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Abstract: Microresonator frequency combs hold promise
for enabling a new class of light sources that are simul-
taneously both broadband and coherent, and that could
allow for a profusion of potential applications. In this ar-
ticle, we review various theoretical models for describing
the temporal dynamics and formation of optical frequency
combs. These models form the basis for performing numer-
ical simulations that can be used in order to better under-
stand the comb generation process, for example helping to
identify the universal comb characteristics and their differ-
ent associated physical phenomena. Moreover, models al-
low for the study, design and optimization of comb proper-
ties prior to the fabrication of actual devices. We consider
and derive theoretical formalisms based on the Ikeda map,
the modal expansion approach, and the Lugiato-Lefever
equation. We further discuss the generation of frequency
combs in silicon resonators featuring multiphoton absorp-
tion and free-carrier effects. Additionally, we review comb
stability properties and consider the role of modulational
instability as well as of parametric instabilities due to the
boundary conditions of the cavity. These instability mech-
anisms are the basis for comprehending the process of fre-
quency comb formation, for identifying the different dy-
namical regimes and the associated dependence on the
comb parameters. Finally, we also discuss the phenomena
of continuous wave bi- and multistability and its relation
to the observation of mode-locked cavity solitons.
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1 Introduction

The generation of optical frequency combs in microres-
onator devices has attracted a significant amount of re-
search interest over the last decade [1]. A continuous wave
(CW) laser source pumping an optical cavity filled with an
intensity dependent nonlinear medium permits the gen-
eration of a broad spectrum of sharp comb lines with
an equidistant frequency spacing that can span over a
full octave in bandwidth [2, 3]. Frequency comb sources
have revolutionized frequency metrology by allowing for
ultra-precise measurements of optical frequencies that
can be coherently phase-linked and compared to frequen-
cies in the radio-frequency domain in a single step [4], and
have numerous other applications to spectroscopy, opti-
cal clocks, waveform synthesis, and wavelength-division-
multiplexing sources [1].

Microresonator based sources offer an intriguing alter-
native to conventional mode-locked lasers for the genera-
tion of optical frequency combs, and allow for GHz repe-
tition rates with a reduced footprint and the potential for
on-chip integration. The generation of stable octave span-
ning combs is of particular interest for frequency metrol-
ogy, since these combs can be self-referenced to determine
the absolute frequency of each comb line. This requires the
comb lines to be equidistant and phase locked, which can
be achieved by exciting mode-locked cavity soliton pulses
inside the cavity that circulate with a periodicity of the
round-trip time, and have a frequency spacing of a sin-
gle free-spectral-range (FSR). Frequency combs spanning
a full octave have been experimentally demonstrated in
microresonators pumped by an external laser source [2, 3].
In addition, frequency comb optical clocks and the self-
referencing of microresonator frequency combs have also
been recently demonstrated after spectral broadening us-
ing pulse compression techniques in optical fibers [5, 6].

Optical frequency combs display a complex and very
rich dynamical behavior, which has led to the develop-
ment of several theoretical models for their description.
These include the Ikeda map, the modal expansion ap-
proach, and the Lugiato-Lefever equation (LLE). These
models differ essentially in what perspective is assumed

‘ (cc) BY-NC-ND © 2016 Tobias Hansson and Stefan Wabnitz, published by De Gruyter Open.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.


https://core.ac.uk/display/80138714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 — T.Hansson et al., Dynamics of microresonator frequency comb generation: models and stability

(e.g., time-domain or frequency-domain picture), and in
what simplifying assumptions are used (e.g., mean-field
approximation). Various extensions have also been made
to model the formation of combs in a host of different ma-
terials, and in the presence of perturbing effects such as
multiphoton absorption and Raman scattering. In this ar-
ticle, we seek to give a nonexhaustive review of the theory
behind frequency combs with the aim of putting the mod-
eling into a larger perspective. We will further review the
stability properties of combs, that provide the theoretical
basis for our understanding of the dynamics of the comb
formation process and the manifestation of different comb
states.

2 Modeling fundamentals

Optical frequency combs can be fundamentally described
by using the spatiotemporal Maxwell electromagnetic
wave equation for the electric field inside the resonant cav-
ity. However, while it is, in principle, possible to numeri-
cally simulate the formation of frequency combs by using,
for example finite difference time domain methods, this
is in practice extremely time-consuming. For this reason,
and also to help us identify universal characteristics and
to facilitate the comprehension of physical phenomena, it
is more advantageous to separate the spatial mode profiles
from their temporal evolution. This is the basis for all cur-
rent theoretical frequency comb formalisms, and, in par-
ticular, the modal expansion approach, which seeks to di-
rectly model the generation of frequency combs by using
linear combinations of spatial eigenmodes with time vary-
ing amplitudes [7, 8]. Time-domain methods rely on a sim-
ilar separation of the transverse mode profile from the fast
temporal variation, but use a partial differential equation
(PDE), also known from the theory of laser mode-locking
as the master equation, for modeling the dynamics of the
entire field, instead of a set of coupled mode ordinary dif-
ferential equations (ODEs).

Two major categories of microresonators are crys-
talline whispering-gallery-mode resonators and micror-
ing resonators. These differ significantly in the attainable
quality factors and in the magnitude of their Kerr non-
linearities, as well as in what fabrication and processing
techniques are used for their construction, the associated
need for mechanical polishing or the possibility of pho-
tonic chip integration and wafer processing. The spatial
properties of any resonator are critically dependent on the
shape, size, and material that make up the cavity and that
collectively determine the linear eigenmodes and eigenfre-
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quencies. These are usually found numerically by finite-
element or mode-solver simulations [9], which can be
used to obtain important characteristics such as resonance
frequencies, dispersion coefficients, and mode volumes,
however various approximate analytical models also exist
[10, 11].

