
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 366 (2016) 149–172
http://d
0022-46

n Corr
E-m
1 Te
journal homepage: www.elsevier.com/locate/jsvi
Reconstructing blockages in a symmetric duct via
quasi-isospectral horn operators

Antonio Bilotta a, Antonino Morassi b,1, Emilio Turco c,n

a Università della Calabria, Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - DIMES, Via P. Bucci, 87036
Rende, CS, Italy
b Università degli Studi di Udine, Dipartimento Politecnico di Ingegneria e Architettura, via Cotonificio 114, 33100 Udine, UD, Italy
c Università degli Studi di Sassari, Dipartimento di Architettura, Design e Urbanistica, Asilo Sella, via Garibaldi 35, 07041 Alghero, SS, Italy
a r t i c l e i n f o

Article history:
Received 1 May 2015
Received in revised form
12 December 2015
Accepted 18 December 2015

Handling Editor: R.E. Musafir

the exception of a single eigenfrequency which is free to move in a prescribed interval.
Available online 4 January 2016

Keywords:
Horn equation
Blockage identification
Inverse problems in acoustics
Numerical modelling
Reconstruction
Quasi-isospectral Sturm-Liouville operators
x.doi.org/10.1016/j.jsv.2015.12.038
0X/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: antonio.bilotta@unical.it (A. Bi
l.: þ39 0432 558739; fax: þ39 0432 558700
a b s t r a c t

This paper proposes a new method for the reconstruction of the blockage area function in
a symmetric duct by resonant frequencies under a given set of end conditions, i.e., open–
open or closed–closed ends. The analysis is based on the explicit determination of quasi-
isospectral ducts, that is duct profiles which have the same spectrum as a given duct with

The analytical reconstruction was numerically implemented and tested for the detection
of blockages. Numerical results show that the accuracy of identification increases with the
number of eigenfrequencies used and that the reconstruction is rather stable with respect
to the shape, the size and the position of the blockages.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of the cross-sectional area variation induced by the occurrence of blockages in a duct or in a pipe by
using non-intrusive acoustic measurements is an important issue in several contexts. Applications range from detection of
blockages in sodium cooled fast reactors [1] to diagnostic analysis of piped fluid systems. Other research works concern the
use of classical acoustic methods based on impedance testing for the identification of cross-sectional area changes in vocal
tracts or ear canals [2,3], although more efficient approaches have been recently developed for the analysis of these
inherently dissipative systems, see, for example, [4,5]. Among advanced applications in the field, the research developed by
Campbell and co-workers on the use of Acoustic Pulse Reflectometry for determining the internal dimensions of musical
wind instruments [6] and for leak detection in tubular objects [7] should be also mentioned.

A commonly accepted approximation to the wave equation that governs the low-frequency sound propagation in a duct
is Webster's horn equation [8]. The model considers the duct to be a slender hard-walled tube, lossless, and to have a rate of
change of cross sectional area with the distance x along the tract that is sufficiently small, so that the sound pressure can be
approximated by means of a longitudinal sound wave along the x-direction. For a sound pressure pðx; tÞ varying harmo-
nically in time with radian frequency ω, i.e., pðx; tÞ ¼ uðxÞeiωt , where i is the imaginary unit, the spatial propagation of the
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longitudinal acoustic wave of small amplitude u(x) is governed by the Webster horn operator

ðAðxÞu0ðxÞÞ0 þλA xð Þu xð Þ ¼ 0; in 0; Lð Þ; λ¼ω2

c2s
; (1.1)

where A¼ AðxÞ is the cross-sectional area, L is the duct length, cs is the velocity of sound, and the primes denote x-differ-
entiation. We refer to [9] for a rigorous derivation of Webster's horn equation based on the method of slow variation and
ideas of matched asymptotic expansions. The boundary value problem is completed by assigning the conditions at the ends
of the duct, namely the classical limit conditions u0 ¼ 0 for a closed end and u¼0 for an open end; see [9] for a rigorous
asymptotic derivation of the boundary conditions and for a deep analysis of the boundary layer at the ends of slowly varying
ducts. Under given (classical) end conditions at x¼0 and x¼L, there exists a denumerable family of eigenvalues fλmg1m ¼ 1
(and eigenfrequencies, or resonant frequencies, ωm) of Eq. (1.1), which form the spectrum of the duct. The corresponding
non-trivial solutions um to Eq. (1.1) are the normal modes of vibration, or eigenfunctions, of the duct.

An important question is whether the shape A(x) of a blockage perturbed duct can be determined from its resonant
frequencies.

From the mathematical point of view, it has been shown that knowledge of two complete spectra, having specific
asymptotic forms and satisfying specific interlacing conditions, correspondent to two different end conditions of the duct
(i.e., closed–closed and closed–open ends) uniquely determines the cross-sectional area A(x), up to a multiplicative factor,
see [10–12]. Knowledge or measurement of the doubly infinite set of eigenvalues is not realistic, since it is only for low
frequencies that Webster's horn equation properly models the sound propagation in a duct. Therefore, in practical appli-
cations, the attention must be necessarily restricted to a set of lowest-order eigenvalues.

Reconstruction of the cross-sectional area from a finite number of (lower) eigenfrequency data has been carried out in
the literature using perturbation analysis. On assuming that the unknown cross-sectional area A(x) is a smooth perturbation
of the uniform closed–open duct A0 and that the logarithm of the normalized area function variation lnðAðxÞ=A0Þ is band
limited in frequency preserving only 2N cosine Fourier components, e.g., ln A xð Þ=A0

� �¼ P2N
j ¼ 1 aj cos

2jx
L , Mermelstein [3]

proved that the first-order change of the mth eigenfrequency of the closed–open duct and the change of the mth eigen-
frequency of the closed–closed duct determines uniquely the ð2m�1Þth and the 2mth Fourier coefficient of lnðAðxÞ=A0Þ,
respectively.

The perturbation approach proposed by Mermelstein was extended by Wu and Fricke [13] to the detection of blockages
in ducts by eigenfrequency measurements on closed–open and closed–closed end conditions. The identification procedure
by Wu and Fricke was still based on the assumption that the blockages are a perturbation of the original duct, but, different
from previous studies, the identification concerned with less regular cross-sectional coefficients, since the duct profile was
assumed to be a piecewise-constant function. In spite of this weak regularity, the agreement between calculated and actual
blockage area was good when half-wavelength of the eigenfrequency measured is greater than the length of the blockage.

The above reconstruction methods require the knowledge of a set of eigenvalues coming from spectra corresponding to
two different end conditions. The requirement to modify a boundary condition (from closed–open to closed–closed, for
example) in order to obtain information on a second spectrum, could be deemed and could represent a limit for the concrete
application of the identification method. De Salis and Oldham [14] noticed that the completion of the finite Fourier
expansion of lnðAðxÞ=A0Þ is possible by using measurements under a single set of boundary conditions. They observed that
eigenfrequencies for the closed–closed duct coincide with the antiresonant frequencies of the driven frequency response
function measured at the open end of the closed–open duct. Estimate of antiresonant frequencies requires specific
experimental and signal-processing strategies in order to locate the frequency with accuracy. In a subsequent paper, De Salis
and Oldham [15] proposed high noise immunity maximum length sequence techniques to estimate accurately the locations
of the antiresonant frequencies in the measured frequency response, and applied their method to identify blockages in
a duct.

