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Abstract

A critical review of analytical and numerical models for studying masonry out of 

plane behaviour is presented. One leaf historical masonry, composed by rigid blocks 

arranged regularly with dry or mortar joints, is considered. Discrete model with rigid 

blocks, Love-Kirchhoff and Reissner-Mindlin plate models and 3D heterogeneous 

FEM are adopted. An existing simple and effective discrete model is adopted and 

improved by applying matrix structural analysis techniques for static and modal 

analysis of masonry walls in the elastic field, but the formulation allows to account 

for material nonlinearity. Elastic parameters of both plate models are based on an 

existing compatible identification between 3D discrete model and 2D plate models. 

Static and modal analysis of masonry walls with several boundary conditions are 

carried on, numerical tests account for in plane size of heterogeneity and structure 

thickness by means of in and out of plane scale factors. Results show that discrete 

model is simple and effective for representing masonry behaviour, especially when 

size of heterogeneity is smaller than overall panel size. Decreasing in plane scale 

factor, plate models converge to the discrete one, but the Reissner-Mindlin one 

shows a better convergence and also allows adopting a simple FE for performing 

numerical analysis.

Keywords: masonry, out of plane analysis, modal analysis, discrete model, 

Kirchhoff plate, Mindlin plate, heterogeneous material, homogenisation, elasticity.
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1 Introduction

Masonry is a structural material obtained by composition of natural or artificial 

blocks connected by dry or mortar joints. For this type of material, size of 

heterogeneity (or size of block) is often not negligible with respect to the global size 

of a structural element; then, several ad-hoc models have been developed in the last 

decades adopting different approaches.

The model that may appear as the more simple one among others for representing 

masonry behaviour is a heterogeneous Finite Element (FE) model. The first example 

of such a model type was limited to the in plane case, characterised by blocks 

modelled with FE quadrilateral elements and joints modelled with one-dimensional 

elements [1,2]. Small improvements of these initial works were performed by 

Tzamtzis & co-workers by defining three-dimensional elements and joints, but 

limiting the field of analysis to the in plane case [3,4]. However, the limits of this 

approach are represented by the large number of degrees of freedom involved and 

the consequent computational effort for the analysis of macro-scale problems.

Another class of numerical models frequently adopted for representing masonry 

behaviour is discrete modelling, that is characterised by rigid or deformable 

elements in contact, in order to represent natural or artificial blocks in contact by 

means of dry or mortar joints. Into this class of models, the discrete element method 

(DEM) is one of the most representative approaches. Such a method is characterised 

by distinct elements, with finite size and independent degrees of freedom, that can 

be subject to finite displacements and rotations; moreover, contacts between 

elements can vary during analysis and are automatically recognized by the model. 

DEM had been introduced by the pioneering works of Cundall in the field of rock 

mechanics [5,6], that started considering the plane case and created the well-known 

program UDEC [7], and continued modelling three-dimensional problems [8,9], 

creating the program 3DEC [10]. Several developments in the DEM field are 

represented by the combination of discrete and finite elements [11,12] accounting 

for block deformability; however these models are still limited to in plane analysis. 

Another type of discrete models is represented by those adopted in Discrete 

Deformation Analysis (DDA, [13]) that are characterised by deformable blocks by 

means of uniform strain and stresses in plane state. This model was extended to the 

3D case even if at preliminary stage [14,15].

The discrete models cited above were created for modelling granular materials and 

for studying rock mechanics, in several cases such models were extended to the field 

of masonry structures with results comparable with those obtainable with other 

classes of models; the work of Lemos [16] presents a deep review of DEM applied 

to masonry structures, furthermore the recent book edited by Bagi, Sarhosis and 

Milani [17] collects an up-to-date review of DEM for masonry and other discrete 

approaches.

However, historical masonry is frequently made of strong and rigid natural or 

artificial blocks and weak, thin and deformable mortar joints. For this reason, 

numerical models, characterised by rigid blocks, with deformability concentrated at 

mortar joints or dry contacts, subject to small displacements that do not vary contact 

topology, should be sufficiently accurate and effective. Effectiveness is given by the 
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small number of degrees of freedom involved in the analysis that allows to model 

structures starting from small masonry panels to building facades and bridges. It is 

worth noting that these models cannot be defined DEMs but still remain discrete 

models. Considering the in plane case, this type of model was adopted by many 

authors in linear and non-linear fields [18-22]. In particular, the discrete and 

heterogeneous models introduced by Cecchi and Sab [20] were extended to the out 

of plane case by also performing homogenisation procedures [23-25]. Similarly, the 

‘rigid-body-spring-model’ introduced by Casolo was effectively extended to the out 

of plane case, in linear and nonlinear fields [26,27] and it was also compared with a 

homogenised model [28].

Heterogeneous and discrete models are often linked with continuous materials 

equivalent to masonry, obtained by means of identification or homogenisation 

procedures. Continuous models are another class of models that are generally 

adopted for studying masonry behaviour at macroscale level, when both 

heterogeneous and discrete models start to be inapplicable due to the huge number 

of degrees of freedom involved in the analysis of masonry buildings. Considering 

the in plane case, standard Cauchy models were obtained applying periodic 

homogenisation techniques and considering the elastic behaviour of both brick and 

mortar [20,24,29]; moreover, micropolar or higher order continua were taken in 

consideration [30-35]. Considering the out of plane case, Stefanou et al. [36] 

performed a 3D Cosserat homogenisation of regular masonry composed by rigid 

elements in the linear elastic field and then proposed a FE formulation for Cosserat 

elastic plates [37]. However more generally, research in the 3D or out of plane field 

has been generally focused on nonlinear masonry behaviour for performing 

nonlinear, limit and stability analysis of walls, facades and buildings [27,38-46]. 

Recently, Ferreira et al. [47] presented an accurate literature review related to the 

analysis of unreinforced masonry out of plane loaded.

Considering the field of analysis based on homogenisation or identification 

procedures, plate models are often adopted for modelling out of plane masonry 

behaviour. In particular, the already cited works of Cecchi and Sab [23,24] show an 

identification procedure that is based on the balance of internal work in the discrete 

model and in the continuous one for a class of regular motions. In this field, an 

important problem is represented by how kinematic, dynamic and constitutive 

prescriptions of a discrete system are transferred to the continuous one. Hence, 

constitutive functions of the plate model may be different. For example, a Love-

Kirchhoff plate model was proposed by Cecchi and Sab [20] for the case of both 

rigid and deformable blocks by means of homogenisation procedures, whereas 

Cecchi and Sab [24] studied both Love-Kirchhoff and Reissner-Mindlin plate 

models for rigid blocks connected by elastic interfaces by means of a 3D discrete 

model and homogenisation procedures.