The mode spectrum of a cold resonator is non-
equidistant because of cavity dispersion due to the fre-
quency varying effective refractive index, which has both
a material and a geometric contribution, and sets a limit
to the achievable comb bandwidth. Meanwhile, the mode
volume determines the nonlinear Kerr coefficient and the
concomitant strength of the nonlinear interaction. The
FSR is set by the length of the resonator circumference;
for microring resonators, the dispersion and effective area
properties may be engineered by properly designing and
tailoring the profile of the resonator cross-section [12]. Al-
together, these parameters constitute the necessary input
data that are the coefficients of the equations used for the
simulation of temporal dynamics.

In the following, we will only consider dynamical
models for describing the formation of optical frequency
combs. Further information on the modeling of spatial
mode properties can be found in the literature, for a review
see, e.g., Ref. [13].

3 The lkeda map

The most basic dynamical model is the Ikeda map [14],
which consists of an evolution equation describing the
propagation of the slowly varying field envelope inside
the resonator waveguide, together with boundary condi-
tions that couple the fields between different round-trips
together with the input pump field. The map is obtained by
considering the evolution of the field during each round-
trip in the cavity, which requires a partitioning of the tem-
poral duration of the field so that it coincides with the
round-trip time, and allows for relations between the fields
at different round trips to be written as [15, 16]

Epi1(0,7) = VOE;, + V1 - 0 En(L, 1), (1)

OEm(z,7) _ _a _ B2 0’Em(z,7)
oz T Doy
i7|Em(z, D) Em(z, T) by

where m is the discrete round-trip number. Moreover, L is
the length of the resonator circumference, 8 is the inten-
sity coupling coefficient, the phase constant ¢g = 271160,
with &y being the phase detuning of the external pump
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field from the pump mode, which for convenience, is taken
with the longitudinal mode-number I = 0, and E;, is
the external pump field amplitude. Equation (2) is a per-
turbed nonlinear Schrédinger equation (NLSE) where 8, =
d?B/dw? is the group velocity dispersion coefficient, v =
won2/(cAgg) is the nonlinear coefficient and «; is the ab-
sorption loss. Note that even though the coupling with the
pump field occurs over a finite region, it is approximated
here as being lumped in a single point.

Some insight into the interpretation of the Ikeda map
can be found by considering the propagation of a broad-
band field inside a simple linear medium. The wave equa-
tion will then determine the spectral amplitudes and
phase shifts acquired by each frequency component of the
field as it propagates through the waveguide, while the
boundary condition will select those components whose
phases add up to interfere constructively over multiple
round-trips. The boundary condition Eq.(1) is thus seen to
implement a Fabry-Perot type of filter for the comb spec-
trum.

It is convenient to use the Ikeda map as a starting
point for the derivation of other dynamical models, since
its composite nature readily permits for different nonlin-
ear wave equations to be utilized. To, for example, derive
the LLE [15, 16], it is first necessary to calculate the field
Em(L, T) that has propagated through the resonator. This
is done by using the mean-field approximation, which as-
sumes the field to be varying slowly enough over the du-
ration of the round-trip so that the z-variation of En(z, 7)
on the right-hand side of Eq.(2) may be neglected. This can
be formulated as a requirement that the detuning should
be a small parameter, i.e., the field be nearly resonant,
and that the characteristic length scales associated with
cavity-averaged dispersion and nonlinearity should both
be much longer than the cavity length L. The mean-field
approximation may still be applicable even if the intracav-
ity field varies significantly during a single roundtrip, as
occurs, for example, in a dispersion oscillating fiber-ring
cavity, just as long as the averaged dispersion is small and
the final field is not significantly perturbed from its initial
profile [17]. The solution of Eq.(2) is then approximated as

2
En(L, )~ En0,7) = - L £ (0, 7) - 2 O En0. T)
+ivL|Em(0, T)|*Em(0, 1), €))

where the terms on the right-hand side are all assumed to
be small quantities. The boundary condition Eq.(1) is also
simplified by expanding the factor multiplying the field
Em(L, T)as V1 - e % ~ 1-6/2-i8,. By inserting the so-
lution (3) into the boundary condition while keeping only
first order terms, one obtains an equation for the field at
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z =0, viz.
Ems1 = VOE;, + Em - (“iL2+ o, 1'60) Em
BoL 0*Em . 2
B R +1yL|Em|”Em. (4)

Finally a slow time variable t is introduced through the re-
lation E(t = mtg, T) = Em(z = 0, T), which by considering
t as a continuous variable (0E(t = mtg, T)/0t = [Epi1(z =
0,7) - Em(z = 0, 7)]/tR) allows for Eq.(4) to be written as
the LLE:

OE(t,7)  .poL 0°E(t,7)
ot 2 ot?
= —(a+ibo) E(t, T) + VOE;, 5)

tr — iyL|E(t, T)|*E(t, T)

with the round-trip loss @ = (a;L + 0)/2. Here ty is the
round-trip time, whereas the coupling to the pump field
and the losses are now modeled as being distributed uni-
formly along the length of the resonator.

4 Mean-field models

The Lugiato-Lefever equation (Eq.(5) derived above) is the
temporal model, which is most commonly used for de-
scribing the formation of microresonator frequency combs
in the mean-field approximation. The LLE is a type of
driven and damped NLSE that has previously been used
to model charge-density waves in one-dimensional con-
densates [18], transverse effects in diffractive optical ring
cavities [19], and temporal effects in dispersive fiber-ring
resonators [15]. In the context of microresonators, the LLE
was first introduced by Matsko et al. [20], and it describes
the evolution of the slowly varying electric field envelope
E(t, T) over multiple passes of the resonator cavity.

