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Abstract The problem of generating a sequence of true ran-
dom bits (suitable for cryptographic applications) from ran-
dom discrete or analog sources is considered. A generalized
version, including Vector Quantization, of the classical ap-
proach by Elias for the generation of truly random bits is
introduced, and its performance is analyzed, both in the fi-
nite case and asymptotically. The theory allows us to pro-
vide an alternative proof of the optimality of the original
Elias’ scheme. We also consider the problem of deriving
random bits from measurements of a Poisson process and
from vectors of iid Gaussian variables. The comparison with
the scheme of Elias, applied to geometric-like non binary
vectors, originally based on the iso-probability property of
permutations of iid variables, confirms the potential of the
generalized scheme proposed in our work.

Keywords Random number generation · Random Number
Conditioning · Vector Quantization · Geometric random
variables · Gaussian random variables.

1 Introduction

The problem of true random number generation dates back
to von Neumann [1] who considered the problem of simulat-
ing an unbiased coin by using a biased coin with unknown
probability. Denoting with T and H the tail and head out-
comes, respectively, he observed that considering two con-
secutive independent coin tosses, the events T H and HT
are exactly equiprobable. Thus, mapping T H→ 0, HT → 1,
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while discarding the events T T , HH, generates a sequence
of truly random bits even if the original coin is biased.

More efficient algorithms for generating random bits from
a biased coin were proposed by various authors [2–5]. See
[6] for a more comprehensive bibliography, where the prob-
lem to generate random bits from a correlated source is con-
sidered. Elias [3] was the first to devise an optimal proce-
dure in terms of information efficiency, namely, such that
the expected number of unbiased random bits generated per
coin toss is asymptotically equal to the entropy of the bi-
ased coin. Starting from a source that produces bit vectors
x = [X0, ...,XL−1] of binary independent random variables
Xi ∈ {0,1}, P[Xi = 0] = q, the procedure partitions the range
of x into classes of equiprobable outcomes consisting of all
the permutations (with repetition) of the bit string with a
given Hamming weight. Due to independence, the elements
of each class are therefore equiprobable. The elements of
a class are then mapped into binary strings, by means of a
procedure called a conditioner, in such a way that, due to the
iso-probability property, the corresponding bits will be inde-
pendent and equiprobable. This approach is easily extended
to non-binary alphabets.

In this paper, we extend the original approach of Elias
by considering a Generalized Elias Scheme (GES) that par-
titions the range of x, in the non-binary or even continuous
case, into generic classes of equiprobable vectors, not just
permutations as in the original procedure. After formaliz-
ing the definition of a block-based admissible conditioner in
Section 4, we introduce the GES in Section 5.1. We derive
lower and upper bounds for the efficiency of this general-
ized approach, and consider its asymptotic behavior for in-
creasing block-length. One of the results that we derive from
the generalized approach is an alternative proof of the orig-
inal Elias’ scheme optimality (Section 6.1), and a detailed
analysis of what happens when processing a finite number
of blocks. Section 6.2 analyzes the case of non-binary iid
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random variables with a geometric-like distribution, as they
may arise from measurements of physical processes mod-
eled as Poisson processes. These vectors can be used as
the input to a specialized conditioner, whose performance
is analyzed in Section 7 and compared to the original Elias’
scheme, based on permutations of non-binary vectors. Sec-
tion 6.3 considers the case of quantized vectors of iid Gaus-
sian random vectors. The more technical proofs are reported
in Appendix A.

2 Informal Overview

In order to give an intuitive idea of the results described in
this paper, in this section we give an informal overview of
the considered scenario and of the proposed solution.

2.1 Application scenario

Suppose one has a random process Xn made of iid random
variables assuming values in an alphabet A . Differently from
most other works on conditioning, we do not require A dis-
crete, allowing also for continuous alphabets like R or R>0.
We want to process Xn in order to produce a sequence of bits
bk iid and unbiased, that is, an Unbiased Bernoulli Process
(UBP). Actually, we will require something a bit stronger
than just bk being an UBP (see Section 4.1), but for the mo-
ment the UBP constraint will suffice.

A natural performance metric for a conditioner is its rate
defined as the average number of output bits produced per
input value (see Definition 2). It is intuitive that if A is dis-
crete and the output process is an UBP, the entropy H(Xn)

of a symbol is an upper bound to the conditioner rate. It is
not clear, however, what is the upper bound when A is not
discrete. We give an answer to this in Theorem 1.

A key requirement for practical applicability is the para-
metric robustness of any conditioning scheme. It is reason-
able to suppose that in most application we know the “type”
of the random process, but not its exact “intensity.” For ex-
ample, if A = {0,1} (binary source), the probability p1 :=
P[Xn = 1] of getting “1” could not be exactly known; if Xn
is the inter-arrival time of a Poisson process, we know that
Xn is exponential, but its mean (related to the intensity of the
Poisson process) could be not exactly known; finally, if Xn
are obtained by sampling some Gaussian random noise, we
can assume that Xn is zero-mean Gaussian, but with the vari-
ance not exactly known. It is clear that the practical usabil-
ity of any conditioner that requires a very precise intensity
of to input process to guarantee an UBP output is somehow
doubtful. It is instead acceptable that the output rate changes
with the intensity of the input process. For example, the well
known von Neumann [1] and Elias’ schemes [3] for binary

sources always produce an UBP output, whose rate depends
on p1.

2.2 The proposed solution

Fig. 1a shows the general structure of the conditioner pro-
posed in this paper. The conditioner in Fig. 1a works like a
Vector Quantizer (VQ): first the input samples are collected
in blocks of size L, then the current block is mapped to a dis-
crete set of symbols QL, finally, each symbol is mapped to
an output bitstring. As well known, the map, from blocks to
symbols, partitions the set of blocks A L into a finite number
of quantization regions. Every symbol in QL can be consid-
ered as a label for the corresponding quantization region.

Despite the similarity of Fig. 1a with a lossy coding
scheme based on a VQ, there are some very important dif-
ferences. For example, in this case we have no interest in
distortion, but only on the statistical properties of the output
process. Actually, it will be seen that the VQ used for condi-
tioning is usually a bad VQ from a lossy coding viewpoint.
Moreover, the indexing block in a coding context assigns to
every symbol a unique bitstring, since we want to be able to
recover a good approximation of the quantized values; in-
stead, it will be seen that the VQ used as a conditioner in
this paper often maps different symbols into the same bit-
string. Moreover, some symbol can be mapped to an empty
bitstring (as it happens in the von Neumann [1] and Elias’
schemes [3]), while no VQ for lossy coding would do that.

Note that the scheme Fig. 1a is very general since it can
emulate even Elias-like schemes. Indeed, if A is finite, one
can choose QL = A L and use the “trivial quantizer” repre-
sented by the identity map. By using as indexer the map used
in Elias’ scheme, one can see that Fig. 1a becomes equiva-
lent to Elias’ solution.