Recently, Baraldi et al. [48] have presented a review of several numerical models, 

heterogeneous, discrete and continuous, that may be adopted for modelling the 

mechanical behaviour of masonry, with particular attention to out of plane loaded 

panels having a specific regular texture. The present work aims to extend the initial 

review by adding further information about out of plane displacement and rotation 

fields obtained with linear static analysis. Moreover, this work aims to extend the 
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campaign of numerical tests to the field of modal analysis, by means of a simple and 

effective approach for studying the discrete system, based on the determination of 

the stiffness matrix of the masonry assemblage. In addition, analytic solutions 

relative to natural frequencies of homogenised plates simply supported along edges 

are presented.

Hence in this work, numerical evaluation of the differences between a discrete 

model with rigid blocks, heterogeneous FEM and homogenised plate models is 

carried on for several case studies, performing static and modal analysis and 

considering several boundary conditions. The effect of varying in plane 

heterogeneity size (block width respect to panel width) is considered, as it has been 

done for the in plane case by several authors [32,35,49]; moreover, the effect of 

block aspect ratio (block width with respect to block height) and out of plane scale 

factor (block thickness with respect to panel width) are taken into account.

In order to represent the behaviour of historical masonry, characterised by block 

stiffness larger than mortar stiffness and joint thickness smaller with respect to block 

size, the discrete model adopted in this work and the corresponding homogenised 

plate models are based on the following hypotheses: i) masonry structure composed 

by infinitely rigid blocks subject to small displacements and with fixed contact 

topology, ii) mortar joints modelled as elastic interfaces. It is worth noting that the 

elastic behaviour considered may not be correct for studying masonry structures, 

given that such structures present a strong nonlinear behaviour even at low stress 

levels; however, the proposed review represents an initial step for performing 

numerical tests of out of plane loaded panels, that can be extended to the nonlinear 

field in further developments of this work, adopting, for example, a Mohr-Coulomb 

yield criterion for interface actions, following the numerical tests recently dealt with 

by authors both for the in and out of plane cases [50,51]. Moreover, the proposed 

campaign of modal analyses will allow to perform structural identification of 

masonry specimens by comparing numerical results with laboratory or in situ tests.

2 Discrete model

This work considers a regular and periodic masonry assemblage, characterised by 

equal rigid blocks arranged regularly with aligned horizontal joints and vertical 

joints staggered by block half width. This model is defined as Discrete Rigid Block 

Model (DRBM). A representative elementary volume (REV) is considered (Figure 

1), characterised by a generic block Bi,j surrounded by six blocks by means of six 

interfaces or joints , with k1, k2 = ± 1 for horizontal interfaces and k1 = ± 2, k2 = 
1 2,k kS

0, for vertical interfaces (Figure 1). Block dimensions are: a (height), b (width) and s 

(thickness). It is worth noting that this contact topology is assumed to be fixed 

during the analysis. Considering rigid block and small displacements hypothesis, the 

displacement of a generic block is represented by a rigid body motion referred to the 

motion of its centre and the rotation with respect to its centre:

(1), , , ,( ) ( )i j i j i j i j= + −u y u Ω y y
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where yi,j is the position of block centre in the Euclidean space and considering the 

out of plane case,  is the out of plane translation of block centre and Ωi,j is , ,

3

i j i ju=u

the rotation skew tensor collecting block rotations with respect to y1 and y2 axes:

(2)

,

2

, ,

1

, ,

2 1

0 0

0 0

0

i j

i j i j

i j i j

ω

ω

ω ω

 
 

= − 
 − 

Ω

Bi,j B

B

BB

B

B     i-1,j-1       i+1,j-1

       i+1,j+1      i-1,j+1

    i+2,j    i-2,j

 S+1,-1

S 2,0

 S+1,+1

 S-1,+1

 S   -2,0

 S    -1,-1

b

a

s

y1

y2

y3

Figure 1. Discrete rigid block model (DRBM), running bond Representative 

Elementary Volume (REV)

Out of plane translation and rotations may be collected in . , , , ,

3 1 2{ }i j i j i j i j Tu ω ω=q

Following the procedure described by Cecchi and Sab [24] for the out of plane case, 

the interactions between two adjacent blocks Bi,j and  through a generic 
1 2,i k j kB + +

interface  are represented by unknown distribution of stresses, normal and 
1 2,k kS

tangential, , with normal stress assumed positive in case of 1 2 1 2 1 2, , ,
{ }

k k k k k k T

n tσ σ σ=

tension and negative in case of compression. Integrating stresses over the interface 

area, interface force  and couples are obtained and collected in 1 2,

3

k k
f 1 2 1 2, ,

1 2,
k k k k

c c

. Such stresses and interactions are related to the relative 1 2 1 2 1 2 1 2, , , ,

3 1 2{ }
k k k k k k k k Tf c c=f

displacement and rotations between adjacent blocks, that are defined by:

(3a-c)

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

, ,, ,
, , , 2 2 1 1

3 3 3 1 2

, , ,

1 1 1

, , ,

2 2 2

( ) ( )
= ,

2 2 2

= ,

,

i k j k i k j ki j i j
k k i k j k i j

k k i k j k i j

k k i k j k i j

b
d u u k k a

ω ω ω ω

δ ω ω

δ ω ω

+ + + +
+ +

+ +

+ +

+ +
− + −

−

= −

and that may be collected in . Assuming the hypothesis of 1 2 1 2 1 2 1 2, , , ,

3 2 1{ }
k k k k k k k k Td δ δ=d

elastic interfaces, the constitutive relation that defines interaction between block Bi,j 

and  is , where  is the vector normal to interface 
1 2,i k j kB + +

1 2 1 2 1 2 1 2, , , ,k k k k k k k kσ =n K d 1 2,k k
n
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, and  is the interface stiffness matrix, that collects 
1 2,k kS 1 2,

2 1diag{ }
k k

t c cK K K=K

tangential (Kt) and rotational (Kc1, Kc2) stiffness of the interface, that may be detailed 

for horizontal and vertical cases. Assuming mortar joints made of an isotropic and 

elastic material, interface stiffness values are function of mortar elastic modulus Em 

and Poisson ratio νm. For instance:

(4a,b)2 1 2

1 1
, ,

2(1 ) 1 ( )

m m
h h h

t c cm m

v v v v

E G E K
K K K

e e e eν ν
= = ⋅ = = ⋅ =

+ −

(5a,b)1 2 2

1 1
, ,

2(1 ) 1 ( )

m m
v v v

t c cm m

v v v v

E G E K
K K K

e e e eν ν
= = ⋅ = = ⋅ =

+ −

where eh, ev represent horizontal and vertical joint thickness, respectively.

