

Optimization of the coherence function estimation for multi-

core central processing unit

A G Cheremnov
1
, V A Faerman

2
 and V S Avramchuk

3

Tomsk Polytechnic University, Tomsk, Russian Federation

E-mail:
1
agc1@tpu.ru,

2
vaf@tpu.ru,

3
avs@tpu.ru

Abstract. The paper considers use of parallel processing on multi-core central processing unit

for optimization of the coherence function evaluation arising in digital signal processing.

Coherence function along with other methods of spectral analysis is commonly used for

vibration diagnosis of rotating machinery and its particular nodes. An algorithm is given for the

function evaluation for signals represented with digital samples. The algorithm is analyzed for

its software implementation and computational problems. Optimization measures are

described, including algorithmic, architecture and compiler optimization, their results are

assessed for multi-core processors from different manufacturers. Thus, speeding-up of the

parallel execution with respect to sequential execution was studied and results are presented for

Intel Core i7-4720HQ и AMD FX-9590 processors. The results show comparatively high

efficiency of the optimization measures taken. In particular, acceleration indicators and average

CPU utilization have been significantly improved, showing high degree of parallelism of the

constructed calculating functions. The developed software underwent state registration and will

be used as a part of a software and hardware solution for rotating machinery fault diagnosis

and pipeline leak location with acoustic correlation method.

1. Introduction

Solution of the number modern mechanical engineering problems requires applying of information

technologies. Despite the fact that the most of these tasks are simple in terms of computations, some of

them (as real-time control, prediction of technological process parameters or automated fault

diagnosis) still require a huge amount of computation.

Continuous increase in volume of processed information and development of new signal processing

methods requiring more computational resources lead to development of computation technology and

facilitate appearance of new approaches to efficient use of computer hardware.

Primary resources of modern personal computers (PCs) are their central processing units (CPUs)

whose performance is largely determined by their clock rate [1, 2]. Due to that until recently the main

way to increase performance was connected to increase of the clock rate. At the same time, raised

clock rate causes increases in both power consumption and heat emission inside the computer. The

latter was de-emphasized by node miniaturization in the production of processors. Currently, however,

further miniaturization is deemed problematic due to principal limitations, thus raising performance by

increasing the number of cores becomes ever more important [2].

Introduction of parallel processing into the modern CPUs architecture creates several requirements

to computation structuring: scalability, portability and adaptivity [3]. Only compliance with conditions

of parallel decomposition and agglomeration leads to full use of the processing power and brings

performance close to optimal values. Provision of the latter requires application of different

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic archive of Tomsk Polytechnic University

https://core.ac.uk/display/80135622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0

approaches towards optimization and some specific technologies, such as Open MP, Intel TBB, Intel

Click Plus and others [4].

This paper states and solves an optimization problem in coherence function evaluation with the aim

to increase the computation performance on multi-core CPUs. This function is important in digital

signal processing (DSP) and is commonly used for the spectral analysis of rotating machinery

vibration signals and also for pipeline leak location with acoustic correlation method.Performance

characteristics obtained as a result of the optimization are shown below.

The results are of significant practicality and will find their application in creation of a software

and hardware solution for the technical condition assessment of mechanical engineering equipment,

fault diagnosis of vehicles engines and transimission gearboxes. Necessity for effective use of

hardware is determined by both significant amount of calculations and limited potential of hardware

used in the project.

2. Coherence function in signal processing

The coherence function may be seen in Digital Signal Processing as an analogue of a mutual

correlation function over frequency domain, reflecting a degree of linear dependence between

harmonic components of the signals being analyzed [5]. Mathematical definition of the coherence

function is a ratio of mutual spectrum of the signals and square root from product of their energy

spectra [5]:

0.5

(())
()

(() (()))

AB k
k

AA k BB k

E P f
f

E P f E P f

, (1)

where)(E is an averaging operator for the ensemble over non-overlapping epochs;)(kPAA)(kPBB

are energy spectra represented by digital real signal samples ()As t and ()Bs t ;)(kPAB is a mutual

energy spectrum of the signals. The argument of the coherence function takes the values

2

d
k

f
f k

n
 , (2)

where df is signal sampling frequency ()As t , ()Bs t ; 0,1, ,k n ; 1n is a number of spectral

samples.

Energy spectra and the mutual spectrum may be obtained through the following calculation:

2

*() (()) (()) (())AA k D A i D A i D A iP f F s t F s t F s t , (3)

2

*() (()) (()) (())BB k D B i B B i D B iP f F s t F s t F s t , (4)

 *() (()) (())AB k D A i D B iP f F s t F s t , (5)

where DF is direct discrete-time Short-Time Fourier Transform (STFT);
*

DF is a complex conjugate

of the STFT results. The studied signals are defined over a time interval

1

i
d

t i
f

 . (6)

The number of samples is determined by chosen width of a STFT chunk frame.

