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Abstract

This paper concerns the specification of multivariate prediction regions which may be

useful in time series applications whenever we aim at considering not just one single

forecast but a group of consecutive forecasts. We review a general result on improved

multivariate prediction and we use it in order to calculate conditional prediction intervals

for Markov process models so that the associated coverage probability turns out to be close

to the target value. This improved solution is asymptotically superior to the estimative

one, which is simpler but it may lead to unreliable predictive conclusions. An application

to general autoregressive models is presented, focusing in particular on AR and ARCH

models.
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1 Introduction

Predictive inference concerning a future multivariate random variable, with particular regard

to the specification of multivariate prediction regions, may be of considerable interest in time

series applications whenever we aim at considering not just one single forecast but a group of

consecutive forecasts. In such cases we usually look for a prediction region, obtained from a

system of prediction intervals, which covers the future observations of the process with an overall

specified coverage probability α. The purpose of this paper is to employ the general results

given by Corcuera and Giummolè (2006) in order to calculate prediction regions for Markov

process models so that the associated coverage probability turns out to be close to the target

value α. The proposed prediction regions are analytically defined and they are not necessarily

of rectangular form, since each component prediction interval depends on the previous future

potential observations. Even though the non-rectangular form does not automatically produce

marginal predictive statements for the single future observations, it enables the specification of

a system of conditional prediction intervals accounting for alternative path forecast scenarios

for the future realizations of the process.

Let us consider a one-dimensional, discrete-time, stochastic process {Yn}n≥1 and let us

suppose that the random vector Y = (Y1, . . . , Yn), n ≥ 1, is observed. We aim at predicting

a future, or yet unobserved, random vector Z = (Z1, . . . , Zm) = (Yn+1, . . . , Yn+m), m ≥ 1;

(Y, Z) is a continuous random vector following a joint density p(y, z; θ), with θ ∈ Θ ⊆ Rd an

unknown d -dimensional parameter. We require the existence of a transitive statistic (Barndorff-

Nielsen and Cox 1996; Bjørnstad 1996) U = U(Y ), with a fixed dimension, independent of the

sample size n, so that Y and Z are conditionally independent given U ; in the case of a Markov
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process of order k ≥ 1, we have U = (Yn−k+1, . . . , Yn). Thus, the conditional distribution of Z

given Y = y depends on y only via u, the observed value of U ; the conditional density of Z

given Y = y is g(z|y; θ) = g(z|u; θ), and analogously for the conditional distribution function

G(z|y; θ) = G(z|u; θ). We also assume that p(y, z; θ), g(z|y; θ) and G(z|y; θ) are sufficiently

smooth functions of the parameter θ, for fixed y and z.

Although prediction problems may be considered from alternative perspectives, in this paper

we follow the frequentist approach and the objective is to define a suitable α-prediction region

R(Y, α) ⊂ Rm for Z, such that

PY,Z|U{Z ∈ R(Y, α)|U = u; θ} = α, (1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is called conditional coverage

probability and it is calculated with respect to the conditional joint distribution of (Z, Y ) given

U = u. It is immediate to note that, if R(Y, α) satisfies (1) then it has also a marginal coverage

probability equal to the target value α, that is PY,Z{Z ∈ R(Y, α); θ} = α, for all θ. The use of

the coverage probability conditional on U = u, as a suitable measure of confidence of prediction

methods, involves hypothetical or real replications of the sample experiment considering U as

fixed to the observed value u. For a detailed and convincing justification of the conditional

approach see Kabaila (1999a) and Vidoni (2004).

The simplest way for making prediction on Z is by using the estimative predictive density

g(z|u; θ̂), where the unknown parameter θ is substituted with an asymptotically efficient esti-

mator θ̂ based on Y , such that θ̂− θ = Op(n
−1/2); we usually consider the maximum likelihood

estimator or any asymptotically equivalent alternative estimator. However, prediction regions

based on the estimative procedure are not entirely adequate predictive solutions, since they
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underestimate the additional uncertainty introduced by assuming θ = θ̂. Thus, their coverage

probability differs from α by a term usually of order O(n−1) and prediction statements may be

rather inaccurate for small n and/or large m.

Concerning the univariate case, Barndorff-Nielsen and Cox (1996), Ueki and Fueda (2007)

and Vidoni (1998) suggest a way to correct, by means of asymptotic calculations, the quantiles

of the estimative predictive distribution, thus obtaining prediction intervals with a coverage

error of order o(n−1). Alternative approaches, based on a suitable calibrating procedure (Beran

1990; Hall et al. 1999) or on the specification of an approximate pivotal quantity (Lawless and

Fredette 2005) have been also proposed for improving the estimative solution. An application

of these solutions giving improved prediction intervals for time series models, with particular

regard to autoregressive processes, can be found in Corcuera (2008), Kabaila and He (2004),

Kabaila and Syuhada (2007) and Vidoni (2004, 2009).

With regard to the multivariate case, the calibrating approach introduced by Beran (1990),

and applied for example by Hall et al. (1999) using a bootstrap simulation procedure, improves

the estimative prediction regions as well. This is a very general approach and it consists in

finding a suitable value ᾱ such that the coverage probability of the estimative, recalibrated,

ᾱ-prediction region is equal or close to the target value α. With particular attention to the

time series framework, Jordà and Marcellino (2010) propose a rectangular prediction region,

suitably corrected in order to control the coverage probability. This prediction region is obtained

from the Scheffé’s (1959) one, which has originally an elliptical form. Wang and Fa (2010)

consider multivariate linear mixed models for the analysis of longitudinal data and specify

simultaneous predictions intervals, simply obtained by using the estimative procedure. In a
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similar context, Concordet and Servien (2014) introduce suitable corrections with the aim of

improving the coverage accuracy of the estimative solution. Recently, Wolf and Wunderly

(2015) consider a general, simulation-based approach for the construction of joint prediction

regions that will contain the entire future path with the desired coverage probability. Their

procedure is essentially bootstrap-based, it is rather general, it does not necessarily require the

specification of the distribution of the error terms and it specifies joint rectangular prediction

regions.