2.1 Elastic energy

The elastic energy over a generic interface is determined by defining the product of 

interface forces-couples and interface relative displacements-rotations:

(6)
1 2

, ,1 2 1 2

,

1 1 1 1
= ( ) ( ) ,

2 2 2 2
k k k k

T T T T

k k

S S

dS dSσΠ = = =∫ ∫n d d K d d KA d d K d

where apex k1,k2 for vectors and matrices is omitted for simplicity, A is the generic 

diagonal matrix of area and inertias of the interface, that may be detailed for the 

horizontal case and for the vertical case: , 1 1 3diag{ ( )}h h h h hS I I I= +A

, with:2 3 3diag{ ( ) }v v v v vS I I I= +A

(7a-f)

3 3

1 3

3 3

2 3

= / 2, = / 24, = / 96,

= , = /12, = /12.

h h h

v v v

S b s I b s I b s

S a s I a s I a s

Interface forces and couples may be obtained by differentiating the expression of 

interface elastic energy in Equation (6) with respect to each block displacement 

component. Then, extending such equation to the entire masonry assemblage (i.e. 

masonry panel), the total elastic energy Π is obtained and the subsequent 

equilibrium equation for the assemblage subject to out of plane actions Fext is:

(8)/ = ,ext panel

panel= ∂Π ∂F q K q

where q collects block degrees of freedom of the entire panel. Equation (8) may be 

solved by adopting a molecular dynamics algorithm or directly by explicitly 

defining the stiffness matrix of the entire assemblage Kpanel, extending to the out of 

plane case the procedure adopted by Baraldi and Cecchi [52] for the in plane case in 
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the field of modal analysis of masonry panels. Details of the determination of Kpanel 

may be found in appendix A.

2.2 Kinetic energy

The kinetic energy of a masonry assemblage may be defined at block level and it 

involves directly the global displacements of a generic block :, , , ,

3 2 1{ }i j i j i j i j Tu ω ω=q

(9), 2 , 2 , 2

, 3 2 2 1 1

1
[ ( ) ( ) ( ) ],

2

kin i j i j i j

i j m u J Jω ωΠ = + +ɺ ɺɺ

where  is the mass of a block having density  and ( )m a b sγ= ⋅ ⋅ γ

,  are block polar or rotatory 2 2

1 1( ) /12J m a s Iγ= + = 2 2

2 2( ) /12J m b s Iγ= + =
inertias with respect to y1 and y2 axes [24,36]. Mass and polar inertias of each block 

may be corrected by taking into account mortar joint thickness, especially if it is not 

standard (i.e. ev or eh > 10 mm), then m may be substituted by 

, J1 with  and J2 with * [( ) ( ) ]v hm a e b e sγ= + ⋅ + ⋅ 2 2

1* *[( ) ] /12hJ m a e s= + +

. Writing Equation (9) in matrix form, the (local) mass-2 2

2* *[( ) ] /12vJ m b e s= + +

polar inertia matrix  of the generic block may be highlighted:,i jM

(10)

,

3

, , , , , , ,

, 3 2 1 2 2

,

1 1

0 0
1 1

{ } 0 0 ( ) ,
2 2

0 0

i j

kin i j i j i j i j i j T i j i j

i j

i j

m u

u J

J

ω ω ω

ω

  
  Π = =  
     

q M q

ɺ

ɺ ɺ ɺ ɺ ɺɺ

ɺ

where . The mass matrix of the entire panel Mpanel is obtained by /d dt< ⋅ > =
assembling the local mass matrix Mi,j over the panel, obtaining a diagonal mass 

matrix at panel level.

2.3 Modal analysis

The dynamic equilibrium of a masonry assemblage represented by a discrete model 

can be formulated by expressing the equilibrium of the effective forces associated 

with each of its degrees of freedom. Then, a multi degrees of freedom (MDOF) 

equilibrium equation is obtained [53]:

(11),panel panel panel ext+ + =M q C q K q Fɺɺ ɺ

where , Mpanel and Kpanel are, respectively, mass and stiffness 2 2/d dt< ⋅⋅ > =
matrices of the entire panel and Cpanel is its damping matrix (a diagonal matrix 

collecting damping coefficients related to block DOFs). The equation above is 

coincident to the one adopted by the authors for solving static problems by means of 

a molecular dynamics algorithm [24,54] and that is usually adopted in more general 
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discrete element modelling numerical procedures. Such equation, in general, is 

solved by considering each DOF separately from other DOFs, hence it does not 

request the actual determination of panel matrices. On the other hand in this work, 

matrices definition is fundamental for performing static and modal analyses.

For simplicity, the equations of motion of a freely vibrating undamped system can 

be obtained by omitting the damping matrix and the applied load vector: 

. Then, assuming that the free vibration motion of the panel is panel panel+ =M q K q 0ɺɺ

simple harmonic, which may be expressed for a MDOF system as 

, the equation of motion is modified as  -( ) sin(η )i iq t q t θ= +

. Then, a standard eigenvalue problem is obtained. The 2η panel panel− + =M q K q 0

quantities  are the i-th eigenvalues of the vibrating system, which are related to 2ηi

the free vibration frequencies of the panel λi = ηi/(2π), while the corresponding 

displacement vectors qi represent the corresponding i-th shapes of the vibrating 

system, known as eigenvectors or modal shapes [53]. As well known, natural 

frequencies and modal shapes are obtained by solving a standard eigenvalue 

problem and finite amplitude vibrations are possible only if 

. Moreover, after the determination of eigenvalues and 2det[ η ] 0pan lpanel e− =K M

eigenvectors of the system, the mass and polar inertia participation factor of each 

eigenpair respect to out of plane translation and rotations may be determined as 

, where r is the vector of displacement for the r-th 2PF ( ) / ( )r T panel T

i

pane

i

l= q M r r M r

degree of freedom considered. Such factors turn out to be very important for 

selecting eigenpairs that activate the largest percentage of mass in y3 direction and 

for evaluating the rotatory inertia activated by each vibrating mode.

