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Abstract—Planning problems are usually expressed by speci-
fying which actions can be performed to obtain a given goal. In
temporal planning problems, actions come with a time duration
and can overlap in time, which noticeably increase the complex-
ity of the reasoning process. Action-based temporal planning
has been thoroughly studied from the complexity-theoretic
point of view, and it has been proved to be EXPSPACE-
complete in its general formulation. Conversely, timeline-
based planning problems are represented as a collection of
variables whose time-varying behavior is governed by a set of
temporal constraints, called synchronization rules. Timelines
provide a unified framework to reason about planning and
execution under uncertainty. Timeline-based systems are being
successfully employed in real-world complex tasks, but, in
contrast to action-based planning, little is known on their
computational complexity and expressiveness. In particular, a
comparison of the expressiveness of the action- and timeline-
based formalisms is still missing. This paper contributes a first
step in this direction by proving that timelines are expressive
enough to capture action-based temporal planning, showing
as a byproduct the EXPSPACE-completeness of timeline-based
planning with no temporal horizon and bounded temporal
relations only.

I. INTRODUCTION

Action-based planning languages, such as PDDL [1], [2],

represent planning problems from the point of view of

the executor by identifying which actions it can choose

to perform to reach the given goal. Problems are usually

expressed as a set of fluents, which describe the world, and

actions are characterized by how they change the fluents.

When reasoning about automated planning in AI, this has

been the mainstream mindset since the beginning of the

field, as, for example, in early planning systems such as

STRIPS [3], whose heritage is still evident in PDDL.

In addition to be effectively solved by a number of well-

known techniques, STRIPS-like classical planning has also

been studied from a theoretical point of view. The plan

existence problem for STRIPS domains has been proved to

be PSPACE-complete [4], and it is known that a number of

syntactic extensions provided by PDDL, like, for instance,

conditional effects, do not increase the complexity and the

expressive power of the formalism. Even if we consider

temporally extended goals [5], supported in PDDL 3 [2],

the problem remains PSPACE-complete [6].

Remaining in a deterministic setting, to increase the com-

putational complexity one has to turn to temporal planning,

where actions are given a duration rather than being consid-

ered to happen instantaneously. The reasoning is made more

complex by the fact that the execution of the actions can

now overlap in time, and that the current state may depend

on events happened far in the past. In particular, the latter

fact makes the problem EXPSPACE-complete, as shown by

Rintanen [7], who has also isolated the fragment of temporal

planning which is reducible to classical planning.

A different paradigm, called timeline-based planning, ex-

ists, which models planning problems in a more declarative

way than action-based formalisms. It describes the world

as a collection of independent, but interacting, components

identified by a set of variables, whose behavior over time is

constrained by a set of temporal constraints, called synchro-

nization rules. This approach was introduced in applications

from the space sector [8], where it has been proved very

effective in complex real-world tasks [9]–[12]. In these

applications, a large number of independent components

have to be controlled to reach the goal and to guarantee

the satisfaction of operative requirements, and a declarative

approach results more natural than the imperative, executor-

centric action-based formalisms. Moreover, flexible timelines

allow one to reason in a unified framework both on planning

and execution under uncertainty.

In contrast to action-based planning, theoretical aspects

of timeline-based planning were not investigated until very

recently. A first formal description of the problem has

been proposed in [13], while a formalization with flexible

timelines appeared in [14], later extended in [15] to account

also for controllability issues. Meanwhile, the connection

between timelines and Timed Game Automata has been

investigated for the purpose of plan verification [16], [17]

and robust plan execution [18], [19]. However, a complexity-

theoretic characterization of the problem is still missing, and

it is not known how this formalism relates to more common

action-based ones in terms of expressiveness.

This paper contributes a first step to fill this gap by study-

ing the computational complexity of the plan existence prob-

lem for a specific variant of timeline-based planning, which

features discrete time, non-flexible timelines, controllable
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variables only, tokens of bounded length, and removes the

specification of an horizon for solution plans. We compare

this fragment to action-based temporal planning à la PDDL,

showing that even with these simplifications timelines can

capture action-based temporal planning problems, thus pro-

viding a first expressiveness comparison between the two

formalisms. This is shown by a polynomial-time reduction

from one problem to the other, thus showing that our variant

of timeline-based planning is EXPSPACE-hard. We then

provide a decision algorithm that runs in exponential space,

thus proving it to be EXPSPACE-complete.

The paper is structured as follows. Section II precisely

defines the fragment of timeline-based planning we focus

on, and it includes some remarks about its syntax that will

come useful later. Section III introduces the simple temporal

planning language we consider in our comparison, which

was already used by Rintanen [7] in his own analysis of tem-

poral planning. Later, Section IV provides the EXPSPACE-

hardness result, while Section V shows that the problem

belongs to EXPSPACE by providing a suitable decision

algorithm. Finally, conclusions in Section VII delineate

possible future lines of research on this topic.

II. TIMELINE-BASED PLANNING

In this section, we introduce the basic elements of the

timeline-based approach to the planning problem, and define

the specific variant of the problem studied in this paper. A

formal specification of the general problem has been given

in [15], including controllability issues related to temporal

uncertainty during actual plan execution. Our work is based

on these definitions, adapted and specialized to restrict some

aspects in order to isolate the precise definitions needed to

capture temporal planning (see Sections IV and V).

As already pointed out, timeline-based planning is a

more declarative approach to planning than action-based

languages. Planning domains are modeled by specifying the

possible behavior of state variables, which represent the

main components to be controlled of a system, i.e., logical or

physical subsystems whose properties may vary over time.

