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A two-dimensional space is proposed for exploration and interactive design in the sonic
space of a sound model. A number of reference items, positioned as landmarks in the space,
contain both a synthetic sound and its vocal imitation, and the space is geometrically arranged
based on the acoustic features of these imitations. The designer may specify new points in the
space either by geometric interpolation or by direct vocalization. In order to understand how
the vast and complex space of the human voice could be organized in two dimensions, we
collected a database of short excerpts of vocal imitations. By clustering the sound samples on
a space whose dimensionality has been reduced to the two principal components, it has been
experimentally checked how meaningful the resulting clusters are for humans. The procedure
of dimensionality reduction and clustering is demonstrated in the case of imitations of engine
sounds, giving access to the sonic space of a motor sound model.

0 INTRODUCTION

In a sense, the human voice has for acoustic communi-
cation a role similar to what the hand and pencil have for
visual communication. Humans use their voice for verbal
communication as well as for non-verbal acoustic expres-
sion, similar to the hand which is used both for writing and
for drawing. Just as the hand and pencil are extensively used
for visual sketching, the voice has potential to be exploited
for sketching or imitating sounds. Indeed, sketching comes
before verbal—oral or written—expression in development
of both the human species and the human individuals [4].
Recent research has shown that vocal imitations can be
more effective than verbalizations at representing and com-
municating sounds [16]. Such natural capabilities are being
exploited for sound retrieval and synthesis [3]. The Euro-
pean project SkAT-VG is investigating the use of voice and
gesture as intuitive means for the selection and control of
sound models in sonic interaction design [25].

In this article we investigate how the vocal mimicking
capabilities of humans may be exploited to access and ex-
plore a given sonic space. In this context, a sonic space
is the space where the sounds produced by a given sound
model can be distributed. Essentially, the multidimensional
range of possibilities of a sound generator defines its sonic
space.

The driving idea of this work is that a collection of
exemplar sounds produced by the sound model could be
coupled to corresponding vocal imitations, thus providing
landmarks to navigate the sonic space. The spatial organi-
zation of the exemplars should result in a low-dimensional

layout where such landmarks can prompt exploration by
vocal imitation or by geometric interpolation.

The construction and use of a two-dimensional space
is explained in Sec. 1, where the synthesis-analysis-
resynthesis loop involving human imitations is introduced.
Since vocal imitations would be used to orient the user in
a low-dimensional space of sounds, it is interesting to un-
derstand what is the span of the space of vocal imitations
at large and to check if humans can make sense of opera-
tions of dimensionality reduction and clustering performed
in that space. This is the scope of Sec. 2, which investigates
how the space of vocal imitations could be arranged and
simplified to highlight clusters of sounds that are acousti-
cally similar. Prototype sounds are automatically selected
to represent clusters, and human participants are requested
to label each of the remaining sounds as being perceptually
closer to one of the prototypes. Between-subjects consis-
tency is measured and the low-dimensional space is parti-
tioned according to the preferences of participants. Finally,
Sec. 3 provides a practical example of two-dimensional spa-
tial organization for a model of engine sounds. A demon-
strative interface is illustrated, which starts from a set of
synthetic/imitative exemplar couples, and it gives the pos-
sibility to access unexplored points of the sound model
space by vocal imitation.

Tools for sonic browsing on two dimensions were pro-
posed in the past [9]. The idea of using landmarks to facil-
itate navigation in the sound design space was explored in
the context of parametric sound synthesis [7, 1], and audi-
tory representations were used both to give a visual snap-
shot to each sound and to compute distances that would
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Table 1. The relevant sets and their meanings.

Set Meaning

S prototype sounds of the synthesizer
I vocal imitations of sounds in S
B trajectories of features of imitations in I
P trajectories of parameters of synthetic sounds

allow locating new sounds in the map. As compared to
those studies, here we show how a low-dimensional space
of vocal imitations, each possibly corresponding to an un-
derlying synthetic sound, can be automatically arranged
and partitioned, with landmarks automatically extracted as
representatives of clusters.

