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ABSTRACT	

BACKGROUND:	Obesity	and	physical	inactivity	are	the	most	important	risk	factors	for	chronic	

diseases.	The	present	study	aimed	at:	i)	developing	and	testing	a	method	for	classifying	household	

activities	based	on	a	smartphone	accelerometer;	ii)	evaluating	the	influence	of	smartphone	

position;	and	iii)	evaluating		the	acceptability	of	wearing	a	smartphone	for	activity	recognition.		

METHODS:		An	Android	application	was	developed	to	record	accelerometer	data	and	calculate	

descriptive	features	on	5-second	time	blocks,	then	classified	with	9	algorithms.	Household	

activities	were:	sitting,	working	at	the	computer,	walking,	ironing,	sweeping	the	floor,	going	down	

stairs	with	a	shopping	bag,	walking	while	carrying	a	large	box,	and	climbing	stairs	with	a	shopping	

bag.	Ten	volunteers	carried	out	the	activities	for	three	times,	each	one	with	a	smartphone	in	a	

different	position	(pocket,	arm,	and	wrist).	Users	were	then	asked	to	answer	a	questionnaire.		

RESULTS:	1440	time	blocks	were	collected.	Three	algorithms	demonstrated	an	accuracy	greater	

than	80%	for	all	smartphone	positions.	While	for	some	subjects	the	smartphone	was	

uncomfortable,	it	seems	that	it	did	not	really	condition	the	activities.			

CONCLUSIONS:		Smartphones	can	be	used	to	recognise	household	activities.	A	further	

development	is	to	measure	metabolic	equivalent	tasks	starting	from	accelerometer	data	only.	

	

	

1 Introduction 
In	 the	 last	 50	 years,	 the	 changing	 of	 lifestyle	 has	 produced	 an	 increase	 in	 over-nutrition	 and	

sedentary	habits.	Epidemiological	studies	have	demonstrated	that	obesity	and	physical	inactivity	

are	the	most	important	risk	factors	for	chronic	diseases	[1,2].	In	2004,	5.5%	and	4.8%	of	deaths	



globally	were	caused	by	physical	inactivity	and	overweight	and	obesity,	respectively	[3].	Recently,	

the	metabolic	syndrome	(MS)	has	been	defined	as	a	medical	condition	characterized	by	excess	of	

adiposity	 (especially	 abdominal),	 glucose	 intolerance,	 high	 levels	 of	 haematic	 lipids,	 and	 high	

blood	pressure.	In	Italy,	the	prevalence	of	MS	ranges	from	3%	in	subjects	between	20	and	29	years	

to	 25%	 in	 subjects	 over	 70	 years	 [4].	 Two	 major	 international	 associations	 (the	 International	

Diabetes	Association	 and	 the	American	Heart	Association)	 agree	 that	 the	development	of	MS	 is	

primarily	due	to	obesity	and	limited	or	no	physical	activity	and	that	MS	is	a	cluster	of	metabolic	

risk	factors	for	chronic	diseases	[5].	Behaviours	associated	with	MS	risk	factors	are	dietary	habits	

and	physical	activity,	which	can	be	evaluated	with	specific	questionnaires	 to	 indirectly	estimate	

energy	intake	and	expenditure	[6,7].	In	the	present	paper	we	deal	only	with	physical	activity	and	

related	energy	expenditure.		

The	 gold-standard	 methods	 to	 calculate	 energy	 expenditure	 are	 doubly	 labelled	 water	

methodology	and	direct/indirect	 calorimetry,	but	 they	are	 feasible	only	 in	 the	 research	settings	

because	 they	 are	 expensive	 and	 require	 specific	 equipment	 [7].	 Thus,	 a	 shortcut	 to	 evaluate	 an	

individual	physical	activity	level	is	to	use	questionnaires,	interviews	and	activity	diaries	[8].	

The	 most	 common	 and	 validated	 instrument	 to	 collect	 information	 on	 physical	 activity	 is	 the	

International	 Physical	 Activity	 Questionnaire	 (IPAQ)	 [9,10],	 which	 is	 aimed	 at	 recollecting	 the	

activities	 of	 the	 last	 week	 to	measure	 their	 intensity	 through	metabolic	 equivalent	 task	 (MET)	

minutes.	One	MET	is	considered	as	the	resting	metabolic	rate	obtained	during	quiet	sitting;	energy	

expenditures	of	other	activities	are	expressed	as	multiples	of	the	resting	level	MET	and	they	range	

from	 0.9	 (when	 sleeping)	 to	 18	 (when	 running	 at	 17.54	 km/h).	 The	 IPAQ	 method	 allows	 to	

calculate	 two	 scores	 related	 to	 the	 physical	 activity	 carried	 out	 in	 a	 typical	week:	 a	 categorical	

score	 (low,	moderate,	high)	and	a	 continuous	 score	 (MET	minutes	per	week),	 corresponding	 to	

the	METs	spent	summing	up	all	activities	times	per	their	MET	value.	