Definition 1 (State variable). A state variable x is a triple

(V, T,D), where:

• V is the finite domain of x;

• T : V → 2V is the value transition function, which

maps each value v ∈ V to the set of values that x can

take immediately after v;

• D : V → N×N is a function that maps each v ∈ V to

a pair (dmin, dmax), with dmin ≤ dmax, where dmin
and dmax are respectively the minimum and maximum

duration of an interval over which x holds the value v.

In order to specify which values actually takes a variable

and for how long, the notion of token has been introduced.

Definition 2 (Token). Let x = (V, T,D) be a state variable.

A token for x is a pair (v, d), where v ∈ V and d ∈ N

is the duration of the token, with dmin ≤ d ≤ dmax if

D(v) = (dmin, dmax).

The time-varying behavior of a state variable is repre-

sented through a timeline.

Definition 3 (Timeline). A timeline for a state variable x =
(V, T,D) is a finite sequence T = 〈(v1, d1), . . . , (vk, dk)〉 of

tokens for x, where, for all i = 1, . . . , k − 1, vi+1 ∈ T (vi).

Notice that we do not require the values vi and vi+1 of x
in two consecutive tokens to be different.

For a timeline T = 〈(v1, d1), . . . , (vk, dk)〉, we define

two functions start time and end time, that associate an

interval with each token in a timeline:

start time((vi, di)) =

i−1∑

j=1

dj

end time((vi, di)) = start time((vi, di)) + di

for i = 1, . . . , k. In the following, we will interchangeably

refer to a token and its associated interval when there is no

ambiguity. The end time of the last token of a timeline is

called its horizon.

The behavior of the components is constrained by a set of

synchronization rules, which relate tokens on possibly dif-

ferent timelines through temporal relations among intervals

or among intervals and time points. Interval and time point

relations that may occur in synchronization rules here are the

same as usual timeline-based formulations (e.g., [15, Defini-

tion 4]); however, we use a slightly more compact notation.

As an example, given two intervals (tokens) a and b, we

write a ≤s,s

[l,u] b instead of a starts before start[l,u] b. The

notation and meaning of all the relations is recalled in Table I

(for the sake of brevity, we write sa for start time(a) and

ea for end time(a)). Note that the relations require one to

specify lower and upper bounds to the distance between the

related points, and that, in contrast to usual formulations of

timeline-based planning, the bounds have to be finite (i.e.,

bounds of the form [i,+∞] are not allowed). This is an

important syntactic feature of the formalism that has major

consequences on the complexity of the planning problem,

as will be shown in Sections IV and V.

These basic interval relations allow us to define a bounded

version of most of Allen’s interval relations [20]. One of

these, equality between two intervals, will be used exten-

sively in the following sections, so if a and b are two tokens,

we define a = b as a≤s,s

[0,0] b∧a≤
e,e

[0,0] b. Moreover, the starts

at and ends at time point relations are defined as:

a=s t means a≤s

[0,0] t

a=e t means a≤e

[0,0] t

Definition 4 (Synchronization rules). Let Σ be an alphabet

of symbols, called token names. An atom is an expression of

the form a ρ b, where a and b are token names and ρ is one



The relation holds if

a≤
s,s

[l,u]
b l ≤ sb − sa ≤ u

a≤
e,e

[l,u]
b l ≤ eb − ea ≤ u

a≤
s,e

[l,u]
b l ≤ eb − sa ≤ u

a≤
e,s

[l,u]
b l ≤ sb − ea ≤ u

a≤s

[l,u]
t l ≤ t− sa ≤ u

a≥s

[l,u]
t l ≤ sa − t ≤ u

a≤e

[l,u]
t l ≤ t− ea ≤ u

a≥e

[l,u]
t l ≤ ea − t ≤ u

Table I
INTERVAL AND TIME POINT RELATIONS, BETWEEN INTERVALS

a = (sa, ea) AND b = (sb, eb), AND TIME POINT t ∈ N.
BOUNDS l AND u ARE GIVEN TO EACH RELATION.

of the interval relations of Table I. An existential statement

is a statement of the form:

∃a1[x1 = v1] . . . an[xn = vn] . C

where C is a conjunction of atoms, a1, . . . , an are token

names, x1, . . . , xn are state variables, and v1, . . . , vn are

possible values of x1, . . . , xn, respectively.

A synchronization rule is a clause of the form:

a0[x0 = v0] −→ E1 ∨ E2 ∨ . . . ∨ Ek, or

⊤ −→ E1 ∨ E2 ∨ . . . ∨ Ek

where a0 is a token name, x0 a state variable, v0 a

value from the domain of x0, and E1, . . . , Ek are existential

statements where only the token name a0 may appear free.

The a0[x0 = v0] part is called the trigger, and rules of

the second form are called trigger-less.

A formal account of the semantics of synchronization

rules can be found in [15], but their meaning is intuitively

very simple. The left part (the trigger) is a sort of universal

quantifier, which says that for all the tokens a0 where the

variable x0 holds the value v0, at least one of the existential

statements Ei must be true. The existential statements in

turn assert the existence of tokens a1, . . . , an where the

respective state variables hold the specified values, and that

satisfy the interval relations specified by C. The trigger-less

form just asserts the satisfaction of the existential statements.

Note that the purpose of allowing only finite bounds

in interval relations is to ensure that each synchronization

rule can only talk about a bounded number of time steps

around the triggering token, a fact that will play a crucial

role in Section V. For the same reason, the maximum

duration of tokens specified by the duration function in

Definition 1 must be finite, and the synchronization rules

are constrained to be connected, as formally stated by the

following definition.