It is worth to anticipate that the indexer in Fig. 1a is the
key part of the scheme and it is worth to describe briefly how
it is designed. By reading the original Elias’ work [3] one
can see that a key step is the partition of the set of all blocks
A L into subsets that enjoy a iso-probability condition, that
is, two symbol strings belonging to the same subset must
have the same probability. By exploiting this iso-probability
condition, it is easy to assign bitstrings to blocks in a way
that grants the UBP property of the output process. Elias’
solution puts in the same subset blocks which are permuta-
tions of each other. This, together with the iid property of
the input process, grants for the iso-probability condition.

The approach followed in this work is similar, but us-
ing quantizer symbols in place of input blocks. More pre-
cisely, the quantizer symbols are collected in sets that en-
joy the same iso-probability condition, that is, two symbols
belonging to the same set must have the same probability.
By exploiting the iso-probability condition, the assignment
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of output bit-strings to quantizer symbols can be done as it
is done in the Elias’ scheme [3]. The non-trivial part is to
choose the quantizer regions so that the iso-probability con-
dition holds independently on the input process intensity (in
order to have parametric robustness).

3 Notation

Sets If A is any set, its cardinality will be denoted as |A |.
In this paper we take the convention that the set of natural
numbers N includes zero. We will use JN to denote the sub-
set of the first N natural numbers, that is, JN := {0, . . . ,N−
1}. The conventions J∞ = N and J0 = /0 will be useful for
notation uniformity.

Sequences If A is any set, a sequence X of length N with
elements in A is defined as a function X : JN →A , i.e., for
n ∈ JN , X(n) ∈A . In this context N can be finite or not. We
will use the simpler notation Xn≡X(n) to denote the n-th el-
ement of sequence X . The length of X will be denoted as |X |.
We will denote with A ∗ the set of all finite sequences (even
the empty one) with elements in A . If a,b ∈ A ∗, we will
denote with a · b their concatenation. As usual, vectors will
be denoted with bold letters (e.g., k), while the n-th entry
of a vector will be denoted as non-bold with n as subscript
(e.g., kn).

We will use the notation JN
L to identify the set of all the

possible L−length vectors with entries in JN in increasing
order, that is,

JN
L := {k = [k1,k2, . . . ,kL] ∈ JL

N : k1 < k2 < · · ·< kL} (1)

For example, if N = 3, L= 2, then JN
L = {[0,1], [0,2], [1,2]}.

We will sometimes need to consider a subsequence of
the original sequence. Let X be a sequence of length N and
let k∈ JN

L, be a vector of increasing entries. We will denote
with Xk the sequence obtained by taking the elements of X
corresponding to the indexes in k. More formally, Xk : JL→
A is defined as [Xk]n = Xkn for all n ∈ JL This operation
will be called subsampling and Xk a subsampled version of
X . We will use the colon notation Xn:m as a shorthand for
X[n,n+1,...,m].

Signatures Let A be any set. If a ∈A and x ∈A L, we will
denote with #a(x) the number of times that a is present in
x. If x,y ∈A L are such that #a(x) = #a(y) for every a ∈A ,
we will say that x and y have the same signature. It is clear
that x and y have the same signature if and only one is a
permutation of the other.

4 Blockwise Conditioners

In this section we introduce some notions and properties re-
lated with the problem of conditioning a sequence of random
variables in order to obtain a sequence of truly random bits.
More precisely, the problem of conditioning can be formu-
lated as follows.

Problem 1 Let a sequence of iid random variables {Xn}n∈N,
assuming values in the alphabet (finite or not) A , be given.
Process {Xn}n∈N with a deterministic function (a conditioner)
in order to obtain an UBP {bn}n∈N, that is, a process where
bn are iid and P[bn = 0] = P[bn = 1] = 1/2.

Remark 1 In Section 4.1 we are going to tighten Problem 1
by requiring a condition stronger than being only UBP.

In this paper we consider only blockwise conditioners,
that is, conditioners that partition the input sequences into
non-overlapping blocks of equal size L and process each
block separately. More precisely, a blockwise conditioner
with block size L is represented by a function C : A L →
{0,1}∗ that maps blocks of L input values into sequences
of bits of finite length (even zero). The n-th block will be
denoted as

Xn := XnL:(n+1)L−1 = [XnL,XnL+1, . . . ,X(n+1)L−1] (2)

The output process b can be defined as the concatenation
of the strings obtained by applying the conditioner to every
block, that is

b = C (X0) ·C (X1) · · ·C (Xn) · · · (3)

It will be convenient to have symbols to denote the bit-
string obtained after processing a finite number of blocks.
We will denote with SN , N ∈ N the bit-string obtained af-
ter processing blocks X0, . . . , XN , that is, SN = C (X0) ·
C (X1) · · ·C (XN). More precisely, SN is recursively defined
as

SN =

{
C (X0) if N = 0
SN−1 ·C (XN) if N > 0

(4)

We will denote with µn := |C (Xn)| the number of bits ob-
tained by processing Xn and with `N := |SN |= ∑

N
n=0 µn the

length of bit-string SN (that is, the number of bits generated
after processing blocks X0, . . . , XN). Note that both µn and
`n are random variables. If k ∈ NL and `N > kL, we will de-
note [SN ]k (the subsampled version of SN , i.e., the L−length
bit substring corresponding to indexes in k, see Section 3),
with the more compact notation SN,k. If `N ≤ kL, SN is not
long enough and SN,k is not defined.

Remark 2 Note that Im(µ0) is the set of the lengths of the
bit-strings that can be generated by processing an input block;
a similar interpretation holds for Im(`N).
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Fig. 1 The proposed scheme for random bit generation

4.1 Admissible Conditioners

So far we did not put any constraint on the statistical prop-
erties of the output process b. If the bit sequence is used in a
cryptographic application, the requirement is that an oppo-
nent cannot get any information about bits bn. Usually this
is expressed by requiring that the output process b is a UBP.
However, this could not be enough for cryptographic appli-
cations.

An example will clarify this point. Suppose that the input
process X has alphabet {α,β ,γ} with P[Xn = α] = P[Xn =

β ] = 1/4 and P[Xn = γ] = 1/2 and consider the conditioner
with L = 1 specified by the Huffman code mapping

α 7→ 00; β 7→ 01; γ 7→ 1. (5)

It is easy to check that this scheme is UBP (see Proof A.1
in Appendix A.2). However, if the opponent knows (maybe
via some side-channel) that the output string after process-
ing the first symbol has two bits, it can deduce that the input
symbol was α or β and this implies S0,0 = 0. That is, from
the knowledge that the conditioner processed a single input
symbol and obtained two output bits, an opponent can de-
duce the value of the first bit, despite the fact that the “final”
process b is a UBP. Many other examples of this type can
be constructed as Huffmann codes of random variable with
probabilities of the form 2−`.

In order to avoid that an opponent could gain any in-
formation about the generated bit-string even if he/she were
able to measure the length of the generated bit-string, we are
going to require a slightly stronger condition than the UBP
property for an admissible conditioner.