In a more general context, encompassing the time series framework, Corcuera and Giummolè

(2006) introduce a procedure, based on asymptotic calculations, in order to define a system of

improved prediction intervals with an overall coverage error of smaller asymptotic order than

that one of the estimative solution; they also specify the associated multivariate predictive

density. In the present paper, we follow the Corcuera and Giummolè’s approach and we apply

their results for the specification of improved multivariate prediction regions within Markov

process models. Differently from the results previously reviewed, the proposed prediction re-

gions have a non-rectangular form. We present also an application to general autoregressive

time series models, focusing in particular on autoregressive (AR) models and on autoregressive

conditional heteroscedastic (ARCH) models, and we perform a simple simulation study in order

to emphasize the improvement achieved by our solution, in terms of coverage probability, over

the estimative one.
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2 Review on improved univariate prediction limits for

Markov processes

Let us review the Barndorff-Nielsen and Cox’s (1996) asymptotic procedure for improving

estimative prediction intervals, as specified for the situation with dependent observations by

Vidoni (2004). Let us consider the univariate case, so that m = 1, and let us assume that U =

(Yn−k+1, . . . , Yn), k ≥ 1. The focus is, in particular, on the estimative α-prediction limit zα(θ̂, u)

for Z = Yn+1, defined as the α-quantile of the estimative conditional distribution function

G(z|u; θ̂). It is well known that the conditional and the unconditional coverage probability of

zα(θ̂, u) differs from α by an error term of order O(n−1), which may be substantial, leading to

unreliable predictive conclusions. A general solution for improving estimative prediction limits

involves higher-order asymptotic corrections. The key idea is to obtain a suitable modification

of zα(θ̂, u), defined in order to absorb the additional O(n−1) term in the associated coverage

probability, so that the error term turns out to be reduced to order O(n−3/2).

Let us use the Einstein summation convention, so that if an index occurs more than once in a

summand then summation over that index is understood, and let θr and θ̂r, r = 1, . . . , d, denote

the r-th component of θ and θ̂, respectively. Since U is a transitive statistic, the conditional

coverage probability of the estimative prediction limit may be rewritten as

PY,Z|U{Z ≤ zα(θ̂, U)|U = u; θ} = EY |U [G{zα(θ̂, U)|U ; θ}|U = u; θ],

where the expectation is with respect to the conditional distribution of Y given U = u. Using

a stochastic Taylor expansion in θ̂ = θ, we have that

PY,Z|U{Z ≤ zα(θ̂, U)|U = u; θ} = α +Q{zα(θ, u), u; θ}+O(n−3/2), (2)
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with

Q(z, u; θ) = −br(θ, u)Gr(z|u; θ)− 1

2
irs(θ, u) {Grs(z|u; θ) + [2]Gr(z|u; θ)`s(θ;u, z)} ,

where [2] indicates the sum of two terms obtained by permutation of indices r and s. Here,

br(θ, u) and irs(θ, u) are such that

EY |U{(θ̂ − θ)r|U = u; θ} = br(θ, u) +O(n−3/2),

EY |U{(θ̂ − θ)r(θ̂ − θ)s|U = u; θ} = irs(θ, u) +O(n−3/2),

while Gr(z|u; θ) and Grs(z|u; θ) are the first and the second partial derivatives of G(z|u; θ),

with respect to components θr and θs of θ, and `s(θ;u, z) = ∂ log g(z|u; θ)/∂θs. For the O(n−1)

conditional bias term of θ̂r holds the useful formula (Vidoni 2004)

br(θ, u) = br(θ) + log p(u; θ)si
rs(θ) + o(n−1), (3)

where br(θ) = EY {(θ̂ − θ)r; θ} is the O(n−1) unconditional bias term of θ̂r and log p(u; θ)s =

∂ log p(u; θ)/∂θs, with p(u; θ) the marginal density of U . Moreover, irs(θ, u) = irs(θ)+O(n−3/2),

with irs(θ) the (r, s)-element of the inverse of the expected information matrix based on Y .

A modification of the estimative prediction limit, with conditional (and unconditional)

coverage error of order O(n−3/2), is

z̃α(y) = zα(θ̂, u)− Q{zα(θ̂, u), u; θ̂}
g{zα(θ̂, u)|u; θ̂}

. (4)

Moreover, the predictive distribution function and the predictive density function which give

(4) as α-quantile up to terms of order O(n−1) are, respectively,

G̃(z; y) = G(z|u; θ̂) +Q(z, u; θ̂),
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g̃(z; y) = g(z|u; θ̂)

{
1 +

dQ(z, u; θ̂)/dz

g(z|u; θ̂)

}
= g{z +R(z, u; θ̂)|u; θ̂}

{
1 + dR(z, u; θ̂)/dz

}
,

with R(z, u; θ̂) = Q(z, u; θ̂)/g(z|u; θ̂).

Equation (4) enables the computation of univariate improved prediction intervals for a

number of Markov process models, such as AR and ARCH models (see, for example, Corcuera

2008; Vidoni 2004). Note that, whenever the quantities br(θ, u) and irs(θ), r, s = 1, . . . , d, are

not known explicitly, and feasible asymptotic approximations are not available, they can be

computed by means of suitable (conditional) parametric bootstrap simulation procedures.

3 Improved prediction regions for Markov processes

Let us suppose, in order to simplify the exposition, that {Yn}n≥1 is a first-order Markov process.

At the end of the present section we shall extend the results to the general case of a Markov

process of order k ≥ 1. Therefore, in this particular situation, Y and Z are conditionally

independent given U = Yn and the conditional density of Z given Y = y is

g(z|y; θ) = g(z|yn; θ) =
m∏
i=1

g(zi|zi−1; θ),

where, with a slight abuse of notation, g(zi|zi−1; θ) indicates the conditional density of Zi given

Zi−1 = zi−1, i = 1, . . . ,m, where Z0 = Yn and z0 = yn. The associated conditional distribution

functions are, respectively, G(z|y; θ) = G(z|yn; θ) and G(zi|zi−1; θ), i = 1, . . . ,m.