Definition 5. Let R be a synchronization rule, a0 be the

token name used in the trigger, if any, and a1, . . . , ak be

all the token names used in the existential statements of

R. Let GR = (V,E) be an undirected graph, where V =
{a0, a1, . . . , ak} and E contains an edge {ai, aj} iff there

exists at least one existential statement that contains a clause

of the form ai ≤
e1,e2
[l,u] aj or aj ≤

e1,e2
[l,u] ai, with e1, e2 ∈ {s, e}.

Then, R is said to be connected if GR is a connected graph.

In a formulation of timeline-based planning like the one

in [15], that admits unbounded interval relations, discon-

nected rules can be trivially rewritten into connected ones.

In our formulation this is not possible, and they cause

the same issues that lead to the exclusion of unbounded

interval relations (see Sections V and VI for details). This

restriction is technically not essential for trigger-less rules,

but disconnected trigger-less rules can be made connected by

simply splitting up the connected parts into separate rules, so

we assume this restriction for all kinds of rule for uniformity.

A timeline-based planning domain is specified by the

set of state variables and the set of synchronization rules

representing the admissible behaviors of the involved com-

ponents. As shown in [15], initial conditions and the goal of

the problem can be expressed directly as a set of trigger-less

rules, so here we do not treat them differently from other

kinds of rules (i.e., we consider them included in the set of

synchronization rules S), which leads to a simple definition

of planning problem.

Definition 6 (Planning problem). A timeline-based planning

problem is a pair P = (SV, S), where SV is a set of state

variables and S is a set of connected synchronization rules

defined over variables in SV .

Definition 7 (Solution plan). A solution plan π for a

timeline-based planning problem P = (SV, S) is a set of

timelines, one for each state variable in SV , such that every

synchronization rule in S is satisfied.

Without loss of generality, we can suppose that all the

timelines in the solution have the same horizon, that will be

the horizon of the whole solution.1

Some syntactic features of synchronization rules as de-

fined in Definition 4 can be treated as syntactic sugar, so that

their core syntax can be considered simpler. One of these

possible simplifications, which will come useful to provide

the decision procedure for the problem in Section V, is that

any problem P can be rewritten using only binary state

variables, as stated by the following proposition, which is

proved in the Appendix.

Proposition 1. Every timeline-based planning problem can

be rewritten, with at most a polynomial increase in size, into

an equivalent one that only uses binary state variables.

1If this is not the case, one can add a don’t care value to the variables
domains of a suitable maximum duration.



The reader may have noticed that this definition is far

simpler than the corresponding one from [15]. Despite this

simplicity, we will show that the problem is still very

expressive and computationally hard. In particular, we are

concerned with deterministic domains where there is no kind

of uncertainty with regard to the environment behavior. In

other words, there are no uncontrollable components and

there is no temporal flexibility. This restriction is inline with

our aim to compare the problem with deterministic temporal

planning. Furthermore, while usual formulations require the

specification of a finite bound to the horizon of acceptable

solutions, we do not impose any such bound. It is worth to

note that solution plans are still finite, even if we do not put

a limit on their length. This is because of the definition of

timeline which is a finite sequence of tokens. We are not

considering a semantics that allows infinite models. Finally,

as already noted above, we consider only finite bounds for

the interval relations used in synchronization rules.

III. ACTION-BASED TEMPORAL PLANNING

In this section, we briefly recall the definition of the

action-based temporal planning language that will be used in

the following comparison with the timeline-based formalism

given in Section II. This language has been introduced by

Rintanen in [7] as a simpler and formally cleaner equivalent

to commonly used temporal planning languages such as

PDDL 2 [1]. It can be thought of as an extension of the

classical planning language, where preconditions can involve

arbitrary points in the past rather than the current one only.

In the following, we will refer to problems in this language

simply as temporal planning problems.

Definition 8 (Precondition formula). Let Σ be a set of

proposition letters. A precondition formula over Σ is recur-

sively defined by the following syntax:

φ := σ ∈ Σ | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | [i, j]ψ,

where ψ, ψ1, and ψ2 are precondition formulae and i, j ∈ Z,

with i ≤ j. We denote by L the set of all the precondition

formulae.

Precondition formulae pair the connectives of proposi-

tional logic with an additional temporal operator [i, j] that,

when applied to a formula φ, that is, [i, j]φ, states that φ
must hold in all time points from i to j steps from now.

The formula [i, i]φ is written in short as [i]φ. An additional

constraint forces precondition formulae to talk about the

present and the past only. Hence, while the values i and j
of a subformula [i, j]φ can be greater than 0, the cumulative

effect of the temporal operators occurring in a precondition

formula must be less than or equal to 0. As an example, the

formula [−5](p ∧ [3]q) contains the subformula [3]q, but it

refers to time points in the past only. It is worth to note that

the semantics originally defined for this language consider

in a unusual way the past of the first time step, so that [i]p,

for i < 0, when valuated at time zero, valuates to the same

truth value of p.

Definition 9 (Temporal planning problem). A temporal

planning problem is a tuple (A, I,O,R,D,G), where:

• A is a finite set of proposition letters, called state

variables;

• I is a valuation of A that represents the initial state;

• O is a finite set of proposition letters, called actions

(or operators);

• R : O → L is a function that maps each action to its

precondition;

• D is a finite set of rules of the form (P,E), where P is

a precondition formula and E is a set of literals over

A, that is, p or ¬p with p ∈ A;

• G ∈ L is a precondition formula that specifies the goal

condition.

