Non-critical dimensions for critical problems involving fractional Laplacians

Roberta Musina* and Alexander I. Nazarov ${ }^{\dagger}$

Abstract

We study the Brezis-Nirenberg effect in two families of noncompact boundary value problems involving Dirichlet-Laplacian of arbitrary real order $m>0$.

Keywords: Fractional Laplace operators, Sobolev inequality, Hardy inequality, critical dimensions.

1 Introduction

Let m, s be two given real numbers, with $0 \leq s<m<\frac{n}{2}$. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and smooth domain in \mathbb{R}^{n} and put

$$
2_{m}^{*}=\frac{2 n}{n-2 m} .
$$

We study equations

$$
\begin{equation*}
(-\Delta)^{m} u=\lambda(-\Delta)^{s} u+|u|^{2}-2 u \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
(-\Delta)^{m} u=\lambda|x|^{-2 s} u+|u|^{2_{m}^{*}-2} u \quad \text { in } \Omega, \tag{1.2}
\end{equation*}
$$

[^0]under suitably defined Dirichlet boundary conditions. In dealing with equation (1.2) we always assume that Ω contains the origin. For the definition of fractional Dirichlet-Laplace operators $(-\Delta)^{m},(-\Delta)^{s}$ and for the variational approach to (1.1), (1.2) we refer to the next section.

The celebrated paper [3] by Brezis and Nirenberg was the inspiration for a fruitful line of research about the effect of lower order perturbations in noncompact variational problems. They took as model the case $n>2, m=1, s=0$, that is,

$$
\begin{equation*}
-\Delta u=\lambda u+|u|^{\frac{4}{n-2}} u \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega . \tag{1.3}
\end{equation*}
$$

Brezis and Nirenberg pointed out a remarkable phenomenon that appears for positive values of the parameter λ : they proved existence of a nontrivial solution for any small $\lambda>0$ if $n \geq 4$; in contrast, in the lowest dimension $n=3$ non-existence phenomena for sufficiently small $\lambda>0$ can be observed. For this reason, the dimension $n=3$ has been named critical for problem (1.3).

Clearly, as larger s is, as stronger the effects of the lower order perturbations are expected in equations (1.1), (1.2). We are interested in the following question: Given $m<\frac{n}{2}$, how large must be s in order to have the existence of a ground state solution, for any arbitrarily small $\lambda>0$? In case of an affirmative answer, we say that n is not a critical dimension.

We present our main result, that holds for any dimension $n \geq 1$ (see Section [4 for a more precise statement).

THEOREM. If $s \geq 2 m-\frac{n}{2}$ then n is not a critical dimension for the Dirichlet boundary value problems associated to equations (1.1) and (1.2).

We point out some particular cases that are included in this result.

- If m is an integer and $s=m-1$, then at most the lowest dimension $n=2 m+1$ is critical.
- For any $n>2 m$ there always exist lower order perturbations of the type $|x|^{-2 s} u$ and of the type $(-\Delta)^{s} u$ such that n is not a critical dimension.
- If $m<1 / 4$ then no dimension is critical, for any choice of $s \in[0, m)$.

[^1]After [3], a large number of papers have been focussed on studying the effect of linear perturbations in noncompact variational problems of the type (1.1). Most of these papers deal with $s=0$, when the problems (1.1) and (1.2) coincide. Moreover, as far as we know, all of them consider either polyharmonic case $2 \leq m \in \mathbb{N}$, see for instance [13, [6, [2, [10, [7], or the case $m \in(0,1)$, see [14, [15]. We cite also [4], where equation (1.1) is studied in case $m=2, s=1$. Thus, our Theorem 4.2 covers all earlier existence results.

Finally, we mention [1] (see also [16]) where equation (1.1) for the so-called Navier-Laplacian is studied in case $m \in(0,1), s=0$. For a comparison between the Dirichlet and Navier Laplacians we refer to [12].