Equation (5) is written by using a two-time scale ap-
proach, with 7 being a fast time variable that describes the
temporal structure of the field in a reference frame mov-
ing at the group velocity. Meanwhile, t is a slow time vari-
able that measures the evolution of the round-trip aver-
aged field. The use of two-time scales is a form of multiple-
scales approach that allows for t and 7 to be treated as in-
dependent variables, even though there is, of course, only
one physical time in the problem. The frequency spectrum
is obtained by taking the Fourier transform of the field with
respect to the fast time 7, and the amplitude of this spec-
trum is evolving on the slow time scale ¢.

In order to better understand the meaning of the two-
time scales, one should note that 7 is really only defined
on a finite interval with the duration of the round-trip time,
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and that t only has arigorous meaning whenever itis an in-
teger multiple of fg. The evolution of the field on the physi-
cal time axis, and at a fixed position, can then be found by
assembling snapshots of the field E(t, T) at intervals that
are separated by the round-trip time. Indeed, the slow time
t replaces the discrete round-trip index m with a continu-
ous variable such that the field envelope satisfies the re-
lation E(t = mtg, T) = Em(z = 0, 7). The field at different
positions along the resonator circumference can then be
approximated as E(t = (m+p)tg, T), with p = z/L being an
offset such that 0 < p < 1.

Frequency-domain coupled mode equations can be
derived from the LLE by assuming a simple modal expan-
sion of the form E(t, ) = 3, Ay (e, and projecting
the equations onto each y component, which results in
(cf. 7,8, 21])

dA, () . B,L

22 =_{a+l<o_%g;)]Ay

+ivl Y AvApAg + 8(0)VOE;,. (6)
Voo

Here the summation in the nonlinear term is carried out
over frequencies satisfying the energy conservation rela-
tion Qy = Qy - Qp + Q. For Qy = /2D, /(B,L)u these cou-
pled mode equations describe the evolution of the set of
complex modal amplitudes with discrete resonant eigen-
frequencies given by the Taylor expansion w, = wo +
D1y + Doy, Using a more general frequency expansion
allows for resonance frequency shifts from avoided mode-
crossings to be included in the model [22]. Mode-crossings
lead to local changes in the dispersion that can disrupt
soliton formation, and are also an important mechanism
for the formation of frequency combs in the normal dis-
persion regime [23, 24].

Instead of using the two time scale approach, the
LLE (5) is often written by using time and angle vari-
ables [25]. The envelope field is then defined as E(9, t') =
S A )explilw; - wo)t’ - i(l - 1p)6] where A,(t') are the
modal amplitudes, [ is the mode-number, ¢’ is time, and
6 is the azimuthal angle, which can be related to the fast
time as 8 = 2717/tR. To obtain the frequency spectrum, it
is necessary to apply the Fourier transform with respect
to the angle variable 6 and not the time t'. In fact, from
the definition of the modal amplitudes [25], we have that
A(t) = expl-i(w; - wo)t'] [T E(6, ') expli(l - 15)0]d6.
Consequently, it can be understood that the evolution vari-
able t' is also here really a slow time variable that is not
directly associated with the frequency. Only if the modal
amplitudes are stationary, i.e. dA;(t')/dt’ = 0, can one ob-
tain the actual frequency spectrum by using the temporal
Fourier transform. This is not surprising from the point of
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view of the two time-scales approach, since a stationary
frequency spectrum should be identical on both the slow
and the fast time-scale.

Mean-field models such as the Lugiato-Lefever equa-
tion and the coupled mode formalism are largely favored
for the modeling of frequency comb formation. The LLE,
in particular, allows for the temporal dynamics to be de-
scribed by a single PDE, which is similar to the famil-
iar NLSE, hence it is both faster to simulate and more
amenable to analytical investigations than models with
more general validity such as those based on the Ikeda
map. In particular, the LLE allows for numerical simula-
tions to be carried out with a step length for the slow time-
scale that can be much longer than the round-trip time
[16]. Moreover, the LLE can easily be simulated by means
of the conventional split-step Fourier method [26]. Note,
however, that the same level of computational complexity
required for solving the LLE also applies to the physically
equivalent frequency domain modal expansion approach,
since Fourier methods may again be used to speed up cal-
culations by several orders of magnitude [27]. The compu-
tational efficiency, in addition to the ability of accurately
reproducing the relevant physics for power levels common
to most experimental settings, has greatly contributed to
the current popularity of mean-field models.

Besides microresonators, the above mentioned for-
malisms can also be used to model the dynamics of other
cavity systems such as dispersive fiber-ring cavities [15].
The main difference of such resonators with respect to mi-
croresonators is that they tend to be much longer, which
results in a smaller FSR that is typically in the MHz range.
This means that a very large number of modes are in-
volved for broadband combs and that numerical simula-
tions are more computationally demanding. For this rea-
son it is common to treat the mode spectrum of fiber-ring
cavities as a continuum and perform simulations with a
temporal window that is shorter than the roundtrip time.
However, extra care must then be taken to ensure that the
CW pump mode has the correct spectral amplitude since
this will depend on the duration of the time window.

5 Frequency comb generation in
silicon resonators

The evolution equations presented earlier are valid for rel-
atively narrowband combs in materials that do not suf-
fer from nonlinear losses. To accurately model frequency
combs in other circumstances, it may be necessary to gen-
eralize these models in order to include various higher-
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order effects. For the modeling of wideband combs, and
particularly for octave spanning frequency combs, it is
most often necessary to include higher-order dispersion,
which can have a profound impact on the comb spectrum.
Third-order dispersion can, for example, lead to the gen-
eration of strong dispersive waves [16, 28], while fourth-
order dispersion has been found to have a large impact
on the maximal attainable comb bandwidth [12]. Other
higher-order effects that may be important in different cir-
cumstances include self-steepening and Raman scattering
[30, 31].