Definition 1 Conditioner C : A L→ {0,1}∗ will be said to
be admissible if the following condition holds

∀G≥ 1, k ∈ NG,m ∈ Im(µ0), m > kG, b ∈ {0,1}G

P[S0,k = b|µ0 = m] = 2−G
(6)

Informally, condition (6) requires that any G-length sub-
string of the output of the first block S0 = C (X0) must be
a random variable uniformly distributed over {0,1}G (con-
straint m∈ Im(µ0) grants that the conditioning event µ0 =m
has not zero probability; constraint m > kG is necessary in
order to have S0,k defined). The reason for asking for (6)

is that in a real case an opponent could get an estimate of
the length of the bit-string obtained after processing the first
block µ0 (e.g., by some side-channel attack that measures
the time required to store the produced bits), even without
knowing the actually generated bits. If condition (6) is not
satisfied, the opponent could derive some information about
the generated bits, reducing the security of the whole sys-
tem.

Fact 1 Condition (6) is stronger than requiring that the over-
all process (3) is a UBP. That is, if (6) is true, then b is
a UBP; but the reverse implication does not hold: one can
have a non-admissible conditioner that gives rise to a UBP.

Proof The proof that (6) implies that b is a UBP is given
in Appendix A.2, where it is also shown that knowledge
of the length of the generated bit-string after processing N
blocks does not give any information about the generated
bits. Scheme (5) is an example of a conditioner that is UBP,
but not admissible.

Condition (6) seems complex to verify. However, it is
possible to give a simpler equivalent condition that uses only
Im(C ).

Property 1 A conditioner C : A L→{0,1}∗ is admissible if
and only if

∀b ∈ Im(C ) P[C (X0) = b|µ0 = |b|] = 2−|b| (7)

In words, Property 1 says that, if the conditioner generates
a bit-string b of length |b|, i.e., b ∈ Im(C ), then all the 2|b|

bit-strings with the same length are in Im(C ) and equiprob-
able. One direction of the proof (i.e., that (6) implies (7)) is
easy, since (7) is just a specialized version of (6). The other
direction is more complex and it is given in Appendix A.3.

4.2 Conditioner rate

A parameter of interest is the rate of a conditioner, that is,
the amount of random bits per input symbol that a condi-
tioner can produce.

Definition 2 If C : A L → {0,1}∗ is a conditioner, its rate
R (in bit per input symbol) is defined as

R =
E [µ0]

L
(8)
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In the case of A finite, we expect that the rate of an admis-
sible conditioner will not be larger than the entropy of the
input symbol. Indeed, from Lemma 1 proved in Section 5
one can easily show that if A is discrete and X is iid, then

R≤ H(X)− H(µ0)

L
(9)

5 VQ-Based Generalized Elias Schemes

So far we did not impose any special structure on the condi-
tioner C . Now we are going to suppose that it has the spe-
cial structure shown in Fig. 1: every block is processed by
a VQ QL : A L→QL, where QL, the quantizer alphabet, is
a finite set. We will denote with Vn = QL(Xn) the r.v. asso-
ciated with the n-th VQ output. Note that if the alphabet A
is finite, then one can choose QL = A L and use for QL the
identity map. In this case we will say that the trivial quan-
tizer is used.

Successively, the output of the QL is mapped to an output
bit-string by an indexer IL : QL → {0,1}∗. Note that one
could merge the VQ with the indexer block, getting rid of
the VQ output. The introduction of the VQ, however, makes
the analysis easier.

The following lemma gives a very general bound about
the rate of a VQ-based Generalized Elias Scheme (GES).

Theorem 1 If X is a stationary process (not necessarily iid)
and C : A L → {0,1}∗ is an admissible conditioner for X,
the following inequality holds

R =
E [µ0]

L
≤ H(V0)

L
− H(µ0)

L
(10)

Proof Since the conditioner is a deterministic function, we
have H(S0) = H(C (X0)) ≤ H(V0). In order to obtain (10),
observe that

H(V0)≥ H(S0)

= H(S0µ0)

= H(S0|µ0)+H(µ0)

= ∑
k∈Im(`0)

H(S0|µ0 = k)P[µ0 = k]+H(µ0)

= ∑
k∈Im(`0)

kP[µ0 = k]+H(µ0)

= E [µ0]+H(µ0) (11)

Equation (10) follows by dividing (11) by L.

Corollary 1 If X is an iid process, A is discrete, the VQ is
trivial and C : A L → {0,1}∗ is an admissible conditioner
for X, then

R≤ H(X)− H(µ0)

L
(12)

5.1 Indexer Design

The indexer used in this paper is based on the same prin-
ciple (two-level partition) used by Elias in his work [7]. In
this section, we generalize the original technique by Elias
in a way that can be reused for the scheme proposed in this
paper. This will allow us to derive lower and upper bounds
to the efficiency of a generic GES, making it possible to de-
rive quantitative results for the proposed scheme, as well as
derive alternative proofs of the performance of the original
Elias’ scheme. It is easier to describe the construction as a
sequence of steps

1. Partitioning The first (and key) step in the construction
of the indexer is an iso-probability partitioning of QL.
More precisely, QL is partitioned as

QL =
PL⋃
k=1

Pk, i 6= j⇒ Pi∩Pj = /0 (13)

where PL is the cardinality of the partition, and every
set Pk satisfies the following iso-probability condition

x,y ∈ Pk⇒ P[V0 = x] = P[V0 = y] (14)

that is, all the symbols belonging to Pk must have the
same probability. Let φk(x) a one-to-one enumeration
map for the elements of Pk.

2. Splitting Pk The second step is also done off-line and it
requires that every set Pk in (13) is partitioned as

Pk =
⋃

j

Vk, j, i 6= j⇒Vk,i∩Vk, j = /0, (15)

where the cardinality of every Vk, j is a power of two. The
cardinalities of sets Vk, j can be easily found by express-
ing |Pk| in binary [7]

|Pk|=
C

∑
j=1

2bk, j (16)

3. Indexing Let νk, j = log2 |Vk,i|. To every element of Vk,i
one assigns a unique νk, j-bit binary string corresponding
to the binary expansion of a unique index φk,i(x).

4. On-line procedure The last step is the only one done on-
line. In the on-line step the conditioner just receives a
symbol x ∈ QL, it finds the unique Vk,i that includes x
and produces the νk,i-bit binary expansion of φk,i(x). If
|Vk,i| = 1, then νk,i = 0 and the empty bit-string is pro-
duced.

See Fig. 2 for an example of this two-level partition.

Example 1 For example, suppose Pk = {0,1, . . . ,25}. Since
|Pk| = 26 = 21 + 23 + 24, Pk is partitioned in three sets: set
Vk,1 contains the 24 elements {0,1, . . . ,15}, Vk,2 contains
the 23 elements {16,17, . . . ,23} and Vk,3 contains the 21
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Fig. 2 Partitioning of a fictional VQ. The set of VQ regions has been
partitioned into two subset P1 and P2 and each subset has been parti-
tioned into subsets Ri, j with 2ni, j elements. Every set Ri, j is labelled
with the corresponding bit-string. Note that R1,1 has only one element
and the corresponding bit-string is the empty string (shown as Λ ).

elements {24,25}. In this example νk,1 = 4, νk,2 = 3 and
νk,3 = 1. If x belongs to Pk with index, say, φk(x) = 18, we
have x ∈ Vk,2, |Vk,2| = 8 and φk,2(x) = 2, so that the condi-
tioner will output the bit-string 010.