3 Continuous models

a
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U    3,1
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U    3,2

LK
S

s y1

y2

y3

y

U3

RM

φ1

S
φ2
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y2

y3

y

U3

b

Figure 2. Love-Kirchhoff (a) and Reissner-Mindlin (b) plate models.

Cecchi and Sab [20,24] developed Love-Kirchhoff and Reissner-Mindlin plate 

models (Figure 2 a,b respectively) for studying masonry walls, in and out of plane 

loaded, by means of rigorous homogenisation procedures. It is worth noting that in 

this field of analysis two scale parameters may be taken into account. Considering a 

masonry assemblage with overall size L, the first scale parameter is the in plane one 

ε = b/L that is typical of materials with an internal structure and plane heterogeneity, 
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whereas the second scale parameter is the out of plane one ζ = s/L, that is typical of 

plate structures and that in general does not depend on in plane heterogeneity. It is 

well-known that when ζ tends to zero, the 3D solution converges to the Love-

Kirchhoff solution. Caillerie [55] has extended this result to periodic plates.

3.1 Love-Kirchhoff plate model

Following Cecchi and Sab [24], in the Love-Kirchhoff orthotropic plate model 

(Figure 2a) the 3D displacement field is expressed in terms of the out of plane 

displacement  as follows:3 1 2( , )LKU y y

(12)3,1 1 2 3 3,2 1 2 3 3 1 2( ) { ( , ) ( , ) ( , )} ,LK LK LK LK TU y y y U y y y U y y= − − ∀u y y

where < , > indicates derivation with respect to a direction of the coordinate system 

adopted. An identification between the 3D DRBM and the Love-Kirchhoff plate 

model may be performed as

(13), , , , , , ,

3 2 1 3 3,1 3,2{ } { ( ) ( ) ( )} .i j i j i j i j T LK i j LK i j LK i j Tu U U Uω ω= = −q y y y

Then, the elastic constants which relate the plate bending tensor X to the curvature 

tensor may be highlighted as follows:

(14)

11 111111 1122

22 1122 2222 22

121212 12

0

0 ,

0 0

X D D

X D D

DX

χ

χ

χ

    
    = =    
        

X

where  with α,β = 1,2 and  were identified in the work of Cecchi 3,

LKUαβ αβχ = − Dαβγδ

and Sab [20]. In order to study the free vibrations of the homogenised Love-

Kirchhoff plate, Equation (14) needs to be solved together with the following 

equilibrium equations:

(15a,b)
,

2 2

, 3

0,

( / ) 0,LK

M Q

Q s U t

αβ β α

α α γ

− =

− ∂ ∂ =

where Qα with α = 1,2 is the generic component of the shear stress tensor 

 and  has been introduced in paragraph 2.2 for representing masonry 1 2{ }TQ Q=Q γ

density. Therefore, the differential equation of the Love-Kirchhoff plate is obtained 

and it is given by the following expression:

(16)
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The solution of the equation above is described in appendix B.1 for the 

determination of homogenised plate frequencies.

3.2 Reissner-Mindlin plate model

The Reissner-Mindlin orthotropic plate model (Figure 2b) proposed by Cecchi and 

Sab [24] is adopted here for taking into account shear effects in the continuous 

model. In this model, the 3D displacement field depends on the out of plane 

displacement  and two rotations  as follows:3 1 2( , )RMU y y 1 1 2 2 1 2( , ), ( , )y y y yφ φ

(17)1 1 2 3 2 1 2 3 3 1 2( ) { ( , ) ( , ) ( , )} .RM RM Ty y y y y y U y yφ φ= ∀u y y

Similarly to the previous model, an identification between the 3D DRBM and the 

Reissner-Mindlin plate model is defined as

(18), , , , , , ,

3 2 1 3 1 2{ } { ( ) ( ) ( )} .i j i j i j i j T RM i j i j i j Tu Uω ω φ φ= = −q y y y

The bending elastic constants of the model are coincident to those of the Love-

Kirchhoff one  in Equation (14) by assuming  with α,β = 1,2; , ,( ) / 2αβ α β β αχ φ φ= +

whereas the relationship between shear strains and stresses is given by

(19)
131 11

2 22 23

0
,

0

Q F

Q F

γ

γ

    
= =    

     
Q

where , with α,β = 1,2 and  were identified by Cecchi and Sab 3,

RMUαβ α αγ φ= + Dαβγδ

[24]. In order to study the free vibrations of the homogenised Reissner-Mindlin 

plate, Equation (14) (with ) and Equation (19) needs to be , ,( ) / 2αβ α β β αχ φ φ= +

solved together with the following equilibrium equations:

(20a-c)

2

1
1111 1,11 1212 1,22 1122 1212 2,12 11 1 3,1 3 2

2

2
1122 1212 1,12 1212 2,11 2222 2,22 22 2 3,2 3 2

2

3
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( ) ( ) = ,

( ) ( ) = ,

( ) ( ) = .
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RM RM
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D D D D F U I
t

U
F U F U s

t

φ
φ φ φ φ

φ
φ φ φ φ

φ φ γ

∂
+ + + − +

∂
∂

+ + + − +
∂

∂
+ + +

∂

Where  is the rotatory inertia of the homogenised plate. The solution of 3

3 /12I sγ=

the above system of equations is described in appendix B.2. It is worth noting that 

analytic solutions of homogenised plate models (for both plate types) in static and 

dynamic fields may be determined for simple load-restraint conditions such as 

simply supported plates. Then, in the following numerical tests, a simple 
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quadrilateral isoparametric shell element is adopted for representing the 

homogenised Reissner-Mindlin plate model if analytic solutions do not exist.