Another important effect that is present in semicon-
ductor materials is multiphoton absorption [32]. The sim-
plest such nonlinear absorption is two-photon absorption
(TPA), which may occur whenever a material is pumped
with a frequency that corresponds to an energy E = hv
above the half-bandgap energy Eg/2. The magnitude of
these losses is intensity dependent, and nonlinear loss
can, therefore, limit the amount of power that can propa-
gate in the waveguide. By absorbing two photons, TPA also
allow electrons to be excited from the valence band into
the conduction band, which generates free-carriers that
can lead to additional losses.

Besides TPA, in certain materials and wavelength
ranges, it may also be necessary to include three-photon
and higher orders of multiphoton absorption [33]. An ex-
ample of a commonly investigated material where multi-
photon absorption is critically important is silicon. Silicon
is interesting for frequency comb applications in the mid-
infrared [34] since it is CMOS compatible, it has a large
nonlinear coefficient (10? times that of silica) and it is vir-
tually transparent in this wavelength range [35]. On the
other hand, silicon suffers from TPA for wavelengths be-
low 2.2 pm, and it is therefore not suitable for applications
to frequency comb generation when pumping in the near-
infrared and at telecom wavelengths.

To derive an evolution equation that can be used to
model the formation of frequency combs in silicon res-
onators, we start from a modified Ikeda map that describes
the free-carrier dynamics inside the waveguide. To this
end, the NLSE (2) is replaced with the following system of
PDEs, c.f. Ref. [36]

. k
M = —%Em(z, T) + IZ % (E) Em(z, T)

0z oT
k=2

i 0. .
+ (1 + woar> iv(1 +ir)|Em(z, T)|2Em(Z, T)

-9

51+ iWN(z, 1), 7)

ONZ'(z,7) _ Brea |Em(z, T)*  NI'(z,7)

or 2w A% tost ®)
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The second term on the right hand side of Eq.(7) gives dis-
persion to all orders, while the third term is the nonlin-
ear response that is multiplied by two different factors.
The derivative in the first factor takes into account the self-
steepening effect, while the imaginary part of the second
factor gives the nonlinear TPA loss. The last term is due to
the generation of free carriers and has two parts: the first
part describes free-carrier absorption (FCA), while the sec-
ond part is associated with free-carrier dispersion (FCD).
Both of these processes are proportional to the density of
free carriers in the material N7'(z, T) that is governed by
Eq.(8). In Eq.(8), the first term on the right hand side gives
the rate of free-carrier generation due to TPA, with Srpy
(measured in m/ W) being the TPA coefficient. This gener-
ation is balanced by the second term where ¢4 is the effec-
tive carrier lifetime that includes the effects of carrier re-
combination, diffusion, and drift [37]. The generalization
to higher orders of multiphoton absorption is straightfor-
ward, see Ref. [38].

Although Egs.(7-8) can be used together with Eq.(1)
and a continuity requirement for the free-carrier bound-
ary condition to model the comb generation directly, it is
more convenient to derive a mean-field model for use in
numerical simulations. Equation (7) may be integrated by
using the same procedure that was previously described
for obtaining the LLE. However Eq.(8) is an equation in the
fast time variable, and it does not describe the accumula-
tion of free-carriers over multiple round-trips. Indeed, the
effective carrier lifetime is typically of the order of 1 ns,
which is much longer than the cavity round-trip time. Con-
sequently, the free-carrier density does not have sufficient
time to decay between round-trips, so that a circulating
pulse will repeatedly meet carriers generated during pre-
vious laps inside the resonator.

To correctly account for the buildup of free-carriers,
it is necessary to derive a slow time evolution equation
for the free-carrier density. This can most easily be done
by approximating the level of free carriers during each
round-trip as being constant, and considering the fast time
averaged free-carrier density. Since ff?}j/zz(aNé" [oT) dT =
N™*1_N™ one may average Eq.(8) over the cavity circula-
tion time to obtain an evolution equation for the averaged
density (N¢) = (1/tg) ff“/z N(z, T)dt that can be written

tr/2
as a function of the slow time variable ¢, viz.

d(Nc(t)) _ Brea ([EI*) _ (Nc(t))
dt 2hw A% tef

)

This equation can be used to model frequency comb gen-
eration in silicon resonators, in combination with a gener-
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alized LLE of the form

NN
tR% =—(a +1i6p)E + iLZ % (%) E
k=2
+ (1 + ii) iyL(1 + ir)|E|*E
wo OT
oL

- (A +iu)(Nc(D) + VOE;,.

> (10)

A similar approach was used in Ref. [38], where mid-
infrared frequency comb generation in a silicon microring
pumped around 2.5 pm in the presence of two- and three-
photon absorption was investigated by using a generalized
envelope equation including the Kerr effect, Raman scat-
tering, two- and three-photon absorption, self-steepening
as well as FCA and FCD.

While losses due to TPA and FCA are usually detri-
mental to frequency comb generation, the lifetime of carri-
ers contributing to FCA can be controlled by, for example,
sweeping out free carriers with the help of an embedded
p-i-n structure [33]. It has also been shown that the pres-
ence of FCD may lead to an effective nonlinear detuning,
which makes it possible to generate solitons even in the
absence of a linear cavity detuning, i.e., with 8o = 0 [38].
Because of free-carrier dynamics, cavity solitons may form
directly from an initial noise state in a silicon microring
resonator, without the need to specially adjust the pump
power or the linear cavity detuning, via a mechanism that
is analogous to the frequency scanning procedure that is
commonly used to experimentally excite cavity solitons in
other resonators [39, 40]. Since the buildup of free carriers
is not instantaneous, but instead occurs over a time scale
set by the carrier lifetime, the effective detuning induced
by FCD will be time varying, in a way which can mimic the
slow pump detuning process that has been used to excite
solitons in materials without multiphoton absorption. Due
to the detuning from the slow buildup of free carriers, the
system will consequently be able to pass from a CW solu-
tion through a regime of modulational instability (MI), be-
fore reaching a stable mode-locked soliton state. The final
state and the number of solitons formed can still be con-
trolled by finely adjusting either the linear cavity detuning
or, alternatively, the free-carrier lifetime.