Observe that in the construction above the only non-
trivial step is the first one, namely, the partitioning of QL
into sets that satisfy the iso-probability condition (14); the
other two steps are very easy. The major difficulty in choos-
ing an iso-probability partition is that the iso-probability con-
dition must continue to hold even when there is some uncer-
tainty about the statistical description of the input symbols.

Note that Elias’ original scheme satisfies the iso-probability
condition by putting in the same Pk blocks with the same
signature (see Section 3). These blocks have the same prob-
ability as soon as values Xn are iid. Elias’ construction can
clearly be applied to every source with finite alphabet. As
we will show later, it can happen that in some cases (e.g.,
the Poisson case, see Section 6.2) a smaller partition (i.e.,
with P smaller) is possible and this can improve the effi-
ciency of the conditioner.

A key property of the just described indexer is that it
always produces an admissible conditioner.

Property 2 Every GES is an admissible conditioner (in the
sense of Definition 1).

Proof By exploiting the iso-probability condition (14) and
the fact that every Vk, j ⊂ Pk, it is very easy to prove that
all the binary strings of a given output length are in Im(C )

and have the same probability, that is, (7) holds. The thesis
follows by applying Property 1.

5.2 Performance of Generalized Elias Schemes

The main result of this section is the following theorem that
gives conditions that imply that a GES is asymptotically effi-
cient. In the most commonly considered case of finite alpha-
bet A , a conditioner is considered asymptotically efficient
if one can get a rate as close as desired to H(X0) – the max-
imum achievable rate – by choosing L large enough. How-
ever, if the alphabet A is continuous (e.g., R), it does not
make sense to talk about H(X0). Instead, the bound against
which we need to measure efficiency is the entropy H(V0)

of the output of the VQ. Note that one can make H(V0) as
large as desired by choosing a high-resolution (and expen-
sive) VQ.

Definition 3 Let I ⊂ N with sup I = ∞ and suppose that for
every L ∈ I one has a GES conditioner CL : A L → {0,1}∗
for blocks of size L. The family of conditioners {CL}L∈I is
said to be asymptotically efficient if

lim
L∈I,L→∞

E [µ0,L]

L
−

H(V (L)
0 )

L
= 0 (17)

where µ0,L is the variable µ0 associated with CL.

Theorem 2 Let the notation be as in Definition 3. Let QL
and PL be, respectively, the quantizer alphabet and cardi-
nality of the partition associated with CL. If |QL| and PL
grow slowly enough in the sense that

lim
L∈I,L→∞

logPL

L
= 0 (18a)

lim
L∈I,L→∞

log log |QL|
L

= 0 (18b)

then the family of conditioners {CL}L∈I is asymptotically ef-
ficient.

Note that in the case of the trivial VQ and of an iid process
X , H(V (L)

0 )/L = H(X) for every L.

Remark 3 Hypothesis (18b) can be expected to be verified
in every case of interest. Indeed, it is reasonable to assume
that |QL| ≤ ρL for some ρ . Note that in the discrete case we
directly have |QL| ≤ |A |L. In the continuous case, observe
first that every practical implementation will have to put a
bound over the maximum range of Xn. Therefore, let U ⊂R
be an interval of length |U |, chosen so that the probability
that Xn 6∈ U is as small as desired (e.g., if Xn ∼ N (0,σ),
one can choose |U |= [−kσ ,kσ ] with k large enough). Sup-
pose that in the process of block construction we discard Xn
if Xn 6∈ U . It follows that every block belongs to a region
with volume |U |L. Moreover, it is reasonable to assume that
the volume of the smallest region of the VQ is not smaller
than DL for some D independent on L (D can thought as the
“resolution” of the VQ). It follows that the number of the
VQ quantization regions (i.e., the cardinality of QL) is not
larger than (|U |/D)L.
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A key step in proving Theorem 2 is the following lemma.

Lemma 1 For every admissible GES with block size L the
following inequalities hold

H(V (L)
0 )

L
− H(µ0)

L
− log2 PL

L
≤ E [µ0]

L
≤

H(V (L)
0 )

L
− H(µ0)

L
(19a)

0≤ H(µ0)

L
≤ log2 log2 |QL|

L
(19b)

The proof is given in Appendix A.4. By using Lemma 1 it is
easy to prove Theorem 2.

Proof (Proof of Theorem 2) Rewrite (19a) as

−H(µ0)

L
− log2 PL

L
≤ E [µ0]

L
−

H(V (L)
0 )

L
≤−H(µ0)

L
(20)

Observe that if (18b) is satisfied, inequality (19b) shows that
limL→∞ H(µ0)/L = 0. Remembering hypothesis (18a), one
deduces that when L→ ∞ both the left hand side and the
right hand side of (20) go to zero. Therefore, the central
quantity must go to zero, too.

6 Application of the theory

In this section we are going to show three examples of appli-
cation of the theory above. First we will re-analyze the orig-
inal Elias’ scheme and provide a different proof of its op-
timality, successively we will develop two non-trivial GES:
one for Poisson sources and one for Gaussian sources.

6.1 The original Elias’ scheme

It is interesting to analyze the original Elias’ scheme using
the results and the framework outlined above. Elias consid-
ers the case of blocks of iid variables, taking values in an al-
phabet of size |A | = M, which are directly partitioned into
iso-probable classes Pk by considering all the permutations
(with repetition) of the symbols appearing in a given input
block. We are interested in giving an estimate of log2 PL/L,
where PL is the size of the resulting partition, which we can
use in (19a) to evaluate the distance between the upper and
the lower bound of the scheme rate.

Property 3 In the case of an Elias’ scheme for an alphabet
A of size |A |= M, the following inequalities hold

log2 log2 |QL|
L

=
log2 L

L
+

log2 log2 M
L

(21a)

log2

(
M−1

L
+1
)
≤ log2 PL

L

≤ 1
L

log2

(
1√
2π

(M+L−1)M+L−0.5

(M−1)M−0.5LL+0.5

)
(21b)

Note that since both bounds in (21) go to zero as L increases,
Property 3 together with Theorem 2 implies that the family
of Elias’ conditioners is asymptotically efficient, finding in
a different way the original result of Elias [7].

Proof Equation (21a) follows at once from QL = A L. In
order to prove (21b), remember that if x ∈ A L and b ∈ A ,
#b(x) is the number of times that b ∈A appears in x. In the
Elias’ scheme, every set Pk is characterized by the fact that
x,y ∈ Pk if x and y have the same signature, i.e., #b(x) =
#b(y) for every b ∈A (see Section 3). Therefore, the set Pk
containing x is characterized by the |A | = M values #b(x),
b ∈ A . The size PL of partition (13) is therefore equal to
the number of ways of writing L as the sum of |A | non-
negative numbers, that is the number of weak compositions
of L in |A | parts. As well known, the number of such weak
compositions is

PL =

(
M+L−1

L

)
(22)

By using the known bounds (see [8] for the upper bound)(n
k

)k
≤
(

n
k

)
≤ 1√

2π

nn+0.5

(n− k)n−k+0.5kk+0.5 (23)

one deduces

L log2

(
M−1

L
+1
)
≤ log2 PL

≤ log2

(
1√
2π

(M+L−1)M+L−0.5

(M−1)M−0.5LL+0.5

)
(24)

from which (21) follows.

