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A VARIATIONAL MODEL FOR ANISOTROPIC AND NATURALLY
TWISTED RIBBONS∗

LORENZO FREDDI† , PETER HORNUNG‡ , MARIA GIOVANNA MORA§ , AND

ROBERTO PARONI¶

Abstract. We consider thin plates whose energy density is a quadratic function of the difference
between the second fundamental form of the deformed configuration and a natural curvature tensor.
This tensor either denotes the second fundamental form of the stress-free configuration, if it exists,
or a target curvature tensor. In the latter case, residual stress arises from the geometrical frustration
involved in the attempt to achieve the target curvature: as a result, the plate is naturally twisted,
even in the absence of external forces or prescribed boundary conditions. Here, starting from this
kind of plate energy, we derive a new variational one-dimensional model for naturally twisted ribbons
by means of Γ-convergence. Our result generalizes, and corrects, the classical Sadowsky energy to
geometrically frustrated anisotropic ribbons with a narrow, possibly curved, reference configuration.
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1. Introduction. Ribbons are ubiquitous in the physical world [1, 4, 8, 28, 31].
Recently, they have received a great deal of attention. This is true, in particular, for
Möbius strips and helical bands, [2, 5, 10, 12, 17, 27, 39, 43]. This renewed interest is
also due to their manifold potential applications, which range from physics/electro-
technology to chemistry/nanotechnology [14, 25, 32, 34, 38, 40, 41].

Geometrically a ribbon is a strip of thickness h, width ε, and centerline length `,
with h � ε � `. Because of anisotropic prestrains, inhomogeneous swelling, plastic
deformations, or differential growth, ribbons may not have a stress-free configuration.
Hyperelastic theories for these bodies have been recently formulated in terms of defor-
mations that are measured with respect to a reference metric rather than a reference
configuration [11, 13].

Several plate models for these materials have been obtained by studying the Γ-
limit of various scalings of the energy, as h goes to zero. In particular, in [22, 30, 36] the
energy density of the deduced model is a quadratic function of the difference between
the second fundamental form of the deformed configuration and a “natural” curvature
tensor. This tensor either denotes the second fundamental form of the natural (stress-
free) configuration or a target curvature tensor. In the latter case, residual stress
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arises from the geometrical frustration involved in the attempt to achieve the target
curvature: as a result, the ribbon is naturally twisted, even in the absence of external
forces or prescribed boundary conditions (here and throughout the paper, by the word
“twisted” we mean “forced out of its proper shape”; in the language of beam theory
it would be “bent and twisted”). By controlling the natural curvature tensor one may
select the shape spontaneously attained by the ribbon: this is the focus of several
studies aimed at designing new structures [2, 29, 24, 35, 42, 45].

Given that also ε � `, after having let h go to zero, it is interesting to find
one-dimensional models that characterize very narrow strips, by considering the limit
as ε tends to zero. A limit energy for homogeneous, isotropic, elastic ribbons with a
rectangular stress-free configuration was put forward by Sadowsky [33]; see [26] for a
recent English translation. This energy, now known as the Sadowsky energy, depends
on the curvature and torsion of the centerline of the band and it is singular at the
points where the curvature vanishes. A formal justification of the Sadowsky energy
was given by Wunderlich [44, 43]. Only very recently, in [18], it has been proved by
means of Γ-convergence that the Sadowsky energy is correct for “large” curvature
of the centerline of the strip, while for “small” curvature the correct limit energy is
significantly different from the Sadowsky energy. We shall further address this point
at the end of the introduction.

Before discussing the contents of our paper we mention that one-dimensional
models could be obtained from the three-dimensional theory also by letting h and ε
go to zero simultaneously. Within the nonlinear theory of elasticity for homogeneous
bodies with a stress-free configuration, several limit energies, corresponding to differ-
ent scalings, have been obtained in [20, 21]. In a forthcoming paper we will show that
one of the possible scalings delivers the energy of a nonfrustrated ribbon.

In the geometrically frustrated setting, one-dimensional models have been for-
mally deduced from two-dimensional models in [9, 29, 24, 38] by following the pro-
cedure of Wunderlich [44, 43]. The models obtained in these papers do not coincide
with the one rigorously derived here. The only rigorous model within the setting
of frustrated ribbons has been obtained in [2]. There the authors consider isotropic
ribbons that may not have a stress-free configuration and, by following the analysis
carried out in [18], they deduce a one-dimensional model by means of Γ-convergence.
Their nice model has partly inspired ours.

In this paper we consider a two-dimensional energy that coincides with that ob-
tained in [36] by letting h go to zero (see also [22, 30]). We assume the reference con-
figuration to be given by a sequence of two-dimensional “thin” regions parametrized
by ε. These regions are not necessarily rectangular; they may have a curved center-
line and a smoothly varying width. The admissible deformations are isometries and
their energy depends quadratically on the difference between the second fundamen-
tal form of the deformed configuration and a natural curvature tensor. Our model
slightly generalizes the one considered in [9]; indeed, the two models coincide if we
restrict our energy density to be isotropic. By letting the parameter ε go to zero,
under appropriate assumptions on the limit behavior of the natural curvature tensor,
we identify the Γ-limit of the (suitably rescaled) sequence of energy functionals in a
topology that ensures compactness of the sequence of minimizers.

Our result not only provides a rigorous derivation of the energy of a very narrow
ribbon, but also corrects several formal justifications that are found in the literature.
In addition, we allow the energy density to be anisotropic: an “intrinsic” anisotropy
and not simply the one scattered by the presence of the natural curvature tensor as
in [6, 7, 23]. Limit models within this generality, as far as we know, have not been
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deduced, not even formally. We also prove a relaxation result for quadratic functionals
with a determinant constraint (see section 5), that is of interest in its own right and
is a fundamental ingredient to deal with the nonlinear isometry constraint in weak
topologies.

The limit energy that we deduce depends on three vector fields (directors) d1, d2,
and d3, where d1 is tangent to the limit deformation, d2 represents the “transversal”
orientation of the strip, and d3 is orthogonal to d1 and d2. The system of directors
may not be orthonormal; in fact, they are related to the geometry of the reference
configuration by means of a covariant basis D = (D1, D2) through the constraints

dα · dβ = Dα ·Dβ , d′1 · (d3 ∧ d1) = D′1 · (e3 ∧D1).

The first constraint implies that the ribbon is unsherable and inextensible, while the
second constraint is a consequence of the intrinsic nature of the geodesic curvature.
The energy functional is then given by

J(d1, d2, d3) =

∫ `/2

−`/2
Q(x1, d

′
1 · d3, d

′
2 · d3) ds,

where ` is the length of the centerline of the strip. The quantities d′1 · d3 and d′2 ·
d3 are usually called, within the theory of rods, bending strain and twisting strain,
respectively. Denoting the energy density of the plate by Q, the limit energy density
Q is defined in two steps: first, two positive constants α+

K and α−K are defined by

α±K := sup{α > 0 : Q(M)± α detM ≥ 0 for every M ∈ R2×2
sym},

and then the energy density Q is given by

Q(x1, µ, τ) := min
{(
Q(M −D−TA◦D−1) + α+

K (detM)+ + α−K (detM)−
)

detD :

M = µD1 ⊗D1 + τ(D1 ⊗D2 +D2 ⊗D1) + γD2 ⊗D2, γ ∈ R
}
,

where (D1, D2) denote the contravariant basis in the reference configuration, i.e.,
Dα · Dβ = δαβ , while A◦ = A◦(x1) characterizes the limit behavior of the natural
curvature tensor, and (detM)± denote the positive and negative part of detM .