All the available results on the determination of the duct cross-sectional area from eigenfrequency measurements are
founded on the assumption that the unknown cross-sectional area is a small perturbation of the intact (or initial) duct.
However, the smallness of the perturbation is never stated in a quantitative way, i.e., in terms of a suitable norm of the cross-
sectional area change function, and this makes it difficult to determine the error in the reconstruction of the unknown
coefficient. Based on the results by Wu and Fricke [13], for example, the perturbation analysis seems to be valid for blockage
with change of area less than 50 percent of the intact area and blockage length less than L

4. In addition, since the recon-
struction based on finite spectral data is not unique, it is not clear how large is the set of cross-sectional area coefficients A(x)
which share exactly all the first N eigenfrequencies coming from both the spectra under different end conditions. The above
questions have motivated our research, and this paper is a contribution to this inverse problem in acoustics.

In this research we consider the problem of determining the geometry of a duct with blockages from a single spectrum.
In the first part of the paper we show how to explicitly construct the cross-sectional area such that the duct has exactly the
prescribed (measured) values of the first N eigenfrequencies belonging to a single spectrum obtained under either open–
open or closed–closed end conditions. The analysis is developed for a symmetric duct, e.g., a duct with cross-sectional area
AðxÞAC2ð½0; L�Þ such that AðxÞ ¼ AðL�xÞ. In this case, the knowledge of a single full spectrum determines uniquely the shape
profile, up to a multiplicative constant [16]. Our method is based on the determination of the so-called quasi-isospectral
horn operators which have exactly the same spectrum as a given horn, with the exception of a single eigenfrequency which
is free to move in a prescribed interval. The coefficient A(x) and the normal modes can be constructed explicitly by means of
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closed-form expressions. The second part of the paper is devoted to the numerical implementation of the analytical pro-
cedure. The effectiveness of the reconstruction is assessed with respect to the number and the set of eigenfrequencies used,
the blockage profile, and the presence of errors on the data. The results of the numerical simulations are encouraging and
the method turns out to be sufficiently stable to errors on the measured data.

The plan of the paper is as follows. In Section 2 we present the theory. The numerical algorithm and the results of
simulations are presented and discussed in Section 3 and in Section 4, respectively.
2. Theory

2.1. Main idea of the reconstruction procedure

The propagation of the longitudinal acoustic wave of small amplitude u¼ uðxÞ and frequency ω in a thin horn of length L,
under open–open end conditions, is governed by the normalized Webster horn equation

ðbAðxÞu0ðxÞÞ0 þλbAðxÞuðxÞ ¼ 0; xAð0;1Þ; (2.1)

uð0Þ ¼ 0¼ uð1Þ; (2.2)

where λ¼ ω2L2

c2s
, cs is the sound velocity and bAðxÞ is the cross-sectional area at section of normalized abscissa x.

We shall assume throughout that bAðxÞ is a strictly positive, twice continuously differentiable function of x in ½0;1� andbAðxÞ is an even function of x with respect to x¼ 1
2. We denote by fλmg1m ¼ 1 the infinite sequence of eigenvalues of Eq. (2.1),

with 0oλ1oλ2o⋯, limm-1λm ¼1.
The key point of our method is the explicit construction of a new (regular and even) horn profile A¼ AðxÞ having the

same eigenvalues as the given horn bAðxÞ under Dirichlet end conditions, with the exception of the nth eigenvalue, where n is
a given integer, nZ1. We call these new horn operators 1

AðxÞ
d
dx A xð Þ ddx
� �

, quasi-isospectral horn operators. Once we have a recipe
for the construction of a quasi-isospectral horn operator, by keeping fixed all the eigenvalues λm with man and moving the
nth eigenvalue λn to the desired value, say ~λn, and using repeatedly the procedure, after N steps we will produce a horn with
the first N given (e.g., measured) eigenvalues f ~λmg

N
m ¼ 1.

We will see that the above reconstruction procedure needs the specification of an initial horn, whose eigenvalues must
be close enough (in a way that can be rigorously specified) to those of the initial horn.

2.2. Quasi-isospectral horn operators under Dirichlet end conditions

The explicit determination of quasi-isospectral horn operators has been presented in [17] under open–closed end con-
ditions, e.g., uð0Þ ¼ 0¼ u0ð1Þ. The analysis developed in [17] can be adapted to determine quasi-isospectral horn operators for
open–open end conditions (corresponding to Dirichlet–Dirichlet end conditions in the case of longitudinally vibrating rods,
see Section 9, point 1, of [17]). Referring to the above-mentioned paper for the details, we describe in the sequel the main
results, which will be useful in the analysis.

Let us denote by

bAðxÞ ¼ ba2ðxÞ; yðxÞ ¼ baðxÞuðxÞ; (2.3)

where ba ¼ baðxÞ can be chosen of one-sign in ½0;1�, say positive. Then, the eigenvalue problem ((Eqs. (2.1) and 2.2)) can be
transformed to the Sturm–Liouville canonical form

y00ðxÞþλyðxÞ ¼ bqðxÞyðxÞ; xAð0;1Þ; (2.4)

yð0Þ ¼ 0¼ yð1Þ; (2.5)

where the potential

bq xð Þ ¼ ba″ðxÞbaðxÞ ; (2.6)

is a continuous function in ½0;1�. Let us denote by fzmg1m ¼ 1 the eigenfunctions of (Eqs. (2.4) and 2.5), normalized so that

z0mð0Þ ¼ 1; m¼ 1;2;⋯: (2.7)

Let n, nZ1, be a given integer and let tAR be such that

λn�1ðbqÞoλnðbqÞþtoλnþ1ðbqÞ; (2.8)

with λ0ðbqÞ ¼ 0. Denote by y1 ¼ y1ðx; bq;λnþtÞ, y2 ¼ y2ðx; bq; λnþtÞ the solutions to the initial value problems

y001þðλnþtÞy1 ¼ bqy1; xAð0;1Þ; (2.9)

y1ð0Þ ¼ 1; (2.10)
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y01ð0Þ ¼ 0; (2.11)

and

y002þðλnþtÞy2 ¼ bqy2; xA ð0;1Þ; (2.12)

y2ð0Þ ¼ 0; (2.13)

y02ð0Þ ¼ 1: (2.14)

Moreover, we introduce the function

wn;t x; bq;λnþt
� �¼ y1 x; bq; λnþt

� �þy1ð1; λnÞ�y1ð1; λnþtÞ
y2ð1; λnþtÞ y2 x; bq;λnþt

� �
; (2.15)

solution to

w00
n;tþðλnþtÞwn;t ¼ bqwn;t ; xA ð0;1Þ; (2.16)

wn;tð0Þ ¼ 1; (2.17)

wn;tð1Þ ¼ y1ð1; bq; λnÞ; (2.18)

for ta0. Note that the function wn;t is well-defined for all ta0 and has a removable singularity at t¼0. Finally, let

ωn;tðx; bq;λnþtÞ ¼ ½wn;t ; zn�; (2.19)

where ½f ; g� ¼ fg0 � f 0g, for every regular functions f and g. The function ωn;t is a continuous and strictly positive function in
½0;1� for every bqACð½0;1�Þ and for every t satisfying Eq. (2.8), nZ1. Moreover, ωn;t is a C2-function of the variable x in ½0;1�,
see [18, p. 109].

