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Abstract

Background: Secretory phospholipase A2 (sPLA2) plays a pivotal role in acute respiratory distress syndrome (ARDS). This
enzyme seems an interesting target to reduce surfactant catabolism and lung tissue inflammation. Varespladib is a
specifically designed indolic sPLA2 inhibitor, which has shown promising results in animals and adults. No specific data in
pediatric ARDS patients are yet available.

Methods: We studied varespladib in broncho-alveolar lavage (BAL) fluids obtained ex vivo from pediatric ARDS patients.
Clinical data and worst gas exchange values during the ARDS course were recorded. Samples were treated with saline or
10–40–100 mM varespladib and incubated at 37uC. Total sPLA2 activity was measured by non-radioactive method. BAL
samples were subjected to western blotting to identify the main sPLA isotypes with different sensitivity to varespladib.
Results was corrected for lavage dilution using the serum-to-BAL urea ratio and for varespladib absorbance.

Results: Varespladib reduces sPLA2 activity (p,0.0001) at 10,40 and 100 mM; both sPLA2 activity reduction and its ratio to
total proteins significantly raise with increasing varespladib concentrations (p,0.001). IC50 was 80 mM. Western blotting
revealed the presence of sPLA2-IIA and –IB isotypes in BAL samples. Significant correlations exist between the sPLA2 activity
reduction/proteins ratio and PaO2 (rho = 0.63;p,0.001), PaO2/FiO2 (rho = 0.7; p,0.001), oxygenation (rho = 20.6; p,0.001)
and ventilation (rho = 20.4;p = 0.038) indexes.

Conclusions: Varespladib significantly inhibits sPLA2 in BAL of infants affected by post-neonatal ARDS. Inhibition seems to
be inversely related to the severity of gas exchange impairment.
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Introduction

Secretory phospholipases A2 (sPLA2; phosphatide 2-acylhydro-

lase, EC 3.1.1.4) constitute a group of enzymes responsible for

surfactant phospholipids catabolism and release of inflammatory

mediators [1,2]. sPLA2 are involved in the physiopathology of

acute respiratory distress syndrome (ARDS): in fact, sPLA2

activity is increased in the lung of affected patients [3] and

positively correlates with the predicted mortality and the degree of

lung tissue inflammation [4,5,6]. sPLA2 levels correlate negatively

with surfactant activity and compliance, as well [2,7,8]. Recently,

we reported similar findings in pediatric ARDS: sPLA2 correlates

with the clinical severity, the degree of ventilatory support and the

gas exchange impairment [9].

A wide body of literature suggests that sPLA2 would be a

potential target to treat ARDS, because its inhibition might block

the vicious cycle linking surfactant degradation and lung

inflammation [10]. While neonatal respiratory distress syndrome

(iRDS) is efficaciously treated with exogenous surfactant, the

usefulness of such therapy in ARDS beyond the neonatal age, is

not yet well established [11]. Conversely, since the sPLA2-induced

surfactant dysfunction is a typical feature of ARDS, the enzymatic

inhibition could spare the endogenous pool or protect the

exogenously administered surfactant [6,10].

Varespladib sodium (also known as A-001, LY315920, S-5920)

is a potent indole-based sPLA2 inhibitor that was optimized by

structure-based drug design to inhibit some pulmonary isotypes of

this enzyme (especially sPLA2-IIA [12]), while it is less potent

against pancreatic sPLA2-IB and has no effect on cytosolic

phospholipases [13,14]. Nowadays, this is the sPLA2 inhibitor with

more available pharmacologic data: varespladib has been intra-

venously administered in adults with septic shock [15,16] and is
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presently under advanced clinical investigation for sickle cell

disease-induced acute chest syndrome (IMPACTS trial,

NCT00434473) [17]. Varespladib methyl is the oral pro-drug of

varespladib sodium and it has been studied for chronic and acute

cardiovascular disease in two trials (PLASMA [18], FRANCIS

[19]).

Up to now, no specific data are available on pediatric ARDS

patients: the aim of the present study is to investigate the effect of

varespladib in broncho-alveolar lavage fluids obtained ex vivo from

small infants suffering from ARDS.