In the very particular case considered by Sadowsky [33, 26] and Wunderlich [44,
43], which corresponds to Q(M) = |M |2, A◦ = 0, and D equal to the identity, the
energy density reduces to

Q(x1, µ, τ) =


(µ2 + τ2)2

µ2
if µ2 > τ2,

4τ2 if µ2 ≤ τ2,

and coincides with that found in [18]. If µ and τ are interpreted as the curvature
and the torsion of the centerline of the band, this function agrees with the Sadowsky
energy density only in the regime µ2 > τ2; this is the large curvature regime to which
we alluded earlier in the introduction.

The paper is organized as follows. In section 2 we introduce the sequence of
energy functionals and in section 3 we rescale them on a fixed domain. In section 4
we study the compactness properties of sequences with bounded energy and state the
Γ-convergence result. Section 5 is devoted to the relaxation of quadratic functionals
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with a constraint on the determinant. This result is the crucial ingredient for the
identification of the correct Γ-limit and is used in the proof of both the liminf and the
limsup inequalities. The construction of the recovery sequence also requires several
geometric and approximation results for isometric immersions, that are proved in
section 6. Finally, in section 7 we prove the Γ-convergence result.

2. The energy of an inextensible elastic ribbon. We consider an inexten-
sible elastic ribbon whose configurations in the three-dimensional space are isometric
to a planar region Sε, where ε > 0 is a small parameter. The region Sε ⊂ R2 will
be taken as the reference configuration and its geometry will be specified below. Any
smooth deformation u : Sε → R3 will satisfy the isometry constraint

(1) (∇u)T (∇u) = I,

where I denotes the 2× 2 identity matrix. In coordinates, (1) reads ∂αu · ∂βu = δαβ .
We denote by

νu = ∂1u ∧ ∂2u

the unit normal to the deformed configuration u(Sε), and by Au : Sε → R2×2
sym the

second fundamental form of u. It is defined by (Au)αβ := νu · ∂α∂βu, which can be
equivalently written as Au = ∇2ui(νu)i. We recall that, since u is an isometry, the
Gaussian curvature of u(Sε) is zero, that is, the second fundamental form of u satisfies

(2) detAu = 0 in Sε.

We assume the energy density of the strip to be quadratic and to depend on the
second fundamental form, but we neither assume the material to be isotropic nor the
reference configuration to be stress free. Let Anat

ε ∈ L2(Sε;R2×2
sym) be a symmetric ten-

sor field that either represents the second fundamental form of a natural configuration
(that is, Anat

ε = Au◦ε for some deformation u◦ε) or a target curvature tensor field not
necessarily corresponding to a configuration (this latter case is usually addressed as
nonEuclidean ribbons). The bending rigidity is taken into account by a linear map
K from R2×2

sym into itself. We assume K to be symmetric, i.e., KA · B = KB · A for
every A,B ∈ R2×2

sym. Moreover, we assume K to be positive definite, i.e., there exists a
constant c > 0 such that KA ·A ≥ c|A|2 for every A ∈ R2×2

sym.
The energy of the ribbon takes the form

Eε(u) =
1

2ε

∫
Sε

K(Au(x)−Anat
ε (x)) · (Au(x)−Anat

ε (x)) dx.

Its domain of definition is the set of deformations u ∈ W 2,2(Sε;R3) that satisfy the
constraint (1). The choice of this model as the starting point of our analysis is
motivated by the work [36], where this energy is rigorously deduced by means of a
rigorous three-dimensional–two-dimensional limit (see also [22, 30] for related models).

The region Sε. To define the region Sε we introduce the rectangle Ωε = I ×
(−ε/2, ε/2), where I denotes the interval (−`/2, `/2) with ` > 0. Then

Sε = χ(Ωε),

where χ : R2 → R2 is an injective orientation preserving map of class C2. We assume
that

|∂1χ|(x1, 0) = 1 ∀x1 ∈ R,
so that the length of the curve χ({x2 = 0}) in Sε is also equal to `.
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Sε

Fig. 1. A ribbon having a nonrectangular parallelogram as reference Sε.

Set Ω := I × (−1/2, 1/2) and let ρε : Ω → Ωε be defined by ρε(x) := (x1, εx2).
We define

Dε := (∇χ) ◦ ρε

and

Dε
α := Dεeα = (∂αχ) ◦ ρε.

The pair of vectors Dε
1 and Dε

2 is the covariant basis in the reference configuration.
For later use we note that there exists a constant c > 0 such that

(3) c ≤ detDε(x) ≤ 1

c
, c ≤ |Dε(x)| ≤ 1

c
for every x ∈ Ω,

and that

(4) Dε → ∇χ(·, 0) =: D

uniformly. We set Dα := Deα and remark that |D1| = 1.

Remark 1. We note that by allowingD1·D2 6= 0, ribbons as depicted, for instance,
in Figure 1 are covered by our analysis.

3. The rescaled bending energy. Let χε : Ω→ Sε be the function

χε := χ ◦ ρε

that maps the fixed rectangular region into the reference configuration.

Setting

Rε := ∇ρε = e1 ⊗ e1 + εe2 ⊗ e2,



3888 L. FREDDI, P. HORNUNG, M. G. MORA, AND R. PARONI

we have ∇χε = DεRε. With a given deformation u : Sε → R3 we associate a rescaled
deformation y : Ω→ R3 by setting

y := u ◦ χε.

Then ∇y = (∇u) ◦ χε∇χε, which can be rewritten in terms of the directors of the
reference configuration as

(5) ∂1y = (∇u) ◦ χεDε
1,

∂2y

ε
= (∇u) ◦ χεDε

2.

As u satisfies (1), we immediately deduce that

∂1y · ∂1y = Dε
1 ·Dε

1,

∂1y ·
∂2y

ε
= Dε

1 ·Dε
2,(6)

∂2y

ε
· ∂2y

ε
= Dε

2 ·Dε
2.

Thus, u ∈W 2,2(Sε;R3) satisfies (1) if and only if the rescaled deformation y belongs
to the space

W 2,2
iso,ε(Ω;R3) := {y ∈W 2,2(Ω;R3) : y satisfies (6) a.e. in Ω}.

Let

ny := νu ◦ χε =
∂1y ∧ ε−1∂2y

|∂1y ∧ ε−1∂2y|

denote the unit normal to y(Ω). The second fundamental forms of u and y are related
by the formula

(7) ∇2yi(ny)i = ∇χTε Au ◦ χε∇χε.

Indeed, straightforward computations lead to

∂α∂βyi = (∇χTε ∇2ui ◦ χε∇χε)αβ +∇ui ◦ χε · ∂α∂βχε,

from which (7) immediately follows since u is an isometry. From (7) we deduce that

(8) Au ◦ χε = (Dε)−TAy,ε(D
ε)−1,

where

Ay,ε := (Rε)−1∇2yi(ny)i(R
ε)−1

is the rescaled second fundamental form of y. This can be rewritten in a more explicit
form as

Ay,ε = ny · ∂1∂1y e1 ⊗ e1 + ny ·
∂1∂2y

ε
(e1 ⊗ e2 + e2 ⊗ e1) + ny ·

∂2∂2y

ε2
e2 ⊗ e2.

By (2) we immediately have that

(9) detAy,ε = 0 a.e. in Ω.
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The energy in terms of the rescaled deformation is given by Jε : W 2,2
iso,ε(Ω;R3) →

[0,+∞), defined as
(10)

Jε(y) =
1

2

∫
Ω

K
(
(Dε)−T (Ay,ε −A◦ε)(Dε)−1

)
· (Dε)−T (Ay,ε −A◦ε)(Dε)−1 detDε dx,

where we have set

(11) A◦ε := (Dε)TAnat
ε ◦ χεDε.