Intuitively, a rule (P,E) states that whenever P holds at

time point i, the literals in E become true at time point i+1,

while all the other proposition letters preserve their truth. An

action o is applicable (the proposition letter can be true) at

time point i if and only if its precondition R(o) is true at i.

Definition 10 (Solution plan). A solution plan for a tem-

poral planning problem (A, I,O,R,D,G) is a sequence of

actions, which satisfy the action preconditions R and the

rules D of the problem, that, when applied from the initial

state I , lead to a state satisfying the goal condition G.

The following proposition holds [7].

Proposition 2. Let P be a temporal planning problem.

Establishing whether there exists a solution plan for P is

an EXPSPACE-complete problem.

As with the timeline-based formalism introduced in Sec-

tion II, we will benefit from a simplification of the syntax

which can be applied without changing its complexity and

expressive power. In particular, the following proposition,

whose proof can be found in the Appendix, shows that

temporal operators of the form [i]φ are sufficient to express

any temporal formula of the extended form [i, j]φ.

Proposition 3. Any temporal planning problem can be

rewritten, with at most a polynomial increase in size, into

an equivalent one that only makes use of temporal formulae

of the form [i]φ.

IV. HARDNESS OF TIMELINE-BASED PLANNING

We now prove the EXPSPACE-hardness of the plan exis-

tence problem for timeline-based planning via a polynomial-

time reduction from the same problem for the action-based

temporal planning.

Theorem 1. Given a timeline-based planning problem P ,

establishing whether there exists a solution for P is an

EXPSPACE-hard problem.



Proof: Let P = (A, I,O,R,D,G) be an action-based

temporal planning problem. By Proposition 3, without loss

of generality, we can assume that all the temporal operators

that appear in precondition formulae for rules in D and all

action preconditions in R are of the form [i]φ. Moreover,

we can assume that all the aforementioned formulae are in

negated normal form, and that all the temporal operators

are pushed down to literals.2 We will build an equivalent

timeline-based problem P that has a solution if and only if

a solution exists for P .

Let F be a set of formulae built as follows:

• φ ∈ F for each subformula φ of each precondition

formula from the rules in D and of each precondition

R(o), with o ∈ O;

• for each p ∈ A ∪O, p ∈ F and ¬p ∈ F ;

• for each p ∈ A, [±1]p ∈ F and [±1]¬p ∈ F ;

• for each rule (P,E) ∈ D, [−1]P ∈ F ;

• for each formula φ ∈ F , the negated normal form of

its negation is in F , i.e., NNF(¬φ) ∈ F .

The set of state variables for P contains a state variable

xφ for each φ ∈ F . Each of these state variables is Boolean

(i.e., its domain is the set {0, 1}), and its duration is fixed to

a unitary length, that is, D(v) = [1, 1] for each v ∈ {0, 1}.
The transition function does not impose any constraint, so

T (v) = {0, 1} for v ∈ {0, 1}.
For each p ∈ A ∪ O, the value of state variables xp will

describe the valuation of the temporal planning variables and

actions at a given time point, corresponding to the starting

point of the token interval. A set of suitable synchronization

rules will ensure that each xφ state variable will be true

(resp., false) only when the corresponding formula φ would

be true (resp., false) given the truth values of literals. As an

example, for each formula φ∧ψ appearing in F , there will

be a rule of the following form:

a[xφ∧ψ = 1] −→ ∃b[xφ = 1]c[xψ = 1] . a = b ∧ a = c

a[xφ∧ψ = 0] −→ ∃b[xNNF(¬(φ∧ψ)) = 1] . a = b

The first rule above ensures that whenever we have an

interval where φ∧ψ holds, then both φ and ψ hold over that

interval. The second rule handles the case where the formula

is false, and it delegates the work to the rules governing

the variable for its negation. The negated formula does not

appear directly because all the formulae in F are in negated

normal form. This means that a rule to handle negated

formulae is not needed. Negations are instead handled at the

bottom level on literals, with rules connecting the tokens of

xp, for each letter p, with the tokens of its negation x¬p. So

for each literal ℓ over letters p ∈ A ∪O we have:

a[xℓ = 1] −→ ∃b[xℓ̄ = 0] . a = b

a[xℓ = 0] −→ ∃b[xℓ̄ = 1] . a = b

2The NNF is easily obtained as in propositional logic, with the obser-
vation that ¬[i]φ ≡ [i]¬φ. To push down temporal operators, observe that
both [i](φ ∨ ψ) ≡ [i]φ ∨ [i]ψ and [i][j]φ ≡ [i+ j]φ.

The rules for disjunctions are symmetrical to conjunctions:

a[xφ∨ψ = 1]−→∃b[xφ = 1] . a = b

∨ ∃b[xψ = 1] . a = b

a[xφ∨ψ = 0]−→∃b[xNNF(¬(φ∨ψ)) = 1] . a = b

The last kind of formula to handle is the temporal operator.

For a formula [i]ℓ, the rules have to ensure that whenever

the corresponding variable is true in an interval, then ℓ holds

at i time steps after that point (or before if i is negative).

This is easily expressed as:

a[x[i]φ = 1] −→∃b[xφ = 1] . a≤s,s

[i,i] b

if i ≥ 0. Otherwise, if i is negative, the rule is similar but

has to treat in a slightly different way the case where the

triggering token is near the start of the timeline and the

temporal operator predicates before time step zero, because

of how the semantics of the target language treats time points

before the first. Thus, in this case the rule is the following:

a[x[i]ℓ = 1] −→∃b[xℓ = 1] . b≤s,s

[i,i] a

∨ ∃b[xℓ = 1] . a = b ∧ b≤s i

With this infrastructure in place, the timelines of the

problem now encode the truth of all the formulae that can

possibly be useful to handle the original planning problem,

so it is possible to encode the rules of the problem itself.