Materials and Methods

Subjects
This study was conducted in two academic pediatric intensive

care units (PICU) in a six months period. Eligible babies were all

infants after the first 30 days and #1 year of age, who met the

definition of ARDS according to the American-European

Consensus criteria [20]. Exclusion criteria were: 1) lung congenital

malformations; 2) need for thoracic surgery; 3) extremely critical

conditions impeding the broncho-alveolar lavage (BAL) proce-

dure; 4) patients on extra-corporeal life support. The study

protocol and consent form were approved by institutional review

boards of Universities of Rome and Padua; written informed

consent was obtained from parents or guardians before the

enrolment.

Broncho-alveolar lavage and clinical data collection
Non-bronchoscopic BAL [21] was performed within 6 h from

the fulfilling of ARDS criteria. Since this is a part of our routine

protocol for microbiological surveillance, no procedure was

performed solely for the study purposes and no change was

provided to the routine clinical assistance. As previously published

[9], BAL was performed according to the advices of the European

Respiratory Society Pediatric Task Force [21]. In details, two

sequential and separate aliquots of 1 mL/kg 0.9% NaCl warmed

at 37uC were instilled; each instillation was followed by three

respiratory cycles. A straight, snub-nosed, end-hole suction

catheter was gently advanced into the endotracheal tube, while

continuing ventilation through a Y-connector. When resistance

was met, suctioning with 50 mmHg of negative pressure was

applied. The procedure was performed with the infant’s head

turned 90u to the left and then to the right and repeated twice. The

first fluid aspirated reflecting bronchial milieu, was sent for

microbiological culture. The remaining fluid was diluted with

0.9% saline up to 5 mL and centrifuged at 3000 rpm for 109. Cell-

free supernatants were separated and immediately frozen at

280uC. Samples were excluded from further analysis if there was

visible blood contamination.

Clinical history was recorded and broncho-pulmonary dysplasia

(BPD) was diagnosed according to the United States National

Institute for Child Health and Human Development definition

[22]. All infants were ventilated using Servo-I ventilator (Maquet

Critical Care, Solna, Sweden) in pressure controlled modality,

allowing 5–6 mL/kg tidal volume. All babies have an indwelling

arterial line, as per our clinical monitoring policy. We took data

from our computerized bedside monitoring systems where vital

parameters, mechanical ventilation data and blood gas values are

recorded every 8 hours for mechanically ventilated babies, as per

our internal protocol. The worst blood gas and pH values, lowest

arterial oxygen saturation (SatO2), highest mean airway pressure

(Pāw) and inspired oxygen fraction (FiO2) during the ARDS

course were recorded. Lowest PaO2/FiO2 ratio was considered, as

well. Oxygenation index (OI) and a modified ventilatory index

(VI) [23] were calculated as follow: OI = [Pāw x FiO2/PaO2];

VI = [respiratory rate x (Pāw) x PaCO2/1000]. Moreover, within

6 hours from the ARDS diagnosis, single breath static respiratory

system compliance was measured during a passive exhalation,

after adequate end-inspiratory occlusion. Compliance was includ-

ed into the ‘‘Murray’s lung injury score modified for children’’ to

assess the severity of ARDS at the enrolment [24].

Laboratory methods
BAL specimens were thawed only once for the experiments,

within six months from the collection and were subdivided in 4

aliquots in which sPLA2 activity was measured after the addition

of 10, 40 or 100 mM varespladib or an equal volume of 0.9%

saline. sPLA2 total activity was measured using a high-sensitivity

non-radioactive commercially available kit (Assay Designs, Ann

Arbor, MI, USA), which uses hexadecanoylthio-1-ethylphosphor-

ylcholineas substrate. Details of this method have been described

elsewhere [25]. Varespladib or normal saline were added just after

the reaction buffer and samples were incubated at 37uC for 309

before the addition of the substrate. Coefficient of variation was

always #4%, while intra-assay and inter-assay variability were

,5% and ,9%, respectively. Varespladib was liberally provided

by Anthera Pharmaceuticals as a powder of sodium-varespladib

(A-001, Anthera Pharmaceuticals, Hayward, CA, USA) and it was

diluted in bi-distilled water at convenient concentrations. Since

varespladib solutions had a slightly yellow color, results were

corrected for the varespladib absorbance.