Let us consider the multivariate setting by assuming m > 1 fixed. A particular procedure

for specifying prediction regions involves a system of simultaneous inequalities based on suitable
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prediction limits, that is quantities c1(y), ci(y, z
i−1
1 ), i = 2, . . . ,m, such that

PY,Z|Yn{Z1 ≤ c1(Y ), Z2 ≤ c2(Y, Z
1
1), · · · , Zm ≤ cm(Y, Zm−1

1 )|Yn = yn; θ} = α, (5)

for all θ, with α ∈ (0, 1); hereafter, Zv
h = (Zh, . . . , Zv) and zvh = (zh, . . . , zv), 0 ≤ h ≤ v. Note

that the prediction limits ci(y, z
i−1
1 ), i = 2, . . . ,m, depend on the past observations zi−11 . This

sequential-type procedure for specifying a multivariate prediction region is especially useful

for time series analysis, where there is a prescribed temporal ordering in the observed data.

Moreover, this particular choice for the prediction limits determines a shape for the prediction

region which is not necessarily rectangular, for the two-sided case, or semi-infinite rectangular,

for the one-sided case.

Since θ is unknown, an intuitive approximate solution to (5) is given by the system of

simultaneous estimative prediction limits ziα(θ̂, zi−1), i = 1, . . . ,m, obtained by replacing θ with

θ̂ in ziα(θ, zi−1), namely, the αi-quantile of the conditional distribution of Zi given Zi−1 = zi−1,

specified as the solution, with respect to zi, of G{zi|zi−1; θ} = αi. Indeed, the conditional

coverage probabilities αi, i = 1, . . . ,m, are such that
∏m

i=1 αi = α. It is well-known that the

estimative solution could be not adequate for prediction, being usually rather imprecise. This

drawback maintains in the multivariate framework, since, as proved by Corcuera and Giummolè

(2006), estimative prediction regions present a coverage error of order O(n−1). Moreover, the

procedure for correcting each univariate estimative prediction limit ziα(θ̂, zi−1), i = 1, . . . ,m,

outlined in the previous section with regard to the univariate case, fails to improve the overall

coverage probability of the associated prediction region. For multivariate prediction, we have

to take into account also the potential dependence between the components of vector Z and

the interaction among the simultaneous estimative prediction limits, induced by the fact that
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they are all evaluated assuming θ = θ̂.

Following Corcuera and Giummolè (2006), the simultaneous prediction limits which improve

the estimative ones, since they satisfy (5) with an error term of order O(n−3/2), correspond to

z̃1α = z̃1α(y) = z1α(θ̂, yn)− h1{z1α(θ̂, yn), yn, z0; θ̂}
g{z1α(θ̂, yn)|yn; θ̂}

(6)

and, for i = 2, . . . ,m,

z̃iα= z̃iα(y, zi−11 )=ziα(θ̂, zi−1)−
hi{ziα(θ̂, zi−1), yn, zi−1; θ̂}
g{ziα(θ̂, zi−1)|zi−1; θ̂}

−
∑i−1

j=1 hij{ziα(θ̂, zi−1), z
j+1
j−1 ; θ̂}

g{ziα(θ̂, zi−1)|zi−1; θ̂}
. (7)

The term hi(zi, yn, zi−1; θ), i = 1, . . . ,m, is of order O(n−1) and it is given by

hi(zi, yn, zi−1; θ) = − br(θ, yn)Gr(zi|zi−1; θ)

− 1

2
irs(θ) {Grs(zi|zi−1; θ)− [2]Gr(zi|zi−1; θ)`s(θ; zi−1, zi)} ,

while the O(n−1) term hij(zi, z
j+1
j−1 ; θ) is given by

hij(zi, z
j+1
j−1 ; θ)=

1

2
[2]irs(θ)Gr(zi|zi−1; θ)

{
`s(θ; zj−1, zj) +

Gs(zj|zj−1; θ) d log g(zj+1|zj; θ)/dzj
g(zj|zj−1; θ)

}
,

for j = 1, . . . , i− 2, i = 3, . . . ,m, and by

hij(zi, z
j+1
j−1 ; θ) =

1

2
[2]irs(θ)

{
Gr(zi|zi−1; θ)`s(θ; zj, zj+1) +

Gs(zj|zj−1; θ) dGr(zi|zi−1; θ)/dzi−1
g(zi−1|zi−2; θ)

}
,

for j = i− 1, i = 2, . . . ,m, where br(θ, yn), irs(θ), Gr(zj|zj−1; θ), `s(θ; zj−1, zj), j = 1, . . . , i, and

Grs(zi|zi−1; θ) are defined as in Section 2.

The correction terms hi(zi, yn, zi−1; θ), i = 1, . . . ,m, are those ones needed for improving the

univariate prediction limits ziα(θ̂, zi−1); in particular, h1(z1, yn, z0; θ) corresponds to the term

Q(z, u, θ), specified in Section 2, with z = z1 and u = yn. The additional terms hij(zi, z
j+1
j−1 ; θ),

i = 2, . . . ,m, j = 1, . . . , i − 1, correct for the part of the coverage error due to the additional
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dependency among the quantiles ziα(θ, zi−1), i = 1, . . . ,m, after estimating θ with the same

estimator θ̂.

Note that, both the estimative and the improved prediction regions do not necessarily follow

a rectangular-type form. Honestly, this could represent a practical limitation for the present

approach, since in the applications it is quite common to specify a multivariate forecast as a

sequence of marginal prediction statements concerning each component of the future random

vector Z. However, by considering rectangular prediction regions one implicitly assumes that

the first realizations of the future path do not influence the positions and the width of the pre-

diction intervals associated to the future subsequent observations. The simultaneous prediction

regions studied in this paper overtake this limitation and they enable a suitable conditional

predictive analysis, which may produce sequences of conditional prediction intervals related to

alternative potential scenarios for the future observations. For example, one possibility is to

consider, as a path forecast for the future realizations z, a vector of suitable point predictors

for Z, obtained with respect to an optimality criterion.