In relevant related work [26], a free-sorting task on 150
non-vocal sound effects produced dissimilarity matrices to
train an automatic classifier via multidimensional scaling.
Categorization via manual grouping was done for every-
day sounds in selected contexts, such as cars [20]. For
recorded kitchen sounds [12], the four main categories of
solids, electricals, gases, and liquids were found, and they
were largely confirmed when subjects were requested to
sort imitations of such sounds [15]. The organization of
sound material into spatial layouts for performance con-
trol was also investigated [21], and mixtures of Gaussians
were proposed to achieve continuous interpolation in the
sonic space. The mapping between vocal postures/gestures
and sound-synthesis parameters is an active research topic
in sound and music computing, where several machine-
learning techniques can be exploited [8]. The Spiral Dis-
covery Method [5] is an algebraic approach that gives a
practical tradeoff between complexity and interpretability
that is inevitable when defining a relationship between the
parameter space and some perceptual space of reduced di-
mensionality.

1 A PLANE FOR MODEL SOUNDS AND THEIR
IMITATIONS

The general problem that we are addressing is that of
organizing and accessing the sonic space of a given sound
model. This is a situation sound designers are often con-
fronted with when they have to restrict their attention to
a certain class of sounds or when they want to exploit a
certain sound synthesizer. The entities that we are refer-
ring to are found in the sets described in Table 1. Given
a sound synthesis model (e.g., a model for motor sounds),
this gets represented through a set of samples S, or proto-
type sounds of the synthesizer. Since vocal imitations are
better than words at describing sounds [16], we propose to
“label” each sample by a vocal imitation. An imitation i is
produced for each s ∈ S, thus producing a set I of imitations,
having the same cardinality as S.

Vocal imitations are complex sound objects that can be
described by a set of features, which can be quite numerous.
In a screen-based interface, the set I should be projected on
the plane by a transformation TI , that includes a dimen-

sionality reduction on the set I. Each s ∈ S will follow its
corresponding i ∈ I in the projection on the plane.

The sound projection plane will be obviously displayed
on the screen where each couple (in, sn) will be highlighted
as a graphical element (a dot or a more informative glyph).
Simple interactions through conventional input devices can
be programmed with these items on the plane. For exam-
ple, with a two-button mouse the following actions can be
programmed:

• For any item on the plane: Left click plays back
the imitation i; Right click plays back the synthetic
sound s;

• A click on an empty area of the plane produces a new
couple (in, sn), where sn is obtained by parametric
interpolation and immediately played back, and the
user is prompted for a new (optional) imitation in. As
soon as such imitation is provided, the couple (in, sn)
is moved to the point of the plane that corresponds
to TI (in);

• A new imitation in can be produced without looking
at the plane. The transformation TI is automatically
applied so that in gets projected on the plane, and
sn is produced by parametric interpolation based on
neighbouring samples.

1.1 Controlling Sound Models with the Voice
Given a sound synthesis model represented through a set

of samples S, assume we know the temporal trajectory of
model parameters p (a multivariate time series) that produce
each sample s ∈ S. Let P be the set of parameter trajectories.
We can ask the sound designer to produce a vocal imitation
i for each s ∈ S, so that a set I of imitations gets formed.

Assume we have a set of feature extractors that operate
in real time on short-term slices of the audio input. Each i ∈
I produces the temporal trajectory b of a feature vector. The
features extracted from imitations can be used to control the
parameters of sound synthesis. Each model parameter is a
hypersurface on the space of imitation features, and each
sample is associated to a trajectory on that surface. If, for
a given parameter pj, we interpolate (or regress) a surface
from a set of trajectories we get a map pj = m(b).

In this way, it would be possible to recreate the synthetic
sounds of S by using the imitations I as control signals.
The whole chain resembles a classic synthesis-analysis-
resynthesis loop, with the human imitator as a within-loop
active agent:

S
imitation−→ I

f eature−extr.−→ B
mapping−→ P

resynthesis−→ S (1)

In the chain 1, the set of imitations I is derived from
the corresponding model sounds S (for whom we know
the parameter trajectories P), feature trajectories B (the set
of all elements b) are extracted from each imitation, and
a mapping from vocal audio features to model parameters
is derived by interpolation or regression given the couples
(b, p).