We note that the relation between the bending energy and the rescaled energy is
Jε(y) = Eε(u).

4. Compactness and Γ-limit. Hereafter, we assume that

(12) A◦ε → A◦ in L2(Ω;R2×2)

with A◦ = A◦(x1), that is, A◦ ∈ L2(I;R2×2
sym).

Lemma 2. Let (yε) ⊂W 2,2
iso,ε(S;R3) be a sequence of scaled isometries such that

(13) lim sup
ε→0

Jε(yε) <∞.

Then, up to a subsequence and additive constants, there exist a deformation y ∈
W 2,2(I;R3) and three vector fields d1, d2 ∈ W 1,2(I;R3) and d3 := (d1 ∧ d2)/|d1 ∧ d2|
satisfying

d1 = y′, dα · dβ = Dα ·Dβ ,(14)

d′1 · (d3 ∧ d1) = D′1 · (e3 ∧D1),(15)

almost everywhere in I, such that
(16)

yε ⇀ y in W 2,2(Ω;R3), ∂1yε ⇀ d1 in W 1,2(Ω;R3),
∂2yε
ε

⇀ d2 in W 1,2(Ω;R3),

and Ayε,ε ⇀ A in L2(Ω;R2×2
sym), where

(17) A = d′1 · d3 e1 ⊗ e1 + d′2 · d3 (e1 ⊗ e2 + e2 ⊗ e1) + γ e2 ⊗ e2

for some γ ∈ L2(Ω).

Remark 3. Lemma 2 naturally extends to a more intrinsic setting, where the de-
formation v := u ◦ χ is considered as the natural variable and the energy is defined
on the class of isometric immersions of the surface Ωε endowed with a given Rieman-
nian metric g (which in the present case coincides with (∇χ)T (∇χ)). In this setting
formulas (14) and (15) follow from the continuity of g and of the metric connection
(Christoffel symbols) defined by g. A similar remark applies to Theorem 5(i) below.
Details on this general approach will be given in a forthcoming paper [19].

Proof of Lemma 2. Let (yε) ⊂W 2,2
iso,ε(S;R3) be a sequence satisfying (13). Then,

by using the fact that K is positive definite and (3), we find

C > c

∫
Ω

|(Dε)−T (Ayε,ε −A◦ε)(Dε)−1|2 detDε dx

≥ c
∫

Ω

|Ayε,ε −A◦ε|2/|Dε|4 dx ≥ c
∫

Ω

|Ayε,ε −A◦ε|2 dx,
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where the second inequality holds since there exists a constant c > 0 such that
|BAC| ≥ c|A|/(|B−1| |C−1|) for every matrix A and any invertible matrices B and C.
Thus, from (12) it follows that

(18) lim sup
ε→0

‖Ayε,ε‖L2(Ω) < +∞.

Also, combining the fact that yε ∈W 2,2
iso,ε(Ω;R3) with (3) gives the bound

(19) lim sup
ε→0

(‖∂1yε‖L∞(Ω) + ‖ε−1∂2yε‖L∞(Ω)) < +∞.

We now show that

(20) lim sup
ε→0

(
‖∂1∂1yε‖L2(Ω) + ‖ε−1∂1∂2yε‖L2(Ω) + ‖ε−2∂2∂2yε‖L2(Ω)

)
< +∞.

To prove this it is convenient to set

dε1 = ∂1yε, dε2 =
∂2yε
ε
, d1

ε = −nyε ∧ d
ε
2

|dε1 ∧ dε2|
, d2

ε =
nyε ∧ dε1
|dε1 ∧ dε2|

.

Since dεα = (∇u) ◦ χεDε
α (see (5)), and u is an isometry, we have that |dε1 ∧ dε2| =

|Dε
1 ∧Dε

2|. Thus, from (3) and (19) we deduce that

lim sup
ε→0

(‖dε1‖L∞(Ω) + ‖dε2‖L∞(Ω) + ‖d1
ε‖L∞(Ω) + ‖d2

ε‖L∞(Ω)) < +∞.

Moreover, since dεα · dβε = δαβ , we have

(21) ∂1∂1yε = (∂1∂1yε · ∂1yε)d
1
ε + (∂1∂1yε · ε−1∂2yε)d

2
ε + (∂1∂1yε · nyε)nyε .

By differentiating the first two identities in (6) with respect to x1 we obtain

∂1∂1yε · ∂1yε = ∂1D
ε
1 ·Dε

1

and

∂1∂1yε · ε−1∂2yε = ∂1(Dε
1 ·Dε

2)− ∂1yε · ε−1∂1∂2yε = ∂1(Dε
1 ·Dε

2)− (2ε)−1∂2(Dε
1 ·Dε

1),

where the last equality follows by differentiating the first identity in (6) with respect
to x2. Applying these formulas in (21) yields

(22) ∂1∂1yε = (∂1D
ε
1 ·Dε

1)d1
ε+[∂1(Dε

1 ·Dε
2)− (2ε)−1∂2(Dε

1 ·Dε
1)]d2

ε+(e1 ·Ayε,εe1)nyε ,

where we also used the definition of Ayε,ε. Since

ε−1∂2(Dε
1 ·Dε

1) = ε−1∂2[(∂1χ · ∂1χ) ◦ ρε] = [∂2(∂1χ · ∂1χ)] ◦ ρε,

it follows that the first two terms on the right-hand side of (22) are uniformly bounded
in L∞, while the third is bounded in L2 by (18). We have therefore proved that
lim supε→0 ‖∂1∂1yε‖L2(Ω) < +∞. The other two bounds appearing in (20) are proven
similarly.

From (19) and (20) we infer that, up to additive constants, the sequence (yε)
is uniformly bounded in W 2,2(Ω;R3). Therefore, up to subsequences, we have that
yε ⇀ y in W 2,2(Ω;R3) and strongly in W 1,p(Ω;R3) for every p <∞. Inequality (19)
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implies that y is independent of x2. The convergence just stated also implies that
∂1yε ⇀ d1 weakly in W 1,2(Ω;R3) and strongly in Lp(Ω;R3) for every p <∞, with d1

independent of x2 and d1 = y′ almost everywhere in I.
Still from (19) and (20) we deduce that, up to subsequences, ε−1∂2yε ⇀ d2 weakly

in W 1,2(Ω;R3) and strongly in Lp(Ω;R3) for every p < ∞, with d2 independent of
x2. Now, by passing to the limit in (6) we find dα · dβ = Dα ·Dβ .

Since

nyε =
∂1yε ∧ ε−1∂2yε
|∂1yε ∧ ε−1∂2yε|

=
∂1yε ∧ ε−1∂2yε
|Dε

1 ∧Dε
2|

we have that nyε,ε → d3 in Lp(S;R3) for every p <∞, where d3 = (d1 ∧ d2)/|d1 ∧ d2|.
The constraint (15) follows from the fact that the geodesic curvature is intrinsic,

i.e., the geodesic curvatures of two isometric curves are equal (see [37]), that is,

∂1∂1yε · (nyε ∧ ∂1yε)

|∂1yε|3
=
∂1∂1χε · (e3 ∧ ∂1χε)

|∂1χε|3
.

Rearranging and passing to the limit we find

∂1d1 · (d3 ∧ d1) =
∂1D1 · (e3 ∧D1)

|D1|3
|d1|3,

and the equality (15) follows since |D1| = |d1| = 1.
Finally, up to subsequences, we have that Ayε,ε weakly converges to a matrix

field A in L2(S;R2×2
sym). By using the convergences established above, it follows that

e1 · Ae1 = y′′ · d3 and e1 · Ae2 = d′2 · d3. The entry e2 · Ae2 cannot be identified in
terms of y, d2, and d3 and is set equal to γ in the statement.