Moreover, in this framework, it is not difficult to specify the multivariate conditional pre-

dictive density g̃(z; y) which gives the system of improved simultaneous prediction limits (6)

and (7) as quantiles. More precisely, g̃(z; y) is such that

∫ z̃1α

−∞

∫ z̃2α

−∞
· · ·
∫ z̃mα

−∞
g̃(z; y) dzm · · · dz1 = α,
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and, up to terms of order O(n−1), it corresponds to

g̃(z; y) = g(z1|yn; θ̂)

{
1 +

dh1(z1, yn, z0; θ̂)/dz1

g(z1|yn; θ̂)

}
m∏
i=2

g(zi|zi−1; θ̂)

{
1 +

dhi(zi, yn, zi−1; θ̂)/dzi

g(zi|zi−1; θ̂)
+

∑i−1
j=1 dhij(zi, z

j+1
j−1 ; θ̂)/dzi

g(zi|zi−1; θ̂)

}

= g(z|yn; θ̂)

{
1 +

m∑
i=1

dhi(zi, yn, zi−1; θ̂)/dzi

g(zi|zi−1; θ̂)
+

m∑
i=2

∑i−1
j=1 dhij(zi, z

j+1
j−1 ; θ̂)/dzi

g(zi|zi−1; θ̂)

}
,

where g(z|yn; θ̂) and g(zi|zi−1; θ̂), i = 1, . . . ,m, are, respectively, the joint conditional estimative

predictive density of Z and the conditional estimative predictive density of Zi given Zi−1 = zi−1.

Furthermore, it is immediate to prove that, up to terms of order O(n−1), the improved

simultaneous prediction limits z̃iα, i = 1, . . . ,m, are such that

∫ z̃iα

−∞
g̃(zi; y, z

i−1
0 ) dzi = αi,

where the associated conditional predictive densities are

g̃(z1; y) = g(z1|yn; θ̂)

{
1 +

dh1(z1, yn, z0; θ̂)/dz1

g(z1|yn; θ̂)

}

and, for i = 2, . . . ,m,

g̃(zi; y, z
i−1
1 ) = g(zi|zi−1; θ̂)

{
1 +

dhi(zi, yn, zi−1; θ̂)/dzi

g(zi|zi−1; θ̂)
+

∑i−1
j=1 dhij(zi, z

j+1
j−1 ; θ̂)/dzi

g(zi|zi−1; θ̂)

}
.

Finally, we emphasizes that, with an additional effort, it is possible to generalize these

results to the case of Markov processes of order k > 1. The system of improved simultaneous

prediction limits is similar to that one defined above and it has the same structure. In particular,

the correction terms for the univariate prediction limits correspond to hi(zi, yn, zi−1; θ), i =

1, . . . ,m, with u = (yn−k+1, . . . , yn) substituted for yn and zi−1i−k substituted for zi−1, where

zi−h = yn+i−h, h ≥ i. On the other hand, the additional correction terms hij(zi, z
j+1
j−1 ; θ),
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i = 2, . . . ,m, j = 1, . . . , i − 1, are suitably generalized in order to account for higher-order

dependencies. In particular, we obtain that

hij(zi, z
i−1
j−k; θ)=

1

2
[2]irs(θ)Gr(zi|zi−1i−k; θ)

[
d
dzj
{Gs(zj|zj−1j−k; θ)g(zj+1|zjj−k+1; θ)· · ·g(zj+k|zj+k−1j ; θ)}

g(zj|zj−1j−k; θ) · · · g(zj+k|zj+k−1j ; θ)

]
,

for j = 1, . . . , i− k − 1, i = k + 2, . . . ,m,

hij(zi, z
i−1
j−k; θ)=

1

2
[2]irs(θ)

[
d
dzj
{Gs(zj|zj−1j−k; θ)g(zj+1|zjj−k+1; θ)· · ·g(zi−1|zi−k−1i−2 ; θ)Gr(zi|zi−1i−k; θ)}

g(zj|zj−1j−k; θ) · · · g(zi−1|zi−k−1i−2 ; θ)

]
,

for j = i− k, . . . , i− 2, i = 2, . . . ,m, and

hij(zi, z
i−1
j−k; θ) =

1

2
[2]irs(θ)

[
d
dzj
{Gs(zj|zj−1j−k; θ)Gr(zi|zi−1i−k; θ)}

g(zj|zj−1j−k; θ)

]
,

for j = i− 1, i = 2, . . . ,m.

The results presented in this section are undoubtedly relevant from a theoretical perspective

since they apply to Markov process models the general findings of Corcuera and Giummolè

(2006) on multivariate prediction. Moreover, they throw light on the structure of the required

corrections for the simultaneous estimative prediction limits. However, the practical use of the

improved prediction regions, with particular concern to the case of Markov processes of order

k > 1, require too complex calculations. In order to overcome these computational difficulties

a simulation based approach, obtained by extending to simultaneous prediction the Ueki and

Fueda’s (2007) procedure, can be defined. Vidoni (2015) is a first attempt in this direction.

4 Simultaneous prediction limits for general autoregres-

sive models

In this section, the results on improved simultaneous prediction limits are applied in the fol-

lowing general framework already introduced by Vidoni (2009) for univariate prediction. Let
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us considered the class of autoregressive time series models {Yn}n≥1 defined as

Yn = µn + σnεn, n ≥ 1,

with {εn}n≥1 a sequence of independent, identically distributed, random variables having

E(εn) = 0 and V (εn) = 1, n ≥ 1. We state that, for each n ≥ 1,

µn = µn(Yn−1, . . . , Yn−p; β),

σn = σn(Yn−1, . . . , Yn−q; γ)

depend on past p ≥ 0 and q ≥ 0 observations, respectively, with θ = (β, γ) the unknown d-

dimensional parameter. Moreover, we assume conditions assuring the existence of a stationary

solution and we perform likelihood inference conditioned on (Y0, . . . , Y−k+1) = (y0, . . . , y−k+1),

with (y0, . . . , y−k+1) assumed to be known; β̂ and γ̂ indicate the estimators for β and γ.