At the center of chain 1 there is the human individual,
with her preferences, limitations, and idiosyncrasies. This
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makes the couples (b, p) highly subjective but ensures the
highest level of embodyment of the sonic space, as its struc-
ture is directly organized as an egocentric frame of reference
[22].

It should be noted that the vocal features are “instanta-
neous” and so are the parameters. This does not mean that
there is no memory in the sound synthesis process. In fact,
the sound model may be time- or state-dependent. For ex-
ample, friction may sound different depending on how we
reach a given configuration of parameters.

Sec. 3 presents an example realization of the proposed
interactive sonic space for a motor sound model. Before-
hand, we need to show how the projection may actually
work and how the space distribution of vocal samples is
representative of human thinking in sound.

2 THE VOCAL SONIC SPACE

In order to devise tools that facilitate sound design by vo-
cal sketching we must gain a better understanding of what
the voice can do and how vocalizations are interpreted by
listeners. From a sound design perspective, it is particu-
larly useful to organize the vocal sound space on a low-
dimensional layout whose navigation can be facilitated by
landmarks, or sounds that represent distinct neighborhoods.
The purpose of this section is to explore the construction
of such a layout automatically from a database that sig-
nificantly spans the possible non-verbal uses of the human
voice.

When imitating everyday sounds, humans often use vo-
cal mechanisms that are never found in spoken languages
[11], and the construction of a vocal sonic space can only
start from the collection of a set of significant examples. A
database of 152 audio segments were manually extracted
from the Fred Newman’s repertory of vocal imitations de-
scribed in his book [23] and included in the companion
CD. The segments were all 500 ms long (22050 samples
at 44100 samples/s) and were taken to represent a single
sound event or process. The length was chosen in order to
try to accommodate for different vocal phenomena. There
is still a degree of arbitrariness in this operation, as some
events may be the result of a concatenation of articulatory
actions of a shorter time span, but for the scope of this study
each audio segment may be considered to include a single
utterance.

Since the audio segments were extracted from a com-
prehensive set of examples of a renown professional vo-
cal artist, they are likely to represent well the possibilities
of human voice. In general, for the purposes outlined in
Sec. 1, we would like to be able to browse collections of
vocal samples organized on a two-dimensional surface.

2.1 Reducing Dimensionality: A Compact
Description of Sounds

Digital signals are described by sequences of many val-
ues, and reducing the dimensionality is a necessary step in
order to organize a sonic space. A classic way to do that is

by means of Principal Component Analysis (PCA), which
is based on Singular Value Decomposition (SVD) [13].

Attempting a reduction of dimensionality on the raw au-
dio files or on their invertible transformations (Fourier or
Wavelet) is not successful. That is why more compact de-
scriptions of sounds are conveniently adopted, even if they
do not allow to reconstruct the original signals [7]. How-
ever, in a sonic space where landmarks are associated with
instances of sound models, it would be possible to local-
ize a given sound in the space and to interpolate between
neighboring landmarks to synthesize a new sample, even
without direct reconstruction from descriptors.

In the area of music information retrieval a lot of re-
search has been devoted to extract audio descriptors (or
features) that could concisely represent sound and music
[24]. Several software libraries are available to easily ex-
tract brightness, spectral flux, and other descriptors from
a given soundfile and to collect statistical descriptors from
them. For this study we have been using the popular MIR
toolbox v.1.5 [14] under Matlab R2010b, and we applied
a number of its feature extractors to summarize each of
our audio segments with statistical information. In partic-
ular, we used the median and interquartile (IQR) range
values (as recommended in [24]) of spectral flux, centroid,
roughness, flatness, entropy, skewness, and RMS energy
computed over 18 windows spanning the 500 ms-duration
of each audio segment.