The paper is organized as follows. After introducing some notation and preliminary facts in Section 2, we provide the main estimates in Section 3. In Section [we prove Theorem 1 and point out an existence result for the case $s<2 m-\frac{n}{2}$.

2 Preliminaries

The fractional Laplacian $(-\Delta)^{m} u$ of a function $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is defined via the Fourier transform

$$
\mathcal{F}[u](\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} u(x) d x
$$

by the identity

$$
\begin{equation*}
\mathcal{F}\left[(-\Delta)^{m} u\right](\xi)=|\xi|^{2 m} \mathcal{F}[u](\xi) \tag{2.1}
\end{equation*}
$$

In particular, Parseval's formula gives

$$
\int_{\mathbb{R}^{n}}(-\Delta)^{m} u \cdot u d x=\int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x=\int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[u]|^{2} d \xi .
$$

We recall the well known Sobolev inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x \geq \mathcal{S}_{m}\left(\int_{\mathbb{R}^{n}}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}} \tag{2.2}
\end{equation*}
$$

that holds for any $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $m<\frac{n}{2}$, see for example [17, 2.8.1/15].

Let $\mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ be the Hilbert space obtained by completing $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with respect to the Gagliardo norm

$$
\begin{equation*}
\|u\|_{m}^{2}=\int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x \tag{2.3}
\end{equation*}
$$

Thanks to (2.2), the space $\mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ is continuously embedded into $L^{2_{m}^{*}}\left(\mathbb{R}^{n}\right)$. The best Sobolev constant \mathcal{S}_{m} was explicitly computed in [5. Moreover, it has been proved in [5 that \mathcal{S}_{m} is attained in $\mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ by a unique family of functions, all of them being obtained from

$$
\begin{equation*}
\phi(x)=\left(1+|x|^{2}\right)^{\frac{2 m-n}{2}} \tag{2.4}
\end{equation*}
$$

by translations, dilations in \mathbb{R}^{n} and multiplication by constants.
Dilations play a crucial role in the problems under consideration. Notice that for any $\omega \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right), R>0$ it turns out that

$$
\begin{align*}
\int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[\omega](\xi)|^{2} d \xi & =R^{n-2 m} \int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[\omega(R \cdot)](\xi)|^{2} d \xi \tag{2.5}\\
\int_{\mathbb{R}^{n}}|\omega|^{2_{m}^{2}} d x & =R^{n} \int_{\mathbb{R}^{n}}|\omega(R \cdot)|^{2_{m}^{*}} d x
\end{align*}
$$

Finally, we point out that the Hardy inequality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x \geq \mathcal{H}_{m} \int_{\mathbb{R}^{n}}|x|^{-2 m}|u|^{2} d x \tag{2.6}
\end{equation*}
$$

holds for any function $u \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$. The best Hardy constant \mathcal{H}_{m} was explicitly computed in [11.

The natural ambient space to study the Dirichlet boundary value problems for (1.1), (1.2) is

$$
\widetilde{H}^{m}(\Omega)=\left\{u \in \mathcal{D}^{m}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Omega}\right\},
$$

endowed with the norm $\|u\|_{m}$. By Theorem 4.3.2/1 [17], for $m+\frac{1}{2} \notin \mathbb{N}$ this space coincides with $H_{0}^{m}(\Omega)$ (that is the closure of $\mathcal{C}_{0}^{\infty}(\Omega)$ in $H^{m}(\Omega)$), while for $m+\frac{1}{2} \in \mathbb{N}$ one has $\widetilde{H}^{m}(\Omega) \subsetneq H_{0}^{m}(\Omega)$. Moreover, $\mathcal{C}_{0}^{\infty}(\Omega)$ is dense in $\widetilde{H}^{m}(\Omega)$. Clearly, if m is an integer then $\widetilde{H}^{m}(\Omega)$ is the standard Sobolev space of functions $u \in H^{m}(\Omega)$ such that $D^{\alpha} u=0$ for every multiindex $\alpha \in \mathbb{N}^{n}$ with $0 \leq|\alpha|<m$.