Under the above notation, and by adapting the arguments shown in [17], it can be shown that for a given nZ1 the open–
open horn with profile

AðxÞ ¼ a2ðxÞ; (2.20)

where

a¼ ba�t
wn;t

λnωn;t
zn; ba� �

; λn�1oλnþtoλnþ1; (2.21)

has exactly the same eigenvalues fλmg of the open–open horn bAðxÞ ¼ ba2ðxÞ, with the exception of the nth, which is fixed to
the value λnþt, e.g., λmðbAÞ ¼ λmðAÞ for every mZ1 with man, and λnðAÞ ¼ λnðbAÞþt. The open–open horn A¼ AðxÞ is the
wished horn quasi-isospectral to the initial horn bA ¼ bAðxÞ.

For the sake of completeness, we sketch the main steps of the construction of the profiles a's shown in Eq. (2.21). In a first
step, the analysis is based on a double application of a Darboux lemma [19] to obtain potentials q(x) quasi-isospectral to the
initial potential bqðxÞ in the eigenvalue problem ((Eqs. (2.3) and 2.4)), see also [18]. Denote by Lr the standard Sturm–Liouville
operator with potential rACð½0;1�Þ, i.e., Lry¼ �y″þry. Let μ and λ be two real numbers. In his simpler form, the Darboux
lemma enables us to find a non-trivial solution z of a new equation Lpz¼ λz if we know a non-trivial solution g; f of the
equation Lrg¼ μg, Lrf ¼ λf , respectively, corresponding to two different values λ, μ of the parameter and to the potential r. In
particular, it turns out that z¼ 1

g g; f
� �

and p¼ r�2ðlnðgÞÞ00. It should be noted that if g vanishes in ½0;1�, then the expression of
the potential p is understood to hold between the roots of g. These singular situations disappear by applying the Darboux
lemma twice. Finally, in the second step, the double Darboux lemma is applied once more again to determine the expression
(Eq. (2.21)) of a solution to q¼ a00

a , that is, to reconstruct the quasi-isospectral horn operator with profile AðxÞ ¼ a2ðxÞ.
It should be noticed that the function a¼ aðxÞ in Eq. (2.21) corresponds to a “physical” horn, since it can be proved that

the function a is C2-regular and strictly positive in ½0;1� for every value of t satisfying the two inequalities in Eq. (2.21).
Moreover, if the initial horn profile bAðxÞ is an even function with respect to x¼ 1

2, then, by merging the results in [17,18]
(adapted for Dirichlet end conditions) it is possible to prove that also the corresponding quasi-isospectral horn profile A(x)
given by Eq. (2.20) is an even function with respect to x¼ 1

2.

2.3. The reconstruction procedure

In this section we shall use previous results to show how to construct a horn which has prescribed values of the first N
natural frequencies. We shall see that the reconstruction procedure needs the specification of a suitable initial horn and,
therefore, the reconstruction procedure works if the horn to be determined is not very far (in a way that will be clarified in
the sequel) from the initial horn.

Consider an open–open horn with given cross sectional profile A0ðxÞ ¼ a20ðxÞ and eigenvalues fλmða0Þg1m ¼ 1,
0oλ1ða0Þoλ2ða0Þo⋯. We now ask whether it is possible to construct from this horn a new horn having prescribed values
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of the first N eigenvalues f ~λmg
N
m ¼ 1 under the same set of end conditions, with

0o ~λ1o ~λ2o⋯o ~λN : (2.22)

By the analysis of Section 2.2 we know how to construct from the horn A0ðxÞ a new horn, say A1ðxÞ ¼ a21ðxÞ, so that the
Dirichlet eigenvalues fλmða0Þg, mZ2, are kept fixed while λ1ða1Þ is moving to the desired value ~λ1. More precisely, by Eq.
(2.21), the function a1 ¼ a1ðxÞ given by

a1 ¼ a0�t
w1;t

λ1ða0Þω1;t
z1 a0ð Þ; a0½ �; (2.23)

corresponds to a one-parameter family of horns such that

λmða1Þ ¼ λmða0Þþδm1t; (2.24)

mZ1, for t such that

0oλ1ða0Þþtoλ2ða0Þ: (2.25)

If

~λ1oλ2ða0Þ; (2.26)

then we can determine the parameter t, say t ¼ t1, such that λ1ða1Þ ¼ ~λ1, i.e.,

t1 ¼ ~λ1�λ1ða0Þ: (2.27)

The horn A1 ¼ a21 has eigenvalues f ~λ1; λ2ða0Þ; λ3ða0Þ;…g, with 0o ~λ1oλ2ða0Þoλ3ða0Þo⋯, and can be used as starting point
for the next step of the procedure.

By repeating the same arguments, it is possible to modify a1 so as to keep λmða1Þ fixed forma2 and to move λ2ða0Þ to the
desired value ~λ2, i.e.,

a2 ¼ a1�t2
w2;t2

λ2ða0Þω2;t2
z2 a1ð Þ; a1½ �; (2.28)

where

t2 ¼ ~λ2�λ2ða0Þ: (2.29)

The eigenvalues of the new horn a2ðxÞ are f ~λ1;
~λ2; λ3ða0Þ; λ4ða0Þ;…g. Using repeatedly this procedure, after N steps we

produce a horn, with cross-sectional profile area ANðxÞ ¼ a2NðxÞ, such that

λmðaNÞ ¼ ~λm; for 1rmrN; (2.30)

and the construction is finished. We note that the choice of the initial horn a0ðxÞ is restricted by the conditions

~λ1oλ2ða0Þ; ~λ2oλ3ða0Þ;…; ~λN�1oλNða0Þ; ~λNoλNþ1ða0Þ; (2.31)

which allow us to determine the numbers t1; t2;⋯; tN by the expressions analogous to Eq. (2.27).
The above construction, which is based on a finite number of eigenfrequencies, is obviously not unique, since the flow

from the initial horn a0 to a horn with prescribed first N Dirichlet eigenvalues depends on the particular order chosen to
move every individual eigenvalue to the target value. Similarly, the compatibility conditions on the initial horn a0 may
change depending on the sequence of eigenvalue shifts. For example, if we decide to move the N initial eigenvalues

fλmða0ÞgNm ¼ 1 into the decided positions f ~λmg
N
m ¼ 1 beginning with λNða0Þ and proceeding in descending order, the conditions

(Eq. (2.31)) become

λN�1ða0Þo ~λNoλNþ1ða0Þ; λN�2ða0Þo ~λN�1;…; λ2ða0Þo ~λ3; λ1ða0Þo ~λ2: (2.32)