In addition to the statistical audio features, we added
some features that would account for the temporal morphol-
ogy of each audio segment. The idea is that, for example,
such features would mark a clear difference between a sus-
tained noise and an impulsive click. However, there is the
problem of where short temporal events actually occur in
time, as it should be irrelevant if an impulsive click occurs
at time 100 ms or 300 ms in the considered time span. In
order to account for possible elastic deformations of time,
Dynamic Time Warping (DTW) is used to compare dis-
tances between the extracted RMS profile and a number of
templates. The prototypical temporal envelopes are: upward
slope, downward slope, up-down profile, and impulses. As
compared to the study on morphological profiles conducted
on 55 environmental sounds by Minard et al. [19], we used
four of the six dynamic profiles that resulted from manual
clustering by their pool of experts. Among the many other
possible descriptors that could be used, those exploiting the
nature of vocal sounds are particularly interesting and will
be briefly considered in Sec. 4. However, in this study the
organization of the sonic space, the extraction of prototype
sounds, and the subjective tests are voice agnostic. Table 2
lists the features used in this study.

All collected features are non-negative real numbers, but
their range and units are quite different from each other. For
the subsequent step of PCA, we perform a normalization
to the maximum value of each feature in our population of
samples. Still, most of the distributions are heavily skewed
toward zero. In order to obtain feature distributions that
more evenly span the unit interval we distort the distribu-
tion of values of each feature by its cumulative histogram
(histogram equalization).
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Table 2. The eighteen features considered in the study.

1 Flux Median Distance between consecutive spectral frames
2 IQR
3 Centroid Median The first moment of a spectral frame
4 IQR
5 Roughness Median Estimation of sensory dissonance
6 IQR
7 Flatness Median Indicates whether the spectrum is smooth or spiky
8 IQR
9 Entropy Median The relative entropy of a spectral frame
10 IQR
11 Skewness Median A measure of symmetry of a spectral frame
12 IQR
13 RMS Median The global energy of a spectral frame
14 IQR
15 Upward Upward slope
16 Downward Downward slope
17 Up-down Up-down profile
18 Pulses Train of pulses

Before the extraction of principal components, the mean
is subtracted from the distribution of each feature, and the
distribution is further normalized to range betweenn −1 and
1. Then, the thin SVD is computed on the matrix B ∈ R

m× f ,
where m = 152 is the number of audio segments and f =
18 is the number of features:

B = U SV ′. (2)

S ∈ R
f × f is the diagonal matrix of singular values in

descending order, U ∈ R
m× f is the matrix of orthonormal

basis vectors (principal components) that best represents the
set of audio segments (described as features) in a L2 sense.
The i −th row of U expresses the i −th audio segment as a
set of coefficients of a combination of principal directions,
or “feature modes.” These modes are expressed as columns
of SV ′ ∈ R

f × f .
To reduce dimensionality, we retain only columns 1

to l of matrix U, corresponding to the l largest singular
values or to the most prominent feature modes. For our
database of audio segments, each summarized by the 18
features of Table 2, the decay of singular values is rela-
tively slow, thus not giving an obvious cutoff for l. Still, a
meaningful and practical navigation of the sonic space can
only be afforded by a low-dimensional space. In particular,
the first two principal components are the ones that would
afford effective browsing [9], even though they explain less
than one third of the variance for this set of sounds. In fact,
the slow decay of the singular values (diag(S) = [16.9, 12.8,
10.7, 8.7, 7.2, 6.5, 5.3, 4.5, 4.0, 3.3, 3.1. . .]) shows that there
is no obvious cutoff point for dimensionality reduction.