The vector fields d1, d2, and d3 are usually called directors: d1 is tangent to
the deformation y, d2 represents the transversal orientation of the strip, and d3 is
orthogonal to d1 and d2. The limiting values of the 11 and 12 components of the
second fundamental form are measures of flexure and twist, respectively; cf. [3]. We
also note that the constraint detAyε,ε = 0, which holds for every ε, does not pass
to the limit. Indeed, the limit matrix field A in (17) may have determinant different
from zero. The constraint in (14) asserts that the limiting beam is inextensible, while
(15) asserts that the limiting beam has the same geodesic curvature of the reference.

In order to state the Γ-convergence result we first introduce some definitions. We
set

A :=

{
(d1, d2, d3) ∈W 1,2(I;R3×3) : dα · dβ = Dα ·Dβ , d3 =

d1 ∧ d2

|d1 ∧ d2|
,

and d′1 · (d3 ∧ d1) = D′1 · (e3 ∧D1) a.e. in I

}
,

and

Q(M) :=
1

2
KM ·M.

By means of this quadratic energy density we define the constants

α+
K := sup{α > 0 : Q(M) + α detM ≥ 0 for every M ∈ R2×2

sym}

and
α−K := sup{α > 0 : Q(M)− α detM ≥ 0 for every M ∈ R2×2

sym}.
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The limiting energy density is the function Q : I × R× R→ [0,+∞) defined by

Q(x1, µ, τ) := min

{
Q(D(x1)−T (A−A◦(x1))D(x1)−1) detD(x1)

+ α+
K

(detA)+

detD(x1)
+ α−K

(detA)−

detD(x1)
: A =

(
µ τ
τ γ

)
, γ ∈ R

}
for every x1 ∈ I, µ, τ ∈ R, where (detA)+ := detA∨ 0, (detA)− := −(detA∧ 0), and
D(x1) = ∇χ(x1, 0). The Γ-limit functional J : A → R is given by

J(d1, d2, d3) :=

∫
I

Q(x1, d
′
1 · d3, d

′
2 · d3) dx1

for every (d1, d2, d3) ∈ A.

Remark 4. Let Dα := D−T eα be the contravariant vectors in the reference con-
figurations, i.e., Dα · Dβ = δαβ . It is easy to see that Q also has the following
characterization:

Q(x1, µ, τ) := min
{(
Q(M −D−TA◦D−1) + α+

K (detM)+ + α−K (detM)−
)

detD :

M = µD1 ⊗D1 + τ(D1 ⊗D2 +D2 ⊗D1) + γD2 ⊗D2, γ ∈ R
}
.

We are now in a position to state the Γ-convergence result.

Theorem 5. As ε→ 0, the sequence (Jε) Γ-converges to the functional J in the
following sense:

(i) (liminf inequality) for every sequence (yε) ⊂ W 2,2
iso,ε(Ω;R3), y ∈ W 2,2(I;R3),

and (d1, d2, d3) ∈ A such that y′ = d1 a.e. in I, yε ⇀ y in W 2,2(Ω;R3),
∂1yε ⇀ d1 and ∂2yε

ε ⇀ d2 in W 1,2(Ω;R3), we have that

lim inf
ε→0

Jε(yε) ≥ J(d1, d2, d3);

(ii) (recovery sequence) for every (d1, d2, d3) ∈ A there exists a sequence (yε) ⊂
W 2,2

iso,ε(Ω;R3) such that yε ⇀ y in W 2,2(Ω;R3), ∂1yε ⇀ d1 and ∂2yε
ε ⇀ d2 in

W 1,2(Ω;R3), and
lim sup
ε→0

Jε(yε) ≤ J(d1, d2, d3),

where y is defined up to a constant by y′ = d1 a.e. in I.

Theorem 5 will be proved in section 7. The proof will be based on two main ingre-
dients: a relaxation result, which is the subject of the next section, and a geometric
construction of isometric immersions done in section 6.

We conclude this section with some examples. By the assumptions made on the
tensor K, in a fixed orthonormal basis we may write

1

2
KM ·M =

1

2
KαβγδMαβMγδ =

1

2

 K1111 K1122 K1112

K1122 K2222 K1222

K1112 K1222 K1212

 M11

M22

2M12

·
 M11

M22

2M12

 .

Example 6. We consider an orthotropic material with respect to the chosen axes,
i.e., we assume K1112 = K1222 = 0. We set 2K11 = K1111, 2K12 = K1122, 2K22 =
K2222, and 2K33 = K1212. Then, setting m = (M11,M22, 2M12)T ∈ R3, we have

Q(M)± α detM = (C± αD)m ·m,
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where

C± αD =

 K11 K12 0
K12 K22 0

0 0 K33

± α
 0 1

2 0
1
2 0 0
0 0 − 1

4

 .

By definition, α± is the largest value of α for which all the eigenvalues of C±αD are
greater than or equal to zero. A simple computation shows that the eigenvalues of
C± αD are

K33 ∓
α

4
,

K11 +K22

2
−

((
K11 −K22

2

)2

+
(
K12 ±

α

2

)2
)1/2

,

where we omitted the third eigenvalue since it is always positive. By imposing these
expressions to be always greater than or equal to zero we find

α+
K = min

{
4K33, 2

(√
K11K22 −K12

)}
,

α−K = 2
(√

K11K22 +K12

)
.

If we take A◦ = 0 and D equal to the identity, i.e., Sε = Ωε, and we assume that
α+
K = 2(

√
K11K22 −K12), it follows that

Q(x1, µ, τ) =


K11µ

4 + (2K12 + 4K33)µ2τ2 +K22τ
4

µ2
if
√
K11µ

2 >
√
K22τ

2,

(4K33 + 2
√
K11K22 +K12)τ2 if

√
K11µ

2 ≤
√
K22τ

2.

Example 7. The case Q(M) = |M |2, which corresponds to the case considered
in [18], can be recovered by Example 6 by setting K11 = K22 = 1, K12 = 0, and
K33 = 1/2. In this case we obtain

α+
K = α−K = 2,

so that
Q(M) + α+

K (detM)+ + α−K (detM)− = |M |2 + 2|detM |.

Again, for A◦ = 0 and D equal to the identity, we infer

Q(x1, µ, τ) =


(µ2 + τ2)2

µ2
if µ2 > τ2,

4τ2 if µ2 ≤ τ2.

Example 8. For an isotropic material

Q(M) = Kµ|M |2 +Kλ(trM)2,

we have
α+
K = 2Kµ, α−K = 2Kµ + 4Kλ,

as follows from Example 6 with K11 = K22 = Kµ +Kλ, K12 = Kλ, and K33 = Kµ/2.
By means of the identity

(trM)2 = |M |2 + 2 detM = |M |2 + 2(detM)+ − 2(detM)−,
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which holds for every M ∈ R2×2
sym, we find

Q(M) + α+
K (detM)+ + α−K (detM)−

= Kµ|M |2 +Kλ(trM)2 + 2Kµ(detM)+ + (2Kµ + 4Kλ)(detM)−

= (Kµ +Kλ)|M |2 + 2(Kµ +Kλ)(detM)+ + 2(Kµ +Kλ)(detM)−

= (Kµ +Kλ)|M |2 + 2(Kµ +Kλ)|detM |.