We agree that $(-\Delta)^{0} u=u, \widetilde{H}^{0}(\Omega)=L^{2}(\Omega)$, since (2.3) reduces to the standard L^{2} norm in case $m=0$.

We define (weak) solutions of the Dirichlet problems for (1.1), (1.2) as suitably normalized critical points of the functionals

$$
\begin{align*}
& \mathcal{R}_{\lambda, m, s}^{\Omega}[u]=\frac{\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x-\lambda \int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x}{\left(\int_{\Omega}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}}} \tag{2.7}\\
& \widetilde{\mathcal{R}}_{\lambda, m, s}^{\Omega}[u]=\frac{\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x-\lambda \int_{\Omega}|x|^{-2 s}|u|^{2} d x}{\left(\int_{\Omega}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}}} \tag{2.8}
\end{align*}
$$

respectively. It is easy to see that both functionals (2.7), (2.8) are well defined on $\widetilde{H}^{m}(\Omega) \backslash\{0\}$.

We conclude this preliminary section with some embedding results.
Proposition 2.1 Let m, s be given, with $0 \leq s<m<n / 2$.
i) The space $\widetilde{H}^{m}(\Omega)$ is compactly embedded into $\widetilde{H}^{s}(\Omega)$. In particular the infima

$$
\begin{equation*}
\Lambda_{1}(m, s):=\inf _{\substack{u \in \widetilde{H}^{m}(\Omega) \\ u \neq 0}} \frac{\|u\|_{m}^{2}}{\|u\|_{s}^{2}}, \quad \widetilde{\Lambda}_{1}(m, s):=\inf _{\substack{u \in \widetilde{H}^{m}(\Omega) \\ u \neq 0}} \frac{\|u\|_{m}^{2}}{\left\||x|^{-s} u\right\|_{0}^{2}} \tag{2.9}
\end{equation*}
$$

are positive and achieved.
ii) $\inf _{\substack{u \in \widetilde{H}^{m}(\Omega) \\ u \neq 0}} \frac{\|u\|_{m}^{2}}{\|u\|_{L^{2}}^{2}}=\mathcal{S}_{m}$.

Statement i) is well known for $\Lambda_{1}(m, s)$ and follows from (2.6) for $\widetilde{\Lambda}_{1}(m, s)$. To check $i i$, use the inclusion $\widetilde{H}^{m}(\Omega) \hookrightarrow \mathcal{D}^{m}\left(\mathbb{R}^{n}\right)$ and a rescaling argument. Clearly, the Sobolev constant \mathcal{S}_{m} is never achieved on $\widetilde{H}^{m}(\Omega)$.

3 Main estimates

Let ϕ be the extremal of the Sobolev inequality (2.2) given by (2.4). In particular, it holds that

$$
\begin{equation*}
M:=\int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} \phi\right|^{2} d x=\mathcal{S}_{m}\left(\int_{\mathbb{R}^{n}}|\phi|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}} . \tag{3.1}
\end{equation*}
$$

Fix $\delta>0$ and a cutoff function $\varphi \in \mathcal{C}_{0}^{\infty}(\Omega)$, such that $\varphi \equiv 1$ on the ball $\{|x|<\delta\}$ and $\varphi \equiv 0$ outside $\{|x|<2 \delta\}$. If δ is sufficiently small, the function

$$
u_{\varepsilon}(x):=\varepsilon^{2 m-n} \varphi(x) \phi\left(\frac{x}{\varepsilon}\right)=\varphi(x)\left(\varepsilon^{2}+|x|^{2}\right)^{\frac{2 m-n}{2}}
$$

has compact support in Ω. Next we define

$$
\begin{array}{ll}
A_{m}^{\varepsilon}:=\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} u_{\varepsilon}\right|^{2} d x & A_{s}^{\varepsilon}:=\int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u_{\varepsilon}\right|^{2} d x \\
\widetilde{A}_{s}^{\varepsilon}:=\int_{\Omega}|x|^{-2 s}\left|u_{\varepsilon}\right|^{2} d x & B^{\varepsilon}:=\int_{\Omega}\left|u_{\varepsilon}\right|^{2_{m}^{*}} d x
\end{array}
$$