A	 first	 classification	 of	 physical	 activities	 accompanied	 by	 their	 METs	 was	 published	 in	 the	

Compendium	of	Physical	Activities	in	1993	[11].	The	Compendium	was	subsequently	updated,	the	

last	update	being	published	in	2011	[12].	The	complete	Compendium	is	available	online	[13],	and	

is	currently	used	to	standardize	activities	in	many	epidemiological	studies.	

Scores	 calculated	using	 IPAQ	represent	only	a	 standardized	estimate,	because	 the	Compendium	

was	 not	 developed	 to	 determine	 the	 precise	 energy	 cost	 of	 activities	 within	 an	 individual.	

However,	 Byrne	 et	 al.	 [14]	 and	Kozey	 et	 al.	 [15]	 have	 developed	methods	 to	 consider	 personal	

variations	in	sex,	body	mass,	height,	and	age	for	correcting	MET	values.	

While	 questionnaires	 are	 typically	 administered	 to	 users	 by	 professionals,	 they	 are	 indeed	 a	

suitable	tool	for	patient	empowerment	[16],	i.e.,	active	involvement	of	the	person/patient	in	their	

own	 care,	 including	 directly	 recording	 their	 own	 health	 data,	 also	 backed	 by	 evidence	 on	

significance	of	patient	provided	data	[17].		

More	 recently,	 the	 availability	 of	 smartphones	 and	 tablets	 has	 led	 to	 the	 so-called	 m-Health	

(mobile	health),	based	on	phones,	short	text	messaging,	mobile	web	access,	up	to	the	most	recent	

smartphone	 applications	 [18].	 In	 particular,	 the	 effectiveness	 of	mobile	 systems	when	 used	 for	

collecting	patient	diaries	has	been	demonstrated	[19].	All	these	tools	may	be	seen	as	a	new	way	to	

strengthen	 the	 patient-physician	 relationship	 [20],	 in	 particular	 in	 the	 case	 of	 chronic	 diseases,	

which	develop	on	the	long	term	and	have	consequences	on	ageing	[21].		

In	fact,	many	studies	have	been	published	in	the	literature	on	the	use	of	wearable	accelerometers	

for	recognizing	activities	being	done	by	the	smartphone	owner.	

Most	of	the	research	available	until	now	has	been	carried	out	using	more	than	one	accelerometer	

in	 different	 body	 parts.	 In	 one	 of	 the	 seminal	 studies,	 Foerster	 et	 al.	 [22]	 exploited	 5	

accelerometers	and	showed	that	two	were	needed	to	recognize	the	basic	situations	(sitting,	lying,	



standing,	 and	 moving)	 and	 more	 were	 needed	 for	 more	 specific	 movement	 subtypes.	 Five	

accelerometers,	 but	of	 a	biaxial	 type,	were	also	used	by	Bao	et	 al.	 [23],	who	demonstrated	 that	

those	placed	on	the	thigh	and	the	dominant	wrist	allowed	to	distinguish	among	a	number	of	basic	

activities.	A	similar	study	has	been	recently	reproduced	with	a	different	classifier	[24],	confirming	

previous	results.		

In	 the	 last	 few	 years,	 a	 growing	 number	 of	 papers	 have	 focused	 on	 the	 use	 of	 a	 single	

accelerometer.	Khan	et	al.	[25]	used	one	triaxial	accelerometer	on	the	subject’s	chest	and	obtained		

good	recognition	accuracy,	even	 for	activities	such	as	climbing	and	going	down	stairs.	Lee	et	al.	

[26]	obtained	similar	results	placing	an	accelerometer	on	the	left	waist.	Long	et	al.,	in	addition	to	

walking	and	running,	considered	also	bicycling,	driving	and	generic	sports	[27].	Driving	was	easily	

recognizable,	while	the	others	were	more	complex	due	to	the	accelerometer	position	(on	the	side)	

and	the	variety	of	movements.	Ravi	et	al.	worked	also	on	vacuum	cleaning	and	teeth	washing,	with	

a	triaxial	accelerometer	on	the	subject’s	pelvis	[28].	Of	course,	activities	related	to	mouth	or	hands	

were	difficult	to	recognize.		

Some	studies	have	used	other	sensors	in	addition	to	the	accelerometer.	In	the	study	by	Parkka	et	

al.	[29],	20	different	sensors	placed	along	the	body	and	including	two	accelerometers		were	used	

to	successfully	recognize	basic	activities.		

Other	experiments	have	embedded	various	sensors	in	one	single	multimodal	device.	Maurer	et	al.	

demonstrated	 that	 such	 a	 device	 was	 able	 to	 recognize	 basic	 activities	 independently	 of	 the	

position,	although	climbing	and	going	down	stairs	remained	more	complex	to	discriminate	[30].	

Lester	 et	 al	 [31]	 used	 7	 sensors	 in	 a	 single	 device	 and	 were	 able	 to	 recognize	 also	 stairs	 and	

elevator	movements,	due	to	pressure	and	audio	sensors.	