Concerning the uniqueness of the reconstruction when a full Dirichlet spectrum is specified, we recall that the complete
set of eigenvalues fλmg1m ¼ 1 determines uniquely the potential q(x), see [16]. Note that for a given A(x) or a(x), there is a
unique q(x), but for a given q(x) there are many a(x). In particular, if a(x) is one a(x) corresponding to a given q(x), then all the
coefficients a�ðxÞ satisfying q xð Þ ¼ a�ðxÞ″

a�ðxÞ are given by

a� xð Þ ¼ a xð Þ c1þc2

Z x

0

ds
a2ðsÞ

� �
; (2.33)

where c1 and c2 are constants to be chosen so that a�ðxÞ is one-sign (say, positive) in ½0;1�. In our reconstruction method, the
coefficient a(x) is an even function with respect to x¼ 1

2 and, therefore, a�ðxÞ is an even function if and only if c2 ¼ 0. This
implies that the knowledge of the full spectrum fλmg1m ¼ 1 determines uniquely A(x), up to a multiplicative constant. In fact,
as remarked in [13], a multiplicative constant on A(x) has no effect on the eigenvalues. Therefore, in order to have
uniqueness of the reconstruction as N-1, we need to specify an additional information on A(x), such as the average of A(x)
or, equivalently, the average of A�1ðxÞ.
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2.4. An extension to closed–closed end conditions

In this section we consider the problem of constructing quasi-isospectral horn operators of the form Eq. (1.1) under
closed–closed (or Neumann) end conditions. We recall the following simple, but useful, result.

Proposition 2.1. Let bAC2ð½0;1�Þ a real-valued, strictly positive function in ½0;1�. Let ðλ; vÞ be an eigenpair of the Neumann
problem

ðb2v0Þ0 þλb2v¼ 0; xAð0;1Þ; (2.34)

v0ð0Þ ¼ 0¼ v0ð1Þ: (2.35)

(i) If λa0, then λ, λ40, is an eigenvalue of the Dirichlet problem

ða2u0Þ0 þλa2u¼ 0; xAð0;1Þ; (2.36)

uð0Þ ¼ 0¼ uð1Þ; (2.37)

with

u¼ b2v0; a¼ b�1; xA ½0;1�: (2.38)

(ii) If ðλ;uÞ is an eigenpair of the Dirichlet problem (Eq. (2.36)) for a real-valued, strictly positive function aAC2ð½0;1�Þ, then λ,
λ40, is an eigenvalue of the Neumann problem (Eqs. (2.34) and (2.35)) with eigenfunction v such that

v0 ¼ a2u; xA 0;1½ �;
Z 1

0

v
a2

ds¼ 0: (2.39)

Proof. (i) Using Eq. (2.38) in Eq. (2.34), dividing by b2 and differentiating, we obtain

1

b2
u0

� �0
þλ

u

b2
¼ 0;

which is Eq. (2.36) for a¼ b�1. Moreover, by Eq. (2.35) we have uð0Þ ¼ 0¼ uð1Þ and the thesis follows. Note that if λ¼ 0, then
b2v0 � const: in ½0;1� and, by Eq. (2.35) u� 0 in ½0;1�, and u is not an eigenfunction of (Eqs. (2.36) and (2.37)).
(ii) Clearly λ40. By v0 ¼ a2u in ð0;1Þ we get

vðxÞ ¼
Z x

0
a2u dsþvð0Þ; xA ½0;1�; (2.40)

where vð0Þ will be determined later. Note that v0ð0Þ ¼ 0¼ v0ð1Þ by Eq. (2.37). Integrating Eq. (2.36) we obtain

a2u0 þλv¼ c� const ., xAð0;1Þ; (2.41)

that is

v0

a2

� �0
þλ

v
a2

¼ c
a2
; xA 0;1ð Þ: (2.42)

We determine now vð0Þ such that c¼0. By integrating Eq. (2.42) in ð0;1Þ and recalling that v0ð0Þ ¼ 0¼ v0ð1Þ, we obtain

λ
Z 1

0

v
a2

ds¼ c
Z 1

0

ds
a2
: (2.43)

Replacing the expression (Eq. (2.40)) in the left-hand side of Eq. (2.43) and imposing c¼0 we obtain

v 0ð Þ ¼ � 1R 1
0

ds
a2ðsÞ

Z 1

0

1
a2ðxÞ

Z x

0
a2ðsÞuðsÞ ds

� �
dx; (2.44)

and the proof is complete.□

We now show how to construct quasi-isospectral horns under Neumann end conditions. Consider a horn bb under
Neumann boundary conditions. Let fλm; vmg1m ¼ 0 be the eigenpairs of

ðbb2
v0Þ0 þλbb2

v¼ 0; xAð0;1Þ; (2.45)

v0ð0Þ ¼ 0¼ v0ð1Þ; (2.46)

with 0¼ λ0oλ1oλ2o⋯ and limm-1λm ¼1. By Proposition 2.1, part (i), fλm;um ¼ bb2
v0mg1m ¼ 1 are the eigenpairs of the

Dirichlet problem

ðba2v0Þ0 þλba2v¼ 0; xAð0;1Þ; (2.47)
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uð0Þ ¼ 0¼ uð1Þ; (2.48)

with ba ¼ bb�1
. To this point, we use the analysis of Section 2.2 to construct families of quasi-isospectral horns a¼ aðxÞ (see Eq.

(2.21)), that is families of cross-sectional area functions a(x) such that the problem

ða2w0Þ0 þλa2w¼ 0; xAð0;1Þ; (2.49)

wð0Þ ¼ 0¼wð1Þ; (2.50)

has exactly the same eigenvalues of Eqs. (2.47) and (2.48), with the exception of the nth eigenvalue, where nZ1 is a given
integer number. By Proposition 2.1, part (ii), the eigenvalues of Eqs. (2.49) and (2.50) are the positive eigenvalues of the
Neumann problem

ðb2y0Þ0 þλb2y¼ 0; xAð0;1Þ; (2.51)

y0ð0Þ ¼ 0¼ y0ð1Þ; (2.52)

with b¼ a�1. Note that λ0 ¼ 0 is the lower eigenvalue of Eqs. (2.51) and (2.52). In conclusion, the horns bb ¼ bbðxÞ and b¼ bðxÞ
are Neumann quasi-isospectral.
3. Numerical implementation of the reconstruction procedure

In order to apply the reconstruction procedure of the duct profile a¼ aðxÞ based on sequential application of Eq. (2.21), a
numerical code has been implemented. It is mainly based on the computation of the fundamental solutions y1 and y2
defined in Eqs. (2.9)–(2.11) and (2.12)–(2.14), respectively. In fact, the functions wn;t , ωn;t , and zn appearing in Eq. (2.21) can
be easily calculated in terms of y1 and y2, for suitable values of the parameter λ. The above solutions are particular cases of
the following initial value problem:

y00 þλy¼ qy; xAð0;1Þ; (3.1)

yð0Þ ¼ y0; (3.2)

y0ð0Þ ¼ _y0; (3.3)

where q xð Þ ¼ a″ðxÞ
aðxÞ , qAC0ð½0;1�Þ, is the Schrödinger potential and λ is a given (real) number. To solve Eqs. (3.1)–(3.3) we have

adopted the numerical integration scheme based on Stoermer's rule, see [20]. Let us introduce a grid of equally spaced
points of the interval ½0;1�, say fxjgpj ¼ 0, with x0 ¼ 0, xj ¼ x0þ jH, j¼ 1;…; p and H¼ 1

p. At the interior points fxigp�1
i ¼ 1 the

potential q has been estimated by approximating the second derivative of a(x) by the central finite difference formula

a″ xið ÞCai�1�2aiþaiþ1

H2 ; (3.4)

where ai ¼ aðxiÞ and, therefore, q xið Þ ¼ a″ðxiÞ
aðxiÞ . At the first and at the last point of the grid, we have set

a″ x0ð ÞC3a0�8a1þ7a2�2a3
H2 ; (3.5)

and

a″ xp
� �

C
3ap�8ap�1þ7ap�2�2ap�3

H2 : (3.6)