and we denote by c any universal positive constant.
Lemma 3.1 It holds that

$$
\begin{cases}A_{m}^{\varepsilon} \leq \varepsilon^{2 m-n}\left(M+c \varepsilon^{n-2 m}\right) & \tag{3.2a}\\ A_{s}^{\varepsilon}, \widetilde{A}_{s}^{\varepsilon} \geq c \varepsilon^{4 m-n-2 s} & \text { if } s>2 m-\frac{n}{2} \\ A_{s}^{\varepsilon}, \widetilde{A}_{s}^{\varepsilon} \geq c|\log \varepsilon| & \text { if } s=2 m-\frac{n}{2} \\ B^{\varepsilon} \geq \varepsilon^{-n}\left(\left(M \mathcal{S}_{m}^{-1}\right)^{2_{m}^{*} / 2}-c \varepsilon^{n}\right) . & \end{cases}
$$

Proof of (3.2a). First of all, from (2.5) we get

$$
\begin{equation*}
A_{m}^{\varepsilon}=\varepsilon^{2 m-n} \int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[\varphi(\varepsilon \cdot) \phi]|^{2} d \xi \tag{3.3}
\end{equation*}
$$

Thus

$$
\Gamma_{m}^{\varepsilon}:=\varepsilon^{n-2 m} A_{m}^{\varepsilon}-M=\int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[\varphi(\varepsilon \cdot) \phi]|^{2} d \xi-\int_{\mathbb{R}^{n}}|\xi|^{2 m}|\mathcal{F}[\phi]|^{2} d \xi
$$

We need to prove that

$$
\begin{equation*}
\left|\Gamma_{m}^{\varepsilon}\right| \leq c \varepsilon^{n-2 m} \tag{3.4}
\end{equation*}
$$

If $m \in \mathbb{N}$, the proof of (3.4) has been carried out in (3), (7). Here we limit ourselves to the more difficult case, namely, when m is not an integer. We denote by $k:=\lfloor m\rfloor \geq 0$ the integer part of m, so that $m-k>0$. Then

$$
\begin{aligned}
\Gamma_{m}^{\varepsilon} & =\int_{\mathbb{R}^{n}}|\xi|^{2 k} \mathcal{F}\left[U_{-}\right] \cdot|\xi|^{2(m-k)} \overline{\mathcal{F}\left[U_{+}\right]} d \xi \\
& =2^{2(m-k)+\frac{n}{2}} \frac{\Gamma\left(m-k+\frac{n}{2}\right)}{\Gamma(-(m-k))} \cdot \int_{\mathbb{R}^{n}}(-\Delta)^{k} U_{-}(x) \cdot V \cdot P \cdot \int_{\mathbb{R}^{n}}^{\int_{\Psi(x, y)}^{\frac{U_{+}(x)-U_{+}(y)}{|x-y|^{n+2(m-k)}}} d y d x}
\end{aligned}
$$

where $U_{ \pm}=\varphi(\varepsilon \cdot) \phi \pm \phi$ (the last equality follows from [9, Ch. 2, Sec. 3]).
We split the interior integral as follows:

$$
\text { V.P. } \int_{\mathbb{R}^{n}} \Psi d y=\underbrace{\text { V.P. } \int_{\substack{|y-x| \leq \frac{|x|}{2}}} \Psi d y}_{I_{1}}+\underbrace{\int_{\substack{|y-x| \geq|x| \\|y| \leq|x|^{2}}} \Psi d y}_{I_{2}}+\underbrace{\int_{\substack{|y-x| \geq \frac{|x|}{\mid} \\|y| \geq||x|}} \Psi d y}_{I_{3}} .
$$