Note that {Yn}n≥1 is a Markov process of order k = max(p, q), which includes the p-th order

AR model and q-th order ARCH model, as well as the AR models with ARCH errors. With

regard to the common distribution of the random variables εn, n ≥ 1, we may consider the

standard Gaussian distribution or alternative distributions with an additional shape parameter,

such as the double gamma distribution and suitable heavy-tailed distributions.

In this framework, we have that, for i = 1 . . . ,m,

g(zi|zi−1i−k; θ) =
1

σn+i
f

(
zi − µn+i
σn+i

)
, G(zi|zi−1i−k; θ) = F

(
zi − µn+i
σn+i

)
,

where µn+i and σ2
n+i are the conditional expectation and variance of Zi given Zi−1

i−k = zi−1i−k and

f(·) and F (·) are the density and distribution functions of εn, n ≥ 1.

In order to compute the improved simultaneous prediction limits (6) and (7), the partial

derivatives of G(zi|zi−1i−k; θ), i = 1, . . . ,m, with respect to components of β and γ, are required.

14



In particular, the first partial derivatives correspond to

Gβ,r(zi|zi−1i−k; θ) =
∂G(zi|zi−1i−k; θ)

∂βr
= −f(ui)

µn+i,r
σn+i

,

Gγ,r(zi|zi−1i−k; θ) =
∂G(zi|zi−1i−k; θ)

∂γr
= −uif(ui)

σ2
n+i,r

2σ2
n+i

,

with ui = (zi − µn+i)/σn+i, µn+i,r = ∂µn+i/∂βr and σ2
n+i,r = ∂σ2

n+i/∂γr. Indeed, the second

partial derivatives are

Gββ,rs(zi|zi−1i−k; θ) =
∂2G(zi|zi−1i−k; θ)

∂βr∂βs
= f ′(ui)

µn+i,r µn+i,s
σ2
n+i

− f(ui)
µn+i,rs
σn+i

,

Gβγ,rs(zi|zi−1i−k; θ) =
∂2G(zi|zi−1i−k; θ)

∂βr∂γs
= {f(ui) + uif

′(ui)}
µn+i,r σ

2
n+i,s

2σ3
n+i

,

Gγγ,rs(zi|zi−1i−k; θ) =
∂2G(zi|zi−1i−k; θ)

∂γr∂γs
= {3uif(ui) + u2i f

′(ui)}
σ2
n+i,rσ

2
n+i,s

4σ4
n+i

− uif(ui)
σ2
n+i,rs

2σ2
n+i

,

where f ′(ui) = df(ui)/dui and µn+i,rs = ∂2µn+i/∂βrβs, σ
2
n+i,rs = ∂2σ2

n+i/∂γrγs.

Moreover, the first partial derivatives of log g(zi|zi−1i−k; θ), i = 1, . . . ,m, with respect to

components of β and γ, correspond to

`β,r(θ; z
i−1
i−k, zi) =

∂ log g(zi|zi−1i−k; θ))

∂βr
= −f

′(ui)

f(ui)

µn+i,r
σn+i

,

`γ,r(θ; z
i−1
i−k, zi) =

∂ log g(zi|zi−1i−k; θ))

∂γr
= −

{
ui
f ′(ui)

f(ui)
+ 1

}
σ2
n+i,r

2σ2
n+i

and, finally, dGr(zi|zi−1i−k; θ)/dzh and dg(zi|zi−1i−k; θ)/dzh, with h = i − k, . . . , i − 1, may be ob-

tained by derivation, with respect to zh, of the functions Gβ,r(zi|zi−1i−k; θ), Gγ,r(zi|zi−1i−k; θ) and

g(zi|zi−1i−k; θ) specified before.

Whenever we assume a standard Gaussian distribution for the random variables εn, n ≥ 1,

the above calculations are simplified, since, in this particular case, f ′(ui) = −uif(ui).
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4.1 An application to AR(1) models

Let us consider a stationary first-order Gaussian AR process {Yn}n≥1 defined as

Yn = µ+ ρ (Yn−1 − µ) + εn, n ≥ 1,

where µ ∈ IR, |ρ| < 1 are unknown parameters and {εn}n≥1 is a sequence of independent

normal distributed random variables with zero mean and unknown variance σ2. With the

usual notation, θ = (θ1, θ2, θ3) = (β1, β2, γ1) = (µ, ρ, σ2) and the transitive statistic is U = Yn.

Indeed, likelihood inference is conditioned on Y0 = y0, with y0 known, and it is easy to see

that Zi given Zi−1 = zi−1, i = 1, . . . ,m, follows a normal distribution with mean µn+i =

µ + ρ (zi−1 − µ) and variance σ2
n+i = σ2. Thus, g(zi|zi−1; θ) = σ−1φ{(zi − µn+i)/σ} and

G(zi|zi−1; θ) = Φ{(zi − µn+i)/σ}, where φ(·) and Φ(·) are, respectively, the density and the

distribution function of a standard normal random variable.