We recall that the approximations (Eqs. (3.5) and (3.6)) produce an error of order H2 exactly as in Eq. (3.4).
Denoting by fyjgpj ¼ 0 the approximation of the solution y¼ yðxÞ to Eqs. (3.1)–(3.3) at the points fxjgpj ¼ 0, e.g., yðxjÞCyj,

Stoermer's integration scheme is based on a further subdivision in m parts of length h¼ H
m of each interval ðxj; xjþ1Þ. Let us

denote by fxjk gmk ¼ 0 the points of the sub-grid, with xjk ¼ xj0 þkh, k¼ 0;…;m, xj0 ¼ xj and xjm ¼ xjþ1. Moreover, let yjk ¼ yðxjk Þ.
The function y at xj1 is estimated by means of a parabolic extrapolation, namely

yj1 ¼ yj0 þh _yj0
þ1

2 h
2 qj0 �λ
� 	

yj0 ; (3.7)

where qj0 ¼ qðxj0 Þ. In the remaining points, the second derivative of y is estimated as

y″ xjk
� �

C
yjkþ 1

�2yjk þyjk� 1

h2
¼ qjk �λ
� 	

yjk ; k¼ 1;…;m�1: (3.8)

At the last point, we set

_yjm ¼ yjm �yjm� 1

h
þ1
2
h qðxjþ1Þ�λ
� �

yjm : (3.9)



Fig. 1. Cross-sectional area function a¼ aðxÞ of the symmetric duct, aðxÞ ¼ að1�xÞ in ½0;1� (a) and detail of the junction (b).

Fig. 2. Discretization error index E vs. number of mesh elements Ne (b¼0.24, c¼0.005, d¼0.05, and e¼0.004).
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The numerical integration scheme was coded following a procedure suggested by Henrici [21], which ensures a significant
roundoff error reduction. In brief, starting from

Δ0 ¼ h _yj0 þ1
2 h

2 qj0 �λ
� 	

yj0 ; (3.10)

yj1 ¼ yj0 þΔ0; (3.11)



Fig. 3. Reconstruction of a duct with b¼0.24, c¼0.005, d¼0.05, e¼0.004, Ne¼1600 (Ne¼3200 for N¼30 only, case (f)) using (a) N¼5, (b) N¼10, (c) N¼15,
(d) N¼20, (e) N¼25 and (f) N¼30 first eigenfrequencies. Thick curve: exact profile; thin curve: reconstructed profile.
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we evaluate the following quantities:

Δk ¼Δk�1þh2ðqjk �λÞyjk ; (3.12)

yjkþ 1
¼ yjk þΔk; for k¼ 1;…;m�1; (3.13)



Table 1
First 30 radian frequencies of the duct without (ωm) and with blockages (ωmb). Δ¼ 100� ðωrec

mb�ωmbÞ=ωmb . ωmb are evaluated for Ne¼12,800; ωmb are
evaluated using Ne¼1600 and N¼20.

Order Radian frequency ⩟

ωm ωmb ωrec
mb

1 3.1416 3.0107 3.0101 �0.02
2 6.2832 6.7248 6.7146 �0.15
3 9.4248 8.6937 8.6708 �0.26
4 12.5664 11.0619 11.0686 0.06
5 15.7080 16.1593 16.2184 0.37
6 18.8496 19.6163 19.7347 0.60
7 21.9911 20.5655 20.5930 0.13
8 25.1327 24.0772 24.0617 �0.06
9 28.2743 29.9456 29.9254 �0.07
10 31.4159 32.0077 31.9216 �0.27
11 34.5575 33.0911 33.2568 0.50
12 37.6991 37.9925 37.9530 �0.10
13 40.8407 42.7266 42.2157 �1.20
14 43.9823 44.2124 43.8278 �0.87
15 47.1239 46.4577 46.5010 0.09
16 50.2655 51.0123 51.2582 0.48
17 53.4071 54.0402 54.1037 0.12
18 56.5487 56.5754 56.5760 0.00
19 59.6903 59.8039 59.8864 0.14
20 62.8319 62.1715 62.3064 0.22

21 65.9734 65.2124 65.8915 1.04
22 69.1150 69.9346 69.1003 �1.19
23 72.2566 72.2114 72.4317 0.31
24 75.3982 73.6017 75.4788 2.55
25 78.5398 78.3099 78.5107 0.26
26 81.6814 83.3244 81.7777 �1.86
27 84.8230 84.4511 84.8588 0.48
28 87.9646 86.4121 87.8917 1.71
29 91.1062 92.2168 91.0939 �1.22
30 94.2478 95.8300 94.3116 �1.58
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and, finally, we determine

_yjm ¼Δm�1

h
þ1
2
h qðx0þHÞ�λ
� �

yjm : (3.14)

It is suggested to take an even value of m in order to improve numerical efficiency, see [20,22]. In our code we have used
m¼2.

In order to check the accuracy of the reconstruction and to provide input data in our simulations, a numerical procedure
for solving the eigenvalue problem (Eqs. (2.1) and (2.2)) was also implemented. The weak formulation of the eigenvalue
problem (Eqs. (2.1) and (2.2)) (with bAðxÞ replaced by A(x)) consists in finding uAH1

0ð0;1Þ⧹f0g and λAR such thatZ 1

0
Au0φ0 ¼ λ

Z 1

0
Auφ; for every φAH1

0ð0;1Þ: (3.15)

Here, H1
0ð0;1Þ is the Hilbert space of Lebesgue measurable functions f : ð0;1Þ-R such that f and its first weak derivative f 0 are

square integrable in ð0;1Þ, e.g.J f J2H1ð0;1Þ ¼
R 1
0 ðf

2þðf 0Þ2Þo1, and the trace of f at x¼0 and x¼1 vanishes, e.g., f ð0Þ ¼ f ð1Þ ¼ 0.
To find a discrete version of Eq. (3.15), we work on the finite dimensional subspace H of the second-order B-spline test
functions [23]. These test functions allow us to obtain very refined results with computational cost similar to that of pie-
cewise constant interpolation, see, for example, [24,25] for second-order B-spline interpolation in finite element analysis for
two- and three-dimensional problems. The one-dimensional case used here can be easily derived from [26,27]. The
expressions of the three test functions on the generic eth finite element (coinciding with the normalized interval ð�1;1Þ)
are

Φe ¼

1
8 1�2ξþξ2
� 	
1
4 3�ξ2
� 	

1
8 1þ2ξþξ2
� 	

2
666664

3
777775; (3.16)



Fig. 4. Reconstruction of the duct as in Fig. 3 for N¼25, and using the first odd (a) and the first even (b) eigenfrequencies only. Thick curve: exact profile;
thin curve: reconstructed profile.
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whereas the expressions corresponding to the first (near x¼0) and the last (near x¼1) finite element are

Φ1 ¼

1
4 1�2ξþξ2
� 	

1
8 5þ2ξ�3ξ2
� 	
1
8 1þ2ξþξ2
� 	

2
666664

3
777775; Φn ¼

1
8 1�2ξþξ2
� 	

1
8 5�2ξ�3ξ2
� 	
1
4 1þ2ξþξ2
� 	

2
666664

3
777775: (3.17)

On each finite element we use the approximation ~ue of u given by

~ueCΦT
eue; (3.18)

where ΦT
e is the row vector containing the test functions and ue is the vector of the unknowns. Replacing Eq. (3.18) in Eq.