We claim that $\left|I_{j}\right| \leq c|x|^{2 k-n}$ for $j=1,2,3$. Indeed, the Lagrange formula gives

$$
\begin{aligned}
\left|I_{1}\right| \leq & \max _{|y-x| \leq \frac{|x|}{2}}\left|D^{2} U_{+}(y)\right| \cdot \int_{|z| \leq \frac{|x|}{2}} \frac{d z}{|z|^{n+2(m-k)-2}} \\
& \quad \leq c|x|^{-(n-2 m+2)} \cdot|x|^{2-2(m-k)}=c|x|^{2 k-n}
\end{aligned}
$$

As concerns the last two integrals we estimate

$$
\left|I_{2}\right| \leq \int_{\substack{|y-x| \geq|x| \\|y| \leq|x|^{2}}} \frac{c|y|^{-(n-2 m)}}{|x-y|^{n+2(m-k)}} d y \leq|x|^{-(n+2(m-k))} \cdot c|x|^{2 m}=c|x|^{2 k-n}
$$

and finally

$$
\begin{aligned}
\left|I_{3}\right| \leq \int_{\substack{|y-x| \geq \frac{|x|}{2} \\
|y| \geq|x|^{2}}} \frac{c|x|^{-(n-2 m)}}{|x-y|^{n+2(m-k)}} d y & \leq c|x|^{-(n-2 m)} \cdot \int_{|z| \geq \frac{|x|}{2}} \frac{d z}{|z|^{n+2(m-k)}} \\
& \leq c|x|^{-(n-2 m)} \cdot|x|^{-2(m-k)}=c|x|^{2 k-n}
\end{aligned}
$$

and the claim follows. Now, since

$$
\left|(-\Delta)^{k} U_{-}(x)\right| \leq \frac{c}{|x|^{n-2(m-k)}} \chi_{\{|x| \geq \delta / \varepsilon\}}+\frac{c \varepsilon^{2 k}}{|x|^{n-2 m}} \chi_{\{\delta / \varepsilon \leq|x| \leq 2 \delta / \varepsilon\}},
$$

we obtain

$$
\left|\Gamma_{m}^{\varepsilon}\right| \leq c \int_{|x| \geq \delta / \varepsilon} \frac{d x}{|x|^{2 n-2 m}}+c \int_{\delta / \varepsilon \leq|x| \leq 2 \delta / \varepsilon} \frac{\varepsilon^{2 k} d x}{|x|^{2 n-2(m+k)}} \leq c \varepsilon^{n-2 m},
$$

that completes the proof of (3.4) and of (3.2a).
Proof of (3.2b) and (3.2c). We use the Hardy inequality (2.6) to get

$$
\begin{aligned}
A_{s}^{\varepsilon} & \geq c \widetilde{A}_{s}^{\varepsilon} \geq c \varepsilon^{4 m-2 s-n} \int_{\mathbb{R}^{n}}|x|^{-2 s}|\varphi(\varepsilon \cdot) \phi|^{2} d x \\
& \geq c \varepsilon^{4 m-2 s-n} \int_{|x|<\delta / \varepsilon} \frac{d x}{|x|^{2 s}\left(1+|x|^{2}\right)^{n-2 m}} .
\end{aligned}
$$

The last integral converges as $\varepsilon \rightarrow 0$ if $s>2 m-\frac{n}{2}$, and diverges with speed $|\log \varepsilon|$ if $s=2 m-\frac{n}{2}$.

Proof of (3.2d). For ε small enough we estimate by below

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|u_{\varepsilon}\right|^{2_{m}^{*}} & =\varepsilon^{-n} \int_{\mathbb{R}^{n}}|\varphi(\varepsilon \cdot) \phi|^{2_{m}^{*}} d x=\varepsilon^{-n}\left(\int_{\mathbb{R}^{n}}|\phi|^{2_{m}^{*}} d x-\int_{|x|>\delta / \varepsilon}|\varphi(\varepsilon \cdot) \phi|^{2_{m}^{*}} d x\right) \\
& \geq \varepsilon^{-n}\left(\left(M \mathcal{S}_{m}^{-1}\right)^{2_{m}^{*} / 2}-c \int_{|x|>\delta / \varepsilon}|x|^{-2 n} d x\right) \\
& =\varepsilon^{-n}\left(\left(M \mathcal{S}_{m}^{-1}\right)^{2_{m}^{*} / 2}-c \varepsilon^{n}\right)
\end{aligned}
$$

and the Lemma is completely proved.