For this simple stationary time series model, the expected information matrix is such that

i11(θ) = n(1 − ρ)2/σ2, i22(θ) = n/(1 − ρ2) + o(n), i33(θ) = n/(2σ4) and irs(θ) = 0, for r 6= s,

and the maximum likelihood estimators are explicitly known and they correspond to

µ̂=

∑n
i=1 Yi−ρ̂

∑n
i=1 Yi−1

n(1−ρ̂)
, ρ̂=

∑n
i=1 YiYi−1−n−1

∑n
i=1 Yi

∑n
i=1 Yi−1∑n

i=1 Y
2
i−1−n−1(

∑n
i=1 Yi−1)

2
, σ̂2 =n−1

n∑
i=1

(Yi−µ̂i)2,

with µ̂i = µ̂ + ρ̂ (Yi−1 − µ̂). Indeed, to the relevant order of approximation, the bias of θ̂,

conditional on Yn = yn, is

b1(θ, yn) =
(yn − µ)(1 + ρ)

n(1− ρ)
,

b2(θ, yn) =
(yn − µ)2(1− ρ2)ρ

nσ2
− 1 + 4ρ

n
,

b3(θ, yn) =
(yn − µ)2(1− ρ2)

n
− 3σ2

n
.
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In this context, the system of simultaneous estimative prediction limits is readily available

and it corresponds to ziα(θ̂, zi−1) = µ̂n+i + qiσ̂, i = 1, . . . ,m, with µ̂n+i = µ̂ + ρ̂ (zi−1 − µ̂) and

qi such that Φ(qi) = αi. For the specification of the improved simultaneous prediction limits,

the following quantities, obtained from the general formulae given above, are required. Since

φ ′(u) = −uφ(u), we have that G1(zi|zi−1; θ) = −φ(ui)(1− ρ)/σ, G2(zi|zi−1; θ) = −φ(ui)(zi−1−

µ)/σ, G3(zi|zi−1; θ) = −φ(ui)ui/(2σ) and

G11(zi|zi−1; θ) = −φ(ui)ui(1− ρ)2/σ2,

G12(zi|zi−1; θ) = −φ(ui){ui(1− ρ)(zi−1 − µ)− σ}/σ2,

G13(zi|zi−1; θ) = −φ(ui)(u
2
i − 1)(1− ρ)/(2σ3),

G22(zi|zi−1; θ) = −φ(ui)ui(zi−1 − µ)2/σ2,

G23(zi|zi−1; θ) = −φ(ui)(u
2
i − 1)(zi−1 − µ)/(2σ3),

G33(zi|zi−1; θ) = −φ(ui)(u
3
i − 3ui)/(4σ

4),

with ui = (zi − µn+i)/σ. Moreover, for j = 1, . . . , i − 2, d log g(zj+1|zj; θ)/dzj = uj+1ρ/σ and,

for j = 1, . . . , i, `1(θ; zj−1, zj) = uj(1 − ρ)/σ, `2(θ; zj−1, zj) = uj(zj−1 − µ)/σ, `3(θ; zj−1, zj) =

(u2j − 1)/(2σ2), with uj = (zj − µn+j)/σ. Finally, we obtain that

dG1(zi|zi−1; θ)
dzi−1

= −φ(ui)ui
ρ(1− ρ)

σ
,

dG2(zi|zi−1; θ)
dzi−1

= −φ(ui)
ui ρ(zi−1 − µ) + σ

σ2
,

dG3(zi|zi−1; θ)
dzi−1

= −φ(ui) (u2i − 1)
ρ

2σ3
.

With some algebra, we find that the simultaneous improved prediction limits (6) and (7)

17



are given by

z̃1α(y) = µ̂n+1 + σ̂q1 +
3ρ̂(yn − µ̂)

n
− (yn − µ̂)3(1− ρ̂ 2)ρ̂

nσ̂2
+ σ̂

(
9q1
4n

+
q31
4n

)

and, for i = 2, . . . ,m, by

z̃iα(y, zi−11 ) = µ̂n+i + σ̂qi −
(yn − µ̂)(1 + ρ̂)− (zi−1 − µ̂)(1 + 4ρ̂) + (1− ρ̂2)(zi−2 − µ̂)

n

− (yn − µ̂)2(zi−1 − µ̂)(1− ρ̂ 2)ρ̂

nσ̂2
+
σ̂

n

i−2∑
j=1

(ûj − ûj+1ρ̂)

+
(zi−1 − µ̂)(1− ρ̂ 2)

σ̂n

i−2∑
j=1

(zj−1 − µ̂)(ûj − ûj+1ρ̂)

+
σ̂qi
2n

{
(zi−1 − µ̂)2(1− ρ̂ 2)

σ̂2
− (yn − µ̂)2(1− ρ̂ 2)

σ̂2
+

9

2
− 2ρ̂

− 2ρ̂(1− ρ̂2)(zi−1 − µ̂)(zi−2 − µ̂)

σ̂2
+

i−2∑
j=1

(û 2
j − 1− ûjûj+1ρ̂)

}

− (q2i − 1)
σ̂ρ̂ûi−1

2n
+
σ̂q3i
4n

,

with ûj = (zj − µ̂n+j)/σ̂, j = 1, . . . , i − 1. For the case i = 2, the summations in the above

formula have to be set equal to zero.

Furthermore, the conditional predictive densities giving z̃iα(y), i = 1, . . . ,m, as αi-quantiles

are, to the relevant order of approximation,

g̃(z1; y) =
1

σ̂
φ(û1)

[
1− û1

n

{
(yn − µ̂)3(1− ρ̂ 2)ρ̂

σ̂3
− 3ρ̂(yn − µ̂)

σ̂

}
+

3(û 2
1 − 1)

n
+
û 4
1 − 6û 2

1 + 3

4n

]
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and, for i = 2, . . . ,m,

g̃(zi; y, z
i−1
1 ) =

1

σ̂
φ(ûi)

[
1 +

ûi
n

{
(yn − µ̂)(1 + ρ̂)− (zi−1 − µ̂)(ρ̂2 + 4ρ̂)

σ̂

+
(yn − µ̂)2(zi−1 − µ̂)(1− ρ̂ 2)ρ̂

σ̂3

}
+
û 4
i − 6û 2

i + 3− ρ̂ûi−1 + 3ρ̂ûiûi−1
4n

+
ûi
n

{
i−2∑
j=1

(ûj − ûj+1ρ̂) +
(1− ρ̂ 2)(zi−1 − µ̂)

σ̂2

i−2∑
j=1

(zj−1 − µ̂)(ûj − ûj+1ρ̂)

+
û 2
i − 1

2n

{
i−2∑
j=1

(û 2
j − 1− ûjûj+1ρ̂)− 2ρ̂(1− ρ̂2)(zi−1 − µ̂)(zi−2 − µ̂)

σ̂2

+
(zi−1 − µ̂)2(1− ρ̂ 2)− (yn − µ̂)2(1− ρ̂ 2)

σ̂2
− ρ̂ûi−1

2
+ 6

}]
.

