
Scheduling based on a dynamic resource connection

A E Nagiyev1, I A Botygin1, A I Shersntneva1 and P A Konyaev2

1 Tomsk Polytechnic University, 30, Lenina Ave., Tomsk, 634050, Russia
2 V E Zuev Institute of Atmospheric Optics Siberian Branch of Russian Academy of
Sciences, 1, Academician Zuev Sq., Tomsk, 634055, Russia

E-mail: andrew_nagiev09@mail.ru

Abstract. The practical using of distributed computing systems associated with many
problems, including troubles with the organization of an effective interaction between the
agents located at the nodes of the system, with the specific configuration of each node of the
system to perform a certain task, with the effective distribution of the available information and
computational resources of the system, with the control of multithreading which implements
the logic of solving research problems and so on. The article describes the method of
computing load balancing in distributed automatic systems, focused on the multi-agency and
multi-threaded data processing. The scheme of the control of processing requests from the
terminal devices, providing the effective dynamic scaling of computing power under peak load
is offered. The results of the model experiments research of the developed load scheduling
algorithm are set out. These results show the effectiveness of the algorithm even with a
significant expansion in the number of connected nodes and zoom in the architecture
distributed computing system.

1. Introduction
At present, distributed computing systems (DCS) are increasingly intensely [1]. Parallel processing
using a large number of computing nodes is a distinctive feature of the distributed computing systems.
The advantage of this approach is the possibility of a rapid increase in productivity by the horizontal
scaling of computing nodes and resources.

At the moment, there are three types of distributed systems [2]:

• A cluster ― a certain number of computing nodes, combined with the LAN. Resources are used

by only one working group [3]. In the DCS, clustering is performed only at the software level.
• An enterprise-class computing system is a computer system. The resources of this system are

used to fulfil the tasks of several working groups.
• A Grid System ― a system that combines a large number of geographically dispersed

computing nodes. This system is intended for simultaneous processing of a large number of
working groups.

2. DCS and Load Balancing
2.1. Problems of the DCS
There are some problems, which are associated with the development of the DCS:

• The inability to define the global time for the entire distributed computing system. Each node of

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:andrew_nagiev09@mail.ru
http://creativecommons.org/licenses/by/3.0

the system has its own astronomical time. Sometimes it creates difficulties connected with
synchronization of the tasks on all of the nodes.

• Communication between nodes is carried out not instantaneously and with significant delays.
This requires additional steps for the development of the software and complicates the
development of distributed computing systems.

• Communications are insecure that can lead to a loss of data during transmission between the
nodes of the system.

• The complexity of the software configuration to complete the tasks on the system due to the
heterogeneity of platforms on which the nodes of the distributed computing system are
deployed.

• The complexity of ensuring an effective load distribution on the nodes of the DCS, etc.
Thus, the system development is hampered by the fact that computing nodes can have different

productivity; communication lines have different bandwidths; tasks may require different processing
power and others.

2.2. Description of the Load Balancing
According to the authors, the main attention should be paid to the distribution of load between the
nodes (load balancing) in the development of distributed computing systems. Load Balancing (LB) is
used to optimize the fulfilment of the distributed computing. Load Balancing allows one to distribute
the computational load on the existing nodes in the system effectively. Software, using a
predetermined algorithm of the LB, fulfils decomposition of the task, splitting it into modules after
transferring the tasks to fulfil in the DCS. These modules have transmitted to the nodes in the system
for further processing.

Load balancing is divided into static, dynamic and semi-dynamic [4-7]. The static balancing is
fulfilled before the beginning of a task. Semi-dynamic LB assumes that the distribution of tasks is
carried out at the stage of initialization. The dynamic load balancing task allocation takes place during
the computation. If we imply the way LB interacts in a computer system, the balancing is divided into
centralized and distributed. In the centralized LB, a special computing node (the so-called controller)
distributes modules tasks between calculators. In the distributed LB using a special algorithm, the data
of the status are exchanged between all nodes in the system.