4 Two noncompact minimization problems

In this section we deal with the minimization problems

$$
\mathcal{S}_{\lambda}^{\Omega}(m, s)=\inf _{\substack{u \in \widetilde{H}^{m}(\Omega) \\ u \neq 0}} \mathcal{R}_{\lambda, m, s}^{\Omega}[u] ; \quad \widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)=\inf _{\substack{u \in \widetilde{H}^{m}(\Omega) \\ u \neq 0}} \widetilde{\mathcal{R}}_{\lambda, m, s}^{\Omega}[u],
$$

where the functionals \mathcal{R} and $\widetilde{\mathcal{R}}$ are introduced in (2.7) and (2.8), respectively.

Lemma 4.1 The following facts hold for any $\lambda \in \mathbb{R}$:
i) $\mathcal{S}_{\lambda}^{\Omega}(m, s) \leq \mathcal{S}_{m} ;$
ii) If $\lambda \leq 0$ then $\mathcal{S}_{\lambda}^{\Omega}(m, s)=\mathcal{S}_{m}$ and it is not achieved;
iii) If $0<\mathcal{S}_{\lambda}^{\Omega}(m, s)<\mathcal{S}_{m}$, then $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is achieved.

The same statements hold for $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$ instead of $\mathcal{S}_{\lambda}^{\Omega}(m, s)$.
Proof. The proof is nowdays standard, and is essentially due to Brezis and Nirenberg [3]. We sketch it for the infimum $\mathcal{S}_{\lambda}^{\Omega}(m, s)$, for the convenience of the reader.

Fix $\varepsilon>0$ and take $u \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) \backslash\{0\}$ such that

$$
\begin{equation*}
\left(\mathcal{S}_{m}+\varepsilon\right)\left(\int_{\mathbb{R}^{n}}|u|^{2_{m}^{*}} d x\right)^{2 / 2_{m}^{*}} \geq \int_{\mathbb{R}^{n}}\left|(-\Delta)^{\frac{m}{2}} u\right|^{2} d x \tag{4.1}
\end{equation*}
$$

Let $R>0$ be large enough, so that $u_{R}(\cdot):=u(R \cdot) \in \mathcal{C}_{0}^{\infty}(\Omega)$. Using (2.5) we get

$$
\mathcal{S}_{\lambda}^{\Omega}(m, s) \leq \frac{\|u\|_{m}^{2}-\lambda R^{2(s-m)}\|u\|_{s}^{2}}{\|u\|_{L^{2}}^{2}} \leq\left(\mathcal{S}_{m}+\varepsilon\right)\left(1+c R^{2(s-m)}\right)
$$

where c depends only on u and λ. Letting $R \rightarrow \infty$ we get $\mathcal{S}_{\lambda}^{\Omega}(m, s) \leq\left(\mathcal{S}_{m}+\varepsilon\right)$ for any $\varepsilon>0$, and i) is proved.

Next, if $\lambda \leq 0$ then clearly $\mathcal{S}_{\lambda}^{\Omega}(m, s)=\mathcal{S}_{m}$. If $\lambda=0$ then \mathcal{S}_{m} is not achieved. The more it is not achieved for $\lambda<0$, and $i i$) holds.