4 Numerical tests

A numerical experimentation is performed in order to compare different approaches 

that may be adopted for modelling the out of plane behaviour of masonry panels and 

to evaluate their field of applicability. Particular attention is given to the evaluation 

of the effectiveness of the homogenised models and particular attention is given to 

the use of discrete model for static and modal analysis. Moreover, the sensitivity of 

masonry out of plane behaviour to in and out of plane size of heterogeneity and to 

block dimension ratio is taken into account.

The following models/solution methods are adopted for performing numerical tests:

- Discrete Rigid Block Model (DRBM);

- Homogeneous Reissner-Mindlin plate model - analytic solution (RMS);

- Homogeneous Love-Kirchhoff plate model - analytic solution (LKS);

- Homogeneous Reissner-Mindlin FE model (FEM RM);

- Heterogeneous full 3D FE model (FEM Het).

DRBM and homogeneous plate models have been described in Paragraph 2; the 

Heterogeneous full 3D FE model is created by means of a commercial FEM code 

and it is characterised by 6-noded brick elements used for modelling both blocks and 

mortar joints by adopting different elastic parameters in order to represent the rigid 

block assumption (block elastic modulus 104 times larger than mortar elastic 

modulus). A masonry panel with a running bond texture pattern is considered as 

reference case for the following numerical tests (Figure 3). It is characterised by 6 

blocks in horizontal direction and 16 courses in vertical direction, with blocks 

having dimensions b = 250 mm, a = 55 mm and s = 120 mm. Horizontal and vertical 

mortar joints have the same thickness e = 10 mm, hence, the overall dimensions of 

the panel are: length L = 1560 mm, height H = 1040 mm and thickness s = 120 mm. 

The mechanical characteristics of the mortar are Em = 1000 MPa and νm = 0.2.

y1

y2

L

H

Figure 3. Masonry panel considered for the numerical examples

In the following, two panel boundary conditions are considered: panel simply 

supported along its edges and panel with fixed base. The first boundary condition is 

considered in order to provide also analytical solutions that may be determined for 

the homogeneous plate models considered in this work, moreover such boundary 
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condition may represent a masonry wall restrained along horizontal edges by slabs 

and along vertical edges by orthogonal walls without a perfect connection. The 

second boundary condition is considered in order to take into account a realistic 

restraint for a masonry wall with a base foundation.

a b c d

Figure 4. Case studies considered for the static analysis

4.1 Static analysis

In order to perform linear static analysis, several load conditions are taken into 

account together with the two boundary conditions defined previously. The 

following list collects the case studies considered (Figure 4):

- Case study 1: panel simply supported along edges, subject to a uniform load 

distribution (Figure 4a);

- Case study 2: panel simply supported along edges, subject to a load distribution 

over a small area at its centre (Figure 4b);

- Case study 3: panel with fixed base, subject to a uniform load distribution along 

upper edge (Figure 4c);

- Case study 4: panel with fixed base, subject to a load distribution over a small area 

at its upper-left corner (Figure 4d).

All cases are obviously characterised by load distributions acting in the direction 

orthogonal to the middle plane of the panel. Cases 3 and 4 may represent walls in a 

masonry building that are perfectly connected only with a slab or foundation 

element at their base, and that are subject to horizontal forces at their top, 

transmitted by a well-connected roof (Case 3) or a single beam of a wooden roof 

(Case 4).

Before performing numerical tests related to the evaluation of scale factor effects 

and to the comparison of the numerical models proposed, the following figures 5 

and 6 collect the deformed shapes together with the maps of out of plane 

displacements and rotations obtained with the reference panel for the four case 

studies considered, modelled with the discrete model. Due to the restraint condition 

of cases 3 and 4, out of plane rotations turn out to be negligible with respect to out 

of plane translations, whereas for case studies 1 and 2 all block displacement 

components turn out to be relevant.
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4.1.1   Influence of in plane size of heterogeneity – case studies 1,2

The effect of size of heterogeneity on the out of plane behaviour of masonry has 

been already presented in the recent work of Baraldi et al. [48]. In this work, the in 

plane scale factor is defined as ε = b/L (hence, reference panel in Figure 3 is 

characterised by ε = 1/6) and in this paragraph block dimension ratio is maintained 

fixed as well as the ratio between the overall dimensions of the panel. For simplicity, 

an inverse expression of the scale factor ρ1 = L/b = 1/ε is also introduced in order to 

represent with integers the results of the following analyses.
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Figure 5. Out of plane displacements and rotations for case studies 1 and 2 applied 

to the reference panel modelled with the discrete model

Figure 7 shows the maps out of plane displacements obtained for case study 1, 

considering two different scale factors ε = 1/6 and ε = 1/24, corresponding to ρ1 

equal to 6 and 24, respectively, and adopting DRBM, Love-Kirchhoff solution 

(LKS) and Reissner-Mindlin solution (RMS). Following the work of Cecchi and Sab 

[24], analytic solutions for both Love-Kirchhoff and Reissner-Mindlin homogenised 
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plate models may be determined for different load distributions over panels with 

simple supported edges by means of a Navier double sine series expansion. The 

order of magnitude of displacements is the same for the models considered, in 

particular DRBM results are close to Reissner-Mindlin solution for decreasing in 

plane scale factor ε. Assuming maximum displacements obtained with DRBM as 

reference solution, differences with respect to results determined with other models 

are evaluated: , where i represents a model/solution DRBM DRBM

3 3 3diff | | / 100iu u u= − ⋅
method adopted (LKS, RMS, FEM RM, FEM Het) and u3 is evaluated at panel 

midpoint. Figure 8 shows such differences for increasing ρ1 and decreasing ε, 

denoting that solutions determined with all models converge to DRBM solution and 

in general FEM Het turns out to have a behaviour very close to that of DRBM.
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Figure 6. Out of plane displacements and rotations for case studies 3 and 4 applied 

to the reference panel modelled with the discrete model

For both case studies, FEM Het is more rigid than DRBM, with differences less than 

5%, whereas for case study 1 homogeneous models are more deformable with 

respect to DRBM and differences are less than 5% only for 1/ε > 15. Considering 

case study 2, all models converge to DRBM solution for decreasing in plane scale 
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factor or increasing ρ1 = 1/ε and in particular the Reissner-Mindlin analytic solution 

presents almost uniform differences with respect to DRBM. As can be expected, 

FEM RM is more deformable than the corresponding analytic solution. It is worth 

noting that for both case studies and 1/ε = 3, all models present large differences 

with respect to DRBM; in this case panel thickness is not negligible with respect to 

panel size (s almost equal to L/6), then plate models fail to represent correctly the 