Also, balancing is divided into universal and specialized (designed to fit the specified algorithm in
a computing task). [8] At the moment, there are many techniques and load balancing algorithms.
Among them are: Round Robin, Weighted Round Robin, Least connections, Weighted least
connections [9-11].

3. The Method of a Dynamic Connection of Resources
In this paper, another method of load balancing in distributed computing systems was developed - the
method of a dynamic connection of resources (DCR) as a result of the program experiments. Special
program experiments were conducted to assess the degree of efficiency of the developed method for
horizontal scaling calculators and increasing load.

During the program experiment, at first, the effectiveness of the classic server solution without load
balancing was evaluated. Then carrying capacity of this system was compared with the carrying
capacity of another system, which interaction of the elements was performed by a method of a
dynamic connection of resources.

As it was expected during the program experiment, the classical server solution, which consists of a
control server and terminals requests, proved to be ineffective at high loads. Namely, the program
experiment conducted by the computer-based system, which consists of a management server and
dynamically connected terminals requests from simulators, showed that increasing the number of
incoming requests for processing it was failure of the entire system.

In the experiment, on the basis of the computer system using a quad-core processor and simulation
of requests in separate threads by the law of uniform distribution at an interval of 10 ms, failure

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

2

occurred in the processing of 850 requests. From this it can be concluded that with the increase in
frequency, the request generation system productivity decreases. The server does not have time to
accept, process and send back the results. Therefore, to increase the effectiveness of tasks
(performance, etc.), the method of dynamic connection of resources is used. This approach allows one
to dynamically connect additional compute nodes, through which parallel computation of various tasks
of the management server is provided. This provides server unloading.

The program experiment was conducted for a practical demonstration of the proposed method. This
experiment is described below. The functional structure of a distributed system which is shown in
figure 1 is used for the experiment. As can be seen, the main changes have happened to the
management server, which was replaced by the main control center (MCC). The system infrastructure
has changed. The main control center and the dynamic link load controllers have been added; they will
be connected to the additional control centers (ACC). The generator of requests remained unchanged.

Figure 1. The block diagram of the distributed computing system in the program

experiment.

Unlike the previous program experiment, the connection address for each request terminal is

recorded in a special buffer of the MCC, which removes this connection after the request is processed
and the task which has been set before is solved (Figure 2).

With the increase in the number of incoming requests, MCC does not have time to promptly
process all incoming requests. It becomes a ‘bottleneck’ of the system, which causes the accumulation
requests in the buffer. The controller of load balancing starts operating when a certain number of
requests which are waiting to be processed in the MCC are reached (Figure 3). The controller starts to
run additional control centers. Their number is limited by the rate of incoming requests and the
presence of additional computing powers in the system.

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

3

Figure 2. Processing of incoming requests
by MCC without additional control centers.

 Figure 3. The block diagram of the sample requests
which controllers process from the buffer and send
them to ACC.

Each of the controllers runs in its own separate thread. The number of controllers is limited only by

processing power of the distributed system infrastructure. The controller selects a certain number of
requests from the buffer and sends them to the ACC, which it launched in separate threads. ACC is
switched off only after processing requests, which were received from the controller.

4. Results of Experiment
As a result of experiments, we can say that the time of terminals’ connection and the processing time
of requests to MCC is reduced by 57% as compared to the classic version. During the same time,
58.5% more requests from the terminals connect to the MCC than those during working of the main
control center without ACC.

During the connection of the second ACC, processing speed has increased by 13% relative to a
system with single ACC. During the connection of the third ACC, processing speed has also increased
by 24% relative to the system, which employs two additional control centers. The experimental results
are shown in graph figure 4.

Figure 4. The block diagram of the sample requests controllers processing from the buffer and

sending them to ACC.