However,	 in	 recent	 years,	 a	 new	 technology	 –smartphones-	 has	 appeared	 that	 has	 changed	 the	

perspectives	 on	 the	 concrete	 applicability	 of	 sensor-based	 (in	 particular	 accelerometer-based)	

activity	 recognition.	 In	 fact,	 smartphone	 accelerometers	 are	 being	 used	 more	 and	 more	 in	

experiments	 aimed	 at	 recognizing	 activities,	 due	 to	 the	 wide	 use	 of	 smartphones,	 the	 growing	

availability	of	embedded	sensors,	and	the	computational	power	provided.		

In	 one	 of	 the	 first	 experiments,	 Miluzzo	 et	 al.	 [32]	 used	 some	 internal	 smartphone	 sensors	

(accelerometer,	microphone,	 and	 GPS)	 to	 recognize	 basic	 activities,	 and	 reported	 difficulties	 in	

distinguishing	standing	and	sitting	when	the	phone	was	placed	 in	 the	 trousers	pocket	or	on	the	

belt.	

Kwapisz	et	al.	[33]	used	a	smartphone	accelerometer	to	automatically	recognize	six	daily	activities	

(walking,	 jogging,	 sitting,	 standing,	 climbing	 and	 going	 down	 stairs).	 In	 their	 study	 stair	

movements	were	the	most	difficult	to	classify,	while	the	other	activities	were	easily	classified	with	

good	precision.	Wu	et	 al.	 exploited	 also	 a	 gyroscope,	 but	 still	 stair	movements	were	difficult	 to	

recognize	[34].	In	a	recent	study,	Dernbach	et	al.	[35]	introduced	among	the	activities	also	some	

typical	household	activities:	cleaning,	cooking,	plant	watering,	washing	hands,	and	taking	a	drug.	

These	activities	were	difficult	 to	recognize	because	made	up	of	a	series	of	different	movements,	

sequential	or	parallel,	and	thus	not	easily	representable	as	a	single	action.		

Finally,	 some	 studies	 have	 evaluated	 the	 performance	 of	 smartphone	 accelerometers	 and	 have	

confirmed	that	their	accuracy	is	similar	to	that	of	professional	triaxial	accelerometers	[36,37].		

To	our	knowledge,	household	activities	have	been	 studied	only	by	means	of	 a	wearable	 system	

consisting	of	SmartShoe	sensor	and	a	wrist	accelerometer	[38].	Household	activities	have	indeed	

been	 under	 scrutiny	 for	 their	 energy	 expenditure	 [39]	 because,	 according	 to	 international	

recommendations	on	physical	activity	 levels	 [1,2],	 they	contribute	 to	 the	30	minutes	per	day	of	



moderate-intensity	 activity	 required	 to	 confer	 health	 benefits,	 but	 their	 impact	 is	 difficult	 to	

estimate.	

To	summarize,	previous	studies	show	that	using	more	 than	one	sensor,	either	 in	different	body	

parts	or	 in	a	 single	device,	 allows	 to	 identify	with	good	accuracy	a	variety	of	activities,	 some	of	

which	 are	 more	 difficult	 to	 recognize	 than	 others.	 Fortunately,	 basic	 activities	 can	 be	 easily	

recognized	also	with	a	single	triaxial	accelerometer,	even	 if	embedded	in	a	smartphone	because	

equivalent	 to	 professional	 devices.	 The	latter	 evidence	 has	 helped	 to	 switch	 from	 less	 practical	

setups,	 where	 the	 subject	 had	 to	 wear	 unusual	 sensors	 and	 devices,	 to	 some	 more	 natural	

exploitation	 of	 nowadays	 common	 smartphones.	 The	 issue	 of	 where	 to	 position	 the	 sensor	 or	

smartphone	 remains	 partially	 open.	While	 some	 studies	 have	 identified	 a	 position-independent	

model	 for	 non-smartphone	 sensors	 (e.g.,	 [30]),	most	 of	 the	 times,	 some	 activities	 are	 harder	 to	

recognize	 because	 the	 sensor	 position	 is	 somewhat	 biasing	 the	 kind	 of	 activities	 that	 could	 be	

recognized.		

However,	 since	 the	 most	 investigated	 activities	 include	 walking,	 running,	 bicycling,	 etc.,	 a	

complete	characterization	of	the	physical	activity	carried	out	by	a	person	who	works	but	does	no	

sport	is	yet	to	be	achieved.	Furthermore,	to	our	knowledge,	there	is	not	yet	an	evaluation	of	the	

influence	 of	 the	 smartphone	 position	 on	 activity	 classification,	 which	 should	 also	 be	 evaluated	

from	a	user	acceptability	point	of	view.	

Thus,	 the	 present	 study	 aimed	 at:	 i)	 developing	 and	 testing	 a	method	 for	 classifying	 household	

activities	based	on	smartphone	accelerometer	output;	ii)	evaluating	the	influence	of	smartphone	

position	on	activity	recognition;	and	iii)	preliminarily	evaluating	the	acceptability	of	continuously	

wearing	a	smartphone	for	automated	recognition	of	activities.	