Recall that each rule (P,E) specifies that every time the

precondition P is satisfied, literals in E must be true at the

next step. This is equivalent to say that every time P is

satisfied, the formula
∧

ℓ∈E [1]ℓ holds, and it can thus be

expressed as follows, where ℓ1, . . . , ℓn ∈ E:

a[xP = 1] −→∃a1[x[1]ℓ1 = 1] . . . an[x[1]ℓn = 1] .

a = a1 ∧ · · · ∧ a = an

Since we are encoding a deterministic planning problem, it

is also implicit that every literal not explicitly changed by a

rule has to preserve its truth value. Additional synchroniza-

tion rules are required to ensure this inertia. These rules

say that if a literal holds a given value at the current time

point, it either had the same value at the previous step, or

a precondition of some rule involving it was true, causing

its change. A special case is needed for the first time point,

which has not a predecessor. In detail, for every literal ℓ
over A, let P1, . . . , Pn be the preconditions of all the rules

whose effects include ℓ. Then, the inertia for literal ℓ can be

expressed as follows:

a[xℓ = 1] −→
∨







∃b[xℓ = 1] . a = b ∧ b=s 0

∃b[x[−1]ℓ = 1] . a = b
∨n

i=1 ∃b[x[−1]Pi
= 1] . a = b



In a similar way, it is possible to encode preconditions of ac-

tions, so that when actions are performed their preconditions

are ensured to hold. For each action o ∈ O, we have:

a[xo = 1] −→ ∃b[xR(o) = 1] . a = b

At this point, the domain of the problem is completely

encoded by the synchronization rules of the timeline-based

domain, and it is now sufficient to express the initial state

and the goal condition. Let ℓ1, . . . , ℓn ∈ I be the literals

asserted by the initial state, and G be the formula that

describes the goal condition. They are encoded by the

following trigger-less synchronization rules:

⊤ −→ ∃a1[xℓ1 = 1] . . . an[xℓn = 1] .

a1 =
s 0 ∧ . . . ∧ an =s 0

⊤ −→ ∃a[xG = 1] . ⊤

This step completes the encoding. The timelines for the

variables xo, with o ∈ O, from a solution plan to this

timeline-based problem, encode the solution plan for the

original action-based problem. Plan existence for the original

problem is thus reduced to plan existence for the timeline-

based one. Moreover, it can be seen that the size of the

encoded problem grows polynomially with the size of the

input, since it is proportional to the number of state variables

xφ, and |F | is linear in the size of all the precondition

formulae. Moreover, the encoding can be straightforwardly

computed in polynomial time, thus providing a polynomial

time reduction.

This completes the proof that the plan existence problem

for timeline-based planning is EXPSPACE-hard.

V. COMPLEXITY OF TIMELINE-BASED PLANNING

This section proves the existence of a decision procedure

for timeline-based planning problems which runs in expo-

nential space, thus proving that the problem belongs to the

EXPSPACE complexity class.

The proof will involve a few steps, but the reasoning

is quite standard. We will first provide an upper bound to

the length of solutions, then we will show that a nonde-

terministic Turing machine can find a solution plan using

an exponential amount of space, and finally we employ the

well-known fact that EXPSPACE = NEXPSPACE to assert

that there exists an equivalent deterministic algorithm with

the same space complexity.

Definition 11 (Window). Consider a problem P = (SV, S).
Let k be the product of all the numeric values greater than

zero that appear as bounds for the duration functions of

state variables and interval and time point relations used

in rules from S. Then, the window of P , denoted w(P), is

equal to:

w(P) = 2k + 1

Intuitively, w(P) is an upper bound to the maximum

number of time steps from the start (or the end) of a token

that can affect the satisfaction of a synchronization rule

triggered by that token, i.e., k in the past and k in the future.

Such a constraint can be understood by observing that the

scope of the existential statements of a rule is limited by the

bounds used in interval relations, and thus the rule cannot

be affected by something happening at a greater distance.

Moreover, it can be easily seen that k < 2n, and then:

w(P) < 2n+1 + 1 < 22n

Note that w(P) is also the maximum length of the initial

segment of the solution affected by time point relations.

In the following, let P = (SV, S) be a timeline-based

planning problem, let n be the size of the input description

of P , and let w denote the window w(P). By Proposition 1,

without loss of generality, we can assume that P consists of

binary state variables only.

A solution plan π for P is a set of timelines, but we

need a way to represent it as a string in order to reason

in precise terms about its space occupation. This flattened

representation consists of a sequence of words of |SV | bits.

Let us call those words state words. The state word at

position i in the sequence represents the truth values of the

state variables at time i. The following lemma provides an

upper bound to the length of such sequences.

Lemma 1. Consider a timeline-based planning problem P
that only makes use of binary variables. If P has a solution,

then it also has a solution π with an horizon of at most:

22
n3

Proof: Let π be a solution for P , and consider sub-

segments of π of length w. Thus, there are at most 2|SV |

possible state words at each time step, so there are at most

w2|SV |

possible sequences of w state words. Thus, if π is

longer than the following amount of time steps

w2|SV |

· w2|SV |

= w2|SV |+1

there must be some segment of length w2|SV |

that repeats at

least twice in the sequence. Thus, there are two time steps

i > w and j > i such that the windows of w time steps

centered on them is equal. Suppose for now that there are

no trigger-less rules in P . Then, if we remove from π all the

time steps between i+1 and j, we obtain a shorter sequence

π′ which is still a valid solution plan. To see this, observe

that there cannot be any synchronization rule triggered by a

token before the position i−w or after j +w and satisfied

by something happened inside the cut segment. On the other

hand, any synchronization rule satisfied by tokens inside the

segments (i . . . i+w) and (j −w . . . j) are still satisfied by

the repeated copies (j . . . j + w) and (i − w . . . i). Finally,

the satisfaction of synchronization rules that use time point

relations is preserved by the fact that i > w. By iterating

this contraction, we can find a solution shorter than w2|SV |+1

.