The free-carrier Eq.(9) should be compared with an-
other approach that has been proposed in Ref. [41] for
modeling the free-carrier dynamics in silicon resonators,
where the equation for the free-carrier density has periodic
boundary conditions and is a function of the fast time vari-
able as in Eq.(8). While this approach can model station-
ary states and take into account the fast temporal variation
of the free-carrier density within the round-trip, it does not
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necessarily give the correct rate of carrier accumulation on
the slow time-scale.

6 Optical bistability

A fundamental property of the mean-field LLE is that the
homogeneous CW solution for the intracavity field exhibits
a bistable response [19]. The intracavity power of the con-
stant CW solution E of Eq.(5) satisfies the well known cu-
bic steady-state equation

B1Ein|” = [Eol |80~ 7LIE0P) +a®]. (1)

This equation has either one or three simultaneous (pos-
itive) real solutions, depending on whether the detuning
8o > v/3a [15, 42]. However, only two of the three solutions
are observable, since the negative slope branch is always
unstable with respect to homogeneous perturbations [19].
Due to the bistability, there is the possibility of a hysteresis
effect where the same pump parameters may correspond
to two different solutions for the intracavity field. The pre-
vious history of the field may therefore become important,
since the final state can depend on the route for its excita-
tion. This is further reflected by the fact that not only the
single frequency CW solution, but also different frequency
comb states demonstrate a memory effect through the de-
pendence on the comb generation route [42].

Moreover, not all comb states are directly accessi-
ble via adiabatic changes of the pump power and detun-
ing when starting from an initial state consisting of ran-
dom noise in an otherwise empty cavity. Such states are
sometimes referred to as hard excitations [43], and reach-
ing them requires the use of initial conditions that are
within the basin of attraction of the final solution (e.g.,
close in shape). This is in contrast to so-called soft excita-
tions, which are comb states that may be excited through
slow changes of the pump parameters. Hard excitation fre-
quency comb states are especially common for resonators
possessing normal group velocity dispersion [44], where
combs are often excited only because of fortuitous mode-
crossings [24]. Cavity solitons, which as discussed in sec-
tion 9 are perhaps the most interesting type of comb for
applications, may, however, be considered as a form of
soft excitations since they can be excited by sweeping the
pump frequency (or cavity detuning) through the reso-
nance [45].

When the comb evolution is modeled using the Ikeda
map, there is besides optical bistability also the possibility
of observing multistability [14]. This multistability mani-
fests itself through the presence of additional stationary
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CW states that appear at high powers. Consequently, there
may be more than three simultaneous solutions for the in-
tracavity field in this case, but the negative slope branches
are as always unstable to homogeneous perturbations. It
has also been pointed out that the pump power does not
necessarily need to be very high to observe multistable
states [46]. Although the bistable equation (11) predicts
that the intracavity power is proportional to the cube of
the pump power, this prediction is just an artifact of the
mean-field approximation: at high powers, the asymptotic
dependence of the intracavity power is actually linear in
the pump power. The homogeneous fixed point solution of
the Ikeda map Egs.(1-2) that is periodically recovered after
each round-trip satisfies the equation

01Eu|” = |Eol” [4psin’(¢/2) + (1-p|. (12

where ¢ = 8o — vLeg|Eo|%, p = V1-0e %2 and Log =

(1-e %)/ a;. 1t is easily seen that this equation reduces to
the bistable Eq.(11) if ¢ < 1.

IEo|?

80,

—

-0.03
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Fig. 1. Continuous wave bistability due to nonlinear Kerr tilt. Blue
solid line shows the resonance bistability for the intracavity power
as a function of the detuning parameter, while the dashed orange
line is the corresponding resonance in the absence of any non-
linearity. The dot marks the detuning value at half the maximum
power of the cavity soliton in Fig. 3. Parameters a = 6 = 0.0025,
~v=0.22W"m™, L = 270m pm and P;, = 200 mW.

It is illuminating to consider the solution of Egs.(11-
12) for the intracavity power as a function of the detun-
ing, while keeping the external pump power fixed. Fig-
ure 1 shows how the Kerr nonlinearity introduces an in-
tensity dependent tilt of the resonance that gives rise to
the bistable behavior. In the mean-field approximation,
there is only a single resonance corresponding to the pump
mode present, but if multiple resonances are taken into ac-
count, there is the possibility that the tilt of neighboring
resonances becomes sufficiently large that they may, for
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the same value of detuning, start to overlap with the pump
mode resonance. A case of particular interest occurs when
the neighboring resonances also overlap with the bistable
response of the pump mode, that is, when the MI-stable
low power branch is present. This case allows for the possi-
bility of the creation of so-called super cavity solitons [46].