Urea and proteins were also measured in BAL fluids, as

previously described [9,26]; Serum urea values obtained during

the routine clinical tests in the same day of BAL procedure was

used to calculate the serum-to-BAL urea ratio. Total phospholipid

concentration was measured by analysis of lipid phosphorous, as

previously described [27]. Coefficient of variation for these assays

was always ,5%. All measurements were performed in triplicate,

by investigators blinded for the infants’ clinical data.

The presence of the main sPLA2 subtypes (sPLA2-IIA and

sPLA2-IB) that are differently targeted by varespladib, was also

investigated by western blotting. In detail, BAL samples were

lyophilized and 20 mg of BAL proteins were re-suspended in

phosphate-buffered saline and dye-sample loading buffer (50 mM

Tris–HCl, pH 6.7; 10% glycerol; 3% SDS; 1% b-mercaptoeth-

anol; 0.01% bromophenol blue). These solutions were boiled at

100uC for 109, centrifuged at 450 g for 59 at 4uC and then used for

each blot. Electrophoresis was performed using 12% SDS

polyacrilamide and then sPLA2-IIA monoclonal antibody (Cay-

man Chemical, Ann Arbor, MI, USA) or sPLA2-IB polyclonal

antibody (Santa-Cruz Biotechnology, Santa Cruz, CA, USA)

specific for human phospholipases were incubated for 2 h (dilution

1:200). The primary antibody was removed and immune-reactive

bands were incubated with a peroxidase-conjugated secondary

antibodies (at 1:2000 dilution in blocking solution) for 1 h at room

temperature. Human recombinant sPLA2IB and –IIA were used

as controls. Blotted proteins were revealed using Immobilon

Western Chemiluminescent HRP Substrate (Millipore, Billerica,

MA, USA) according with manufacturer’s protocol with maxi-

mum exposure time of 19.

Statistics and calculations
Normal distribution of data was primarily verified with Shapiro-

Wilk test and median (interquartile range) or mean 6 standard

deviation were used, as appropriate. sPLA2 activity was uncor-

rected when comparing aliquots of the same BAL specimen. Other

analyses were performed correcting for total protein content or
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serum-to-BAL urea ratio, as multiplying coefficient to transform

BAL into epithelial lining fluid (ELF) concentrations [26].

Data were analysed using Friedman and Wilcoxon tests (for post-

hoc comparisons). Ex vivo IC50 value, that is the sPLA2 remnant

activity, was determined, taking into consideration sPLA2 activity

reductions which were calculated as follows:

(sPLA2basal{sPLA2vares)=sPLA2basal(in%)

In this formula, sPLA2basal is the enzyme activity in basal

conditions (with addition of saline) and sPLA2vares is the activity

measured after the addition of increasing drug concentrations.

Spearman correlation was finally performed. Statistical analyses

were done using SPSS for Windows rel.15.0 (SPSS Inc., Chicago,

Table 1. Clinical data.

Infants 10

Age (months) 3.5 (2–6)

Weight (kg) 5 (4–8)

GA (weeks) 36 (30–39)

Male sex 6 (60)

Prematurity 5 (50)

OI 15 (9.2–21)

PaO2/FiO2 95.8 (77.7–107.8)

VI 24 (13.5–67.5)

Murray’s score 12.5 (11.7–14.5)

Duration of mechanical ventilation (days) 13.5 (7.7–17.2)

ARDS causes 5 H1N1 flu, 3 RSV bronchiolitis, 1 pneumonia, 1 severe sepsis

Co-morbidities 3 BPD, 2 Down syndrome

Data are expressed as median (i.q. range) or number (%). GA: gestational age at the birth; OI: oxygenation index; VI: ventilatory index; RSV: respiratory syncitial virus;
BPD: broncho-pulmonary dysplasia.
doi:10.1371/journal.pone.0047066.t001

Figure 1. sPLA2 activity in the four BAL aliquots treated either with normal saline (basal), or varespladib at 10, at 40 and at 100 mM.
Overall difference in median sPLA2 activity is significant at the Friedman Q-test (see text for details). p-values describe post-hoc comparison: p = 0.013
between basal and varespladib10; p = 0.007 between basal and varespladib40; p = 0.005 between varespladib100 and each other measurement.
sPLA2: secretory phospholipase A2.
doi:10.1371/journal.pone.0047066.g001
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IL, USA) and p-values,0.05 were considered to be statistically

significant.