The coherence function is an important tool for signal processing allowing justified determination

of a frequency domain where a stationary determined signal appears that carries information, [5] and

then apply necessary digital bandpass and barrier filters [6].

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

2

3. Optimization of the coherence function evaluation

From the programming point of view the computational procedure may be represented as a main loop

which is executed a preset number of times. At that, each iteration consists of data sampling to form

the STFT chunk frames, calculation of the signal spectra and their step-by-step accumulation as per

(1). Final value of the coherence function is determined at the loop termination by substituting

obtained values into the equation (1).

Application of the coherence function to solution of practical tasks in signal processing,

particularly that of leak location in pipelines with an acoustic emission method assumes treatment of

large volumes of data. The latter imposes significant constraints on the software implementation for

the project, making it more expensive, particularly if there is a necessity to provide an operating mode

close to real-time. Due to that parallel processing is a preferred way to arrange the computations.

As was mentioned before, use of the coherence functions requires significant number of STFT

evaluations. The Cooley-Tukey algorithm [7] for Fast Fourier Transform with time decimation over a

fixed base of 2 was selected as an algorithm to calculate STFT to increase computation performance

speed. Choice of the algorithm is determined by its ease of implementation, clarity and high degree of

internal parallelism [8].

Additional increase in STFT performance may be achieved by preliminary treatment of data,

namely by its bit-reversal (change of bit order in the number's binary representation to the opposite)

[7, 8]. In this case only array elements' indexes are subjected to the transformation. As a result, an

order of the input data is changed, while the numerical values are the same.

Parallelizing was performed with OpenMP and Intel Threading Building Blocks (TBB)

technologies. Choice of OpenMP was determined by spacial localization of the data, while tools from

the Intel TBB library were used to arrange recursive traversal of the ‘butterfly’ graph during the STFT

evaluation with time decimation following the Cooley-Tukey method, because this approach suggests

parallelism of tasks, rather than that of data. Built-in graphic subsystem is used as an additional co-

processor to execute general calculations.

Despite significant increase in calculation performance due to the above mentioned measures the

software implementation had been far from ideal. Further runtime optimization was attained with

scalar optimization methods [7]. The scalar optimization includes constant folding, constant

propagation and copy propagation. Constant folding is a process of preliminary calculation of

constants during compilation of the application; constant propagation is substitution of previously

calculated constants into equations; copy propagation is a process to substitute variables with their

respective values [7].

To reduce time burden for resource distribution during parallel calculations, a manual loading of

data into CPU cache from the RAM is implemented [9]. This is achieved with the data prefetching

function which fetches into the into the CPU cache a 64 bytes-long line of data starting from a given

address .

Practical effect manifests as reduced data access time for the soon-requested data. The reason for

this is that such data are likely already in the CPU cache as a result of this manipulations.

The final optimization measure is making the mathematical core with the optimizing Intel C++

compiler.

4. Assessment of optimization and speed

In accordance with the algorithm outlined above a software solution has been developed for

experimental assessment of the coherence function estimation speed. Studies were performed using

two CPUs: Intel Core i7-4720HQ and AMD FX-9590. Total number of signal samples varied from

524288 to 4194304 samples. The time to calculate the coherence function was measured one thousand

times.

Because there is a multitude of factors (including pseudoparallel operation of the OS core process

scheduler, interrupt processing) that can slower but not accelerate calculations [10], the shortest time

was held as the execution time to increase fidelity of the study. Time measurements were carried out

with a special function tbb::tick_count() in the Intel TBB library that takes into account possible

changes in the processor speed during the calculations.

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

3

As an example there are results of speed assessment for calculations with Intel Core i7-4720 HQ

given in Table 1.

Table 1. Execution time assessment for Intel Core i7-4720HQ CPU

Chunk frame

width
Number of signal

samples ()

Sequential

execution time

Parallel

execution time

32768 524288

1048576

2097152

4194304

0.1801

0.3603

0.7413

1.4673

0.0622

0.1241

0.2541

0.5057

65536 524288

1048576

2097152

4194304

0.1927

0.3875

0.7815

1.5604

0.0643

0.1307

0.2586

0.5206

131072 524288

1048576

2097152

4194304

0.2089

0.4061

0.8245

1.6316

0.0692

0.1382

0.2725

0.5195

Dependences of the acceleration parameter [8] of the sample size for different chunk size are given

in Figures 1 and 2.

3.0

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2
219 220 221 222 N

Sp

219 220 221 222 N
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Sp

Figure 1. Dependence of acceleration on the

sample size for the chunk frame size of 32768

(green – AMD FX-9590, red – Intel i7-4720

HQ).

 Figure 2. Dependence of acceleration on the

sample size for the chunk frame size of 65536

(green – AMD FX-9590, red – Intel i7-4720

HQ).

