, ko 

- iV C~(p) Cx(k) M(ko - p) 

iV ¢hTX(p)cO~X(k) M(ko - p) 

oJ + Ok0_ p 
= 0 .  (20) 

The solution is 

,ol,2(p) = 1 (,,,, _ a~o_,, _ % )  _+ ½V (,,,,, - ako-,, + %)2  _ Oox(p)Q2,  (21) 

o~;,2(p) = 1(% _+ gZko-. - % + i_r) + ( - )  ½"X/ (,,,. v- a~o_" + ,% + i T )  2 _+ 4 , e " ( p ) Q  2 , 

F = 3% + Ypol , 

Y = ~'ph - Y p o l ,  

where Yph and Ypol are the inverse lifetimes of phonon and polariton, respectively. The - sign in eq. 
(22) is for Stokes (+)  and anti-Stokes ( - )  scattering, while + ( - )  is for the two branches in each case. 
This expression of phonoriton dispersion given by the two-level model is equivalent to the ~'- 
approximation in CTPGF theory [6]. We will discuss some properties of the phonoriton based on this 
model. 

(22) 

(23) 

(24) 

Note that in the case of Stokes scattering there is no real gap. 
Actually, neither polariton nor phonon has infinite lifetime, so both to ex and O have nonzero 

imaginary parts. When we treat these two variables in eqs. (19) and (21) as complex, the solution is also 
valid. We can combine the resulting expressions for both Stokes and anti-Stokes scattered phonoritons 
as follows: 
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Let us discuss some conditions for existence of a phonoriton. First, we should have the polaritons 
propagating inside the substance and they should have enough chance to interact with phonons. So, we 
need 

Re(k) % Im(k) . (25) 

This condition can be satisfied if the frequency w,, is in the range 

where mlt is the difference between longitudinal and transverse bare excitons, and y is the inverse 
lifetime of the polariton. 

In this case the weight factor of the exciton in the polariton e”“(p) is given by 

It is practically of the order of unity in the present case. 
It is clear from eq. (22) that, when the intensity of the pump light increases from zero, the change of 

the spectrum also increases. But, if the real part of the splitting is smaller than the imaginary part, the 
splitting and the spectrum reconstruction cannot manifest themselves. This condition can be expressed 
as 

Ao could be obtained from eq. (22). Physically we can understand this as follows: If the lifetime of the 
phonon and polariton is shorter then the inverse of the scattering and rescattering rate, the scattered 
polariton and phonon cannot be correlated coherently, so the only physical consequence is the real 
scattering process, not spectrum anticrossing. In order to determine the ptmrp density at which the 
phonoriton reconstruction can occur, we turn to the phonon-polariton interaction and give some 
numerical estimation. 

The exciton can interact with longitudinal acoustic phonons through deformation potential inter- 
action. In this case 

M(q) = (&--)1’21!d1~2~D~ + Dh) > 
where V is the volume of the crystal, p is the density of the material, c,, is the velocity of the acoustic 
wave, D, and D, are the deformation potential of electron and hole, respectively. 

The matrix elements of the Friihlich interaction between two 1s exciton states can be expressed as 

M(d=(2r;y?2)*‘2(; _ LJ* {[l + (~P,qa,)2]-2 - [l + ( fP,@,)*]-*} , 

where o, is the frequency of the LO phonon, e is the charge of the electron, E, and E,, are the 
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high-frequency and static dielectric constants, respectively, a B is the Bohr radius of the ls exciton. Pe 
and Ph are two factors defined as follows: 

Pe = reel(me + mh), (31) 

Ph = mh/(me + mh) ,  (32) 

where m e and m h are the effective masses of electron and hole. 
There is another interaction in noncentrosymmetric materials, namely the piezoelectric interaction 

coupling with TA phonons. For CdS, when the wave vector q is perpendicular to the Z-axis, the matrix 
element is 

M ( q ) -  e----~ els q3/2 m e - m h  (33) 
m e + m  h ' 

where els is the piezoelectric constant, CTA is the velocity of the TA acoustic waves, e b is the dielectric 
constant of the background. 

In all three cases, the interaction increases when the transfer of momentum I ql increases. (For the 
Fr6hlich interaction, the relation is not obvious, but since I ql aB in the relevant range, we can expand 
the expression, which then will be proportional to q2.) Thus, the greatest splitting will occur in the 
backscattering geometry. 

Let us take CdS as an example to estimate the value VM 2 for different scattering mechanisms. 
Numerical results for this quantity are 10 -26, 10 -28, and 10 -31 cm -4 eV 2 for the deformation, Fr6hlich 
and piezoelectric interactions, respectively. In order to detect the appearance of the gap, the splitting 
should be greater than 10 -4 eW; N O should be at least 1018-23 cm -3. From S = NoVghto, where Vg is the 

group velocity of the polariton, we can get S = 1018. 10 9. 3" 10 -12 erg/s cm 2 = 3.108 W/cm. That means 
that phonoriton reconstruction is a phenomenon occurring only under very strong radiation. The 
estimated value of Vg could vary greatly near the crossing or the bottleneck of the polariton. Of course, 
the value of S can also be small, but in this case the scattering between different branches makes the 
situation more complex, and we will discuss this elsewhere [46]. 