(3.15), the discrete version of Eq. (3.15) consists in solving the finite dimensional eigenvalue problem

K ~u ¼ ~λM ~u; (3.19)

where ð ~λ; ~uÞ is the approximation of the continuous eigenpair ðλ;uÞ. The stiffness and inertia matrices K and M are obtained
by means of a standard finite element procedure of assemblage of the local matrices Ke and Me, which are defined as

Ke ¼
Z 1

�1
AΦ0

eΦ0T
e J dξ; Me ¼

Z 1

�1
AΦeΦT

e J dξ: (3.20)

Here, the Jacobian J links the normalized and physical eth finite element. The numerical integration in Eq. (3.20) was



Fig. 5. Reconstruction of a duct with c¼0.005, d¼0.05, and e¼0.004, varying the position b; N¼20, Ne¼1600. (a) b¼0.12; (b) b¼0.24; and (c) b¼0.36.
Thick curve: exact profile; thin curve: reconstructed profile.
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performed by using Gaussian quadrature procedure with 8 points, which produces exact results for polynomials up to
degree 15.

We conclude by noticing that after each application of Eq. (2.21), the duct profile A¼ AðxÞ was multiplied by a suitable
positive constant such that

R 1
0 A�1ðxÞ dx takes the prescribed value. No difference was noticed in the results of the recon-

struction by prescribing the average value of the unknown coefficient (e.g.,
R 1
0 AðxÞ dx) instead of the average of the inverse of

A(x).



Fig. 6. Reconstruction of a duct with b¼0.24, c¼0.005, and d¼0.05, varying the depth e; N¼20, Ne¼1600. (a) e¼0.001; (b) e¼0.002; (c) e¼0.003; and (d)
e¼0.004. Thick curve: exact profile; thin curve: reconstructed profile.
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4. Numerical experiments and results

In this section we shall present some results of the numerical implementation of the procedure illustrated in Section 2.3
for an open–open duct with smooth symmetric profile. An extensive numerical study was conducted to assess the stability
of the reconstruction with respect to the number of eigenfrequencies used (Section 4.3); the blockage profile (Section 4.4);
and the order chosen in assigning the eigenfrequencies (Section 4.6). The case of closed–closed end conditions is considered
in Section 4.7. Section 4.8 deals with the influence of errors on the data. An application of the method to the detection of not
symmetrical blockages is discussed in Section 4.9.

4.1. Blockage modelling

Among several simulations, we shall present a selected, but representative, set of results which refer to the specimen
shown in Fig. 1(a). The unperturbed duct is a cylinder having circular cross-section of area A0 ¼ a20, with a0¼0.01, and length
L¼1. The perturbed duct is assumed to have axially symmetric shape with circular cross-section of area AðxÞ ¼ a2ðxÞ,
a2ðxÞ ¼ a2ð1�xÞ in ½0;1�. The typical blockage profile is designed as a fifth-order Bézier curve with 6 control points, see Fig. 1
(b), in such a way to satisfy C2-continuity of the coefficient a(x) in ½0;1�. For a depth discussion on mathematical properties of
Bézier curves we refer to the book [23], see also [28] for an application of NURBS – that are a generalization of Bézier curves
– in one-dimension. We recall that a fifth-order Bézier curve is defined as

C5ðξÞ ¼
X5
i ¼ 0

Bi;5ðξÞPi; 0rξr1; (4.1)



Fig. 7. Reconstruction of a duct with b¼0.24, c¼0.005, and e¼0.004, varying the width d; N¼20, Ne¼1600. (a) d¼0.05; (b) d¼0.075; (c) d¼0.1; and (d)
d¼0.15. Thick curve: exact profile; thin curve: reconstructed profile.
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where Bi;5ðξÞ are the fifth-degree blending functions, i.e., the fifth-degree Bernstein's polynomials, and Pi the control points.
The explicit formulae for the blending functions are

B0;5 ¼ ð1�ξÞ5;
B1;5 ¼ 5ξð1�ξÞ4;

B2;5 ¼ 10ξ2ð1�ξÞ3;
B3;5 ¼ 10ξ3ð1�ξÞ2;
B4;5 ¼ 5ξ4ð1�ξÞ;

B5;5 ¼ ξ5: (4.2)

Control points used to model the left junctions, see Fig. 1, are defined by

P0 ¼ b; a0ð Þ;
P1 ¼ bþ1

4 c; a0
� �

;

P2 ¼ bþ1
2 c; a0

� �
;

P3 ¼ bþ1
2 c; a0�e

� �
;

P4 ¼ bþ3
4 c; a0�e

� �
;

P5 ¼ ðbþc; a0�eÞ; (4.3)

while for the right junction we set

P0 ¼ bþcþd; a0�eð Þ;
P1 ¼ bþcþdþ1

4 c; a0�e
� �

;



Fig. 8. Reconstruction of a duct with b¼0.12 and e¼0.004, varying the joint length c and the width d; N¼20, Ne¼1600. (a) c¼0.05 and d¼0.05; (b) c¼0.05
and d¼0.1; (c) c¼0.1 and d¼0.05; and (d) c¼0.1 and d¼0.1. Thick curve: exact profile; thin curve: reconstructed profile.
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P2 ¼ bþcþdþ1
2 c; a0�e

� �
;

P3 ¼ bþcþdþ1
2 c; a0

� �
;

P4 ¼ bþcþdþ3
4 c; a0

� �
;

P5 ¼ ðbþcþdþc; a0Þ: (4.4)

All the simulations have been performed by assuming a unitary value of the sound velocity.

4.2. The finite element mesh size

In order to rationally select the finite element mesh, we first study the unperturbed horn. In this case, the exact
eigenvalues values λm ¼m2π2, mZ1, can be used to compute the numerical error produced by the discrete approximation
of the problem. It is possible to show that percentage discrepancy on the first 25 eigenvalues is at most 0.06 percent of the
theoretical value for a mesh of Ne¼100 equally spaced finite elements. Fig. 2 reports the discretization error index

ENe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
m ¼ 1

Δλm
λm

� �2
vuut (4.5)

for a duct with blockages defined by b¼0.24, c¼0.005, d¼0.05, e¼0.004 for Ne¼400, 800, 1600, 3200, 6400, 12,800. In Eq.
(4.5), Δλm is the difference between the numerical and theoretical values of the mth eigenvalue. The plot, referred to the
case p¼25, clearly shows that numerical estimates obtained for Ne¼12,800 are very accurate. However, the plot also shows
that the error indicator ENe ¼ 1600 differs approximatively by 0.02 percent with respect to ENe ¼ 12;800, revealing that the
Ne¼1600 element mesh is a good compromise between accuracy and computational cost.