Acceleration values are insignificantly reduced with the change of the initial sample, thus

indicating good scalability of the software solution.

A study of load balancing was carried out during the calculations with the aim to determine a

degree of load distribution. This study showed that the CPU utilization curve (when all cores are

utilized) is almost symmetric with respect to the central value, thus indicating that there is a uniform

distribution of load between the cores. However, from Figure 3 we may see, that only about 60% of

the potential capability of the CPU is utilized, which we deem insufficient. Further studies with Intel

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

4

Parallel Studio debugger and IDA Pro disassembler helped to find the cause, which was sequential

operation of the C++ memory allocation tools. Use of the Scalable_malloc function from the Intel

TBB library allowed to increase performance by parallelizing memory allocation. At that, average

CPU utilization reached 85%, which is reflected in Figure 4.

Process Memory (MB)

CPU (% of processor computing cores)

0

100

0

100

0

287

0

287

Figure 3. Memory usage and CPU utilization as functions of time, before optimization of memory

allocation.

Process Memory (MB)

CPU (% of processor computing cores)

0

100

0

100

0

399

0

399

Figure 4. Memory usage and CPU utilization as functions of time, after optimization of memory

allocation.

Thus, use of parallel memory allocator allowed to raise CPU utilization and by that increase

performance.

For comparison indicators of both optimized and non-optimized versions of the coherence function

estimation on the Intel Core i7-4720HQ CPU are given in Figures 5 and 6.

219 220 221 222 N
2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Sp

219 220 221 222 N
2.6

2.8

3.0

3.2

3.4

3.6

3.8

Sp

Figure 5. Acceleration as a function of sample

size for the chunk frame size of 32768 (blue –

 Figure 6. Acceleration as a function of sample

size for the chunk frame size of 65536 (blue –

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

5

AMD FX-9590, red – Intel i7-4720 HQ). AMD FX-9590, red – Intel i7-4720 HQ).

5. Conclusion

This paper outlines a solution of a calculation optimization task for calculation of the coherence

function on multi-core CPUs. This task is of great applied significance because the coherence function

is widely used in solving different tasks of digital signal processing, for example in pipeline leak

location with correlation acoustic method.

Introduction of parallelism is deemed the most approachable way to raise hardware resources

utilization without significant additional costs. In this case a PC with a modern multi-core CPU serves

as a computational platform.

Compiler, architecture and algorithmic optimization methods were employed to increase

parallelizing performance during the coherence function estimation. The obtained data allowed for

development of specialized software that provides automated selection of efficient division of the task

into subtasks for parallel data processing as well as for selection between sequential and parallel

methods of data treatment depending on the sample size.

The performed analysis of the coherence function parallelizing attests to efficiency of its software

implementation. In particular, manual data prefetching into the cache line of the CPU significantly

increases performance because there is no need for information exchange with the RAM during the

calculations.

Further increase of performance may be attained by delegating the most resource-consuming part

of the task, i.e., fast Fourier transform to graphics processors using such technologies as CUDA or

OpenCL [11].

The software that has been developed during this study underwent state registration with the

authorities of the Russian Federation and will be included into a hardware and software solution for

rotating machinery fault diagnosis and pipeline leak location with acoustic correlation method.

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research according to the research

project No. 16-37-00049 mol_а.

Reference

[1] Blake G, Dreslinski R G and Mudge T 2009 IEEE Signal Proc. Mag. 26(6) 26-37

[2] Herlihy M 2007 Lect. Notes Comput. Sc. 4855 1-8

[3] Shukla S K, Murthy C N S and Chande P K 2015 Adv. in Intelligent Syst. and Comp. 1089

 537–545

[4] Kim H and Bond R 2009 IEEE Signal Proc. Mag. 26(6) 1-8

[5] Carter C G 1987 Proc. of IEEE 75(2) 236-255

[6] Ionel R, Ionel S and Ignea A 2010 Proc. of Int. Joint Conf. on Computational Cybernetics and

 Technical Informatics (Timisoara) (IEEE: USA) 5491234

[7] Avramchuk V S, Luneva E E and Cheremnov A G 2014 Proc. of Int. Conf. on Mechanical

 Engineering, Automation and Control Systems (IEEE: USA) 6986858

[8] Gupta A and Kumar V 1993 IEEE Parall. Distr. 4(8) 922-932

[9] Avramchuka V V, Luneva E E and Cheremnov A G 2014 Adv. Mat. Res. 1040 969-974

[10] Manikandan N and Subha S 2016 Int. J. of Pharmacy and Techn. 8 3916-27

[11] Skirnevskiy I and Korovin A 2015 Key Eng. Mat. 685857-862

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012020 doi:10.1088/1757-899X/177/1/012020

6