The same result can also be obtained by observing that Q(M) = (Kµ +Kλ)|M |2 for
every M with detM = 0, and then by applying Example 7.

5. Relaxation of quadratic functionals with a determinant constraint.
Let B be a bounded open subset of Rn. Let z : B → R be a measurable function and
let Q : B × R2×2

sym → [0,+∞) be measurable in the first variable and quadratic in the
second. Define the functional

F : L2
(
B;R2×2

sym

)
→ [0,+∞]

by

F(M) :=


∫
B
Q(x,M(x)) dx if detM = z a.e. in B,

+∞ otherwise.

Proposition 9. The weak-L2 lower semicontinuous envelope of F is the func-
tional

F : L2
(
B;R2×2

sym

)
→ [0,+∞)

given by

F(M) =

∫
B

(
Q(x,M(x)) + α+(x)(detM(x)− z(x))++ α−(x)(detM(x)− z(x))−

)
dx,

where for every x ∈ B

α+(x) := sup{α > 0 : Q(x,M) + α detM ≥ 0 for every M ∈ R2×2
sym}

and

α−(x) := sup{α > 0 : Q(x,M)− α detM ≥ 0 for every M ∈ R2×2
sym}.

Remark 10. If Q(x,M) = |M |2 and z = 0, then α+ = α− = 2, and the lower
semicontinuous envelope takes the form

F(M) =

∫
B

(Q(M(x)) + 2|detM(x)|) dx

for every M ∈ L2
(
B;R2×2

sym

)
; see also Example 7.

Proof of Proposition 9. By [16, Proposition 3.16] we have that F is also the se-
quentially lower semicontinuous envelope of F , that is, the largest function below
F that is sequentially lower semicontinuous with respect to the weak-L2 topology.
Moreover, by [16, Theorem 6.68], the lower semicontinuous envelope of F is given by

F(M) =

∫
B
Q∗∗0 (x,M(x)) dx,
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where for every fixed x ∈ B the function Q∗∗0 (x, ·) is the bipolar function of Q0(x, ·)
and Q0 : B × R2×2

sym → [0,+∞] is defined by

Q0(x,M) = Q(x,M) + χ{det=z}(x,M)

for every M ∈ R2×2
sym. Here χ{det=z} is the indicator function of the set

{(x,M) ∈ B × R2×2
sym : detM = z(x)}.

Hereafter, the variable x will be dropped since it will be kept fixed until the end
of the proof. For instance, we shall write Q(M) in place of Q(x,M).

We have to prove that

(23) Q∗∗0 (M) = Q(M) + α+(detM − z)+ + α−(detM − z)−

for every M ∈ R2×2
sym.

In the following we identify matricesM ∈ R2×2
sym with vectorsm = (M11,M22, 2M12)T

of R3. For every m ∈ R3 we define

detm := m1m2 −
1

4
m2

3,

so that, according to the previous identification, we have detM = detm. Finally, let
C ∈ R3×3

sym be such that
Q(M) = Cm ·m

and let f : R3 → [0,+∞) be the function f(m) = Cm ·m+ χ{det=z}(m). The thesis
(23) is equivalent to proving that

(24) f∗∗(m) = Cm ·m+ α+(detm− z)+ + α−(detm− z)−

for every m ∈ R3.
Let

D =

 0 1
2 0

1
2 0 0
0 0 − 1

4

 ,

so that detm = Dm · m. For every α ∈ R we consider the matrices C + αD. By
the definition of α− and α+ we have that C + αD is positive definite for every α ∈
(−α−, α+), while for α = −α− and α = α+ some eigenvalues of C+αD become equal
to 0 and the matrix C + αD is positive semidefinite.

Since the functions m 7→ Cm ·m+α+(detm−z) and m 7→ Cm ·m−α−(detm−z)
are convex and they are both below f , we deduce

f∗∗(m) ≥ max
{
Cm ·m+ α+(detm− z), Cm ·m− α−(detm− z)

}
= Cm ·m+ α+(detm− z)+ + α−(detm− z)−.

To prove the converse inequality, we use the definition of bipolar function. Thus,
we need to show that for every m, ξ ∈ R3 we have

m · ξ − f∗(ξ) ≤ Cm ·m+ α+(detm− z)+ + α−(detm− z)−,

where f∗ is the polar function of f . Using the definition of f∗, the above inequality
follows if we prove that, for every m, ξ ∈ R3 there exists ξ∗ ∈ R3 with det ξ∗ = z such
that

Cm ·m−m · ξ + α+(detm− z)+ + α−(detm− z)− ≥ Cξ∗ · ξ∗ − ξ∗ · ξ.
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This is equivalent to proving that for every ξ ∈ R3 the function

gξ(m) := Cm ·m−m · ξ + α+(detm− z)+ + α−(detm− z)−

attains its minimum at a point ξ∗ with det ξ∗ = z.
We first observe that gξ is coercive, since gξ(m) ≥ Cm ·m−m ·ξ for every m ∈ R3

and C is positive definite. Since gξ is also continuous, gξ attains its minimum on R3.
We now want to prove that there exists a minimizer with determinant equal to

z. We will argue in the following way: assume that there exists a minimizer m∗ with
detm∗ 6= z; then we will show that we can construct ξ∗ such that det ξ∗ = z and
gξ(ξ

∗) = gξ(m
∗).

Let m∗ be a minimizer of gξ with detm∗ − z > 0. Then m∗ must be a critical
point, that is, it is a solution to

2(C + α+D)m∗ = ξ.

Since C + α+D is symmetric, this implies that ξ ∈ Ker(C + α+D)⊥.
Let now m+ ∈ Ker(C + α+D) with m+ 6= 0. We note that detm+ < 0 since

otherwise (C + α+D)m+ ·m+ > 0. Consider the family of vectors

mλ := m∗ + λm+.

We observe that detm0 − z = detm∗ − z > 0, while detmλ − z ' λ2 detm+ < 0 for
λ large enough. Thus, there exists a suitable λ > 0 for which detmλ = z. We set
ξ∗ = mλ and we have

gξ(ξ
∗) = (C + α+D)(m∗ + λm+) · (m∗ + λm+)− (m∗ + λm+) · ξ − α+z

= gξ(m
∗) + λ

2
(C + α+D)m+ ·m+ + 2λ(C + α+D)m+ ·m∗ − λm+ · ξ

= gξ(m
∗),

where we used that m+ ∈ Ker(C+α+D) and ξ ∈ Ker(C+α+D)⊥. A similar argument
applies to the case where detm∗ − z < 0.

6. Local construction of isometries. This section contains some abstract
results concerning the construction of isometries, with some given properties, in a
neighborhood of a given curve. We believe that the results contained in this section
have their own interest and for this reason the section is completely self-contained.
However, to help the reader in understanding the meaning of these results, we outline
in the next remark the strategy followed in section 7 to construct the recovery sequence
of Theorem 5.

Remark 11. The aim of this remark is to give an idea of the construction of
the recovery sequence: full statements and details will be presented in the next
section. For given admissible directors d1, d2, and d3 we have to find a sequence
(yε) ⊂W 2,2

iso,ε(Ω;R3) such that

yε ⇀ y in W 2,2(Ω;R3), ∂1yε ⇀ d1 and
∂2yε
ε

⇀ d2 in W 1,2(Ω;R3),

where y is defined up to a constant by y′ = d1, and

(25) lim sup
ε→0

∫
Ω

Q((Dε)−T (Ayε,ε −A◦ε)(Dε)−1) dx ≤ J(d1, d2, d3).
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Roughly speaking, our strategy is to first “prove” the inequality (25) on matrix
fields and then “move backwards” and construct yε. More precisely, we first apply
the relaxation result, so to have a sequence of matrix fields (Mδ), with detM δ = 0
for every δ, such that

lim
δ→0

∫
I

Q(Mδ −D−TA◦D−1) detDdx1 = J(d1, d2, d3).