2 Methods 
The	process	of	recognising	activities	can	be	organised	in	three	steps:	

- collection	of	accelerometer	data	during	activities;	

- computation	of	descriptive	features	from	raw	data;	

- classification	of	activities	based	upon	their	descriptive	features.	

For	each	of	these	steps,	actions	were	taken	in	order	to:	

- individuate	relevant	features	to	be	computed	(see	Section	2.1);	

- support	 data	 collection	 and	 feature	 computation	 through	 a	 mobile	 application	 (Section	

2.1);	

- select	 one	 or	 more	 classification	 algorithms	 with	 good	 performance	 from	 a	 pool	 of	

candidates	obtained	from	the	relevant	literature	(Section	2.2).	

For	the	latter	point,	we	designed	an	evaluation	methodology	based	on	the	execution	of	a	number	

of	 activities	 (Section	 2.3)	 by	 subjects	 (Section	 2.4)	 carrying	 a	 smartphone	 in	 three	 different	

positions.	During	 the	activities,	data	were	collected	and	summarized	using	a	mobile	application.	

After	 the	 activities,	 the	 data	were	 classified	 by	means	 of	 selected	 classification	 algorithms.	 The	

performance	of	the	algorithms	for	the	three	smartphone	positions	was	finally	compared	with	the	

methodology	described	in	Section	2.5.	

Acceptability	of	wearing	the	smartphone	was	evaluated	through	a	short	user	survey	(Section	2.4).	

Finally,	 we	 attempted	 to	 understand	 whether	 the	 selected	 algorithms	 were	 computationally	

suitable	for	low-resource	devices	by	empirically	measuring	their	speed	(Section	2.5).	

We	 conducted	 the	 study	 in	 agreement	with	 the	 declaration	 of	 Helsinki	 and	 collected	 informed	

consent	 from	 participating	 subjects.	 However,	 since	 it	was	 an	 observational	 study	 that	 did	 not	



involve	 drug	 testing	 and	 was	 carried	 out	 on	 healthy	 people,	 according	 to	 our	 Institution	

regulations,	it	did	not	need	ethical	approval	by	our	Ethics	Committee.	

2.1 Accelerometer data collection  
A	prototype	Android	application	was	designed	and	developed	to	record	accelerometer	data	on	the	

three	axes	and	calculate	descriptive	features.	The	application	saves	two	files	for	further	usage:	one	

containing	all	raw	data	collected,	and	one	containing	descriptive	features	calculated	as	depicted	in	

the	following.	

Recorded	 data	 were	 segmented	 in	 5-second	 blocks	 according	 to	 a	 methodology	 proposed	 by	

Kwapisz	et	al.	[33]	and	adopted	in	many	other	studies.	Each	block	was	then	described	by	means	of	

22	features	that	had	been	individuated	among	those	proposed	in	other	studies:	

- mean	and	standard	deviation	on	each	of	the	three	axis	[33],	for	a	total	of	6	features;	

- minimum	and	maximum	on	each	of	the	three	axis	[35],	for	a	total	of	6	features;	

- zero-crossing	rate	and	absolute	average	deviation	on	each	of	the	three	axis	[30],	for	a	total	

of	6	features;	

- correlation	on	each	pair	of	axis	(XY,	XZ,	YZ)	[28],	for	a	total	of	3	features;	

- resulting	average	acceleration	[33].	

2.2 Classification 
To	classify	the	activities,	the	Weka	software	[40]	was	used,	as	in	other	similar	studies,	because	of	

the	 large	 amount	 of	 different	 classification	 algorithms	 it	 provides.	 The	 software	 was	 run	 on	 a	

desktop	 computer	 (2.66GHz	 Intel®	 Coretm	 i7	 620m	 processor,	 4	 GB	 RAM),	 thus	 classification	

occurred	 offline	 and	 not	 directly	 during	 the	 activities.	 Algorithms	 were	 compared	 using	 the	

Experimenter	 module	 of	 Weka	 on	 10	 runs	 of	 10	 cross-fold	 validation	 for	 each	 algorithm	 and	

smartphone	position.	



Weka	provides	for	a	very	large	number	of	classification	algorithms.	In	our	experiment,	we	decided	

to	rely	at	first	on	the	algorithms	proposed	in	other	studies.		

In	particular,	as	in	the	case	of	descriptive	features,	we	relied	again	on	the	paper		by	Kwapisz	et	al.	

[33].	 In	 that	paper,	 the	authors	used	 J48,	Logistic	Regression,	 and	Multilayer	Perceptron.	We	also	

added	the	algorithms	used	by	Dernbach	et	al.	[35]:	NaiveBayes,	BayesNet,	Decision	Table,	and	Kstar.	

Finally,	 we	 completed	 the	 set	 of	 algorithms	 with	 another	 two	 algorithms,	 LogitBoost	 and	

RandomForest,	which	we	chose	to	cover	Weka	categories	not	considered	by	other	Authors.	