As emphasized before, for the case i = 2, the summations have to be set equal to zero. Notice

that z̃1α(y) corresponds to the improved univariate prediction limit for Z = Yn+1 and g̃(z1; y) is

the associated predictive density.

We conclude this section by presenting the results of a simple simulation study where we

compare the performance of the improved solution with that of the estimative one, considering

a particular AR(1) model. We shall estimate the conditional coverage probabilities for the

estimative and the improved simultaneous prediction limits of level α = 0.9, 0.95 using the

algorithm proposed by Kabaila (1999b). The estimates of the conditional coverage probabilities

are based on 10,000 samples of dimension n = 50, 100, 200 simulated from an AR(1) model with

the last observation fixed to yn = 1 and assuming y0 = 0; indeed, we consider µ = 1, σ2 = 1

and (a) ρ = 0.5, (b) ρ = 0.9. The simultaneous prediction regions have dimension m = 5, 10, 25

and αi = α1/m, i = 1, . . . ,m. Similar results are obtained with alternative values for the

observations yn, y0 and for the model parameters.

The results, presented in Table 1, show that the modified simultaneous prediction limits

remarkably improve on the estimative ones. The improvement is more pronounced when ρ = 0.9
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and it is more evident when the dimension m of the future random vector increases. Thus, the

theoretical findings presented in the preceding sections turn out to be confirmed by this simple

Monte Carlo experiment, which emphasized that the modified simultaneous prediction limits

constitute a valuable improvement over the simple estimative solution.

Table 1 here

Finally, Figure 1 shows the plots of bivariate prediction regions, having nominal coverage

α = 0.9, based respectively on the estimative and the improved simultaneous prediction limits

for the future observations Z1 and Z2. These regions are computed using simulated samples of

dimension n = 50 from an AR(1) Gaussian model with y0 = 0, µ = 1, σ2 = 1 and ρ = 0.5, 0.9

and they are built by means of αi-simultaneous symmetric prediction intervals with αi = α1/2,

i = 1, 2. As expected, their aspect deviates from a rectangular-type form and the improved pre-

diction regions are wider than the estimative ones, in order to consider the additional variability

induced by the plug-in procedure and to reduce, consequently, the coverage error.

Figure 1 here

4.2 An application to ARCH(1) models

Let us consider a stationary first-order Gaussian ARCH process {Yn}n≥1 defined as

Yn =
√
γ1 + γ2 Y 2

n−1 εn, n ≥ 1,

where γ1 and γ2 are unknown parameters and {εn}n≥1 is a sequence of independent standard

Gaussian random variables. We assume γ1 > 0 and γ2 ∈ [0, 3.56] to ensure strict stationarity.
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The unknown parameter is θ = (θ1, θ2) = (γ1, γ2) and likelihood inference is conditioned on

Y0 = y0, with y0 known. Indeed, U = Yn is the transitive statistic and Zi given Zi−1 = zi−1,

i = 1, . . . ,m, follows a normal distribution with mean µn+i = 0 and variance σ2
n+i = γ1+γ2z

2
i−1.

Thus, g(zi|zi−1; θ) = σ−1n+iφ(zi/σn+i) and G(zi|zi−1; θ) = Φ(zi/σn+i).

For ARCH models, maximum likelihood estimators θ̂ are not explicitly known, as well

as the associated expected information matrix. However, the parameter estimates can be

computed easily using numerical procedures and, if the maximization routine uses second-order

derivatives, minus the inverse of the empirical Hessian provides a convenient estimation for the

expected information matrix. With regard to the conditional bias terms b1(θ, yn) and b2(θ, yn),

we can consider simulation-based estimates based on the method given by Kabaila (1999b).

Whenever these quantities are provided, we can readily specify the system of simultaneous

estimative prediction limits ziα(θ̂, zi−1) = qiσ̂n+i, i = 1, . . . ,m, with σ̂n+i = γ̂1 + γ̂2z
2
i−1 and qi

such that Φ(qi) = αi.

Furthermore, the simultaneous improved prediction limits z̃1α(y) and z̃iα(y, zi−11 ), i = 2, . . . ,m,

can be computed using (6) and (7), by considering the following quantities, obtained by spec-

ifying for an ARCH(1) model the formulae given at the beginning of the present section.

That is, since φ ′(u) = −uφ(u), we have that G1(zi|zi−1; θ) = −(1/2)σ−1n+iφ(zi/σn+i)(zi/σ
2
n+i),

G2(zi|zi−1; θ) = G1(zi|zi−1; θ)z2i−1 and

G11(zi|zi−1; θ) = − 1

4σn+i
φ

(
zi
σn+i

)(
z3i
σ6
n+i

− 3
zi
σ4
n+i

)
,

G12(zi|zi−1; θ) = G11(zi|zi−1; θ)z2i−1,

G22(zi|zi−1; θ) = G11(zi|zi−1; θ)z4i−1.

Moreover, for j = 1, . . . , i − 2, d log g(zj+1|zj; θ)/dzj = {(zj+1/σ
4
n+j+1) − (1/σ2

n+j+1)}γ2zj and,
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for j = 1, . . . , i, `1(θ; zj−1, zj) = (1/2){(z2j /σ4
n+j)−(1/σ2

n+j)}, `2(θ; zj−1, zj) = `1(θ; zj−1, zj)z
2
j−1.