Finally, to prove $i i i)$ take a minimizing sequence u_{h}. It is convenient to normalize u_{h} with respect to the $L^{2_{m}^{*}}$ norm, so that

$$
\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} u_{h}\right|^{2} d x-\lambda \int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u_{h}\right|^{2} d x=\mathcal{S}_{\lambda}^{\Omega}(m, s)+o(1)
$$

We can assume that $u_{h} \rightarrow u$ weakly in $\widetilde{H}^{m}(\Omega)$ and strongly in $\widetilde{H}^{s}(\Omega)$ by Proposition 2.1. Since

$$
\begin{aligned}
\lambda \int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u\right|^{2} d x & =\lambda \int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} u_{h}\right|^{2} d x+o(1) \\
& =\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} u_{h}\right|^{2} d x-\mathcal{S}_{\lambda}^{\Omega}(m, s)+o(1) \\
& \geq\left(\mathcal{S}_{m}-\mathcal{S}_{\lambda}^{\Omega}(m, s)\right)+o(1)
\end{aligned}
$$

then $u \neq 0$. By the Brezis-Lieb lemma we get

$$
1=\|u\|_{L^{2 *}}^{2_{m}^{*}}=\left\|u_{h}-u\right\|_{L^{2+}}^{2_{m}^{*}}+\|u\|_{L^{2 *}}^{2_{m}^{*}}+o(1)
$$

Thus

$$
\begin{aligned}
\mathcal{S}_{\lambda}^{\Omega}(m, s) & =\left\|u_{h}\right\|_{m}^{2}-\lambda\left\|u_{h}\right\|_{s}^{2}+o(1) \\
& =\left(\left\|u_{h}-u\right\|_{m}^{2}+\|u\|_{m}^{2}\right)-\lambda\left(\left\|u_{h}-u\right\|_{s}^{2}+\|u\|_{s}^{2}\right)+o(1) \\
& =\frac{\left(\left\|u_{h}-u\right\|_{m}^{2}-\lambda\left\|u_{h}-u\right\|_{s}^{2}\right)+\left(\|u\|_{m}^{2}-\lambda\|u\|_{s}^{2}\right)}{\left(\left\|u_{h}-u\right\|_{L^{2 m}}^{2_{m}^{*}}+\|u\|_{L^{2} m}^{2_{m}^{*}}\right)^{2 / 2_{m}^{*}}}+o(1) \\
& \geq \mathcal{S}_{\lambda}^{\Omega}(m, s) \cdot \frac{\xi_{h}^{2}+1}{\left(\xi_{h}^{2+}+1\right)^{2 / 2_{m}^{*}}}+o(1)
\end{aligned}
$$

where we have set

$$
\xi_{h}:=\frac{\left\|u_{h}-u\right\|_{L^{2}}}{\|u\|_{L^{2}}^{2}} .
$$

Since $2_{m}^{*}>2$, this implies that $\xi_{h} \rightarrow 0$, that is, $u_{h} \rightarrow u$ in $L^{2_{m}^{*}}$ and hence u achieves $\mathcal{S}_{\lambda}^{\Omega}(m, s)$.

We are in position to prove our existence result, that includes the theorem already stated in the introduction.

Theorem 4.2 Assume $s \geq 2 m-\frac{n}{2}$.
i) If $0<\lambda<\Lambda_{1}(m, s)$ then $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is achieved and (1.1) has a nontrivial solution in $\widetilde{H}^{m}(\Omega)$.
ii) If $0<\lambda<\widetilde{\Lambda}_{1}(m, s)$ then $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$ is achieved and (1.2) has a nontrivial solution in $\widetilde{H}^{m}(\Omega)$.

Proof. Since $0<\lambda<\Lambda_{1}(m, s)$ then $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is positive, by Proposition 2.1. The main estimates in Lemma 3.1 readily imply $\mathcal{S}_{\lambda}^{\Omega}(m, s)<\mathcal{S}_{m}$. By Lemma 4.1, $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is achieved by a nontrivial $u \in \widetilde{H}^{m}(\Omega)$, that solves (1.1) after multiplication by a suitable constant. Thus i) is proved. For $i i$) argue in the same way.