2.3 Activities 
Activities	were	selected	in	order	to	represent	different	household	activity	levels	according	to	their	

MET:	sitting	 (1	MET),	 sitting	and	working	at	 the	computer	 (1.8	MET),	walking	 (2	MET),	 ironing	

(2.3	MET),	sweeping	the	floor	(3.3	MET),	going	down	stairs	with	a	shopping	bag	(5	MET),	walking	

while	carrying	a	large	box	(6	MET),	and	climbing	stairs	with	a	shopping	bag	(7.5	MET).	

Activities	were	organized	in	a	continuous	path	that	subjects	had	to	follow,	with	around	30	seconds	

time	 for	 each	activity	 and	10-second	breaks	between	activities	 in	order	 to	 facilitate	a	posteriori	

segmentation.		A	complete	path	had	a	total	duration	of	320	seconds.	

2.4 Subjects 
Ten	 subjects	 were	 chosen	 among	 the	 available	 personnel	 at	 the	 Department	 of	 Biological	 and	

Medical	 Sciences	 of	 the	 University	 of	 Udine,	 Italy,	 in	 order	 to	 have	 five	 female	 and	 five	 male	

subjects.	Their	age	ranged	between	26	to	40	years.		

Subjects	were	asked	to	carry	out	the	above-mentioned	activity	path	for	three	times,	each	one	with	

the	 smartphone	 in	 a	different	position	 (pocket,	 arm,	 and	wrist).	When	on	 the	 arm	or	wrist,	 the	

smartphone	was	fixed	using	an	armband	(such	as	those	used	for	sport	activities).	



At	the	end	of	the	path,	users	were	finally	asked	to	answer	a	short	survey	about	their	experience	

during	the	experimentation.	The	questions	were	aimed	at	evaluating	the	acceptability	of	wearing	

the	smartphone	during	the	activities.	

Thus,	 for	each	of	 the	 three	positions,	users	were	requested	 to	 tell	whether	 the	smartphone	was	

uncomfortable,	 an	 impediment	 (meaning	 that	 it	 blocked	 the	 execution	 of	 the	 activities),	 or	 a	

conditioning	 factor	 (meaning	 that	 it	 caused	 the	 activities	 to	 be	 carried	 out	 in	 an	 unusual	way).	

Answers	were	on	a	1-5	scale	(from	best	to	worst).	

2.5 Analysis 
Due	to	the	low	number	of	subjects,	we	only	calculated	descriptive	statistical	features.	

Classification	performance	was	described	by	means	of	accuracy,	precision,	recall	and	F-measure;	

insights	on	classification	errors	were	examined	by	looking	at	confusion	matrices.	

We	 also	 attempted	 to	 consider	 computational	 complexity	 for	 the	 sake	 of	 real-time	 use	 on	 the	

smartphone	 by	 measuring	 the	 time	 needed	 for	 model	 building	 and	 activity	 classification	 (the	

latter	on	350	instances).	

3 Main outcomes 
	

3.1 Data collection 
480	 time	blocks	 for	 each	 smartphone	position	were	 collected	 for	 a	 total	 of	 1440,	 that	 is,	 6	 (30	

seconds)	for	each	of	the	8	activities,	all	multiplied	by	10	subjects.	Figure	1	shows	an	overall	view	

of	the	recorded	accelerometer	data	for	the	whole	path	as	done	by	one	subject.	

(FIGURE	1	HERE)	

3.2 Classification accuracy 
Table	 1	 shows	 the	 performance	 of	 the	 algorithms	 for	 each	 smartphone	 position,	 expressed	 in	

terms	of	accuracy,	precision,	recall	and	F-measures.		



(TABLE	1	HERE)	

Three	 algorithms	 demonstrated	 a	 classification	 accuracy	 greater	 than	 80%	 for	 all	 three	

smartphone	positions:	RandomForest	(84.6-87.4%),	Kstar	(82.6-89.1%),	and	Multilayer	Perceptron	

(82.5-85.4%).	Figure	2	shows	a	comparison	among	the	three	best	algorithms.	

(FIGURE	2	HERE)	

In	 general,	 the	 pocket	 position	 showed	 a	 slightly	 higher	 accuracy	 (5	 algorithms	 obtained	more	

than	 80%	accuracy	 vs	 4	 for	wrist	 position	 and	 3	 for	 arm	position).	 In	 absolute	 terms,	 the	 best	

recognition	rate	(89.4%)	was	obtained	with	Kstar	and	the	smartphone		in	the	pocket.	

Most	 of	 the	 classification	 errors	 were	 due	 to	 activities	 that	 appear	 similar	 from	 a	 specific		

smartphone	 position	 (e.g.,	 sweeping	 and	 ironing	 when	 the	 smartphone	 is	 on	 the	 arm).	 Some	

errors	were	not	crucial	because	the	difference	in	MET	was	not	great	(sweeping:	2.3	MET,	ironing:	

3.3	MET),	some	others	though	were	more	severe	(e.g.,	walking	with	box:	6	MET,	and	without	box:	

2	 MET).	 In	 the	 latter	 case,	 with	 the	 smartphone	 in	 the	 pocket,	 103	 blocks	 were	 correctly	

recognized	 (53	 as	walking	with	box,	 50	without),	 	whereas	16	were	 incorrectly	 classified	 (9	 as	

walking	with	box,	7	without).	Table	2	shows	the	two	confusion	matrices	for	the	Kstar	algorithm,	

pointing	out	the	above-mentioned	cases.	