Results

During the study period ten PICU-admitted babies were

considered eligible for the study and all were enrolled. Table 1

reports basic clinical data of our population. All babies survived

and were successfully discharged from the PICUs. On average, 3

6 0.5 mL of fluid was aspirated with the non-bronchoscopic BAL

procedure (on average 60% of the instilled volume). Total proteins

and phospholipids in BAL fluids were 206 (161–290) mg/dL and

30.669.6 mg/mL, respectively. All BAL samples were sterile at the

microbiological culture and did not show visible blood contam-

ination.

sPLA2 activity in all BAL aliquots, added with either saline or

increasing varespladib concentrations, are depicted in Fig. 1. An

overall significant difference (p,0.0001) exists among sPLA2

activity in basal conditions [37.7 (31.8–48.5) IU/mL], after

addition of 10 mM [34.1 (24.9–42.5) IU/mL], 40 mM (28.4

(25.5–32.3) IU/mL] and 100 mM of varespladib [7.7 (5.4–12.5)

IU/mL]. Significant differences are evident at the post-hoc

comparisons, except that between enzymatic levels measured with

10 and 40 mM of varespladib.

Inverse significant correlation was found between protein level

and sPLA2 activity reduction at 10 mM of varespladib

(rho = 20.906; see Fig. 2). Conversely, no significant relationships

were found at 40 (rho = 20.25; p = 0.49) and 100 mM of

varespladib (rho = 20.05; p = 0.88).

Figure 2. Negative correlation between the reduction of sPLA2 total activity and protein content. Grey lines represent linear regression
line and its 95% confidence interval (rho = 0.906; p,0.001; R2 = 0.73).
doi:10.1371/journal.pone.0047066.g002

Figure 3. Western blot assay of BAL samples for the two main sPLA2 isotypes that respond differently to varespladib inhibition
(sPLA2-IB and sPLA2-IIA). Illustrative results of four ARDS patients (and human recombinant proteins, as controls) are shown. All patients presents
sPLA2-IIA, while some also shown the presence of the isotype –IB. sPLA2: secretory phospholipase A2.
doi:10.1371/journal.pone.0047066.g003
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Correlations were also found between sPLA2 activity reduction-

to-ELF proteins ratio and VI (rho = 20.4; p = 0.038), OI

(rho = 20.6; p,0.001), PaO2/FiO2 ratio (rho = 0.7;p,0.001) and

PaO2 (rho = 0.63; p,0.001). No other correlations were found.

Figure 3 shows the western blotting assay of BAL samples for

four patients. A relevant amount of sPLA2-IIA was present in all

patients, while some also express a lower amount of the isotype –

IB.

Discussion

Varespladib significantly inhibits sPLA2 in BAL of infants

affected by post-neonatal ARDS and the inhibition seems to be

inversely related to the severity of gas exchange impairment. The

present findings seem consistent with another study [9] reporting

significant correlations between sPLA2, the degree of ventilatory

support and the gas exchange impairment. These findings, though

intriguing, are not describing the clinical administration of

varespladib to patients. In fact, the interaction with cells and

whole tissues may influence the effect of varespladib and,

consequently, the surfactant function. However, these findings

allow to speculate on interesting application of varespladib and

future research steps.

When administered intravenously in rabbit acute lung injury,

varespladib was able to improve gas exchange, compliance and

reduce inflammatory mediators [5,6]. Recently, we were able to

report a similar effect of varespladib in some types of neonatal lung

injury, such as hyaline membrane disease or meconium aspiration

syndrome, that are very different from ARDS [28,29]. We now

add novel findings for this particular field: in fact, paediatric

ARDS is well distinct from neonatal lung injuries. It shares some

features with the adult form of the syndrome but differ in

mortality, triggers and epidemiology, needing specific paediatric

investigation [29].

Ex vivo IC50 of varespladib in BAL from ARDS infants is

roughly well over the nanomolar range described in other

experiments and this may be explained for three reasons [13].