In the case $s<2 m-\frac{n}{2}$ the situation is more complicated. We limit ourselves to point out the next simple existence result.

Theorem 4.3 Assume $s<2 m-\frac{n}{2}$.
i) There exists $\lambda^{*} \in\left[0, \Lambda_{1}(m, s)\right)$ such that the infimum $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ is attained for any $\lambda \in\left(\lambda^{*}, \Lambda_{1}(m, s)\right)$, and hence (1.1) has a nontrivial solution.
ii) There exists $\tilde{\lambda}^{*} \in\left[0, \widetilde{\Lambda}_{1}(m, s)\right)$ such that the infimum $\widetilde{\mathcal{S}}_{\lambda}^{\Omega}(m, s)$ is attained for any $\lambda \in\left(\widetilde{\lambda}^{*}, \widetilde{\Lambda}_{1}(m, s)\right)$, and hence (1.2) has a nontrivial solution.

Proof. Use Proposition 2.1 to find $\varphi_{1} \in \widetilde{H}^{m}(\Omega), \varphi_{1} \neq 0$, such that

$$
\int_{\Omega}\left|(-\Delta)^{\frac{m}{2}} \varphi_{1}\right|^{2} d x=\Lambda_{1}(m, s) \int_{\Omega}\left|(-\Delta)^{\frac{s}{2}} \varphi_{1}\right|^{2} d x
$$

Then test $\mathcal{S}_{\lambda}^{\Omega}(m, s)$ with φ_{1} to get the strict inequality $\mathcal{S}_{\lambda}^{\Omega}(m, s)<\mathcal{S}_{m}$. The first conclusion follows by Proposition 2.1 and Lemma 4.1. For (1.2) argue similarily.

References

[1] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162.
[2] F. Bernis and H.-C. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators, J. Differential Equations 117 (1995), no. 2, 469-486.
[3] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477.
[4] P. Caldiroli and R. Musina, On Caffarelli-Kohn-Nirenberg-type inequalities for the weighted biharmonic operator in cones, Milan J. Math. 79 (2011), no. 2, 657-687.
[5] A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), no. 1, 225-236.
[6] D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal. 112 (1990), no. 3, 269-289.
[7] F. Gazzola, Critical growth problems for polyharmonic operators, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 2, 251-263.
[8] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems, Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010.
[9] I. M. Gelfand and G. E. Shilov, Generalized functions. V. 1. Properties and operations, Moscow, FML, 1958 (Russian); English transl.: Boston, MA: Academic press, 1964.
[10] H.-C. Grunau, Critical exponents and multiple critical dimensions for polyharmonic operators. II, Boll. Un. Mat. Ital. B (7) 9 (1995), no. 4, 815-847.
[11] I. W. Herbst, Spectral theory of the operator $\left(p^{2}+m^{2}\right)^{1 / 2}-Z e^{2} / r$, Comm. Math. Phys. 53 (1977), no. 3, 285-294.
[12] R. Musina and A. I. Nazarov, On fractional Laplacians, Comm. Partial Differential Equations, to appear. Preprint arXiv:1308.3606 (2013).
[13] P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9) 69 (1990), no. 1, 55-83.
[14] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., to appear (2012).
[15] R. Servadei and E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), no. 6, 2445-2464.
[16] J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), no. 1-2, 21-41.
[17] H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag Wissensch., Berlin, 1978.

[^0]: *Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 - 33100 Udine, Italy. Email: roberta.musina@uniud.it. Partially supported by Miur-PRIN 2009WRJ3W7001 "Fenomeni di concentrazione e problemi di analisi geometrica".
 ${ }^{\dagger}$ St.Petersburg Department of Steklov Institute, Fontanka 27, St.Petersburg, 191023, Russia, and St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia. E-mail: al.il.nazarov@gmail.com. Supported by RFBR grant 11-01-00825 and by St.Petersburg University grant 6.38.670.2013.

[^1]: ${ }^{1}$ compare with [13, 8.