(TABLE	2	HERE)	

In	Table	3,	a	summary	of	the	results	of	related	studies	is	reported	for	comparison	with	our	results	

obtained	with	the	Kstar	algorithm	and	the	smartphone	in	the	pocket.	The	studies	listed	are	only	

those	with	comparable	results,	i.e.,	with	explicit	accuracy	results	or	with	accuracy	obtainable	from	

confusion	matrices.	When	more	than	one	algorithm	or	position	was	used,	the	best	algorithm	and	

the	pocket	position	are	shown.	Activities	listed	are	those	considered	in	our	study.	

(TABLE	3	HERE)	



Two	main	considerations	can	be	made.	First,	the	accuracy	of	our	method	is	generally	comparable	

with	 that	 of	 other	 smartphone-based	 systems	 and	 slightly	 lower	 than	 that	 of	 systems	 adopting	

multiple	 sensors	 or	 accelerometers.	 Differences	 on	 specific	 activities	may	 depend	 on	 the	 set	 of	

activities	considered	 in	each	 individual	study,	which	might	account	 for	more	or	 less	difficulty	 in	

classification.	Secondly,	for	specific	household	activities	such	as	ironing,	walking	with	a	box,	and	

sweeping,	no	previous	studies	were	available,	although	other	authors	examined	doing	the	dishes,	

vacuuming,	folding	laundry,	scrubbing,	and	eating	[23,	38].		

We	 also	 investigated	 whether	 the	 gender	 of	 the	 subject	 might	 influence	 activity	 classification.	

While	 the	 results	were	 not	 significantly	 different,	 some	differences	 between	males	 and	 females	

were	 found	 in	 algorithm	 accuracy.	 Recognition	 of	 women	 activities	 gave	 better	 results	 (on	

average:	 6%),	 probably	 due	 to	 the	more	 regular	 execution	 of	 activities	 by	women,	 as	 shown	 in	

Figure	3	 for	 the	three	best	algorithms.	 In	absolute	 terms,	 the	best	recognition	rate	(93.6%)	was	

obtained	 for	 women	 activities	 measured	 when	 the	 smartphone	 was	 on	 the	 arm.	 The	 worst	

recognition	rate	(81.2%)	was	instead	obtained	for	male	activities	carried	out	with	the	smartphone	

on	the	wrist.	

(FIGURE	3	HERE)	

3.3 Computational issues 
In	 our	 preliminary	 evaluation	 of	 computational	 complexity,	 the	 time	 for	model	 building	 ranged	

from	0.001	(Kstar)	 to	4.34	seconds	 (Logistic	Regression),	while	 the	classification	of	350	samples	

was	 always	 immediate,	 except	 for	 Kstar	 (3.30s).	 Table	 4	 shows	 the	 details	 regarding	 the	 time	

needed	for	building	the	model.	

Since	the	computer	used	for	the	test	is	more	powerful	than	a	generic	smartphone	(in	particular	for	

floating	 point	 operations),	 maybe	 Kstar	 is	 less	 suitable	 for	 real-time	 recognition	 of	 activities	



directly	on	a	smartphone	than	other	algorithms.	However,	this	should	be	proven	with	an	ad-hoc	

implementation	on	a	smartphone,	optimized	for	its	computational	resources.	

(TABLE	4	HERE)	

3.4 User survey 
All	users	filled	in	the	questionnaire	as	requested.	Figure	4	shows	the	details	of	their	evaluation	of	

the	experience	with	the	smartphone.	

Smartphone	 comfort	was	 perceived	with	 a	wide	 range	 of	 levels,	with	 a	 slight	 predominance	 of	

positive	opinions.	Summing	up	1	and	2	as	positive	opinions	and	4-5	as	negative	opinions,	the	wrist	

position	turned	out	to	be	the	most	comfortable	(8	positive	vs	1	negative)	and	the	arm	position	the	

least	comfortable	(6	positive	vs	3	negative).	

Impediment	and	conditioning	of	activities	were	evaluated	in	very	similar	ways,	and,	in	general,	it	

seems	 that	 carrying	 the	 smartphone	did	not	hinder	or	 condition	 activities,	 because	no	negative	

opinions	(4	and	5)	were	expressed.	As	an	example,	with	the	smartphone	in	the	wrist	position,	all	

opinions	 were	 positive	 for	 both	 impediment	 and	 conditioning.	 The	 arm	 position,	 which	 was	

considered	 the	 least	 comfortable,	 did	 not	 impede	 or	 condition	 activities	 more	 than	 the	 other	

positions.	