Finally, we get

dG1(zi|zi−1; θ)
dzi−1

=
1

2σn+i
φ

(
zi
σn+i

)(
3
zi
σ4
n+i

− z3i
σ6
n+i

)
γ2zi−1,

dG2(zi|zi−1; θ)
dzi−1

=
dG1(zi|zi−1; θ)

dzi−1
z2i−1 +G1(zi|zi−1; θ)zi−1.

In addition to the simultaneous improved prediction limits, using the general formulae

specified in Section 3, we can also find the conditional predictive densities giving z̃iα(y), i =

1, . . . ,m, as αi-quantiles to the relevant order of approximation.

Finally, a simple simulation study compares the conditional coverage probability of the

estimative and the modified simultaneous prediction limits. Samples of size n = 50, 100, 200

are generated from an ARCH(1) model with γ1 = 0.5 and (a) γ2 = 0.5, (b) γ2 = 1 and with

the last and the first observations fixed to yn = 1 and y0 = 0, respectively. The simultaneous

prediction regions have dimension m = 5, 10, 25 and αi = α1/m, i = 1, . . . ,m. Similar results

are obtained with alternative values for the observations yn, y0 and for the model parameters.

The simulations are based on 5,000 replications and the asymptotic bias of the maximum

likelihood estimators is estimated using the Kabaila’s simulation-based procedure with 1,000

additional parametric bootstrap samples. The results are shown in Table 2 and emphasize

that the improved procedure performs uniformly better than that one based on the estimative

solution, even if there is a mild tendency, for the improve method, to overestimate the coverage

probability when the dimension m of the future random vector increases.

Table 2 here

As for the AR models, it is easy to plot the bivariate prediction regions based, respectively,
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on the estimative and the improved simultaneous prediction limits for the future observations

Z1 and Z2. These regions are are built by considering αi-simultaneous symmetric prediction

intervals with αi = α1/2, i = 1, 2, and α = 0.9. Indeed, they are computed using simulated

samples of dimension n = 50 from an ARCH(1) model with y0 = 0, γ1 = 0.5 and γ2 = 0.5, 1.

As shown in Figure 2, the improved prediction regions are wider than the estimative ones, in

order to account for the additional variability induced by the estimative procedure, and their

aspect definitely deviates from a rectangular-type form, displaying the fact that the conditional

variance is defined as a quadratic function of the past observation.

Figure 2 here
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Figure 1: Estimative (solid line) and improved (dashed line) bivariate prediction regions with

α = 0.9, based on samples of dimension n = 50 from an AR(1) Gaussian model with y0 = 0,

µ = 1, σ2 = 1 and ρ = 0.5 (left), ρ = 0.9 (right).

26



−2 −1 0 1 2

−
4

−
2

0
2

4

z1

z2

−2 −1 0 1 2

−
4

−
2

0
2

4

z1
z2

Figure 2: Estimative (solid line) and improved (dashed line) bivariate prediction regions with

α = 0.9, based on samples of dimension n = 50 from an ARCH(1) model with y0 = 0, γ1 = 0.5

and γ2 = 0.5 (left), γ2 = 1 (right).
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(a) (b)

α n m Estimative Improved Estimative Improved

0.9 50 5 0.858 0.889 0.841 0.868

10 0.840 0.887 0.827 0.867

25 0.813 0.891 0.783 0.843

100 5 0.876 0.893 0.872 0.884

10 0.870 0.892 0.867 0.883

25 0.856 0.888 0.848 0.874

200 5 0.890 0.896 0.890 0.895

10 0.886 0.897 0.890 0.897

25 0.877 0.893 0.877 0.888

0.95 50 5 0.916 0.939 0.930 0.941

10 0.908 0.942 0.912 0.932

25 0.887 0.945 0.854 0.910

100 5 0.933 0.945 0.927 0.942

10 0.928 0.943 0.914 0.933

25 0.921 0.944 0.912 0.932

200 5 0.944 0.951 0.934 0.947

10 0.944 0.951 0.946 0.951

25 0.933 0.942 0.933 0.942

Table 1: AR(1) Gaussian model with µ = 1, σ2 = 1 and (a) ρ = 0.5, (b) ρ = 0.9. Conditional

coverage probabilities for estimative and improved simultaneous prediction limits of level α =

0.9, 0.95, with m = 5, 10, 25. Estimation is based on 10,000 Monte Carlo conditional (on yn = 1)

samples of dimension n = 50, 100, 200, with y0 = 0. Estimated standard errors are smaller than

0.0040, when α = 0.9, and smaller than 0.0036, when α = 0.95.
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(a) (b)

α n m Estimative Improved Estimative Improved

0.9 50 5 0.876 0.909 0.873 0.906

10 0.866 0.926 0.847 0.904

25 0.837 0.928 0.825 0.909

100 5 0.893 0.912 0.884 0.904

10 0.880 0.911 0.878 0.908

25 0.867 0.917 0.861 0.907

200 5 0.894 0.902 0.891 0.903

10 0.892 0.906 0.889 0.904

25 0.891 0.918 0.888 0.914

0.95 50 5 0.923 0.954 0.926 0.954

10 0.913 0.961 0.915 0.954

25 0.894 0.961 0.886 0.948

100 5 0.936 0.953 0.935 0.953

10 0.933 0.957 0.932 0.954

25 0.930 0.966 0.927 0.956

200 5 0.940 0.948 0.941 0.947

10 0.945 0.955 0.943 0.952

25 0.943 0.957 0.936 0.951

Table 2: ARCH(1) model with γ1 = 0.5 and (a) γ2 = 0.5, (b) γ2 = 1. Conditional coverage

probabilities for estimative and improved simultaneous prediction limits of level α = 0.9, 0.95,

with m = 5, 10, 25. Estimation is based on 5,000 Monte Carlo conditional (on yn = 1) samples

of dimension n = 50, 100, 200, with y0 = 0. Estimated standard errors are smaller than 0.0054,

when α = 0.9, and smaller than 0.0045, when α = 0.95.
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