6.2 Finite Geometric variables

In this section we apply the above results to the conditioning
of a sequence of random variables distributed according to
a generalization of geometric random variables. Since the
variables have finite alphabet, we use the trivial VQ, and
input blocks of such variables are directly partitioned into
equiprobable classes, using a scheme which is different from
the Elias’ one based on permutations.
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Definition 4 A random variable X will be said to be an M-
finite geometric (or simply finite geometric) random vari-
able with parameter p ∈ (0,1) if it assumes values in JM =

{0,1, . . . ,M−1} and its probability mass function is

P[X = `] =
p

1− (1− p)M (1− p)` (25)

Note that for M = ∞, Definition 4 reduces itself to the defi-
nition of the usual geometric random variable. The entropy
of an M-finite geometric has the expression

H(X)=− log2
p

1−qM −
q(MqM−MqM−1 +1−qM)

(1−qM)p
log2 q.

(26)

where q = 1− p.

Remark 4 The reason for considering M-finite geometric ran-
dom variables is that they are the natural outcome of the
sampling of a Poisson process, for instance originating from
natural sources. More precisely, suppose a Poisson process
with intensity λ is given. Partition the positive time axis into
intervals In = [nD,(n+ 1)D), n ∈ N, of size D and “mark”
the intervals where at least one event of the Poisson process
happens (e.g., at least one atom decays or at least one photon
arrives). Let tk ∈ N be the index of the k-th marked interval
and define inter-arrival time Tn := tn+1− tn−1. if the inter-
arrival time Tn is measured by using a ν-bit counter fed with
a clock of frequency 1/D, so that if Tn > 2ν −1 the counter
wraps around, it follow that the value read from the counter
will be Xn := Tn mod 2ν ∈ {0, . . . ,2ν−1} It is easy to prove
that random variables Tn are iid and geometric with param-
eter p = 1− exp(−λD), while random variables Xn are iid,
2ν -finite with parameter p.

While original Elias’ method to construct partition (13)
can be used with any process with iid variables, not neces-
sarily binary, we can exploit the fact that Xn ∼ G (p;M) in
order to develop a more efficient conditioner.

More precisely, we partition A L according to the sum of
the entries of the block, that is, for every k ∈ JL(M−1)+1 and
x ∈A L, x = [x0, ...,xL−1], we define set Pk as

Pk = {x ∈A L :
L−1

∑
i=0

xi = k} k ∈ JL(M−1)+1 (27)

Note that if x ∈ A L, 0 ≤ ∑
L−1
i=0 xi ≤ L(M− 1), so that sets

(27) are a partition of A L.

Property 4 Partition (27) satisfies the iso-probability con-
straints, for any value of parameter p.

Proof It suffices to compute the probability of the generic
x = [x0, . . . ,xL−1]∈A L. More precisely, let C = p/(1−(1−

p)M) in the M-finite case and C = p in the infinite case and
observe that

P[X0 = x0, . . . ,XL−1 = xL−1] =
L−1

∏
k=0

P[Xk = xk]

=
L−1

∏
k=0

C(1− p)xk

=CL(1− p)∑k xk

(28)

Therefore, P[X0 = x0, . . . ,XL−1 = xL−1] depends only on the
sum ∑

L
k=1 xk and the iso-probability of partition (27) follows.

The proposed scheme is also asymptotically efficient, as claimed
by the following property.

Property 5 The proposed conditioner for M-finite geomet-
ric variables, is efficient, that is

lim
L→∞

E [µ0]

L
= H(X) (29)

Proof Note that PL = L(M−1)+1 < LM and |QL|= ML,
so that both
log2 PL

L
<

log2(LM)

L
=

log2 L+ log2 M
L

(30)

and (21a) hold. Therefore, hypotheses (18) are satisfied and
the conditioner is efficient.

6.3 Gaussian Source

Gaussian random variables are very common in practice. In
order to construct a suitable VQ, we are going to exploit
the fact that the the joint probability density function (pdf)
of L iid Gaussian variables depends only on the length of
the argument. More in detail, we are going to partition the
space into spherical shells and successively partition every
spherical shell into portions of equal volume. Every portion
will be a region of the VQ. Therefore, the output of the VQ
can be represented by a pair of indexes: one index denotes
the spherical shell, the other the portion inside the spheri-
cal shells. The first index can be interpreted as a quantized
version of the length of the vector, while the second index
as a quantized version of the “angle.” We will denote the
r.v. associated to the two indexes respectively as R and Θ .
Therefore, the r.v. associated with the output of the VQ is
the pair (R,Θ).

More into details, the VQ construction is done as follows

1. Choose a maximum radius Rmax.
2. Choose K radii r1 < r2 < · · ·< rK = Rmax. Set r0 = 0 for

notation convenience. Define the k-th spherical shell Sk
as

Sk := {x ∈ RL : rk−1 ≤ ‖x‖ < rk} (31)

Moreover, define, for notation convenience, SK+1 = {x∈
RL : ‖x‖ > Rmax}.
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Fig. 3 An example of quantizer region Vk, j obtained by intersecting
the spherical shell Sk with a cone.

3. For every k = 1, . . . ,K+1, choose the number of sets Nk
used to partition shell Sk. Choose a radius r and partition
the sphere ‖x‖ = r into Nk subsets with the same area
(using, for example, the algorithm in [9,10]). Let Uk, j be
the j-th element of such a partition. Of course, one can
always reduce itself to the case r = 1, but allowing for a
general r will simplify the study later.

4. For every k = 1, . . . ,K+1 and every j = 1, . . . ,Nk, define
set

Vk, j := {x ∈ Sk : r x/‖x‖ ∈Uk, j} (32)

In other words, Vk, j is the set of vectors belonging to the
k-th shell Sk that “fall” inside Uk, j when projected on the
sphere ‖x‖ = r (see Fig. 3). Note that Sk =∪ jVk, j. Every
Vk, j is a region of the VQ. Therefore, the set of pairs
(k, j) can be considered as the quantizer alphabet QL.

5. It is easy to see that as soon as r.v. Xn are Gaussian, zero
mean and iid, for every k ∈ {1, . . . ,K + 1} and j1, j2 ∈
{1, . . . ,Nk}, the following holds

P[X0 ∈Vk, j1 ] = P[X0 ∈Vk, j2 ] (33)

Therefore, the spherical shell Sk is partitioned into re-
gions with the same probability, and the corresponding
VQ outputs (R,Θ) = (k, j) satisfy the iso-probability
condition.

In order to verify if the proposed VQ is asymptotically effi-
cient and compute its rate, it is necessary to get an estimate
of both PL = K + 1 and |QL| = ∑k Nk, in order to check
hypotheses (18). To such an end, it is necessary to describe
explicitly how Rmax, K and values Nk are chosen for every
block-size L. The following is a possible, reasonable choice,
although not the only possible one.