(FIGURE	4	HERE)	

4 Conclusion 
The	smartphone,	placed	in	a	usual	position	such	as	in	a	pocket,	can	be	used	to	recognize	several	

activities	through	its	accelerometer,	including	some	household	activities	[23,38].	

Although	 some	 activities	 were	 studied	 for	 the	 first	 time	 in	 our	 work,	 our	 contribution	 is	

preliminary,	due	to	the	limited	number	of	subjects	involved	and	to	the	fact	that	the	subjects	were	

not	asked	about	their	confidence	with	the	studied	household	activities.	



Since	most	of	the	current	mobile	and	wearable	devices	and	applications	are	devoted	to	fitness	and	

sports	 activities,	 our	 results	may	 open	 towards	 a	 better	 understanding	 of	 the	 physical	 activity	

behaviour	 of	 populations	 that	 are	not	directly	 involved	 in	 activities	 explicitly	 aimed	at	 physical	

wellness,	but	that	do	some	physical	activity	in	their	daily	life.	

To	 exploit	 physical	 activity	 recognition,	 we	 envisaged	 two	 implementation	 modalities.	 One	

modality	provides	for	a	pre-calculated	generic	classification	model	(subject-independent	training),	

which	the	user	can	exploit	without	 the	need	 for	specific	 training	and	personalization.	The	other	

modality	 is	based	on	an	 initial	 subject-dependent	 training	phase,	 in	which	 the	user	has	 to	 label	

his/her	own	activities	to	help	the	construction	of	a	personalized	classification	model,	which	thus	

can	exploit	knowledge	on	the	subject	(e.g.,	preferred	smartphone	position,	gender,	etc.).	While	the	

pre-calculated	modality	is	of	immediate	use,	the	second	one	is	initially	more	complicated	for	the	

user,	 but	 it	 certainly	 provides	 greater	 accuracy	 in	 recognizing	 activities.	 However,	 in	 the	 first	

modality,	the	model	building	occurs	offline,	whereas	in	the	second	modality	the	model	has	to	be	

built	on	the	smartphone,	and	this	can	take	some	time.	Classification	has	to	be	done	in	real	time	or	

close	to	real	time	directly	on	the	smartphone,	and	algorithms		have	thus	to	be	optimized	for	that	

(e.g.,	[41]).	While	this	has	to	be	confirmed	by	a	specific	experimentation,	the	best	algorithm	in	our	

experimentation	 (Kstar)	 might	 not	 be	 the	 most	 adequate	 algorithm	 from	 this	 point	 of	 view.	

However,	since	differences	in	accuracy	among	the	algorithms	were	minimal,	either	RandomForest	

or	Multilayer	Perceptron	could	be	instead	implemented	directly	on	the	smartphone.	

The	 demonstrated	 capability	 of	 recognizing	 common	 activities	 can	 be	 exploited	 in	 all	 those	

situations	were	physical	activity	 is	crucial	 [1-3],	 for	example	 in	metabolic	syndrome	[4-5].	Since	

measurement	 of	 physical	 activities	 is	 one	 of	 the	 components	 to	 evaluate	 the	 possible	 risk	 of	

metabolic	syndrome,	a	smartphone	capable	of	classifying	and	recording	activities	during	the	day	

could	complement	the	IPAQ	questionnaire,	thus	providing	a	way	for	estimating	physical	activity	in	



a	 non-invasive	way.	 However,	 since	 there	 are	 reports	 of	 variable	 reliability	 of	 IPAQ	 in	 specific	

populations	 [9,42-44]	and,	more	generally,	of	 limitations	 in	measuring	physical	activity	 through	

questionnaires	 [45],	 a	 further	development	 could	be	 to	 effectively	measure	METs	 starting	 from	

smartphone	sensors	only,	although	some	evidence	exists	that	accelerometer	alone	cannot	provide	

a	 reliable	 estimate	 of	 energy	 expenditure	 [46].	 In	 addition	 to	 accelerometer	 data,	 which	might	

eventually	come	from	electronic	activity	monitors	[47,48],	other	sensible	sources	of	 information	

could	be	the	internal	gyroscope	of	some	high-end	smartphones,	or	also	the	vital	sign	sensors	being	

introduced	 in	 forthcoming	 smartwatches.	 All	 of	 this,	 through	data	 fusion	 [49],	may	 concur	 to	 a	

better	recognition	of	daily	life	activities,	although	the	most	sophisticated	and	sensor-rich	systems	

are	also	more	expensive	and	thus	less	adequate	for	reaching	a	wide	audience.	
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Figure	1	–	An	example	of	accelerometer	data	for	all	activities	and	smartphone	positions	

	

		

Figure	2	–	the	accuracy	of	the	best	three	algorithms	by	smartphone	position	
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Figure	3	–	Accuracy	of	the	best	three	algorithms	by	gender	and	by	smartphone	position	
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Figure	4	–	Results	of	user	survey	
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Position	 	 J48	
Logistic	