At δ level the matrix M δ plays the role of the second fundamental form restricted
to the midline of the ribbon. Now, to move backwards and find yε it suffices, up to
an appropriate rescaling and a diagonal argument, to solve the following problem:
given a curve B (in the next section B = χ(·, 0)) find an isometry uδ, defined in a
neighborhood of the image of B, whose second fundamental form equals M δ on B.

Since detM δ = 0, one of the eigenvalues of M δ is equal to zero. Let λδ be
the other eigenvalue with associated eigenvector pδ, so that Mδ = λδpδ ⊗ pδ. The
principal curvatures of the isometry uδ, if it exists, will be λδ and 0. Hence, uδ will
be a straight line in the direction of the eigenvector (pδ)⊥ associated with the zero
eigenvalue. Thus we need to make sure that (pδ)⊥ is not tangent to the curve B:
this amounts to requiring that B′ · pδ 6= 0 everywhere. Thanks to Lemma 16 we
may essentially assume (by approximation) that B′ · pδ > 0 everywhere and that
λδ and pδ are smooth. Now given “the second fundamental form” M δ we may find
the directors that “generate” M δ by solving an ordinary differential equation (see
(33)). By means of the directors, which we denote by rT e1, r

T e2, and rT e3 (here for
notational simplicity we have dropped the index δ), we define

G = (rT e1)⊗B′ + (rT e2)⊗ (B′)⊥.

A simple calculation shows that, if the isometry uδ exists, then the restriction of ∇uδ
to the curve B should be equal to G. Also, from the definition of G, it follows that
G′ = m ⊗ pδ for some vector field m (this is shown in the proof of Proposition 13).
This and B′ ·pδ 6= 0 are the main conditions used in Lemma 12 to prove the existence
of an isometry, defined in a neighborhood of the image of B, with gradient equal to
G on B. Proposition 13 then also shows that the second fundamental form of uδ is
equal to Mδ = λδpδ ⊗ pδ.

Throughout this section we identify vectors a = (a1, a2) ∈ R2 with the corre-
sponding a = (a1, a2, 0) ∈ R3 and vice versa. Accordingly, we can write a⊥ :=
(−a2, a1) = e3 ∧ a.

Moreover, we will use the following definition: if U is an open subset of R2, a
W 1,∞-isometry of U is a map u ∈ W 1,∞(U ;R3) with ∇u ∈ O(2, 3) :=
{Q ∈ R3×2 : QTQ = I} almost everywhere.

In the following we consider B ∈ W 2,∞(I;R2) to be an arc-length-parametrized
embedded curve, i.e., |B′| = 1 and the continuous extension of B to I is injective. We
set N := e3 ∧B′ = (B′)⊥.

Lemma 12. Let B ∈ W 2,∞(I;R2) be an arc-length-parametrized embedded curve
and let p ∈ C1(I;S1) be such that B′ · p 6= 0 on I. Then there exists η > 0 such that
the map Φ : (−η, η)× I → R2 given by

(26) Φ(s, t) = B(t) + s p⊥(t)

is a bi-Lipschitz homeomorphism onto the open set U = Φ ((−η, η)× I).
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Assume in addition that there exist G ∈W 1,1(I;O(2, 3)) and m ∈ L1(I;R3) such
that

(27) G′ = m⊗ p a.e. on I.

Then the map u : U → R3 given by

(28) u (Φ(s, t)) =

∫ t

0

G(σ)B′(σ) dσ + sG(t)p⊥(t)

is a W 1,∞-isometry of U . More precisely,

(29) ∇u (Φ(s, t)) = G(t) for a.e. (s, t) ∈ (−η, η)× I.

Proof. The value of the quantity η in this proof may change from line to line.
Clearly Φ is well-defined on all of R × I. We claim that for all ρ > 0 there exist c,
η > 0 such that, for all t, t′ ∈ I we have

(30) |t− t′| ≥ ρ and s, s′ ∈ [−η, η] =⇒ |Φ(s, t)− Φ(s′, t′)| ≥ c.

In fact, by the hypotheses on B, for all ρ > 0 there exists c > 0 such that
|B(t) − B(t′)| ≥ 5c whenever |t − t′| ≥ ρ. Taking η = c, the implication (30) fol-
lows because |p| = 1.

On the other hand, since p ∈ C1(I;S1) and since B ∈ W 2,∞(I;R2) ⊂ C1(I;R2),
we see that Φ ∈ C1(R× I;R2) and we compute (with ∇Φ = (∂sΦ|∂tΦ))

(31) det(∇Φ(s, t)) = p(t) ·B′(t)− sp⊥(t) · p′(t) on R× I.

For η > 0 small enough the right-hand side differs from zero for all (s, t) ∈ [−2η, 2η]×I
because p · B′ 6= 0 and p⊥ · p′ is bounded on I. Hence by continuity |det∇Φ| is
bounded from below by a positive constant on this set. As ∇Φ is bounded on this
set, the inverse function theorem implies that there exists ρ > 0 such that if (s, t),
(s′, t′) ∈ [−η, η]× I then

(32) 0 < |t− t′|2 + |s− s′|2 ≤ ρ2 =⇒ Φ(s, t) 6= Φ(s′, t′).

Combined with (30) this shows that there exists η > 0 such that Φ is injective on
V , where V = (−η, η) × I. Thus by the invariance of domain theorem (cf. [15,
Theorem 3.30]), the set U = Φ(V ) is open, and since both ∇Φ and (det∇Φ)−1 are in
C0(V ), the inverse Ψ of Φ is in C1(U ;R2).

Denote the right-hand side of (28) by f(s, t) and define u = f ◦ Ψ, which is
equivalent to (28). Since Gp⊥ ∈W 1,1(I;R3), we have that f ∈W 1,1(V ;R3). Since Ψ
is bi-Lipschitz, we can apply the chain rule (cf. [46, Theorem 2.2.2]) to conclude that
u ∈W 1,1(U ;R3) and, using the fact that G′p⊥ = 0 by hypothesis, that

∇u(Φ(s, t))∇Φ(s, t) = (G(t)p⊥(t))⊗ e1 +
(
G(t)B′(t) + sG(t)(p⊥)′(t)

)
⊗ e2

= G(t)∇Φ(s, t).

Since ∇Φ is invertible pointwise on V , formula (29) follows. In particular, u is a
W 1,∞-isometry.
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Let B ∈ W 2,∞(I;R2) be an arc-length-parametrized embedded curve and let
M ∈ L2(I;R2×2

sym). A frame r ∈ W 1,2(I;SO(3)) is said to be adapted to the pair
(B,M) if r solves

(33) r′ =

 0 κ µ
−κ 0 τ
−µ −τ 0

 r

with κ = B′′ ·N , τ = MB′ ·N , and µ = MB′ ·B′, where N = (B′)⊥.

Proposition 13. Let B ∈ W 2,∞(I;R2) be an arc-length-parametrized embedded
curve and let N = (B′)⊥. Let p ∈ C1(I;S2) be such that p · B′ 6= 0 on I and let
λ ∈ L2(I). Let r ∈W 1,2(I;SO(3)) be a frame adapted to the pair (B, λp⊗ p) and let
y ∈W 2,2(I;R3) satisfy y′ = rT e1. Then there exists a neighborhood U of B(I) and a
W 1,∞-isometry u ∈W 2,2(U ;R3) such that u ◦B = y and Au ◦B = λp⊗ p, and

(34) ∇u(B(t) + sp⊥(t)) = (rT (t)e1)⊗B′(t) + (rT (t)e2)⊗N(t)

for all t ∈ I and all |s| small enough. The W 1,∞-isometry u is explicitly given by
formula (28), where G denotes the right-hand side of (34).