1. Choose ε < 1 and choose the maximum radius Rmax in
order to have P[‖X0‖ > Rmax]≤ ε

2. Choose a constant D (i.e., independent on L) that will
represent the resolution of the VQ. Note that D can be
considered as a measure of the “cost” of the VQ. We
will partition the space into spherical shells of thickness
at least D, that is, we will have rk− rk−1 ≥ D.

3. One possible choice for Uk, j is as follows. The same
angular partition is used for all k. More precisely, the
sphere with radius rL = σ

√
L is quantized, with the con-

straint that the measure of each element is not smaller
than βDL−1 where β is a constant that does not depend
on L. The choice for rL is due to the fact that ‖X0‖ is ap-
proximately distributed as N (σ

√
L−1,σ) and we can

expect ‖X0‖ be close to rL.
This solution has the advantage of making the VQ “sep-
arable:” first the norm ‖X0‖ is quantized with step D,
successively X0/‖X0‖ is quantized using the chosen
angular partition.

We will denote as C N
L the conditioner resulting from the

above choices.

Theorem 3 The family of conditioners {C N
L }L∈N is asymp-

totically efficient and, moreover, its rate for large L satisfies

lim
L→∞

E [µ0]

L
= log2

√
2πe+ log2

σ

D
(34)

Note that (34) is the entropy of a r.v. N (0,σ2) quantized
with step D. In order to prove Theorem 3 we need few lem-
mas whose proofs are in Appendix A.5.

Lemma 2 Suppose the L dimensional sphere surface of ra-
dius r is partitioned into pieces of area βDL−1. Let WL,r the
number of pieces. The following equality holds

log2 WL,r

L
= log2

√
2πe− log2 D+ log2

r√
L
+o(1) (35)

where o(1) denotes a term that goes to zero when L→ ∞.

Lemma 3 There exist constants C1, C2, C3, C4 and L0 such
that for all L > L0

Rmax ≤C1
√

L (36a)

PL ≤C2
√

L (36b)

|QL| ≤
(

C3
√

L
)L

(36c)

Proof (Proof of Theorem 3) It is immediate to show that
(36b) and (36c) imply (18), therefore the family of con-
ditioners it is asymptotically efficient. Since the family is
asymptotically efficient, the rate converges (in the sense of
(17)) to H(V0)/L. In order to compute an estimate of H(V0)/L,
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remember that V0 is the pair (R,Θ) and observe that since
H(V0) = H(R)+H(Θ) and H(R)≤ log2 PL

H(Θ |R)

L
≤ H(V0)

L

≤ log2 PL

L
+

H(Θ |R)

L

≤ log2 L+2log2 C2

2L
+

H(Θ |R)

L

(37)

where we exploited bound (36b). It turns out that the rate
for large L is dominated by the entropy H(Θ |R) and that
R gives a negligible contribution. Observe that H(Θ |R) =

H(Θ) = log2 WL,rL (with the notation of Lemma 2). The the-
sis follows by using Lemma 2 with r = rL = σ

√
L.

7 Experiments

In this section, we focus on the case of finite geometric vari-
ables and compare the performance of the proposed scheme
with the one obtained using the original Elias’ method to
create the iso-probable classes. We assume that x= [X0, ....,XL−1]

is a vector of independent M−finite geometric random vari-
ables, each with probability mass function given by (25) and
entropy (19a). Let [x0, ...,xL−1] denote an instance of x.

As explained in Section 5.1, the conditioner generates,
for an input block x, a bit string bx = C (x) of length |bx|.
The actual string bx will depend on the method used to form
classes (e.g., the original Elias’ procedure or the proposed
one).

It is therefore easy to compute the efficiency of the two
schemes on the basis of the average output bit-string length

E [µ0] = ∑
x
|bx|p(x),

where p(x) is the product of L probability mass functions
of type (25). Table 1 shows E [µ0]/L for the two methods
when the variables are represented modulo M = 16. We set
p = 0.1. Note that the entropy of a geometric random vari-
able with parameter p = 0.1 is H(T ) = 4.6900, while the
entropy of the finite geometric X = T mod M, M = 16, is
H(X) = 3.8411. As an example, for L = 2, the Elias’ par-
tition method will output 1 bit for all realizations where
x0 6= x1. Using (25), one finds, for Elias’ method,

E [µ0]

2
=

1
2
− 1

2
(1− (1− p)2M)p2

(1− (1− p)2)(1− (1− p)M)2 ,

which evaluates to 0.4617 when p= 0.1, and should be com-
pared with the value 1.1272 attained by the proposed ap-
proach.

For larger values of L and M we simulated N = 15000
realizations of x, concatenate the output binary strings into
one string SN and plot in Fig. 4 the values |SN |/(LN) for
M = 16 and M = 64, L = 2, ...,10. Note that for M = 64,

Table 1 Average length, in bit/symbol for the Elias’ partition and the
proposed one.

L = 2 L = 3 L = 4 L = 5
Elias part. 0.4617 0.4820 0.8104 0.9164
Proposed 1.1272 1.8488 2.2985 2.5738

we have H(X) = 4.6768, due to the fact that the modulo
operation has less influence for larger M. Simulations were
performed in R©Matlab using the default uniform random
number generator Mersenne Twister and code

mod(floor(log(rand)/log(1-p)),M)
to generate M-finite geometric random variables.

Although both methods approach the entropy of the source
as L increases, the table and the figures clearly show the pos-
sible advantage of the proposed method1.

8 Conclusions

In this paper, we introduced the concept of a block-based
admissible conditioner and of a Generalized Elias Scheme
which considers generic classes of equi-probable vectors,
derived from both discrete or continuous variables. We ana-
lyzed the scheme in detail an derived efficiency bounds that
can be used to quantify its performance with finite length
blocks, as well as the asymptotic behavior for increasing
block length. We applied the theory to provide an alterna-
tive proof of the optimality of the original Elias’ scheme
based on permutations. We also considered the problem of
measuring randomness from a Poisson process and proposed
a conditioner for the resulting geometric-like random vec-
tors. Finally, we analyzed the case of quantized random vec-
tors of iid Gaussian variables. A comparison with the orig-
inal Elias’ scheme for non-binary vectors, in a special case
which exploits the particular structure of the geometric dis-
tribution, confirms the potential advantage of the proposed
generalized approach.

A Proofs and Technical Details

A.1 Formal definition of output process bk

In order to make the exposition simpler, we will extend the set of bit
values with a symbol Λ to be used as an “undefined bit.” As a first step,
we define b(N)

k as the k-th output bit after processing block number N
as SN,k if `N > k or Λ if if `N ≤ k. In other words, if after processing

the N-th block, the k-th bit has been generated, b(N)
k is equal to the

generated bit; otherwise its value is the undefined bit value Λ . Note
that b(N)

k is “stable” in the following sense: if b(N)
k 6= Λ and M > N

then b(N)
k = b(M)

k .

1 We consider here non binary vectors. One could exploit the fact
that geometric variables can be equivalently represented by sparse bi-
nary strings and use the original Elias’ scheme based on permutations.
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Fig. 4 Comparison between the Elias’ method and the proposed one. (a) M = 16, (b) M = 64.