Fig. 9. Reconstruction of a duct with b¼0.12, c¼0.1, d¼0.05, Ne¼1600; e¼0.001 in (a), (c), (e) and e¼0.002 in (b), (d), (f). (a, b) N¼5; (c, d) N¼7; and (e, f)
N¼9. Thick curve: exact profile; thin curve: reconstructed profile.
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4.3. The number of measured eigenfrequencies

The influence of the number N of given eigenfrequencies on the reconstruction results is analyzed in this section. Among
a large number of simulations, we have chosen to test the identification technique on the most challenging and difficult
cases which, in our experience, correspond to rather abrupt change of cross-sectional area concentrated on a small interval



Fig. 10. Reconstruction of multiple blockages in a half of the duct. Geometrical characteristics of each blockage: (a) b¼0.12, c¼0.005, d¼0.05, e¼0.002 and
(b) b¼0.12, c¼0.05, d¼0.05, e¼0.002; the distance between two adjacent blockages is 2cþd; N¼20, Ne¼1600. Thick curve: exact profile; thin curve:
reconstructed profile.
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of the duct axis (c and d small, and e large). In particular, reference is made to the blockage parameters b¼0.24, c¼0.005,
d¼0.05, e¼0.004, and the target frequency values are assigned in ascending order. For these cases, in spite of the abrupt
changes, the Webster model was assumed to hold. Fig. 3 shows the results using the first 5, 10, 15, 20, 25 and 30 eigen-
frequencies. Thick and thin curves represent the exact and the reconstructed profile, respectively. At the top of each sub-
figure, the eigenfrequency percentage shifts δm induced by the blockage on the uniform duct are represented, e.g.,
δm ¼ 100� ðωblock

m �ωunif
m Þ=ωunif

m , m¼ 1;…;30. The differences ρm between computed (after the reconstruction) and target
eigenfrequency values are shown on the bottom, e.g., ρm ¼ 100� ðωrec

m �ωtarget
m Þ=ωtarget

m , m¼ 1;…;30. It can be noticed that
the accuracy of the reconstruction improves as the number of eigendata increases, and the reconstructed coefficient is a
good approximation of the exact profile when the first 20 frequencies are considered as input data. It should be also
remarked that the eigenfrequencies of the reconstructed profile are almost coincident with the target values.

All the above simulations refer to a Ne¼1600 mesh, with the exception of the case N¼30 (Fig. 3(f)). It can be shown that
this case requires at least 3200 elements to prevent numerical instability. In all the remaining cases, no improvement was
noticed by refining (e.g., halving) the mesh size in blockage reconstruction. Table 1 collects the first 30 frequencies of the
duct without/with blockages and the corresponding frequencies of the reconstructed duct, with Ne¼1600 and N¼20. The
last column on the right end side of the table collects the percentage differences between the target and the numerical
values of the eigenfrequencies evaluated for the reconstructed profile.

Besides the number of eigendata, numerical simulations show that the reconstruction is significantly influenced by the set
of eigendata used. For the same duct profile considered in Fig. 3, Fig. 4 shows the results obtained by taking N¼25 and using
the odd (Fig. 4(a), thirteen frequencies) and the even (Fig. 4(b), twelve frequencies) data only. A comparison with Fig. 3(b)



Fig. 11. Reconstruction of a duct with b¼0.24 for N¼20 and Ne¼1600, by including (thin line) and excluding (dash-dotted line) the scalar informationR 1
0 A�1ðxÞ dx. (a) c¼0.005, d¼0.05 and e¼0.002; (b) c¼0.05, d¼0.1 and e¼0.002; (c) c¼0.005, d¼0.05 and e¼0.004; and (d) c¼0.05, d¼0.1 and e¼0.004.
Thick curve: exact profile; thin curve: reconstructed profile.
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(N¼10) and Fig. 3(c) (N¼15) confirms that the results depend appreciably on this choice, and that – on assuming the same
number of input data – better reconstruction is obtained by including both even and odd frequencies in the analysis.

4.4. Influence of the blockage profile

The reconstruction algorithm has been tested on different blockage scenarios. All the results presented in this section are
obtained for Ne¼1600 and, with the exception of Figs. 8 and 9 for c¼0.005 and N¼20.

Fig. 5 reports the blockage identification for d¼0.05, e¼0.004 and varying the position b. The influence of the depth e is
analyzed in Fig. 6, for a given position b¼0.24 of the blockage. We notice that e¼0.001 corresponds to a reduction of the
cross-sectional area of 19 percent, whereas the case e¼0.004 corresponds to an area reduction equal to 64 percent. Fig. 7
collects the results obtained by varying the width d of the blockage, for b¼0.24 and e¼0.004. Finally, the effect of changing
the joint length c and the width d is shown in Figs. 8 and 9. The cases studied refer to b¼0.12. Comparing Figs. 8 and 9 it
clearly emerges that, for a given number of first frequencies, the accuracy of the reconstruction increases for diffuse and
smooth blockages, that is when both c and d are larger. This feature of the reconstruction method could be of importance in
practical applications, since experimental results obtained in real ducts with diffuse blockages show that Webster model is
more accurate in the range of low frequencies, see, for example, [15].

The reconstruction method has been also tested in case of multiple blockages in one-half of the duct. Fig. 10(a) reports
the identification of two blockages, with b¼0.12, c¼0.005, d¼0.05 and e¼0.002. The distance between two neighboring
blockages is assumed as 2cþd. The results shown in Fig. 10(b) refer to a symmetric duct profile with two lateral blockages
and a third blockage whose support is centered at the mid-point x¼ 1

2, for b¼0.12, c¼0.05, d¼0.05 (d¼0.06 for the central
blockage) and e¼0.002. Also in this case the distance between two adjacent blockages is 2cþd.



Fig. 12. Reconstruction of the duct as in Fig. 3 (Ne¼1600) using (a) N¼5, (b) N¼10, (c) N¼15 and (d) N¼20 first eigenfrequencies in reverse order. Thick
curve: exact profile; thin curve: reconstructed profile.
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Generally speaking, the reconstruction is in good agreement with the exact coefficient in all the cases considered,
suggesting that the method is rather stable to different blockage profiles.
4.5. Scaling effect

It has been noticed at the end of Section 2.3 that, even when all the eigenfrequencies are given, the unique recon-
struction of the duct profile requires an additional scalar information on the coefficient A(x). In our analysis, this
information coincides with

R 1
0 A�1ðxÞ dx. Fig. 11 compares the results obtained with and without including this infor-

mation on the spectral data. The results refer to Ne¼1600, N¼20, b¼0.24 and e¼0.04. Numerical results confirm that the
scaling parameters strongly influence the accuracy of the reconstruction, especially in the case of large blockages, see
also [13].
4.6. The order of assigning the measured eigenfrequencies

All the previous results have been obtained by assigning the first N frequencies in ascending order, i.e., from the first to
the Nth. In this section we shall investigate the effect of assigning the target values in descending order. With reference to
the blockage profile considered in Section 4.3 and for Ne¼1600, Fig. 12 shows the reconstruction obtained with N¼5, 10, 15,
20. In spite of the equivalence of the reconstruction procedure expected from the theory, numerical simulations show an
appreciable deterioration of the results, with the appearance of numerical instabilities and large oscillations around the
exact profile. A refinement of the finite element mesh was not useful in these cases.