Proof. As r is adapted to (B, λp ⊗ p), it satisfies (33) with µ = λ(B′ · p)2 and
τ = λ(B′ · p)(N · p) and κ = B′′ ·N . Set

G = (rT e1)⊗B′ + (rT e2)⊗N.

Then, a short computation shows that

(35) G′ = (rT e3)⊗ (µB′ + τN).

Since (B′ · p)τ = (N · p)µ, we see that p⊥ · (µB′ + τN) = 0. So p ‖ (µB′ + τN) and,
therefore, G′ = m⊗ p for some m ∈ L1(I;R3).

Lemma 12 then shows that the map Φ(s, t) = B(t) + sp⊥(t) is a bi-Lipschitz
homeomorphism onto its image, and that u given by (28) satisfies (29). In particular,
∇u ◦ Φ = G, which is (34). Moreover, denoting by n the normal to u, we have
n ◦B = rT e3. After a possible translation we also have u ◦B = y.

Finally, taking derivatives in (34), recalling that for an isometric immersion u the
relation ∇2uk = Aunk holds, and using (35), we have

(n ◦B)⊗ (Au ◦B)B′ = (∇2u ◦B)B′ = (rT e3)⊗ (µB′ + τN).

Inserting the definitions of µ and of τ , we see that

(36) (Au ◦B)B′ = (λp⊗ p)B′.

Since Au is symmetric with detAu = 0 and since p ·B′ 6= 0, this readily implies that
Au ◦B = λp⊗ p.

The proof is essentially complete. However, Φ((−η, η) × (0, T )) is not a neigh-
borhood of B(I), although it is a neighborhood of B(J) for any subinterval J of I
with J ⊂ I. So we extend µ, τ , and κ by zero to R, and then we extend B and r by
solving the Frenet equations and the system (33), respectively. Then there is an open
interval I1 with I ⊂ I1 such that the hypotheses of the proposition are still satisfied
on I1. Applying the preceding proof to I1 leads, therefore, to the conclusion.
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Remark 14. In the particular case B(t) = te1 and in the presence of enough
regularity, Proposition 13 and Lemma 12 reduce to [20, Lemma 4.3] with β = y and
κ = 0. Since κ = 0, the condition y′′ 6= 0 is equivalent to B′ · p 6= 0.

Remark 15. Condition (27) is clearly necessary for (29) to hold (even for s = 0).
In fact, (29) implies

G′iα(t) =
∑
β

∂α∂βui(B(t))B′β(t).

If u is a W 1,∞-isometry, then ∂α∂βu ‖ n for α, β = 1, 2. So indeed the range of G′(t)
is contained in the span of n(B(t)).

The next lemma is a smooth approximation result within the class of symmetric
rank-one matrix fields.

Lemma 16. Let B ∈ W 2,∞(I;R2) be an arc-length-parametrized embedded curve
and let M ∈ L2(I;R2×2

sym) such that detM = 0 almost everywhere on I. Then there

exist pn ∈W 1,∞(I, S1) and λn ∈ C∞(I) such that pn ·B′ > 0 on I and

λnpn ⊗ pn →M strongly in L2(I,R2×2).

More precisely, there exist ϕn ∈ C∞(I; (−π, π)) such that pn = eiϕnB′, where eiϕ

denotes counterclockwise rotation by ϕ.

Proof. Let N = (B′)⊥. Define p ∈ L∞(I;R2) by setting

p :=

{
MB′

|MB′| if MB′ 6= 0,

N if MB′ = 0,

and set λ = trM . Since M is symmetric, its range is orthogonal to its kernel. Hence

(37) M = λp⊗ p.

In fact, if MB′ 6= 0 then we compute

λ(p⊗ p)B′ = (trM)(p ·B′) p

=
(MB′ ·B′)2 + (MB′ ·B′)(MN ·N)

(MB′ ·B′)2 + (MB′ ·N)2
MB′

= MB′,

where we have used the fact that (MB′·N)2 = (MB′·B′)(MN ·N) because detM = 0.
The above equality remains true when MB′ = 0. Since clearly the trace of M agrees
with that of λp ⊗ p, it follows that their (N,N)-components agree as well, and (37)
follows.

For fixed Λ > 0 we can consider the truncated functions λ̃Λ = (Λ ∧ λ) ∨ (−Λ).
Then clearly

λ̃Λp⊗ p→ λp⊗ p = M

in L2(I;R2×2
sym), as Λ ↑ ∞. Hence, by taking diagonal sequences we may assume

without loss of generality that λ ∈ L∞(I).
After possibly replacing p by

p̃ :=

{
sgn(p ·B′) p if p ·B′ 6= 0,

N if p ·B′ = 0,
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we may assume without loss of generality that there exists a lifting ϕ ∈ L∞(I; (−π, π])
such that p = eiϕB′. Set

ϕ̃n := ((π − 1
n ) ∧ ϕ) ∨ ( 1

n − π)

and extend ϕ̃n by zero to R. Denote by ϕn the mollification of ϕ̃n on a scale 1/n.
Then ϕn ∈ C∞(I) attains values in (−π, π) and ϕn → ϕ in Lq(I) for all q ≥ 1.

Choosing λn ∈ C∞(I) such that λn → λ in L2(I), the claim follows, because
eiϕnB′ → p in all Lq(I;R2).

7. Proof of the Γ-convergence result. In this section we prove Theorem 5.

Proof of Theorem 5(i). We may suppose that lim infε→0 Jε(yε) <∞, since other-
wise there is nothing to prove. Then, by passing to a subsequence, we may suppose
that lim supε→0 Jε(yε) <∞. By Lemma 2 we have that

(38) Ayε,ε ⇀ A in L2(Ω;R2×2
sym),

where

A =

(
d′1 · d3 d′2 · d3

d′2 · d3 γ

)
with γ ∈ L2(Ω). We note that, after setting

Q(M) :=
1

2
KM ·M,

Mε := (Dε)−TAyε,ε(D
ε)−1
√

detDε, M◦ε := (Dε)−TA◦ε(D
ε)−1
√

detDε,

and using the definition (10) of Jε, we have that

Jε(yε) =

∫
Ω

Q(Mε −M◦ε ) dx =

∫
Ω

Q(Mε)−KMε ·M◦ε +Q(M◦ε ) dx.

By (4), (12), and (38), we have that

Mε ⇀ D−TAD−1
√

detD =: M, M◦ε → D−TA◦D−1
√

detD =: M◦

in L2(Ω;R2×2). Since detAyε,ε = 0 by (9), we have that detMε = 0 a.e. in Ω. Thus,
we may apply Proposition 9 to Mε with B = Ω and z = 0, and obtain

lim inf
ε→0

Jε(yε) ≥
∫

Ω

Q(M) + α+
K (detM)+ + α−K (detM)− −KM ·M◦ +Q(M◦) dx

=

∫
Ω

Q(M −M◦) + α+
K (detM)+ + α−K (detM)− dx

=

∫
Ω

Q(D−T (A−A◦)D−1) detD + α+
K

(detA)+

detD
+ α−K

(detA)−

detD
dx

≥
∫
I

Q(x1, d
′
1 · d3, d

′
2 · d3) dx1,

where the last inequality follows from the definition of Q. This proves the liminf
inequality.
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Proof of Theorem 5(ii). Let (d1, d2, d3) ∈ A and let y ∈W 2,2(I;R3) be such that
y′ = d1 a.e. in I. We set

µ := d′1 · d3 = y′′ · d3, τ := d′2 · d3, and κ := d′1 · (d3 ∧ d1) = D′1 · (e3 ∧D1).