We will define N (k)∈N∪{∞} as the smallest N such that `N > k;
if no such N exists (that is, it is always `N ≤ k), we define N (k) = ∞.

Now we can define bk, the k-th bit of the output process as SN (k),k
if N (k)< ∞ or Λ if N (k) = ∞ In words, if at some time the k-th bit is
generated, bk is the generated value, while if the number of generated
bits remains not larger then k, then bk is undefined.

Remark 5 It is intuitive that the case N (k) = ∞ is very unlikely (ac-
tually, we will show that it is a zero probability event); nevertheless,
we must take it into account since one can find realizations of the input
process X that correspond to a finite string of output bits; for exam-
ple, if the conditioner uses the von Neumann algorithm, any realiza-
tion ending with an infinite sequence of zeros produces a finite length
output.

Property 6 If E [µ0] > 0, then for every k ∈ N, the event bk 6= Λ (or
equivalently, N (k)< ∞) happens almost surely.

Remark 6 Note that E [µ0] = 0 only if the conditioner produces the
empty string for every possible input block.

Proof It suffices to show that for every k ∈N the probability of having
`N ≤ k for all N ∈ N is zero. Let EN,k denote the event `N ≤ k and
observe that the E1,k ⊆ E2,k ⊆ ·· · . Therefore, it suffices to show that
limN→∞ P[EN,k] = 0.

We will use the Chebyshev inequality. Observe that `N is a random
variable with mean NE [µ0] and variance Nσ2, where σ2 is the variance
of µ0. If `N ≤ k, then

`N −E [`N ] = `N −NE [µ0]≤ k−NE [µ0] (38)

When N > k/E [µ0], we have k−NE [µ0] < 0, and event (38) implies
(that is, is contained in) |`N −E [`N ]| ≥ NE [µ0]− k, so that

P[EN,k]≤ P [|`N −E [`N ]| ≥ NE [µ0]− k]

≤ Nσ2

(NE [µ0]− k)2 =

(
σ√

NE [µ0]− k/
√

N

)2 (39)

and the last term in (39) goes to zero when N→ ∞.

A.2 Admissibility is stronger than UBP

In this appendix we are going to show that if a conditioner is admis-
sible according to Definition 1, then the output process is an UBP. Al-
though this result is quite intuitive, its formal proof has few technicali-
ties. First, however, we prove the fact that scheme (5) is UBP, providing
a counterexample that proves that UBP does not imply admissibility.

Proof A.1. It is possible to see that scheme (5) is UBP in several
ways. An easy, albeit informal, approach is to observe that mapping
(5) is, actually, the Huffmann code for Xn, which in this case is optimal
(and not only asymptotically optimal) since the symbol probabilities
are of the form 2−`. This implies that the average number of bits per
input symbol generated by the conditioner is equal to the source en-
tropy, so the resulting bit string b is not compressible and iid (i.e., b is
a UBP).

A more precise proof is the following.
Consider bit bk, let nk be the index of the input symbol that gen-

erates bk. Note that it must be jk := `nk−1 ∈ {k− 1,k− 2}. Compute
P[bk = 0] by conditioning with respect to jk

P[bk = 0] = P[bk = 0, jk = k−1]+P[bk = 0, jk = k−2] (40)

If jk = k−1 and bk = 0 it must be Xnk ∈ {a,b}. Since P[Xnk ∈ {a,b}] =
1/2, the first conditional probability is 1/2. If jk = k−2 and bk = 0. . .
ut

Our first step will be to prove that (6), used in the definition of an
admissible conditioner, implies a more general relation.

Lemma 4 If C is an admissible conditioner, then the following holds

∀N ∈ N,G≥ 1,k ∈ NG,m > kG,m ∈ Im(`N),b ∈ {0,1}G

P[Sn,k = b|`N = m] = 2−G
(41)

Remark 7 The difference between (6) and (41) is that (6) takes into
account only a single block, while (41) is relative to the output after
processing the N-th block.

Proof The proof is complicated by the fact that two different bits of
SN , say SN,k and SN, j , can derive from the same block or from differ-
ent blocks, depending on the specific realization of X . In order to take
into account this problem, we are going to condition on the specific
sequence of lengths µ0, µ1, . . . , µN that gave rise to `N = m.

In order to simplify the manipulations, it is worth to introduce
some notation. With µ0:N we will denote the vector [µ0,µ1, . . . ,µN ];
with M we denote the set of vectors µ0:N such that `N = m, formally,

M := {u ∈ Im(µ0)
N+1 :

N

∑
k=0

uk = m} (42)

Note that the condition u ∈ Im(µ0)
N+1 in (42) forces every component

of u to be a possible length for an output block.
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It is clear that the event `N = m is equal to the event µ0:N ∈M, so
that the following holds

P[SN,k = b|`N = m] = ∑
u∈M

P[SN,k = b|µ0:N = u] P[µ0:N = u|`N = m]

(43)

Therefore, if we prove that P[SN,k = b|µ0:N = u] = 2−G for every u ∈
M, the thesis will follow.

Given u ∈M, split k into N +1 pieces ξ j , j = 0, . . . ,N, as follows

ξ j = {o ∈ k : ` j−1 ≤ o < ` j} (44)

that is, ξ j contains the indexes in k that correspond to bits output after
processing block number j.

Define b j as the subword of b corresponding to the indices in ξ j
and observe that

P[SN,k = b|µ0:N = u] = P

[
N∧

j=0

SN,k j = b j|µ0:N = u

]

=
N

∏
j=0

P
[
SN,k j = b j|µ0:N = u

]
=

N

∏
j=0

P
[
SN,k j = b j|µ j = u j

]
=

N

∏
j=0

2−|k j |

= 2−∑
N
j=0 |k j | = 2−G (45)

where we exploited the fact that different blocks are independent at
second step and the admissibility hypothesis at the last one.

Theorem 4 If C is admissible, then process b is an UBP

Proof We need to prove that for every G≥ 1, every k ∈ NG and every
b ∈ {0,1}G, the following equality holds

P[bk = b] = 2−G (46)

We are going to compute probability (46) by conditioning over the
values assumed by N (kL). It is

P[bk = b] = ∑
N∈N

P[bk = b|N (kG) = N]P[N (kG) = N] (47)

where we take the convention that in sum (47) the terms with P[N (kG)=
N] = 0 are removed (otherwise conditional probability P[bk =b|N (kG)=
N] would not make sense). Since by Lemma 4 every conditional prob-
ability in (47) is equal to 2−G, the thesis follows.

A.3 Proof of Property 1: (7) implies (6)

Proof Let G, k, m and b be chosen according to (6). Let k ∈ Nm−G

be the “complement” of k in the sense that the union of k and k is
Jm = {0,1, . . . ,m−1} and k and k are disjoint. Moreover, if b∈{0,1}G

and a ∈ {0,1}m−G, we will denote with [bk,ak] the m-bit bitstring
equal to b in the positions specified by k and equal to a in the positions
specified by k.