2.2 Clustering
In general, clustering in the PCA-reduced subspace is

more effective than doing it in the original space because
the subspace of l + 1 cluster centroids is spanned by the first
l principal directions of data [6]. Particularly interesting is
the case of two principal components (l = 2), because that
gives a bi-dimensional space that is easy to navigate, as if
it was a map displaying a set of landmarks. With such low
value of l, the extraction of three clusters is particularly ef-
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Fig. 1. Three clusters in the space of the two principal components.

fective, and such clusters can be displayed in the 2-D space
of principal components. Fig. 1 displays the clusters of 60
(red), 42 (green), and 50 (blue) elements extracted with
k-means clustering, as well as the six largest principal-
component loading vectors (two-component reduction of
the columns of SV′). The anti-diagonal of this space is
roughly aligned with the median of spectral centroid or
brightness of sound. Although the m audio segments do not
tend to cluster in three distinct groups, the clustering pro-
cedure provides a three-fold subdivision of the sonic space.
In Fig. 1, the larger circles correspond to the cluster cen-
troids, which ideally should be selected as representatives
of each cluster. In practice, since resynthesizing a vocal-
ization that corresponds to such centroids is not possible,
we can choose the closest item as a cluster representative.
The spectrograms of such representatives are depicted in
Fig. 2. The first can be described as imitation of a trumpet,
the second is a prototype of “glottal fry,” and the third is
a “tongue flop” that could be used to imitate horse steps.
The three prototype vocal imitations are obtained by dis-
tinct source types, such as vocal-fold phonation, glottalic
myoelastic oscillation, and tongue percussion [11]. Given
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Fig. 2. Spectrograms of representatives of clusters 1 (60 elements, red cluster), 2 (42 elements, green cluster) and 3 (50 elements, blue
cluster).

such a relatively small number of clusters compared to the
number of elements, and the vague nature of the terms and
categories that can be used to describe sounds, it is not easy
to interpret them. In the first (red) cluster we have sounds
that are mostly pitched. The second (green) cluster mostly
contains sounds that are continuous and noisy. Finally the
third (blue) cluster encompasses sounds that are mostly
characterized by an impulsive behavior or a temporal
evolution.

The three classes of vocal imitations roughly correspond
to the categories of instrument-like, motor, and impact
sounds as they emerged from the analysis of a free-sorting
task on 83 sounds of car interiors, air-conditioning units,
car horns, and car doors [20]. The classes could also be
put in correspondence with the categories of electricals,
gases/liquids, and solids, as they emerged from categoriza-
tion of kitchen sounds and of their imitations [12, 15].

Even more meaningful is connectivity analysis [6], which
looks for diagonal blocks in the matrix U2U2

′, where U2 are
the first two columns of U, with their rows sorted according
to the extracted clusters. In this clustering the degree of
connectivity is c = 0.65, i.e., 65% of the active cells belong
to the three blocks on the diagonal of U2U2

′, thus showing
strong connection within clusters.

2.2.1 Different Clustering Techniques
It is possible to replace the k-means clustering with other

different techniques (see [18] for details) that enable us to
highlight different perspectives on data. We report connec-
tivity c for hierarchical, Fuzzy C-means, and GMM clus-
tering:

• Hierarchical: c = 0.58;
• Fuzzy C-Means: c = 0.64;
• GMM: c = 0.57.

With hierarchical clustering we can plot the dendrogram
for linkage, which can give some insight on the nature of
grouping, but cluster “prototypes” can be obtained only by
separate computation of the barycenter. Fuzzy C-Means and
GMM (Gaussian Mixture Model) can conversely provide a
degree of membership for each sound to each of the clusters

thus allowing to handle situations where a sound cannot be
clearly positioned in one of the classes.

2.3 How Would a Human Do?
Having shown how a machine can distribute and cluster

voice samples on a plane, it is interesting to see if and how
humans agree on grouping the samples around prototypes.
Considering a small (i.e., 3) number of clusters, we asked 26
listeners (15 experts in sound and music computing and 11
naive, 21 male and 5 female, age ranging between 18 and 54
years), not involved in this research, to use a web application
to perform the following task: Listen to the 3 cluster repre-
sentatives and then assign each of the remaining 149 sounds
to one of the representatives. From these associations, we
computed the confusion matrix and the clustering accuracy
for each subject, as compared to the machine-provided clus-
ters. Subjects showed values of accuracy ranging from 0.40
to 0.65, where a random assignment would return a value
0.33 of accuracy. For example, for the subject that is the
closest to automatic clustering (subject accuracy is 0.65),