100
158.5

179.11 222.09

0

50

100

150

200

250

Сlassic server solution Distributed computing
system with single

ACC

Distributed computing
system with two ACC

Distributed computing
system with three

ACC

T
he

 n
um

be
r

of
 r

eq
ue

st
s

pr
oc

es
se

d
pe

r
un

it

of
 ti

m
e,

 %

Kinds of systems

Efficiency of processing requests

Efficiency of processing requests

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

4

Experiments were carried out by connecting different numbers of requests terminals (from 10 to 10
000) with uniform distribution in the interval from 0 to 100 arbitrary time units.

If considering CPU usages used in the program experiment qualitatively, the connection of even
250 terminals in substantially separate threads charge CPU. During the connection of 10000
applications for processing, we can clearly see that each of the 4-CPU cores is loaded evenly. In
figures 5 and 6, we can see the difference between the load of CPU cores without processing requests
from the simulator and with processing the large number of requests according to the method, which
was described above.

Figure 5. The block diagram of the sample
requests controllers processing from the buffer
and sending them to ACC.

 Figure 6. The block diagram of the sample
requests controllers processing from the buffer
and sending them to ACC.

As is seen from figures 5 and 6, there is a uniform distribution on the computation of the CPU

cores based on pseudorandom numbers.

5. Conclusion
The generator of requests, which operates according to the law of uniform distribution and which
plays a role of a terminal simulator, experimentally demonstrated performance, efficiency and
flexibility of the proposed system, despite the fact that the experiment took place only on one
computer with the quad-core processor. Due to this, the ensuring scale of the computing power occurs,
which is limited only by the physical abilities of connected additional nodes.

The experiment, which is described above, has demonstrated the effectiveness of the method of
dynamic connection of resources. Through modeling of this system, we can state that the considered
method for dynamic connection of resources remains effective with a significant increase of the
connection of computational nodes.

References
[1] Kshemkalyani A D and Singhal M 2008 Distributed Computing: Principles, Algorithms, and

 Systems (Cambridge, UK: Cambridge University Press)

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

5

[2] Tanenbaum A S and Van Steen 2007 Distributed Systems: Principles and Paradigms (2nd) (Upper
 Saddle River, NJ, USA: Pearson Education)

[3] Carlos A Varela and Gul Agha 2013 Programming Distributed Computing Systems: A
 Foundational Approach Hardcover (Cambridge, USA: MIT Press)

[4] Load balancing in distributed systems Intuit URL:
 http://www.intuit.ru/studies/courses/1146/238/lecture/6153

[5] Bershadskiy A M, Kurilov L S, Finogeev A G 2009 Proc. of the Univ. Volga Region vol 4
(Penza, Russia: PSU Publishing house) pp 38–48

[6] Qiu Y W and Hwang J I G 2016 IEEE 14th Intl Conf. on Dependable, Autonomic and Secure
 Computing (Piscataway, NJ, USA: IEEE Press) pp 565-571

[7] Sommer M, Klink M, Tomforde S and Hähner J 2016 IEEE Int. Conf. on Autonomic
 Computing (Piscataway, NJ, USA: IEEE Press) pp 300-307

[8] Sherstnyov V S, Sherstnyova A I, Botygin I A, Kustov D A 2016 Key Eng. Mat. 685 867-871
[9] Sherstnev V S 2005 The 9th Russian-Korean Int. Symp. on Science and Technology vol 1

(Piscataway, NJ, USA: IEEE Press) pp 696-700
[10] Botygin I A, Nagiyev A E 2015 Int. Conf. on Mechanical Engineering, Automation and

Control Systems (Piscataway, NJ, USA: IEEE Press) pp 1-4
[11] Bal H E, Kaashoek M F and Tanenbaum A S 1992 IEEE Transactions on Software Engineering

vol 18 (Piscataway, NJ, USA: IEEE Press) pp 190-205

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012030 doi:10.1088/1757-899X/177/1/012030

6