Now consider again the presence of trigger-less rules. The



bound above is insufficient to guarantee the safety of the

contraction, because the part of the cut segment between

i+w and j−w, may contain some token that was essential

to the satisfaction of a trigger-less rule. Let us call this kind

of token goal tokens, and let h be the number of trigger-less

rules of the problem. Observe that, since rules are connected,

and the two repeating windows are distant more than w time

steps, all the tokens involved in the satisfaction of a single

trigger-less rule must be inside the potentially cut segment.

We cannot cut such a segment, but it is sufficient to wait

for other h pairs of repeated windows to be sure to find a

repetition without any occurrence of a goal tokens between

them, or with an occurrence of goal tokens that satisfy a rule

that was already satisfied before, thus cutting that segment

preserves the validity of the plan. Thus, if π is longer than

h · w2|SV |+1

, we can find a shorter plan π′ which is still a

valid solution. Now recall that w < 22n, |SV | < n, and

h < n, so we can contract any plan π longer than:

h(22n)2
|SV |+1

< n2n2
n+2

≤ 22
n3

To find a solution, a nondeterministic Turing machine

can proceed by guessing a sequence of state words and

checking if it satisfies all the synchronization rules. Since

single synchronization rules cannot affect more than w time

steps, and w ∈ O(2n), it is possible to execute this generate-

and-check procedure using only an exponential amount of

space. So we can now prove the result stated at the beginning

of the section.

Theorem 2. Given a timeline-based planning problem P ,

the problem of establishing whether there exists a solution

for P belongs to EXPSPACE.

Proof: A decision procedure will be provided which

can be executed by a nondeterministic Turing machine using

only an exponential amount of space. In particular, the

following pieces of information will be maintained during

the execution:

• A subsequence of w state words corresponding to

the current piece of solution under testing. Such a

subsequence can be represented in w log |SV | ∈ O(2n)
bits.

• A subsequence of ⌈w/2⌉ state words corresponding to

the initial segment of the solution, to be able to check

synchronization rules that involve time point relations.

• A counter of the current position i at the center of the

window (note that w is odd), which has to count up to

22
n3

−⌈w/2⌉, and thus has to use at most an exponential

amount of bits.

• A set of |SV | counters to take care of the duration of

the started tokens, to ensure their duration matches the

duration function of each variable. These counters use

a polynomial amount of bits as they have to count up

to w time steps.

• A polynomial amount of bits to count how many

trigger-less rules have still to be satisfied.

Here we have supposed, as allowed by Proposition 1, that P
only makes use of binary variables. Then, the exponential-

space decision procedure is the following:

1) At start, an initial segment of ⌈w/2⌉ state word is

guessed, and set to also be the current window.

2) The counter i is set to zero and the following steps

are repeated until i stays less than 22
n3

+ 1:

2.a) If some bits at position i changed since the previous

step (at i = 0 is as if all bits had changed), and thus

some token has started, the corresponding triggered

synchronization rules are checked by searching for the

satisfying tokens in the current window, and in the

initial segment if some time point relation is used.

2.b) If some rule cannot be satisfied, the nondeterministic

Turing machine rejects the input and terminates.

2.c) If all the triggered rules are satisfied, then the win-

dow is checked to look for any satisfied trigger-less

rule. If all the trigger-less rules are satisfied, the

machine accepts the input and terminates. Otherwise,

the counter of satisfied trigger-less rules is updated

and the execution continues.

2.d) The current position i is incremented and, if i <

22
n3

−⌈w/2⌉, the window is advanced by guessing the

next state word at position i+⌈w/2⌉. If i > ⌊w/2⌋, the

last state word at i− ⌊w/2⌋ is forgotten. The current

window is thus used as a LIFO queue structure. The

new state word is guessed as to satisfy any constraint

imposed by the transition and duration functions of

the state variables.

3) If not all the trigger-less rule have been satisfied, the

machine rejects the input and terminates.

Since the provided procedure runs in nondeterministic

exponential space and EXPSPACE = NEXPSPACE by

Savitch’s theorem, we can deduce that a deterministic Turing

machine exists that can decide whether the given problem

P has a solution in deterministic exponential space.

As a consequence of this result and of Theorem 1, we can

state the following:

Corollary 1. Given a timeline-based planning problem P ,

establishing whether there exists a solution for P is an

EXPSPACE-complete problem.

VI. DISCUSSION

Theorems 1 and 2 prove the EXPSPACE-completeness of

the timeline-based planning problem defined in Section II.

The hardness result comes from a many-to-one reduction

from an action-based temporal planning language that pre-

serves solutions, thus providing also an expressiveness re-

sult. In particular, it tells us that our formulation of timelines

is expressive enough to capture action-based temporal plan-



ning. In light of these results, a few observations can be

made to better understand the picture.