Regression	
Multilayer	
Perceptron	

Naive	
Bayes	

Bayes	
Net	

Decision	
Table	 KStar	

Random	
Forest	

Logit	
Boost	

arm	 Accuracy	 74.8	 76.3	 84.4	 74.2	 75.7	 62.1	 87.9	 85.6	 78.1	
	 Precision	 0.64	 0.73	 0.82	 0.64	 0.63	 0.42	 0.84	 0.83	 0.72	
	 Recall	 0.66	 0.68	 0.87	 0.69	 0.67	 0.56	 0.93	 0.78	 0.73	
	 F-measure	 0.63	 0.69	 0.83	 0.64	 0.63	 0.46	 0.88	 0.79	 0.71	
wrist	 Accuracy	 76.7	 76.8	 84.3	 76.8	 79.5	 64.4	 83.1	 85.2	 81.6	
	 Precision	 0.73	 0.77	 0.80	 0.64	 0.77	 0.46	 0.73	 0.81	 0.78	
	 Recall	 0.70	 0.73	 0.86	 0.79	 0.73	 0.66	 0.91	 0.85	 0.79	
	 F-measure	 0.70	 0.73	 0.82	 0.70	 0.74	 0.53	 0.80	 0.82	 0.77	
pocket	 Accuracy	 80.7	 75.6	 82.2	 66.1	 73.6	 63.0	 89.4	 89.4	 83.1	
	 Precision	 0.84	 0.86	 0.92	 0.90	 0.86	 0.49	 0.96	 0.95	 0.89	
	 Recall	 0.82	 0.85	 0.91	 0.81	 0.76	 0.73	 0.91	 0.91	 0.89	
	 F-measure	 0.82	 0.85	 0.91	 0.84	 0.79	 0.57	 0.93	 0.93	 0.88	

	

Table	1	–	Performance	of	classifiers	(accuracy,	precision,	recall	and	F-measure)	by	smartphone	

position;	in	bold	the	most	accurate	classifier	for	each	measure	and	position	
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climbing stairs 55 0 3 0 0 0 1 0   54 0 2 0 0 0 2 2 
ironing 0 47 0 2 0 4 0 0   0 45 0 0 0 5 1 1 

walking with box 0 0 57 0 0 0 2 1   0 0 53 0 0 0 7 0 
sitting 0 1 0 52 4 2 0 0   1 0 0 49 10 0 0 0 

working at PC 0 3 0 2 55 0 0 0   0 0 0 1 59 0 0 0 
sweeping 5 7 0 2 0 44 2 0   0 3 0 0 0 57 0 0 

walking 3 0 3 0 0 2 50 2   1 0 9 0 0 0 50 0 
going down stairs 3 0 2 0 0 0 1 54   2 0 2 0 0 0 2 54 

                  
 ARM        POCKET      

	

Table	2	–	Confusion	matrices	for	Kstar	algorithm,	on	arm	and	pocket	positions	

	



	

  position climbing 
stairs ironing walking 

with box sitting working 
at PC sweeping walking 

going 
down 
stairs 

Multiple accelerometers and sensors                 

(22) Foerster 2000 5 sensors on sternum, right 
and left thigh 93.5%     94.2%     96.7% 95.7% 

(23) Bao 2004 5 sensors on arm, wrist, 
knee, ankle, waist 85.6%     94.8% 97.5%   89.7%   

(25) Khan 2010 
1 sensor at a position 
closer to the 
center of mass 

99.0%     90.8%     99.0% 99.0% 

(27) Long 2009 1 sensor on wrist             80.3%   
(28)  Ravi 2005 1 sensor on a pelvic region 42.9%           97.8% 100% 

(29) Parkka 2006 

22 sensors on chest, wrist, 
finger, forehead, upper 
back, below neck, 
shoulder, breastbone 

      96%     79.0%   

(31) Lester 2006 7 sensors on shoulder, 
wrist and waist 84.5%     50.5%     79.8% 80.3% 

(38) Edgar 2012 9 sensors on the inside of 
the wrist and the foot 77.7%     96.7%     100% 95.7% 

Smartphone                  

(32) Miluzzo 2008 average among pocket, 
hip, necklace       68.2%     94.4%   

(33) Kwapisz 2010 pocket 61.5%     95%     91.7% 44.3% 

(34) Wu 2012 pocket 69.8%     100%     92.0% 79.4% 

(35) Dernbach 2012 not standardized 71.8%     87.3%   60.0% 86.9%   

our study (using 
Kstar) pocket 90.0% 86.5% 88.3% 81.7% 98.3% 95% 83.3% 90% 

	

Table	3	–	Accuracy	comparison	of	our	study	using	Kstar	algorithm	with	smartphone	in	the	pocket	with	
previous	relevant	works	

	

Classifier	 Model	building	time	(s)	
J48	 0.14	
Logistic	Regression	 4.34	
Multilayer	Perceptron	 2.90	
Naivebayes	 0.04	
Bayesnet	 0.09	
Decision	Table	 0.22	
Kstar	 <0.001	
Random	Forest	 0.16	
Logit	Boost	 0.24	

Table	4	–	time	needed	for	model	building;	in	bold	the	3	most	accurate	algorithms	