Fig. 13. Reconstruction of a duct under closed–closed end conditions, with (a) b¼0.24, c¼0.005, d¼0.05, e¼0.004 and (b) b¼0.12, c¼0.05, d¼0.1,
e¼0.004; N¼20 (ascending order), Ne¼1600. Thick curve: exact profile; thin curve: reconstructed profile.
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4.7. Closed–closed end conditions

It was shown in Section 2.4 that the reconstruction procedure can be extended to include the case of a duct under
closed–closed end conditions. An extended series of numerical tests, whose results are not reported here for the sake of
brevity, shows that the main features of the reconstruction procedure are analogous to those presented above for open–
open end conditions. As an example, Fig. 13 reports the blockages identification for N¼20, Ne¼1600 and assuming b¼0.24,
c¼0.005, d¼0.05, e¼0.004 (Fig. 13(a)) and b¼0.12, c¼0.05, d¼0.05, e¼0.004 (Fig. 13(b)).

4.8. Stability of the reconstruction to errors on the data

In this section we investigate the stability of the reconstruction algorithm when the measured frequency data are
affected by errors. We assume that radian eigenfrequencies include random error defined by

ωerr
m ¼ωmþηω1; (4.6)

or, alternatively,

ωerr
m ¼ωmð1þηÞ; (4.7)

mZ1. Here, the number η is defined as η¼ ηmaxð2r�1Þ, where r is a random number generated from a standard uniform
distribution on the interval ½�1;1� and ηmax is the maximum error level. In Eq. (4.6), the error ηω1 does not depend on the
mode order m and it is proportional to the fundamental frequency ω1.

Figs. 14 and 15 report some illustrative examples of identification varying the error level ηmax and the blockage depth.
Results are referred to the geometric parameters b¼0.24, c¼0.005, and d¼0.05; moreover, N¼20 and Ne¼1600. The



Fig. 14. Reconstruction results with errors on the data: b¼0.24, c¼0.005, d¼0.05, N¼20, Ne¼1600, error level ηmax (Eq. (4.6)). (a) e¼0.002, ηmax ¼ 0:01;
(b) e¼0.004, ηmax ¼ 0:01; (c) e¼0.002, ηmax ¼ 0:03; (d) e¼0.004, ηmax ¼ 0:03; (e) e¼0.002, ηmax ¼ 0:05; and (f) e¼0.004, ηmax ¼ 0:05. Thick curve: exact
profile; thin curve: reconstructed profile.
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Fig. 15. Reconstruction results with errors on the data: b¼0.24, c¼0.005, d¼0.05, N¼20, Ne¼1600, error level ηmax ¼ 0:03 (Eq. (4.7)). (a) e¼0.002,
ηmax ¼ 0:03 and (b) e¼0.004, ηmax ¼ 0:03. Thick curve: exact profile; thin curve: reconstructed profile.
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reconstruction turns out to be sufficiently stable and robust to errors of the type (4.6) up to ηmax ¼ 0:05. Conversely, the
accuracy of the reconstruction is worse compared with the error-free case for errors of the type (4.7). Reconstruction is
almost compromised when the duct profile to be identified is a small perturbation of the initial profile. In these cases, in
fact, the eigenfrequency shifts induced by blockages are small and comparable with the errors on the data, resulting in
significant difficulty on blockage identification.

4.9. No symmetric blockage

In this last section we shall investigate on possible application of the reconstruction procedure for the detection of
general, i.e., not necessarily symmetric profile A¼ AðxÞ in an open–open duct. It is well-known that two complete spectra
(and an additional scalar information on the unknown coefficient) are necessary to determine uniquely the function
A¼ AðxÞ in this case. Fig. 16 shows the results obtained for Ne¼1600, N¼20 (free-of-error data) and single blockage
defined by b¼0.24, d¼0.05 and e¼0.004. It is confirmed that, as expected, the reconstructed profile A¼ AðxÞ is symmetric
with respect to the mid-point x¼ 1

2. However, it is interesting to notice that the identified profile shows an abrupt
reduction of the cross-sectional area in a region of the interval 0; 12

� �
which coincide with the actual support of the

blockage. These simulations, and other not reported here for the sake of brevity, also show that the accuracy of the
localization of the blockage improves in the case of small and diffuse blockages. The depth estimate, on the contrary,
is rather poor and the reconstructed profile seems to suggest that the (maximum) depth is underestimated of about
50 percent.
5. Conclusions

A theoretical procedure for identifying blockages in a one-dimensional symmetric duct from a finite set of eigen-
frequencies, under either open–open or closed–closed end conditions, has been presented. The identification procedure is
constructive. We have shown that, starting from the unperturbed duct, it is possible to explicitly construct a duct profile
having exactly the given values of the first N eigenfrequencies of the duct with blockages. The analysis is based on the
determination of quasi-isospectral duct operators which have exactly the same full spectrum as a given duct, under a
specified set of end conditions, with the exception of a single eigenfrequency which is free to move in a prescribed interval.
The reconstruction procedure requires that the eigenfrequencies of the unperturbed duct must satisfy certain interlacing
conditions with the target frequency values.

The method has been implemented numerically. An extended series of simulations leads to the following conclusions:

(i) The accuracy of the identification increases with the number of eigenfrequencies used, and better results are obtained
when the lower eigenfrequencies are assigned in ascending order and the blockages are smooth and diffuse.

(ii) The reconstruction is rather stable with respect to the shape, the size and the position of the blockages; moreover, the
method can be used also for identifying multiple blockages (in a half of the duct).

(iii) The additional scalar information on the unknown cross-sectional area profile (the average of the inverse of the cross-
sectional area profile, in the present case) is shown to be necessary to improve the accuracy of the reconstruction.



Fig. 16. Reconstruction of general blockages with N¼20 and Ne¼1600. (a) b¼0.24, c¼0.005, d¼0.05, e¼0.004; (b) b¼0.24, c¼0.05, d¼0.1, e¼0.004; and
(c) b¼0.12, c¼0.1, d¼0.1, e¼0.001. Thick curve: exact profile; thin curve: reconstructed profile.

A. Bilotta et al. / Journal of Sound and Vibration 366 (2016) 149–172 171
(iv) The method is capable to handling situations in which no-symmetric blockage is present, and for these cases a
sufficiently accurate estimation of the blockage support is observed.

(v) The reconstruction procedure is sufficiently stable to errors on the eigenfrequency data.
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