3D behaviour of the structure.
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Figure 7. Out of plane displacements for case study 1
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Figure 8. Differences in the determination of maximum panel displacement with 

respect to DRBM results for varying in plane scale factor

Furthermore, it is possible to compare computation times for each modelling method 

and for increasing in plane scale factor. Given that load and restraint conditions do 

not influence computation times, only case study 1 is considered for this comparison 

and A PC equipped with an Intel Core i7-3770 @ 3.40 GHz and 8 GB RAM is used 

for this purpose and analyses with 3D heterogeneous FEM are done with a rough 
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mesh refinement with one element along mortar joint thickness in order to avoid 

huge computation times. For this reason, Figure 9 shows that computation times 

with the discrete model are generally less than those spent with FEM Het, but they 

tend to converge for increasing ρ1. The homogeneous FE model has the advantage 

that the same mesh refinement, i.e. the same number of degrees of freedom, is 

adopted for increasing in plane scale factor, hence the computation time is constant 

and, adopting 32 subdivisions along both plane directions, it turns out to be smaller 

than that of DRBM for ρ1 > 10.
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Figure 9. Computation times for varying in plane scale factor

4.1.2   Influence of in plane size of heterogeneity – case studies 3,4
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In these cases, analytic solutions for homogeneous models do not exist, then the FE 

model introduced for representing the behaviour of the Reissner-Mindlin plate (FEM 

RM) turns out to be fundamental for comparing discrete and homogenised 

approaches of analysis. Figures 10 and 11 show out of plane displacements obtained 
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for case studies 3 and 4, respectively, considering two different scale factors ε = 1/6 

and ε = 1/24 and adopting DRBM and FEM RM. Similarly to the previous cases, the 

order of magnitude of displacements is the same for the numerical models 

considered, in particular for decreasing the scale factor ε or increasing ρ1.
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Figure 11. Out of plane displacements for case study 4
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Figure 12. Differences in the determination of maximum panel displacement with 

respect to DRBM results for varying in plane scale factor

Then, assuming maximum displacements obtained with DRBM as reference, 

differences with respect to results determined with other models are evaluated for 

increasing ρ1 and represented in Figure 12. Similarly to the previous cases, the FEM 

introduced for representing the Reissner-Mindlin model is more deformable with 

respect to DRBM and differences are less than 5% only for ρ1 > 15. The 3D 

heterogeneous FEM is generally more rigid than the DRBM (except for ρ1 = 18 and 

24) and differences are always close to 5%.
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4.1.3   Influence of out of plane size of heterogeneity: panel thickness

In order to evaluate the effect of panel thickness on the out of plane behaviour of 

masonry, the out of plane scale factor ζ = s/L, introduced previously, is here 

considered (for instance, the panel in Figure 3 is characterised by ζ = 0.077). Small 

values of ζ represent thin panels, whereas large values of ζ represent thick panels. In 

the following tests, a panel with ρ1 = 18 is considered and its thickness is varied 

assuming several values of ζ. For simplicity only case studies 1 and 3 are taken into 

account.

Figure 13 shows maximum panel displacements obtained with both plate models 

and DRBM for increasing ζ. Considering case study 1, it is evident that the results of 

both plate models, as expected, converge to DRBM results for small values of ζ, 

whereas for increasing ζ, both plate models are not able to represent the DRBM; 

however, as can be expected, the Reissner-Mindlin model is slightly closer to 

DRBM than the Love-Kirchhoff model. Considering case study 3, Figure 13 shows 

that differences between DRBM and FEM RM results are almost uniform for 

increasing ζ, close to 5% (obtained previously in Figure 12 for ρ1 = 18).
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Figure 13. Maximum panel displacements for increasing out of plane scale factor

4.2 Modal analysis

In this paragraph, modal analysis of masonry panels modelled with DRBM is 

performed in order to evaluate the effectiveness of the model in the determination of 

out of plane panel vibration frequencies and of the corresponding modal shapes and 

in order to evaluate the effects of in and out of plane scale factors, together with 

block and panel dimension ratios.

4.2.1   Panel with simply supported edges

The panel with simply supported edges adopted for case studies 1 and 2 (Figure 4 

a,b) is taken into account for first. Figure 14 shows the first four mode shapes and 

the corresponding frequencies for the reference panel; block thickness is not 

represented for simplicity and the corresponding colour maps of out of plane 

displacement are added for better understanding block displacements. Similarly to 

isotropic plates, first mode shape is characterised by one half-wave in both plane 
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directions, second mode shape has one half wave in y1 direction and 2 half waves in 

y2 direction, third mode shape has 2 half waves in y1 direction and one half-wave in 

y2 direction, fourth mode shape has 2 half-waves in both plane directions.
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Figure 14. First four mode shapes, maps of out of plane displacements and 

corresponding frequencies for a simply supported masonry panel taken as reference 

(Figure 3) and modelled with the discrete model

Analytic solutions for both Love-Kirchhoff and Reissner-Mindlin homogeneous 

plates may be determined by solving the corresponding equation of motion (Eqs. 16 

and 20 a-c, respectively). In appendix B, analytic expressions for frequencies are 

determined, in order to compare the corresponding results with respect to DRBM 

results. Figure 15 shows differences  in the DRBM DRBMdiff (λ λ ) / λ 100j j

i i i i= − ⋅
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determination of the first four frequencies assuming DRBM results as references, 

where j indicates a homogeneous plate solution method or solutions obtained with 

heterogeneous FEM and i indicates the i-th eigenpair considered. Frequencies 

obtained with LKS and RMS appear to be quite close to each other and present 

similar differences with respect to DRBM results. Hence for both analytical models, 

differences obtained for 1st and 4th frequencies decrease to 2% for decreasing in 

plane scale factor ε or increasing ρ1, whereas differences obtained for 2nd and 3rd 

frequencies slightly decrease for increasing ρ1 and are close to 10%. Similarly to the 

static case, the results obtained with the 3D heterogeneous FEM are closer do 

DRBM results with respect to homogeneous plate solutions.
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Figure 15. Differences in the determination of panel frequencies with respect to 

DRBM results for increasing ρ1 or decreasing in plane scale factor ε

4.2.2   Panel with fixed base

In this paragraph, the panel with fixed base adopted for case studies 3 and 4 (Figure 

4 c,d) modelled with DRBM is taken into account. Panel texture in Figure 3 is 

assumed as reference case, then several geometrical parameters are modified in 

order to evaluate their effect on panel frequencies and modal shapes. For the 

following analyses a second in plane ratio ρ2 = H/a is introduced in order to evaluate 

block dimension ratio a/b.