With regard to general timelines formulations, e.g., [15],

even if we exclude any form of environmental uncertainty

and temporal flexibility, our setting is simplified by a number

of syntactic restrictions. In particular, we consider syn-

chronization rules that only use bounded interval relations,

while general models usually allow to use interval relations

like ≤[0,+∞], thus being able to express usual unbounded

Allen’s relations as a particular case. Tokens are similarly

mandatorily constrained to have a maximum duration. These

restrictions turned out to be essential to our complexity

result, as the argument for the proof of Lemma 1 does not

hold if we admit synchronization rules that could escape the

exponential window of time steps around a single token. It

is interesting to learn that a form of timeline-based planning

so simplified is still computationally hard and expressive

enough to capture action-based temporal planning.

Even if syntactically simplified, our formulation is not a

proper restriction of the usual timeline-based models because

of the removal of the finite horizon from the problem

specification. This relaxation plays a crucial role in the

hardness proof of Theorem 1. That is because, in other

formulations, the horizon is specified as part of the input, so

at most an exponentially large horizon of 2n time steps can

be specified with an input of size n. On the other hand, our

target action-based language does not constrain the length of

its solutions in any way, and can express solutions of length

at most doubly exponential (see [7, Theorems 9 and 10]).

This means that a timeline-based formalism with a specified

horizon would always loose a whole class of solutions longer

than its exponential horizon, unless we allow an exponential

growth of the problem description or we consider the horizon

to be specified in the input as an exponent (i.e., if the input

specifies m then horizon is 2m). From the expressiveness

point of view, this means that a horizon-constrained timeline-

based formulation would still be able to capture action-based

temporal planning, exactly as in the proof of Theorem 1, but

only if a doubly exponential horizon is specified.

A natural question would be whether the converse of The-

orem 1 is true, i.e., that our variant of timeline-based plan-

ning is not only polynomial-time reducible to action-based

temporal planning, which follows from the EXPSPACE-

completeness result, but that it is so in a way that is able

to preserve solutions and thus to provide an expressiveness

equivalence between the two formalisms. While we cannot

provide a definitive answer to this question, any attempt

by our part so far has failed to encode timeline-based

planning into action-based formalisms because of the ability

of synchronization rules to mention the same time point

multiple times (e.g., in a clause like b ⊆ a∧ c ⊆ a, where ⊆
is the contained by Allen’s relation). The attempt to encode

this syntactic feature, which is typically found in hybrid

temporal logics (see e.g., [21]), into a language that lacks

it causes an exponential blowup in the size of formulae

because of the need to explicitly enumerate the different

linearization of the constraints where the same interval is

mentioned multiple times (in the example above, all the

possible overlaps between b and c, which both have to be

contained in a but are unrelated to each other). This suggests

that the action-based temporal language that we studied in

this paper might be able to express timeline-based problems,

but at the cost of an exponential growth.

VII. CONCLUSIONS AND FUTURE WORK

While timeline-based planning has been successfully

employed in complex real-world scenarios, a complete

complexity-theoretic analysis of it is still missing, as is a

comparison with more common action-based formalisms in

terms of expressive power. This paper is a first step in this

direction: we identified a simplified formulation of timeline-

based planning that is expressive enough to capture action-

based temporal planning, and we studied its computational

complexity by proving its EXPSPACE-completeness.

Timeline-based planning as formulated in Section II is

greatly simplified with regard to usual formulations such

as the one from [15], so the natural development of this

work will be to study the more complex formulations from

a complexity-theoretic point of view, continuing the com-

parison with action-based formalisms. Interesting extensions

that still need to be studied include, but are not limited

to: timelines with infinite bounds on interval relations and

tokens duration; flexible timelines with or without uncon-

trollable components; timelines and flexible timelines over

dense and/or continuous flow of time.
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APPENDIX

Proposition 1. Every timeline-based planning problem can

be rewritten, with at most a polynomial increase in size, into

an equivalent one that only uses binary state variables.

Proof: Let P = (SV, S) be a timeline-based planning

problem. Let x = (V, T,D) be a state variable with k = |V |
and v0, . . . , vk−1 its possible values from V . We will now

construct an equivalent problem P = (SV ′, S′) where x has

been substituted by a suitable number of binary state vari-

ables x0 = (V0, T0, D0), . . . , xk−1 = (Vk−1, Tk−1, Dk−1),
i.e., one for each possible value that x can hold. Synchro-

nization rules are then introduced to ensure that xi = 1 will

hold in a solution or P ′ if and only if x = vi would have

held in a solution for P . As a first step, a set of rules is

introduced to ensure mutual exclusion between the binary

variables, so for all vi ∈ V :

ai[xi = 1] −→ ∃

except ai
︷ ︸︸ ︷

a0[x0 = 0] . . . ak[xk = 0] .
k∧

j=0
j 6=i

ai = aj

Transitions and duration functions T and D have to be

transferred to the new variables. The minimum an max-

imum duration for each value can be replicated directly

to the duration of the positive value of each variable, so

Di(1) = (dimin, d
i
max) where (dimin, d

i
max) = D(vi). The

duration function for the negative value has to encompass

the possible duration of all the other values, so we will put

Di(0) = (dmin, dmax) for each i = 0, . . . , k − 1, where:

dmin = min
i=0,...,k−1

{dimin}

dmax = max
i=0,...,k−1

{dimax}

The transition function has to be encoded through the use of

additional synchronization rules. So for each i = 0, . . . , k−1
we have Ti(v) = {0, 1} and:

ai[xi = 1] −→
∨

j=0,...,k−1
vj∈T

∃aj [xj = 1] . ai ≤
e,s

[0,0] aj

All the synchronization rules of the original problem have

to be translated to talk about the newly introduced binary

variables. So each appearance of a token quantifier of the

form a[x = vi], both in a trigger or in an existential

statement, is translated to a token quantifier a[xi = 1]. For

example:

a[x = v1] −→ ∃b[x = v2] . C

gets translated into:

a[x1 = 1] −→ ∃b[x2 = 1] . C

It can be verified that the translated problem P ′ is

equivalent to P , in the sense that for any solution of P
one for P ′ exists where at each time x = vi iff xi = 1.