7 Cavity modulational instability

Modulational instability, i.e., the instability of the homo-
geneous solution to time-periodic perturbations, is a phe-
nomenon of fundamental importance for the generation
of optical frequency combs. In fact, the parametric gain
due to various four-wave mixing (FWM) processes is the
underlying mechanism that allows for frequency conver-
sion to occur in Kerr microresonators. A stable frequency
comb can be seen as the end result of the cavity MI pro-
cess, when parametric gain is able to balance and over-
come the round-trip losses. Since MI is a pump degener-
ate four-wave mixing process [26], it is also the primary
comb generation mechanism for converting photons from
the pump mode frequency into lateral sideband frequen-
cies. The first set of primary sidebands that are gener-
ated through MI will always have an equidistant frequency
spacing owing to energy and momentum conservation,
but subsequent sidebands generated via cascaded FWM
of various combinations of comb line frequencies will not
necessarily be equidistant or be an exact multiple of the
cavity FSR [21].

Cavity MI of steady-state solutions of the LLE has some
properties that are fundamentally different from those as-
sociated with MI of a CW background solution of the NLSE
(see e.g. Refs.[26, 47]). Cavity MI has an additional de-
gree of freedom due to the detuning parameter, which
may allow for phase matching between pump and side-
bands waves to occur also in the normal dispersion regime
[48, 49], contrary to the case of propagation in, for exam-
ple, a length of optical fiber. Moreover, cavity MI is not
an oscillatory instability but rather one where the unsta-
ble eigenvalues are purely real, which permits the forma-
tion of stationary dissipative structures such as periodic
temporal patterns (also known as Turing patterns) and lo-
calized cavity solitons [48, 50]. Besides the mean-field in-
stabilities of the LLE, there are additional instabilities that
may occur in certain parameter regions where the dynam-
ics should properly be modeled by using the Ikeda map
formalism. These include so-called period doubling insta-
bilities where the perturbation has a periodicity of two or
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more round-trips, instead of a periodicity equal to the fun-
damental round-trip period [51].

MI for the LLE (5) can be analyzed by a procedure
where a perturbed solution of the form E(t,7) = (|Eo| +
u+ iv)eiArg{EO} is assumed, and the equation is linearized
around the steady-state CW solution. Separating real and
imaginary parts, and investigating the coefficient matrix
of the linear system obtained after applying the Fourier
transform with respect to 7, leads to an eigenvalue prob-
lem where the potentially unstable eigenvalues are given
by [7, 8, 14, 19, 42]

A= —a+\/(YL[Eo|2)? - (60 - (B2L/2)w? - 27L|Eo2)2.

(13)
Perturbations will experience growth, and the CW solution
will be modulationally unstable, whenever the real part of
these eigenvalues is positive for some frequency. The insta-
bility does not need to be seeded by a signal, but may grow
from random noise fluctuations that are always present in
the cavity.

From Eq.(13), it is possible to determine parameter
regimes where instabilities may occur, and also obtain the
threshold power needed for an instability to develop [15].
Cavity MI will not occur unless the parametric gain ex-
ceeds the round-trip loss, which is in contrast to MI of the
NLSE, which does not have a power threshold. Although
the initial growth is exponential, the sideband growth rate
will eventually saturate due to pump depletion, which per-
mits the system to reach a stable equilibrium. However, far
from all comb states are stable, and the majority of the pa-
rameter space at high powers is dominated by an unstable
regime of nonlinear development of MIs, where the comb
spectrum is in a turbulent state of continuous fluctuations
[52].

The previous stability analysis of the intracavity field
is limited by the requirement that the magnitude of the
perturbation should remain small. The dynamics of the
growing perturbation beyond its initial linear stage and
the subsequent depletion of the pump wave cannot be
modeled by using the linearized approximation. However,
additional insight into the dynamics can be found by con-
sidering a fully nonlinear truncated three-wave model for
the pump mode and the dominant sideband pair that ne-
glects the influence of higher order sidebands [42, 43].

A truncated model can be obtained from Eq.(6) by con-
sidering modes with indices u = -1, 0, 1. This reduces the
problem from an infinite dimensional system to just three
coupled ODEs, with stationary comb states corresponding
to fixed points given by the set of algebraic equations ob-
tained by setting all time derivatives to zero. The ratio-
nale for such a finite mode truncation is that a substan-
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tial part of the total energy of the comb is contained in the
pump mode and a small number of sidebands, which is
certainly the case for many periodic temporal patterns that
tend to have a triangularly shaped comb spectrum. Besides
allowing for the identification of stationary states, trun-
cated models are also able to give information about the
comb stability. Particularly, it has been found that station-
ary comb states that are predicted to be unstable by the
analysis of the Jacobian matrix for the three-wave model,
are generally also found to be unstable in numerical sim-
ulations of the full model. Additionally, truncated mod-
els allow for the identification of soft and hard excitation
regimes, and have been used to predict the possibility for,
and the range of, soft comb excitations in the normal dis-
persion regime [42]. As an alternative, stationary solutions
and comb stability can be ascertained numerically by us-
ing, for example, a Newton root-finder [16]; however, this
method does not easily permit one to search the entire so-
lution space.

8 Boundary condition induced
modulational instability

In addition to the MI of the mean-field LLE, there are addi-
tional instability mechanisms that occur due to the bound-
ary conditions of the Ikeda map. This may be expected
from the fact that the map with discrete boundary condi-
tions is able to model multiple resonances in the cavity as
previously discussed in relation to multistability. Partic-
ularly, it is found that the boundary conditions may give
rise to period doubling instabilities where the perturba-
tion has a periodicity that is double that of the fundamen-
tal round-trip time [49]. This corresponds to anti-resonant
conditions where the nonlinear phase ¢ in Eq.(12) is an
odd multiple of 71, and it can be considered as an optical
analog to a Mobius strip where the field needs two full laps
of the resonator to recover its original phase.