Then, the following aspects are considered for performing modal analysis:

- sensitivity to in plane scale factor: maintaining fixed block dimensions, the number 

of blocks in both plane directions is increased;

- sensitivity to out of plane scale factor: maintaining fixed block and panel 

dimensions (reference case), the effect of varying panel thickness is taken into 

account;

- sensitivity to block dimension ratio - subcase 1: maintaining fixed panel 

dimensions and block height a, the effect of varying block width b is taken into 

account;

- sensitivity to block shape factor - subcase 2: maintaining fixed panel dimensions 

and block width b, the effect of varying block height a is taken into account;

- sensitivity to panel shape factor: maintaining fixed block dimensions and panel 

width L, the effect of varying panel height H is taken into account.
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The first row of Figure 16 shows the first four mode shapes of the reference case 

together with the corresponding frequencies. The first mode shape is characterised 

by the classical flexural deformation in vertical direction with one half-wave and 

almost 60% of participant mass in out of plane direction ( ). The 3

1 59.3%
u

PF =
second mode shape is characterised by a torsional deformation; in this case the 

participant mass in out of plane direction is close to zero, whereas a participant 

rotatory inertia with respect to vertical direction ( ) is obtained. The 1

2 2.2%PF
ω =

third mode shape is characterised by a flexural deformation with two half-waves and 

a . The fourth mode shape is characterised by flexural deformations in 3

3 18.6%
u

PF =
both plane directions (flex. 2D) but mass and rotatory inertia participation factors are 

close to zero.

In order to evaluate the effect of in plane scale factors, the second row of Figure 16 

shows the first four mode shapes and the corresponding frequencies of a panel 

having ε = 1/24, corresponding to ρ1 = 24 and ρ2 = 64. Mode shapes order does not 

vary with respect to the reference case, whereas frequencies are smaller than those 

of the reference case due to the larger deformability of the panel given by the large 

number of blocks and joints considered. Mass participation factors in out of plane 

direction of first and third mode shapes are almost coincident to those of the 

reference case ( , ). Then, in plane scale factor does not 3

1 60.1%
u

PF = 3

3 18.6%
u

PF =
affect significantly modal shapes and mass participation factors of fixed base panels. 

Figure 17a, indeed, shows that frequencies decrease linearly and mode order do not 

vary for increasing ρ1 or decreasing ε.

In order to evaluate the effect of out of plane scale factor, Figure 17b shows the first 

four frequencies for increasing out of plane factor ζ. As can be expected, frequencies 

increase linearly for increasing ζ due to the increasing stiffness of the panel given by 

its thickness, moreover mode order does not vary for increasing ζ with respect to the 

reference case and for this reason deformed shapes are not added to Figure 16. In 

order to evaluate block dimension ratio a/b, the third row of Figure 16 shows the 

first four mode shapes and the corresponding frequencies for a panel having ρ1 = 24 

and ρ2 = 16, corresponding to a/b = 1.0. It is clear that the first mode shape and the 

corresponding frequency is quite close to the first eigenpair of the reference case, 

however the subsequent mode shapes are characterised by different order and 

frequency values with respect to the reference case. Figure 17c, indeed, shows that 

the first frequency value does not vary significantly for increasing ρ1 and similarly, 

the frequency values corresponding to the flexural mode shape with two half-waves 

are almost constant or slightly increase for increasing ρ1. On the other hand, 

frequencies corresponding to torsional mode shape and the one with flexure in both 

plane directions decrease for increasing ρ1 due to the increasing deformability given 

by the increasing number of blocks and mortar joints in horizontal direction. Hence, 

it is clear that flexural mode shapes are not affected significantly by scale factor ρ1 if 

block height and panel dimensions are fixed. Continuing to consider the effect of 

block dimension ratio a/b, the fourth row of Figure 16 shows the first four mode 

shapes of a panel having ρ1 = 6 and ρ2 = 32, corresponding to a/b = 0.125. 
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Reference case

λ1 = 40.7 Hz λ2 = 116.3 Hz λ3 = 242.7 Hz λ4 = 338.2 Hz

Sensitivity to in plane scale factor

λ1 = 2.4 Hz λ2 = 7.8 Hz λ3 = 15.3 Hz λ4 = 23.2 Hz 

Sensitivity to block shape factor - subcase 1

λ1 = 43.4 Hz λ2 = 72.0 Hz λ3 = 164.8 Hz λ4 = 258.8 Hz 

Sensitivity to block shape factor - subcase 2

λ1 = 30.8 Hz λ2 = 127.5 Hz λ3 = 15.3 Hz λ4 = 23.2 Hz 

Sensitivity to panel shape factor

λ1 = 4.4 Hz λ2 = 27.2 Hz λ3 = 33.4 Hz λ4 = 75.5 Hz 

Figure 16. Modal analysis of masonry panels (DRBM) varying several parameters
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First and third mode shapes are characterised by flexural deformation with one and 

two half-waves, respectively, whereas second mode shape is a simple torsional 

deformation and the fourth mode shape is a combined flexural-torsional 

deformation. Frequencies corresponding to flexural modal shapes decrease for 

increasing ρ2 (Figure 17d), whereas frequencies corresponding to torsional modal 

shapes initially decrease up to ρ2 = 10 and then increase for iρ2 > 10.
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Figure 17. First four panel frequencies varying in plane and out of plane scale 

factors. Sensitivity to: in plane scale factor (a), out of plane scale factor (b); block 

shape factor - subcase 1 (c), block shape factor - subcase 2 (d)