Note that the event S0,k = b∧µ0 = m can be written as

∨
a∈{0,1}m−G

(S0,k = b)∧ (S0,k = a)∧ (µ0 = m) (48)

and that all the events in (48) are disjoint. By using (48) one can write

P[S0,k = b|µ0 = m] =
P[S0,k = b,µ0 = m]

P[µ0 = m]

=
∑a∈{0,1}m−G P[S0,k = b,S0,k = a,µ0 = m]

P[µ0 = m]

= ∑
a∈{0,1}m−G

P[S0,k = b,S0,k = a|µ0 = m]

= ∑
a∈{0,1}m−G

P[S0 = [bk,ak] |µ0 = m]

= ∑
a∈{0,1}m−G

2−m

= 2m−G2−m = 2−G (49)

where we exploited decomposition (48) at second step and Hypothe-
sis (7) at the last one.

A.4 Proof of bounds (19)

The key observation used to derive bounds (19) is given by the follow-
ing general lemma.

Lemma 5 Let A and B be two finite sets. Let P := {Q1,Q2, . . . ,QM}
be a partition of A and let π : A→P be the corresponding projection,
that is, the function mapping every x ∈ A to the set of P that includes
x.
Let f : A→ B be a map such that for every k = 1, . . . ,M, its restriction
f
∣∣
Qk

to Qk is injective. Finally, let X be a random variable assuming
values in A and let Y = f (X) and U = π(X).
The following relations hold

H(Y ) = H(X)−H(U |Y )
≥ H(X)−H(U)

≥ H(X)− log2 |P|
(50)

Proof The key observation is that, with the theorem hypothesis, map
x 7→ (π(x), f (x)) is injective. Indeed, if x,y ∈ A and (π(x), f (x)) =
(π(y), f (y)), then x and y must belong to the same set Q = π(x) of
P (because π(x) = π(y)). Then f (x) = f (y) implies f

∣∣
Q(x) = f

∣∣
Q(y)

which in turn implies x = y since f restricted to Q is injective.
By exploiting the injectivity of x 7→ (π(x), f (x)) one deduces H(X)=

H(YU). By observing that H(YU) = H(Y )+H(U |Y ), (50) follows.

The following lemma allows us to apply Lemma 5 to the specific case
of GES.

Lemma 6 If C : QL→{0,1}∗ is an indexing map, then its restriction
to any Pk is injective, that is, for every k ∈ {1, . . . ,P}, if x,y ∈ Pk and
C (x) = C (y), then x = y.

Proof Suppose x,y ∈ Pk. Since C (x) and C (y) have the same length,
both x and y must belong to the same Vk,i, so that

φk,i(x) = C (x) = C (y) = φk,i(y) (51)

Since φk,i is bijective, x = y follows.

By using Lemma 5 and Lemma 6 it is easy to prove the following
corollary

Corollary 2 In a GES the following inequality holds.

H(V0) ≥ H(S0) ≥ H(V0)− log2 P (52)
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Corollary 2 is interesting because it shows that a GES with a small
number of sets in partition (13) has the potential of being more efficient
than a scheme with a larger number of sets.

Corollary 3 In a GES inequality (19a) holds.

Proof Use (11) in (52).

Finally, we are going to prove bound (19b).

Lemma 7 For every GES (19b) holds. In particular, for every GES
limL→∞ H(µ0)/L = 0.

Proof Observe that Im(µ0) is the set of the lengths of the bit-strings in
the image of C and that

H(µ0)≤ log2 |Im(µ0)| (53)

The maximum value in Im(µ0) is maxk,i νk,i, so that

|Im(µ0)| ≤max
k,i

νk,i = max
k,i

log2 |Vk,i| ≤ log2 |QL| (54)

where the second inequality follows from Vk,i ⊆QL. Using (54) in (53)
we obtain

H(µ0)

L
≤ log2 |Im(µ0)|

L
≤ log2 log2 QL

L
(55)

A.5 Bounds on VQ size for the Gaussian case

Proof A.2. Proof of Lemma 2 Define, for notation convenience, θ =√
π . As well known, the surface area of an L-dimensional sphere of

radius r is

2πL/2rL−1

Γ
( L

2

) =
2
r

θ LrL

Γ
( L

2

) (56)

Therefore, the number of pieces is

WL,r =
2D
β r

θ LrL

DLΓ
( L

2

) (57)

Let, for notation convenience, C = ln(2D/β r). By remembering the
Stirling’s approximation

lnΓ (x) = x lnx− x+O(lnx) (58)

it follows that

lnWL,r

L
=

C
L︸︷︷︸

o(1)

+ ln
θr
D
− 1

2
ln

L
2
+

1
2
+

O(lnL)
L︸ ︷︷ ︸

o(1)

= ln
√

2πe− lnD+ ln
r√
L
+o(1) = ln

√
2πe+ ln

σ

D
+o(1)

(59)

The thesis follows by multiplying (59) by log2 e. ut

Proof A.3. Proof of (36a) It is well known that r.v. ‖X0‖2/σ2 is a
chi-squared r.v. with L degrees of freedom. The requirement that the
overflow probability is smaller than ε can be written as

ε = P[‖X0‖ > Rmax]

= P[‖X0‖2/σ
2 > R2

max/σ
2]

= P[χ2
L > R2

max/σ
2]

(60)

With the notation of [11], from (60) one deduces u(ε,L) = R2
max/σ2.

By using bounds [11]

u(ε,L)≤ L−2lnε +2
√
−L lnε (61)

one deduces

Rmax ≤ σ

√
L−2lnε +2

√
−L lnε (62)

The final step is to upper bound the argument of the first square root in
(62) with 2L. This happens if

−2lnε +2
√
−L lnε ≤ L (63)

which is equivalent to

− lnε

L
+2

√
− lnε

L
≤ 1 (64)

It is immediate to verify that the left hand side of (64) is monotone
decreasing in L and it goes to zero when L→∞. Therefore, there exists
L0 such that (64) is true for every L > L0. Therefore, (36a) is true for
L > L0 and C1 = σ

√
2. ut

Proof A.4. Proof of (36b) For the sake of simplicity, we will suppose
that D was chosen in order to make (65) integer. Since every shell has
thickness D and every shell is an element of the partition, the partition
size is the total number of shells, that is,

PL = K +1 =
Rmax

D
+1≤

(√
2σ

D
+1

)
√

L (65)

which is (36b) with C2 =
√

2σ/D+1. ut

Proof A.5. Proof of (36c) According to (57), with WL,1 =N1, the num-
ber of regions in the VQ can be upper-bounded as

|QL|= (K +1)N1 ≤ (C2
√

L)
2D

σ
√

Lβ

θ LσLLL/2

DLΓ
( L

2

)
≤ A

(
θσ
√

L
Deγ/2

)L

= A
(

B
√

L
)L
≤
(

AB
√

L
)L

(66)

with obvious meaning of A and B. In (66) we used bound Γ (x+ 1) >
exp(γx), x > 0, [12,13], where γ ≈ 0.577 is the Euler-Mascheroni con-
stant. Equation (66) is (36c) with C3 = AB. ut
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