However, some concerns may exist about the size of P ′.

Values of x cannot be represented by a more compact

binary notation using log |V | binary variables because then

translating synchronization rules would require to apply

universal quantification to multiple variables at a time, which

is syntactically not possible. However, this kind of unary

representation does not significantly increase the size of

the problem. To see this consider that that the number of

additional synchronization rules is O(k2), but k ∈ O(n),
where n is the size of the input problem, since transition and

duration functions already forced values to be enumerated

in an extensional way. Thus this translation cause at most a

polynomial size growth.

Proposition 3. Any temporal planning problem can be

rewritten, with at most a polynomial increase in size, into

an equivalent one that only makes use of temporal formulae

of the form [i]φ.

Proof: Let P = (A, I,O,R,D,G) be a temporal

planning problem. We will build an equivalent problem

P ′ = (A′, I ′, O′, R′, D′, G′) whose precondition formulae

only makes use of temporal operators of the form [i]φ, equal

to P excepting for what follows.

First, observe that [i..j]φ ≡ [j][i− j..0]φ and that [0]φ ≡
φ, thus we can suppose without loss of generality that all

the occurrences of temporal operators are either already of

the simple form [i]φ or of the form [i..0]φ, for i < 0.

For any formula φ that appears inside an occurrence of

a temporal operator, let [k1..0]φ, . . . , [kn..0]φ be all such

occurrences, and let k = max{−k1, . . . ,−kn}+1. The key

idea is to encode a counter that increments at each step

through all the execution of the plan, from zero up to a

maximum of k (and stays at k afterwards), but resets to

zero every time ¬φ holds. Then, to know if [ki..0] holds it

is sufficient to check if the counter is greater than −ki.
The value of the counter cφ, for the formula φ, in short

only c from now, is represented in binary notation by addi-

tional actions c0, . . . , cw−1 ∈ O
′ (c0 the least significant),

where w = ⌈log2(k+ 1)⌉+ 1. What follows will use a few

shorthands for basic formulae that assert useful facts about

the counter:

• The formula c = n, for n < k, asserts the current value

of the counter, and is simply a conjunction of literals

asserting the truth value of the single bits of n. The

formula c 6= n is a shorthand for ¬(c = n).
• The formula c < n asserts that the current value of c is

less than the value that c had (or will have) at i steps

from now. This shorthand can be defined recursively

on the number w of bits. Let 〈b0 . . . bw−1〉 be the bits

of n (⊤ for 1, ⊥ for 0). For w = 1, c0 < b0 is just

¬c0 ∧ b0. For w > 1, 〈c0 . . . cw−1〉 < 〈b0 . . . bw−1〉 is:

(cw−1 < bw−1) ∨

(cw−1 ←→ bw−1 ∧ 〈c0 . . . cw−2〉 < 〈b0 . . . bw−2〉)

Then, c < n is just 〈cw−1 . . . c0〉 < 〈bw−1, . . . b0〉.
Moreover, shorthands c > n, c ≥ n and c ≤ n are

defined as one may expect.

• The formula inc(c) asserts that the counter has in-

cremented its value since the previous step, i.e., if c
currently holds the value n, then at the previous step

it held the value n − 1, and vice versa. Again, it can

be defined recursively on the number w of bits. For

w = 1, inc(c0) is simply [−1]c0 ←→ ¬c0.

For w > 1, inc(〈c0 . . . cw−1〉) is defined as:

[−1]c0←→¬c0

∧ [−1]c0 −→ inc(〈c0 . . . cw−2〉)

∧¬[−1]c0 −→ (〈c0 . . . cw−2〉 = [−1]〈c0 . . . cw−2〉)

With these formulae in place we can write a rule that

enforce the counter to increase at each step if less than k,

stay still when it reaches k, and reset to zero whenever ¬φ
holds. For this purpose we introduce an additional fluent

fc ∈ A
′ that we will set to true at the initial state and that

we require to be true in the goal condition. In other words:

I ′(fc) = 1

G′ ≡ G ∧ fc

This flag will be set to false by the following rule, to

invalidate the plan whenever the counter does not behave

as intended. The rule is thus (¬P, {¬fc}) where P is the

following formula:

P ≡ ([−1](φ ∧ c < k) −→ inc(c)) ∧

([−1](φ ∧ c = k) −→ c = k) ∧

([−1]¬φ −→ c = 0)

Clause (A) says that if at the previous step φ was true and

the counter had not reached its maximum value, then an

increment took place. Clause (A) says that if φ was true

but the counter reached the maximum value, it stayed the

same. Finally, clause (A) states that if φ did not hold at

the previous step, then the counter had to be reset to zero.

Since this rule set fc to false whenever P is false, any plan

containing a sequence of states where the counter does not

behave as wanted is invalidated. However, any plan that was

valid before is still valid now, when the valuations for the

new actions and the new fluent are added accordingly. With

the counter in place, we can rewrite any formula of the form

[ki..0]φ with the formula cφ > −ki, stating that the steps

passed since the last time φ was false are more than −ki.
As can be seen, this encoding only adds a constant

number of rules and a single new fluent for each formula

φ that appears inside a temporal operator. The size of the

precondition formula for the new rule is polynomial in the

number of bits used to represent k0, . . . , kn, thus polynomial

in the size of the input.