Let Dα := D−T eα be the contravariant vectors in the reference configurations,
i.e., Dα ·Dβ = δαβ , and let

M := µD1 ⊗D1 + τ(D1 ⊗D2 +D2 ⊗D1) + γD2 ⊗D2,

where γ ∈ L2(I) is chosen so that

Q(x1, µ, τ) =
(
Q(M −D−TA◦D−1) + α+

K (detM)+ + α−K (detM)−
)

detD.

By choosing µD1 ⊗D1 + τ(D1 ⊗D2 +D2 ⊗D1) as a competitor in the definition of
Q and by using the positive definiteness of Q one can prove that such a γ exists and
in fact belongs to L2(I).

By Proposition 9, with B = I, there exists M̃ δ ∈ L2(I;R2×2
sym) with det M̃δ = 0

and such that M̃δ ⇀M
√

detD weakly in L2(I;R2×2
sym) and∫

I

Q(M̃ δ) dx1

→
∫
I

(
Q(M

√
detD) + α+

K (det(M
√

detD))+ + α−K (det(M
√

detD))−
)
dx1

=

∫
I

(
Q(M) + α+

K (detM)+ + α−K (detM)−
)

detDdx1.

Let Mδ = M̃δ/
√

detD. Then detM δ = 0 and M δ ⇀M weakly in L2(I;R2×2
sym) and

∫
I

Q(Mδ −D−TA◦D−1) detDdx1

(39)

=

∫
I

Q(M̃δ)− (KD−TA◦D−1 ·Mδ −Q(D−TA◦D−1)) detDdx1 → J(d1, d2, d3).

By Lemma 16 with B(t) := χ(t, 0), hence B′ = D1, we may assume without loss of
generality that there exist λδ ∈ C∞(I) and pδ ∈ C1(I, S1) (same regularity of B′)
such that pδ ·D1 > 0 on I and

Mδ = λδpδ ⊗ pδ.

We let rδ ∈W 1,2(I;SO(3)) be a frame adapted to the pair (B,Mδ), i.e.,

(40) (rδ)′ =

 0 κδM µδM
−κδM 0 τ δM
−µδM −τ δM 0

 rδ

with κδM = D′1 · (e3 ∧D1) and τ δM = MδD1 · (e3 ∧D1) and µδM = MδD1 ·D1. We take
rδ(0) = (d1|d3 ∧ d1|d3)T (0) as initial condition. Finally, we define dδ1 := (rδ)T e1 and

βδ(t) := y(0) +

∫ t

0

dδ1(s) ds.
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For each δ > 0, Proposition 13 yields a neighborhood Uδ of B(I) and an isometry
uδ : U δ → R3 such that uδ ◦B = βδ and

(∇uδ) ◦B = (rδ)T e1 ⊗D1 + (rδ)T e2 ⊗ (e3 ∧D1)

and (Auδ) ◦B = Mδ.
We let r ∈W 1,2(I;SO(3)) be a frame adapted to the pair (B,M), i.e., r satisfies

(33) with κ, τ, and µ replaced by κM = D′1 · (e3 ∧ D1), τM = MD1 · (e3 ∧ D1),
and µM = MD1 · D1, respectively. Again, we take r(0) = (d1, d3 ∧ d1, d3)T (0) as
initial condition. Since M δ ⇀ M weakly in L2(I;R2×2

sym) we have that µδM ⇀ µM
and τ δM ⇀ τM weakly in L2(I). Thus, rδ ⇀ r weakly in W 1,2(I;SO(3)). To identify
r note that κM = κ and µM = µ. Also, since D1 = −e3 ∧ D2/|D1 ∧ D2| and
D2 = e3 ∧D1/|D1 ∧D2|, we have

τM =
−µD1 ·D2 + τ

|D1 ∧D2|
=
−(d′1 · d3)(d1 · d2) + d′2 · d3

|D1 ∧D2|
.

To simplify this expression we write

d2 = (d2 · d1)d1 + (d2 · (d3 ∧ d1))d3 ∧ d1 = (d2 · d1)d1 + |d1 ∧ d2|d3 ∧ d1,

from which we deduce that d′2 · d3 = (d2 · d1)(d′1 · d3) + |d1 ∧ d2|(d3 ∧ d1)′ · d3. Hence,

τM =
|d1 ∧ d2|(d3 ∧ d1)′ · d3

|D1 ∧D2|
= − |d1 ∧ d2|
|D1 ∧D2|

d′3·(d3∧d1) = −d′3·(d3∧d1) = d3·(d3∧d1)′,

where we used that

|D1 ∧D2|2 = (D1 ·D1)(D2 ·D2)− (D1 ·D2)2(41)

= (d1 · d1)(d2 · d2)− (d1 · d2)2 = |d1 ∧ d2|2.

It is now immediate to check that r(t) = (d1, d3 ∧ d1, d3)T (t).
Thus, rδ ⇀ (d1, d3 ∧ d1, d3)T weakly in W 1,2(I;SO(3)) and, as a consequence,

βδ ⇀ y weakly in W 2,2(I;R3) and

(∇uδ) ◦B ⇀ d1 ⊗D1 + (d3 ∧ d1)⊗ (e3 ∧D1)

weakly in W 1,2(I;R2×3). In particular, ((∇uδ) ◦ B)D1 ⇀ d1 weakly in W 1,2(I;R3)
and, using (41),

((∇uδ) ◦B)D2 ⇀ (D1 ·D2)d1 + (e3 ∧D1 ·D2)d3 ∧ d1 = (d1 · d2)d1 + |d1 ∧ d2|d3 ∧ d1

= (d1 · d2)d1 + (d3 ∧ d1 · d2)d3 ∧ d1 = d2

weakly in W 1,2(I;R3). Since for ε small enough Sε ⊂ U δ we may define

yδε = uδ ◦ χε.

The map

(s, t) 7→ χ(t, 0) + s(pδ)⊥(t)

is a C1 diffeomorphism and, from (34) and the regularity of rδ as a solution of (40),
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we see that uδ is C2. Hence, as ε→ 0, we have yδε → uδ ◦B = βδ in W 2,2(I;R3) and
(see (5)) ∂1y

δ
ε → ((∇uδ) ◦B)D1 and ∂2y

δ
ε/ε→ ((∇uδ) ◦B)D2 in W 1,2(I;R3). Also∫

Ω

Q((Dε)−T (Ayδε ,ε −A
◦
ε)(D

ε)−1) detDε dx

=

∫
Ω

Q(Auδ ◦ χε − (Dε)−TA◦ε(D
ε)−1) detDε dx

→
∫
I

Q(Auδ ◦B − (D)−TA◦(D)−1) detDdx1

=

∫
I

Q(M δ − (D)−TA◦(D)−1) detDdx1,

where, to obtain the first equality, we used (8). Hence, by (39) it follows that

lim
δ→0

lim
ε→0

∫
Ω

Q((Dε)−T (Ayδε ,ε −A
◦
ε)(D

ε)−1) detDε dx = J(d1, d2, d3)

and by taking a diagonal sequence we complete the proof.
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opable Möbius strip, Proc. Appl. Math. Mech., 7 (2007), pp. 2020115–2020116.

[39] E. L. Starostin and G. H. M. van der Heijden, Equilibrium shapes with stress localisation
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