the confusion matrix is C =
[

46 13 1
6 24 12
10 11 29

]
, where element

ci,j represents the number of audio segments that have been
assigned to cluster i by the machine and to cluster j by
the human. The mean accuracy for the 26 subjects is 0.50,
which is significantly larger than 0.33 (one-tailed t-test,
t(25) = 13.88, p < 0.01). The mean accuracy for the 15
expert subjects is 0.54, while that of the non-experts is
0.47. The difference between the mean accuracies of the
two subgroups is small yet significant (one-tailed t-test,
t(24) = 2.67, p < 0.01), thus showing that expert subjects
are slightly closer to the machine in labeling sounds ac-
cording to three prototypes.

2.3.1 Agreement between Subjects
In order to see how humans agree with each other in

the proposed classification task we considered the array of
labels (cluster numbers) that each participant assigned to
the audio segment. For each of the 325 pairs that could
be formed out of the 26 participants, we computed the
agreement using the inter-rater agreement statistic (Cohen’s
Kappa) between the two arrays of assignments. The mea-
sured mean agreement is 0.43, which could be labeled as

J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July 5



ROCCHESSO ET AL. PAPERS

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 3. Bayesian subdivision of the sonic space by similarity to
three given sound prototypes. Decision boundaries drawn after a
labeling exercise with 26 subjects.

fair-to-moderate. This value is significantly larger than 0.26
(labeled as fair), i.e., the mean agreement between each sub-
ject and the machine-provided labeling (one-tailed t-test on
two unpaired samples, t(349) = 4.29, p < 0.01). This gives a
measure of how far machine clustering is from the grouping
consensus achieved between people.

2.4 Partitioning the Sonic Space
Having asked 26 participants to label the 152 audio seg-

ments by similarity to the 3 prototypes extracted by the
automatic clustering procedure, we could collect empirical
probabilities for each of the 3 classes. For each class, we
counted the percent number of times that class was cho-
sen for a given audio segment. A probability surface was
obtained for each class by K-nearest neighbor regression
(with a smoothing of K = 20), so that a Bayesian deci-
sion could be taken for each point of the plane, simply by
choosing the largest of the three probabilities at that point.
The resulting regions are portrayed in Fig. 3. This partition
of the sonic space, as derived from the labeling exercise,
can be compared to the distribution of clusters of Fig. 1.
Some overlap between the green and red regions is appar-
ent. Since these regions are respectively associated with the
“glottal fry” and with the “trumpet” vocal prototypes, such
region of confusion may be due to sounds with both a rough
and a tonal structure.

It is also possible to compare the clustering responses for
each single subject and rate them according to internal and
external validity indices [10]. External validity indices as-
sume that the true labeling is known (in our case we use the
automatic clustering as the baseline) while internal indices,
normally used to evaluate different clustering algorithms or
different values of parameters (e.g., k in k-means cluster-
ing), only exploit the data. In general, we found that the
participants who label the audio segments more similarly
to automatic clustering (by comparing external indices) are
also the ones that score higher in internal indices, thus sug-
gesting that their responses might rely on the features that

are exploited in the automatic clustering. As an example
the “best” subject scored 2.13 in the Davies-Bouldin (DB)
index, while the “worst” scored 10.771.

Closely related to Bayesian probability is the concept of
consensus clustering [10]. It refers to the situation in which
a number of different (input) clusterings have been obtained
for a particular dataset and it is desired to find a single (con-
sensus) clustering that is a better fit in some sense than the
existing clusterings. Consensus clustering for unsupervised
learning is analogous to ensemble learning in supervised
learning and, interpreted as an optimization problem known
as median partition, has been shown to be NP-complete.
Based on an implementation of the KCC algorithm [27],
we let the algorithm grow the number of clusters to see if
a number of subjects systematically expressed a different
subdivision of the original data, thus highlighting the need
for more categories. Indeed, the analysis of four different
internal indices showed that deriving more clusters does not
necessarily lead to better results (see [18] for details).