Early work on the discrete map Egs.(1-2) assumed
a plane wave approximation, where the dispersion (or
rather diffraction) effects of the cavity were neglected. In
this case it is found that the intracavity field loses its stabil-
ity through a period doubling cascade, which eventually
leads to chaotic behavior [53]. However, this plane wave
approximation is not well justified, since it was pointed out
that the intracavity field is in fact more unstable with re-
spect to periodic than to homogeneous perturbations [51].
With the exception of the low power threshold MI that is
present in the mean-field models, most other instabilities
tend to require quite large intracavity power levels for their
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observation. These conditions are easily fulfilled for fiber-
ring resonators, but they may also become important for
microresonator devices with large nonlinearities or high
finesse. In fact, large Kerr frequency mode shifts of up to
100 GHz have already been observed for high finesse silica
microtoroids [2].

The general procedure for analyzing the stability of the
mabp is relatively straightforward. First the perturbed so-
lution is calculated by linearizing Eq.(2) around the ho-
mogeneous CW solution. Then the perturbed solution is
used in the map for the boundary condition Eq.(1) to de-
termine the potentially unstable eigenvalues correspond-
ing to a growing perturbation. If absorption losses along
the length of the resonator are neglected, and all losses
are instead lumped together with coupling losses at the
boundary, it is possible to analytically determine the un-
stable eigenvalues, see Refs. [49, 51]. More generally, it is
also possible to determine the MI gain by using numerical
Floquet theory [46].

To use Floquet theory, one assumes a perturbed so-
lution for Eq.(2) in the form E = [Ey + u™(1,2) +
iv(t, z)] exp[-a;z/2 + iv(1 — e %%)|Eo|?/a; + iArg{Eo}],
where the perturbations u™(r, z) and v™(t, z) are real
functions, and proceeds to linearize the wave equation
around the CW solution. The real and imaginary parts
of the resulting linear evolution equation for the side-
bands will then each give an equation that can be Fourier
transformed in order to obtain its frequency dependence.
Specifically, one finds that the perturbation functions
wh(z) = [™(w,z), " (w,2)]T should satisfy the linear
ODE system

dw™ 0 -B2/2)w? |
& | B2w? v 2fEle o |
(14)

In the next step this system is numerically integrated for
two independent initial conditions, for example, w’{fz (0) =
[1,0]%,[0,1]7, as a function of both frequency and in-
tracavity power to obtain the perturbed fields w{',(L) at
the end of the round-trip. The boundary condition Eq.(1),
which takes into account the coupling loss and the phase
shifts experienced by the perturbations, is then applied to
find the fields w’{f’gl (0) that are to be compared with the ini-
tial condition. The perturbed solution is finally assembled
into a matrix [w7"*1(0), wi**1(0)], and the eigenvalues are
numerically calculated to determine the sideband stabil-
ity. The stability criterion for the resulting system of differ-
ence equations (or map) is that the real part of the eigen-
values should be less than unity to avoid a growing pertur-
bation.

T. Hansson et al., Dynamics of microresonator frequency comb generation: models and stability =— 239

An example of parametric Ikeda map instabilities in
the anomalous dispersion regime for parameters similar
to the fiber-ring cavity of Ref. [54] is shown in Fig. 2. Also
plotted as a red contour is the predicted range of modu-
lational instability for the mean-field LLE. Multiple unsta-
ble bands forming so-called resonance tongues are seen
to appear at high intracavity powers. These bands corre-
spond to MI obtained for either resonant or anti-resonant
conditions, respectively, where the latter manifests itself
through a change of sign of the perturbation at each round-
trip. Following Ref. [49], we refer to them as CW-MI and P2-
MI, respectively. P2-MI is most easily observed for normal
dispersion resonators, where it is typically the instability
with the lowest power threshold if the detuning has not
been selected in order to phase match the CW-MI process.

Y

0 0.5 1 1.5
w [THZ1

Fig. 2. Parametric instability tongues of the Ikeda map for anoma-
lous dispersion. The red contour shows the predicted range of
modulational instability for the LLE. Below a cross-section corre-
sponding to the dashed line is shown with alternating CW-MI/P2-MI
gain bands. Parameters corresponding to a fiber ring cavity with
a=0=0.13, B2 = -20 ps’km~, v = 1.8 Wlkm™, L = 380 m and
0o = 0.

9 Cavity solitons

Cavity solitons are of special importance for optical fre-
quency combs. A cavity soliton is a localized pulse solu-
tion of either the LLE or the Ikeda map, that corresponds
to a mode-locked frequency comb with a comb line spac-
ing of a single FSR. A temporal cavity soliton can be seen as
a fixed point of a dynamical attractor [55] that represents a
double balance between dispersive broadening and non-
linear self-focusing, in combination with external pump
driving and loss.
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The first experimental demonstration of temporal Kerr
cavity solitons was carried out in a fiber-ring cavity by
Leo et al. in 2010 [54]. Since then, temporal cavity soli-
tons have also been experimentally demonstrated in mi-
croresonators with comb bandwidths spanning up to 2/3
of an octave [56]. A dissipative cavity soliton, an example
of which is shown in Fig. 3, is a compound object con-
sisting of a soliton pulse sitting on a constant background
with a fixed pulse amplitude and temporal width that is
set by the experimental parameters. Although there are no
known exact analytical solutions of cavity solitons for the
LLE, there exist various semi-analytical approximations.
For example, if damping and driving are assumed to be
small perturbations of the NLSE, then to the lowest order
of approximation the single soliton solution of the LLE (5)
can be explicitly written as (cf. Ref.[57])

Et, 1) = —ix/gE"” 2—(s()sech (

bo " ~L

‘/2360L T) e, (15)
2

where the first term is the approximation for the CW back-
ground solution and cos(¢) = 2a Jﬁ/(n\/ﬂwml).
From Eq.(15), we can see that the soliton is phase locked
with a certain phase offset to the pump, and that both
the amplitude and width of the soliton are proportional to
the square root of the detuning [58]. Bright cavity solitons
are stable solutions existing for anomalous dispersion that
are surprisingly robust to perturbations. A single soliton is
characterized by a smooth spectral envelope, while multi-
ple solitons lead to a modulated spectrum having an inter-
ference pattern depending on the number of solitons and
their relative positions [56].