From eq. (22), we can also obtain a simple relation, 

Im % + Im ~o 2 = Yph + Ypol • (34) 

In the case of anti-Stokes scattering, if the splitting (the real part of Ao~) is much larger than the line 
width, the lifetime of the phonoriton is of the same order of magnitude as that of the polariton and 
related phonon. 

We can also examine the incident mode and others nearby. They are also coupled via the phonons, 
and the "coupling constant" is proportional to the density of scattered polariton modes. So these 
polariton modes are also changed, although the change is not so prominent as for scattered polaritons. 
If we treat the problem more exactly, the polariton, scattered polariton, and related phonon are all 
coupled to form the phonoriton. Actually, the scattering, rescattering, and spectrum reconstruction 
result in nonlinear absorption of the pump light [4b]. 

It should be noticed that the discussion above uses a rather strong approximation- replacing the 
operators of the pump mode by c-numbers. This is true only when the polariton is coherent, and of 
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course the treatment is similar to the semiclassical one. The limitation of this approximation is that it 
cannot be used to treat some quantum aspects of the problem, such as coherence and noise and 
dynamical behavior. On the other hand, this model gives the basic physical picture in the problem and 
enables us to relate the topic to some existing phenomenological theories of nonlinear phenomena. 

4. Concluding remarks, future directions 

Elsewhere [4a, b] we discuss in some greater detail the relationship of the phonoriton excitation 
process to the "inverse Raman scattering". Briefly, inverse Raman scattering is more closely related to 
an inverse of stimulated Raman scattering. However, the examination in some detail of this relationship 
is a subject of separate study, which also involves study of the macroscopic, phenomenological limit of 
the microscopic phonoriton theory given above. 

Experimental verification of the existence of phonoritons has been claimed [9] in several semiconduc- 
tors: CdS, HgI 2, PbI 2. But in our view the situation is not yet settled and we believe additional 
experiments are required to check or test the theory. Elsewhere we have proposed and analysed two 
experiments- Nonlinear Resonance Brillouin Scattering and Nonlinear Reflectivity- to measure the 
reconstructed dispersion due to phonoritons [4b]. 

Another direction of our study concerns the "quantum optical" properties of phonoritons. A 
preliminary examination of the Hamiltonian of eq. (7) suggests that the phonoriton quasiparticles are 
intrinsically squeezed and that the amount of squeezing can be varied by tuning, i.e. using the 
frequency dependence of the squeeze factor r. To measure the intrinsic squeezing of polaritons we 
proposed and analysed scattering experiments, an adaptation of the homodyne method to the polariton 
evanescent wave, and a special luminescence study [4a, b]. 

The brief survey of some active fines should help to support the view that generalized polariton 
physics is a very active topic with many novel and even unexpected aspects - well worthy of continued 
research. 

References 

[1] V.M. Agranovich and V.L. Ginzburg, Crystal Optics with Spatial Dispersion and Exeitons, 2rid Ed. (Springer, Berlin, 1984). 
[2] M. Artoni and J.L. Birman, Polariton squeezing, theory and experiment, Quantum Opt. 1 (1989) 91-97; Quantum optical properties of 

polariton waves, submitted to Phys. Rev. 
[3] B.L. Schumaker, Phys. Rep. 135 (1985) 317. 
[4] (a) B.-S. Wang and J.L. Birman, Phonoriton: a new elementary excitation in semiconductors under intense pump conditions, in: Festschrift for 

Prof. Kun Huang (World Scientific, Singapore, 1989/90); 
[4] (b) B.S. Wang and and J.L. Birman, Solid State Commun., to be published; Phys. Rev. B, to be published. 
[5] A.L. Ivanov and L.V. Keldysh, SOy. Phys.-JETP 57 (1983) 2341. 
[6] N.A. Gippius, L.V. Keldysh and S.G. Tikhodeev, Polariton waves near the threshold for stimulated scattering, in: Laser Optics of Condensed 

Matter, eds J.L. Birman, H.Z. Cummins and A.A. Kaplyanskii (Plenum, New York, 1987) pp. 321-329. 
[7] H. Haken and A. Schenzle, Z. Phys. 258 (1973) 231. 
[8] W. Brenig, R. Zeyher and J.L. Birman, Phys. Rev. B6 (1972) 4617. 
[9] G.S. Vyskovsldi et al., JEPT Lett. 42 (1985) 165; 

M.S. Brodin et al., Phys. Stat. Sol. 30 (1983) 735. 