3 EXAMPLE: MOTOR SOUNDS

In this section we illustrate a practical realization of the
plane described in Sec. 1, where the samples S come from
a physics-based model of motor sounds [2]. This is an
engine sound simulator able to effectively reproduce a wide
range of four-stroke engine sounds. It can be configured
and controlled in terms of physically informed high level
parameters, including the number of cylinders, the size of
various components (muffler, main pipes, inlet, outlet), and
the revolutions per minute of the crankshaft (RPM). The
implementation of the synthesis model is available as a
Cycling’74 Max external, allowing for real-time control
through a set of parameters. In the following, we use a
subset of seven representative parameters.

To access and interact with the sonic space we collected
the set I of imitations corresponding to the synthetic sam-
ples, and a graphical user front-end (GUI) was designed
using the Matlab framework, making it able to commu-
nicate with Max externals through the OSC protocol. Its
main frame represents the 2D sonic space where a collec-
tion of sounds is organized by dimensionality reduction and
2D projection from the corresponding vocal imitations, as
described in Sec. 2.

Moreover, for each reference sound the corresponding
trajectory of model parameters p is known and stored, and
new synthetic sounds can be created in the 2D space by
feeding the synthesizer with a mixture of the parameters
of the reference sounds. This is achieved in our implemen-
tation by an interpolation scheme based on the Delaunay
triangulation on the reference sound positions [1]. The in-
terpolation is first performed in the Matlab client, the new
parameters are then sent to the Max synthesis server, and fi-
nally the new sound is loaded and represented in the Matlab
client GUI.

1 DB index is defined as a function of the ratio of the within
cluster scatter, to the between cluster separation, a lower value
will mean that the clustering is better.

6 J. Audio Eng. Soc., Vol. 64, No. 7, 2016 July



PAPERS ORGANIZING A SONIC SPACE THROUGH VOCAL IMITATIONS

Fig. 4. The Matlab GUI and the organization of the set of engine
sound imitations on the 2D projection space.

Given these tools at hand, the construction and popula-
tion of the sonic space can be described as follows:

1. A set S of 21 reference sounds is created using the
synthesis model;

2. A set I of vocal imitations is collected by imitating
the 21 reference synthesis sounds;

3. The dimensionality reduction is performed on the
set of imitation sounds, and their projection in the
2D space is rendered in the GUI;

4. New synthesis sounds are created by selecting new
points in the sonic space (thus triggering the gen-
eration of new parameters by interpolation), or by
providing new imitations, which are projected in the
sonic space and are used to generate the new synthe-
sis parameters by interpolation.

The dimensionality reduction is based on the preliminary
feature extraction discussed in Sec. 2. As a result of steps
1–3, the 21 imitation sounds are projected in the 2D sonic
space, forming a set of reference imitation sounds, each of
which is linked to a synthesis sound and its parameter set.
Fig. 4 shows the Matlab GUI and the projection of the 21
engine sound imitations on the 2D sonic space. Our choice
here was to graphically represent each sound in S by its
spectrogram.

To test the 2D projection operator based on the acoustic
cues of choice, a leave-one-out cross-validation test was
performed. This is a procedure which, for every test element
(i.e., one of the N samples in the set) computes its position
using the projection model established from the N − 1
other elements. The comparison with the positions given
by the reference projection model, computed by using the
whole N-samples data set, provides a clue of the consistency
of the projection model with respect to a new imitation.
Fig. 5 illustrates how the majority of the test samples gets
projected consistently with the full-set case.This test tells us
that if we compute a projection model on a given imitation
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21

Full set proj.
Leave−one−out proj.

Fig. 5. The 2D projection performed on the whole imitation data
set (circle markers), and the position of each imitation sample
in, n = 1. . .21, when mapped through the projection matrix com-
puted on the set I − {in} (cross markers).

set and then acquire a new imitation, its position will be
consistent with the projections provided by the model built
using this sample as well.