First, high protein levels are present in the alveoli of ARDS

patients and this could reduce the amount of free varespladib. In

fact, varespladib binds such proteins and this prevents it from

reaching the sPLA2 catalytic site, as it has been shown using

animal data [13]. The inverse correlation between sPLA2 activity

reduction and protein content is significant only at the lowest

varespladib concentrations, while correlation coefficient is reduc-

ing with increasing doses. This is consistent with data already

published about varespladib-protein binding [13] and suggests that

high varespladib dosing may overcome this problem. In fact,

animals with lung injury clearly showed a dose-dependent effect

[5,6]. Second, the different proportions of sPLA2 isotypes

expressed in these young patients may be relevant: in fact, we

clearly show that some patients also have a detectable amount

sPLA2-IB, which is less sensible to varespladib inhibition [13].

Third, different type and amount of surfactant phospholipids

present in the diseased alveoli may also play a role [30,31]. Total

phospholipid content in our population is low and consistent with

other ARDS patients [31] albeit qualitative alteration of

phospholipid pool may deserve to be studied. Clearly, further

research is needed to clarify the main factor affecting the

varespladib inhibition.

sPLA2 seems to be less inhibited in samples associated with

severe gas exchange impairment. OI, PaO2/FiO2 ratio and VI

describe both oxygenation and ventilation: both components of

gas exchange are impaired and inversely correlated with the

sPLA2 activity reduction/proteins ratio. This phenomenon could

be related to a higher enzyme production or to a change in the

expression profile of different isotypes requiring much varespladib

to be inhibited. Alternatively, a greater degree of inflammation

and more proteins filling the alveoli could interfere with the

enzymatic inhibition. Finally, the onset of a fibro-proliferative

process could influence the inhibition. sPLA2 correlates with lung

stiffness [7], which in its turn is associated with collagen activation

and deposition [8]. This fibrotic process is known to correlate

negatively with clinical outcome [32,33] and, in fact, dying

patients have higher alveolar sPLA2 levels [4].

Some particular characteristics of our population should be

noticed. First, patients were mostly affected by quite severe forms

of ARDS (as shown by the low phospholipid content, the severe

PaO2/FiO2 ratio, OI, VI, Murray’s score and the long duration of

mechanical ventilation). Actually, ARDS is a complex syndrome

with many possible causes and these may affect the permeability of

the alveolar/blood barrier causing various degree of lung oedema

[4,9]. The different causes of ARDS may have influenced our

findings. For instance, three of our cases were induced by RSV

infection. RSV, the commonest cause of viral respiratory infections

in infants [34], triggers an enzymatic cross-talk inducing the over-

expression of the cytosolic phospholipase A2 [35], which in its turn

may boost the production of sPLA2, both directly and through its

inflammatory products [36,37].

Varespladib is clinically interesting because it is a sPLA2

inhibitor with wide existing pharmacological data, having already

undertaken phase II/III clinical studies in adults (in both the oral

and intravenous formulations), for different clinical indications

[15–19]. Such drug might achieve the double goal of: 1) reducing

lung tissue inflammation, and 2) sparing the endogenous pool of

surfactant. This is an unique key point in acute lung injury and

ARDS, because both processes (inflammation and surfactant

catabolism) are linked by sPLA2 [10]. Such link is confirmed by

the lower levels of Clara Cell Secretory Protein, the natural sPLA2

inhibitor, found in BAL of adults with ARDS [38]. Varespladib

could surrogate locally this natural inhibition, while other

therapeutics fail. In fact, steroid treatment has not definite

advantages in adults with ARDS [39] and may have significant

side effects in small infants; moreover, in rabbits, steroids

effectively reduce inflammation, but fail to reduce sPLA2 activity

and to protect surfactant [40].

We acknowledge some study limitations. Ours is a preliminary

experience on a small population, sampled only once at the

diagnosis of ARDS. However, our population size is similar to the

studies performed in this field in adults [3,4] and we provide

definite data from our monitoring system to study the relationships

with clinical variables. Larger studies including ARDS induced by

several causes should verify if the underlying diseases, type of

ARDS or other clinical characteristics may influence the inhibition

of sPLA2. Similarly, the whole sPLA2 pathway, profile of

expression of enzyme isotypes, role of different phospholipids

and impending fibro-proliferative process deserve to be studied.

Our study is based on a cell-free model, therefore no cellular

interactions may be taken into account. In conclusion, varespladib

may significantly inhibit sPLA2, providing efficacious enzyme- and

tissue-specific anti-inflammatory action at lung level. Specific

studies should address the above described issues in animal

models, to define the main factors affecting sPLA2 inhibition and

to also investigate the best timing and dosing of administration.
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