Cavity solitons can be excited experimentally by tun-
ing the pump laser frequency across the resonance from
the blue detuned side, and then stopping the scan on the
red detuned side whenever a staircase or step-like struc-
ture in the output intensity is observed [39]. The soliton
state is characterized by a transition from an MI induced
unstable pattern state to alow phase-noise state where the
comb exhibits a single narrowband beatnote centered at
the FSR frequency. Since cavity soliton combs correspond
to the circulation of a pulse with a periodicity of the round-
trip time, they are analogous to frequency combs gener-
ated by mode-locked lasers. Moreover, the soliton nature
of the intracavity field solution allows for pulse compres-
sion and spectral broadening techniques to be used, in or-
der to extend the bandwidth of the generated spectrum,
which can have important applications for the purpose
of self-referencing [59]. Many aspects of cavity solitons
such as excitation thorugh laser scanning, dispersive wave
emission, and breathing behavior can also be seen and
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have been directly confirmed by experiments in fiber cavi-
ties, see for example, [40, 60, 61].

In addition to the cavity soliton solution of the LLE,
there are also more energetic localized solutions present
in the Ikeda map [46]. These so-called super cavity solitons
are associated with multistable states, and can even coex-
ist, for the same pump parameters, with the more familiar
LLE cavity soliton. In particular, it has been numerically
predicted that super cavity solitons should exist when-
ever a multistable homogeneous state with three different
branches is present. The background then corresponds to
the MI stable low power branch, while the soliton peak
power is close to twice the power of the highest branch.
This can be understood from the fact that a soliton’s in-
flexion points (zero of second derivative) should be close in
power to that of the homogeneous branch solution, except
for a small difference due to the relative phase offset (¢) be-
tween the soliton and the background solution cf. Fig. 1.
Super cavity solitons have only recently been predicted,
and have not yet been experimentally observed. Since the
bandwidth of these solutions can easily span more than
an octave, super cavity solitons could be very interesting
for wideband comb generation, in particular when com-
bined with highly nonlinear materials and dispersion en-
gineered resonators that are designed for enhanced spec-
tral broadening.
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Fig. 3. Simulated intracavity intensity profile and normalized spec-

trum for a stationary temporal cavity soliton obtained from numeri-
cal solution of the LLE (5). Same parameters as in Fig. 1 correspond-
ing to a 200 GHz FSR silicon nitride microring with o = 6 = 0.0025,
B2 = -3 ps?km™, v = 0.22W™'m™, L = 270m pm, 6o = 0.012 and
Py = 200 mW.
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10 Conclusions

Microresonator devices can be used to generate ultra wide-
band frequency combs, made up of phase coherent comb
lines at an equidistant frequency spacing, that offer a
wealth of potential applications. In this article, we have
reviewed various formalisms currently used for model-
ing the temporal dynamics and formation of such fre-
quency combs. These formalisms include the Ikeda map,
the frequency-domain modal expansion approach and the
time-domain Lugiato-Lefever equation, all of which allow
for the comb dynamics to be described, irrespective of the
resonator morphology. The dispersive Ikeda map is the
most general model available that permits combs to be
described also in the high power regime. However, this
generality comes at the cost of additional complexity and
more computationally expensive numerical simulations
when compared with mean-field models aimed at describ-
ing combs that evolve slowly with respect to the round-trip
time. This situation applies in practice to most microres-
onator comb experiments: simulations based on both the
Lugiato-Lefever equation and the coupled mode formal-
ism are found to be in very good agreement with most ex-
perimental observations.

We have further reviewed the stability properties that
are of fundamental theoretical importance for the under-
standing of different comb formation processes. The para-
metric gain provided by the modulational instability of the
pump mode wave is, in fact, the main comb generation
mechanism when operating in the anomalous dispersion
regime, with the instability occurring above a threshold
power where the gain is able to overcome the round-trip
loss. Owing to the extra degree of freedom provided by
the detuning parameter, the cavity MI process may also
become phase matched in the normal dispersion regime,
which allows for the possibility of soft excitation comb
generation for normal dispersion resonators. As the intra-
cavity power increases, the influence of cavity boundary
conditions starts to become more important, which may
lead to multistability and to the appearance of new insta-
bilities that have a periodicity of either once or twice the
fundamental round-trip time. Such higher-order instabili-
ties and period doubling phenomena cannot be described
using conventional mean-field models, and thus require
use of the more general Ikeda map.

Most frequency comb experiments to date have fo-
cused on the near-infrared part of the spectrum where
transparent materials and pump sources are readily avail-
able. Looking forward, we may expect a continued explo-
ration and expansion into new wavelength regions such
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as the mid-infrared [62], which has important applications
for molecular spectroscopy. The use of materials such as
silicon will be important for comb generation in this spec-
tral range, and will require the use of models that are able
to take into account the relevant new physics of these ma-
terials, including effects such as multiphoton absorption
and the associated free-carrier dynamics. Simultaneously
we may also expect a push towards the miniaturization
of existing comb sources and the integration of both mi-
crorings and pump lasers together on a single photonic
chip. Wideband comb generation from such integrated
sources is currently not possible due to high pump power
requirements, but the use of novel materials with large
Kerr nonlinearities may be exploited in order to help re-
duce the threshold power. Another promising avenue of
exploration is the use of quadratic nonlinearities [63, 64],
which, according to preliminary estimates, may increase
the efficiency and reduce the pump power requirement for
frequency comb generation even further.
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