It would be interesting to perform a similar consistency
check on the model sounds, to see if a new sound, syn-
thesized by interpolation on three neighboring landmarks,
turns out to be closer to those synthetic neighbors than to
any other landmark. Such test turns out to be deceptive, for
the following reasons: (1) there are no guarantees and no cri-
terion ensuring that each imitation is closer to its reference
model sound than to any other; (2) if the same dimensional-
ity reduction process would have been applied to reference
model sounds instead of imitations, their distribution on the
plane would have been quite different; (3) the construction
of the nonlinear multivariate B → P mapping, as part of
the proposed loop (Eq. 1), is a challenging task which is
here shortcut by local linear interpolation. This third point,
in particular, requires further exploration in future work. In
any case, if the new synthetic sound is found to follow its
imitated counterpart as soon as it becomes available, the
problem of positioning it on the plane is overcome, as its
location will be computed using the imitation, and such
new position has been shown to be consistent in relation to
the other imitations.

4 CONCLUSIONS

We have proposed to represent the sonic space of a
sound model as a plane where a number of prototype syn-
thetic sounds are positioned based on vocal imitations. Each
sound landmark is a couple synthesis/imitation, and its spa-
tial organization is based on dimensionality reduction on
the set of available imitations, each represented by a high-
dimensional feature vector. The process is based on fairly
standard techniques of singular vector decomposition and
clustering.
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To check the consistency and feasibility of such
imitation-based space organization, we performed dimen-
sionality reduction and clustering on a large range of vocal
productions. We found that the prototype sounds (or cluster
representatives) are perceptually distinct from each other,
and they may well serve the purpose of landmarks in the
space of vocal imitations. The two-dimensional space is par-
ticularly attractive for sound design because it can be used
as a sonic map where a few landmarks are highlighted. We
have shown how human subjects tend to partition the two-
dimensional space of vocal sounds when they are asked
to refer to three automatically extracted prototypes. This
experiment gives us a measure of how meaningful the ma-
chine distribution and grouping of vocal sounds are to hu-
mans, and it confirms two facts: (i) that humans are able
to effectively use the acoustic and articulatory cues at their
disposal to associate sounds to given prototypes; and (ii)
that the acoustic/articulatory cues used in the automatic
clustering process are sufficiently consistent with the cues
used by humans to categorize acoustic phenomena.

A plane is preferred to higher-dimensional spaces be-
cause it is more easily accessed, navigated, and organized.
Even if the percentage of variance explained by the first two
components is rather low, the automatic clustering is consis-
tent with human clustering behaviors found in the literature
and with results of the labeling experiment. Nonetheless,
the limited descriptive capacity of the two dimensions does
limit the consistency of the interpolation/resynthesis step
of the Synthesis-Imitation-Resynthesis model.

As an example application, we used vocal imitations to
access the sonic space of a motor sound synthesis model.
Here, landmarks are associated with both a synthetic sound
and its vocal imitation, and new synthetic exemplars can be
positioned on the plane, either by spatially placing them or
by new vocalizations.

In this work relatively little attention has been payed
to the quality of descriptors, which were chosen from a
set of standard audio features used for musical signals ex-
tended with signatures of temporal envelope. The fact that
the sounds are all of vocal origin should be exploited to
include specific features that come from the literature of
speech and voice analysis. It is possible that pitch (melodic)
profiles, which turned out to be not important for the cat-
egorization of environmental sounds [19], may be relevant
for a more robust construction of a sonic space of vocal
imitations. Marchetto and Peeters [17] developed some au-
dio descriptors that capture the morphological aspects of
sounds and that proved to be effective to recover categories
of vocal imitations. In any case, the results of Sec. 2.3
give a boundary to the improvements that could possibly be
achieved, as they are limited by the agreement that human
experts show in assigning labels to sounds.
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“Catégorisation de sons environnementaux sur la base
de profils morphologiques,” in 10ème Congrès Français
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