Finally, the effect of panel shape factor is considered by varying L/H ratio. For 

example, the fifth row of Figure 16 collects the first four modal shapes 

corresponding to L/H = 0.5, with ρ1 = 6. Thanks to the slenderness of the panel, first, 

second and fourth mode shapes are flexural with one, two and three half-waves, 

respectively, whereas the third modal shape is torsional. Figure 18a shows frequency 

values for increasing L/H. For the range of L/H values considered, the first mode 

shape is always flexural with one half-wave and it is possible to define an expression 

for estimating frequency values linearly depending on L/H and panel material 

parameters. Moreover, Figure 18b shows mass participation factors related to this 

case study and the first mode shape tends to activate the 60% of the total panel mass 

for decreasing L/H, whereas the percentage of mass activated by the second flexural 

mode shape does not depend on L/H and it is close to 20%. Figure 18c shows 

rotatory inertia participation factors, that are strictly related to block out of plane 

rotations. In particular, the rotatory inertia related to ω2 for the first and second 

flexural modes increases significantly for increasing L/H.
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Figure 18. Modal analysis varying panel shape factor L/H. Frequency values (a), 

mass participation factors (b); rotatory inertia participation factors (c)

4 Conclusions

In this work the out of plane behaviour of masonry panels with regular texture has 

been considered. Elastic behaviour, small displacements, and fixed contact topology 

are the hypotheses adopted for the analysis. Several numerical and analytical models 

have been taken into account for modelling masonry, with particular attention to a 

simple discrete model introduced by Cecchi and Sab [24] and here extended by 

performing static analysis with several boundary conditions and load cases and, in 

particular, by performing out of plane modal analysis. The proposed review has 

shown that the discrete model (DRBM) is simple, effective and efficient for 

modelling out of plane behaviour, thanks to the small number of degrees of freedom 

involved during the analyses. Such simplicity allowed to define the stiffness matrix 

of the regular assemblage of blocks, in order to obtain fast static solutions with 

respect to the molecular dynamics method adopted originally and in order to 

perform modal analysis by solving eigenvalue problems.

Both in static and modal analysis, the 3D Heterogeneous FEM turned out to be quite 

close to the DRBM, however it is affected by the large number of degrees of 

freedom needed for modelling accurately the masonry structure and by the mesh 

refinement required for obtaining accurate results. Love-Kirchhoff and Reissner-

Mindlin homogeneous plate models turned out to be more deformable than the 

DRBM almost in all case studies considered in static and modal analysis. However, 

performing static analysis, analytic solutions obtained with the Reissner-Mindlin 

plate turned out to be closer to DRBM for decreasing in plane scale factor. In 

general, for the four case studies considered during static analysis tests, the 
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homogeneous models proved to be effective for representing masonry behaviour 

only for small values of the in plane scale factor (i.e. ε < 1/15 or ρ1 > 15).

The FEM adopted for modelling the Reissner-Mindlin homogeneous plate for static 

analysis turned out to be slightly more deformable than the corresponding analytical 

model, however it has been fundamental in the determination of out of plane 

displacements for the case studies of panels with fixed base. Furthermore, 

computation times with FEM RM are not affected by the in plane scale factor, hence 

this model may be successfully adopted in case of panels with a large number of 

blocks.

Then, modal analysis performed for the simply supported plate allowed authors to 

define the analytic solutions in terms of frequencies for Love-Kirchhoff and 

Reissner-Mindlin homogeneous plate models. Similarly to the static analysis case, 

homogeneous models turned out to be effective for representing masonry behaviour 

only for small values of the in plane scale factor (i.e. ε < 1/15 or ρ1 > 15). Further 

modal analyses on masonry panels with fixed base have been carried on adopting 

only discrete model, obtaining flexural deformation with one half-wave as first 

mode shape and obtaining often torsional deformation as second mode shape. In 

plane and out of plane scale factors turned out to slightly influence mode shapes 

order.

Further developments of this work will regard the extension of the DRBM to the 

field of nonlinear analysis by assuming rigid block and nonlinear interfaces, 

similarly to recent developments performed by authors in plane case [50]. 

Furthermore, more accurate continuous models, such as the Cosserat continuum, 

will be taken into account and compared to the DRBM here reviewed.
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Appendix

A Stiffness matrix of a regular block assemblage

In order to describe how to determine the stiffness matrix of a  regular masonry 

assemblage, the simplest procedure envisages the definition of the stiffness matrix 

for an interface  between two generic blocks. Then, the degrees of freedom 
1 2,k kS

related to the generic block Bi,j in Equation (1) have to be taken into account 

together with the degrees of freedom of a generic neighbour :
1 2,i k j kB + +

(21)1 2 1 2 1 2 1 2, , , ,

3 1 2{ } ,
i k j k i k j k i k j k i k j k Tu ω ω+ + + + + + + +=q

where k1, k2 = ± 1, for horizontal interfaces, k1 = ± 2 and k2 = 0 for vertical 

interfaces. The degrees of freedom of the couple of adjacent blocks may be collected 

in the following vector having 6 components:

(22)1 2 1 2 1 2 1 2, , , ,, , ,

3 1 2 3 1 2{ } .
k k i k j k i k j k i k j ki j i j i j Tu uω ω ω ω+ + + + + +=q

Adopting the notation of vectors  and , Equation (3a-c), representing ,i jq 1 2,i k j k+ +
q

relative displacements between the blocks, may be written in matrix form as 

follows:

(23)

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2

, ,

3 2 1 3

, , ,

1 1

, ,

2 2

,

2 1 3

, ,, , ,

1

,

2

1 / 2 / 4

0 1 0

0 0 1

1 / 2 / 4

0 1 0 ,

0 0 1

k k i k j k

k k k k i k j k

k k i k j k

i j

i k j k i k j ki j i j i j

i j

d k a k b u

k a k b u

δ ω

δ ω

ω

ω

+ +

+ +

+ +

+ + + +

   − 
    = = +    
        

 − 
  − = −  
     

d

H q H q

and, assembling matrix and vector components, the following expression may be 

obtained:

(24)1 2 1 2 1 2

1 2 1 2

,,

, , ,

, ,

0
.

0

i ji j

k k k k k k

i k j k i k j k+ + + +

  −  
= =  

    

qH
d H q

H q

It is worth noting that k1 and k2 depend on the interface considered, consequently 

matrices ,  and then matrix  depend on the interface considered.1 2,i k j k+ +
H ,i jH 1 2,k k

H

Moreover, interface forces and couples depend on relative displacements between 

blocks by means of constitutive relations involving interface stiffness matrices. 

Then, substituting the equations above in the expression of the elastic energy of the 
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