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INTRODUCTION AND FORMULATION OF THE PROBLEM

One of the forms of presentation of initial data in monitoring, control, and decision making systems
is time series. The main information about the observed object is often formed by the object itself and
is registered by measurement tools within a certain time interval. Because of noise distorting the object
parameters and nonstationary behavior of the object, the observed process becomes nonstationary.

Processing of nonstationary random processes involves a number of problems; one of them is indirect
estimation of derivatives on the basis of measured information. This problem is particularly important in
such applied fields as object control, monitoring, decision making, and prediction of indicators and behavior
of objects and systems.

Of particular interest are methods of real-time reconstruction of the useful signal and its lower derivatives.
In this paper, we consider a class of algorithms used in measurement instruments with a discrete input

and analog output, where a sequence of samples y(ti) with random noise ξ(ti) is recorded at time instants ti,
i = 1, 2, . . .:

y(ti) = f(ti) + ξ(ti);

M{ξ(t)} = 0; M{ξ2(t)} = σ2
ξ ; M{f(t), ξ(t)} = 0.

(1)

Such devices are based on a converter approximating input samples into analog output signals.

APPROACHES TO SOLVING THE PROBLEM

Smoothing of time series is one of the most powerful tools of studying them. The smoothed process
can be considered as an ideal variant of its behavior. Approximation of a smoothed series in the form of
an analytical function offers a number of prospects for estimation of derivatives. The resultant analytical
function reflecting the basic properties of the observed process allows one to estimate derivatives of a given
order. The most popular methods of smoothing are the regression analysis, orthogonal polynomials, splines,
wavelet functions, Fourier functions, and other methods of the time-frequency analysis. The main classes of
the methods for approximation of experimental data were analyzed in [1].
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Methods based on using spline functions [2, 3] combined with spectral or genetic methods are often used
for noisy signal reconstruction.

The best-developed apparatus of interpolation splines involves solving systems of algebraic equations,
which is computationally expensive. Moreover, interpolation splines cannot be used for smoothing if the
measured results are rather noisy.

It is known that the solution of the problem of differentiation by direct methods is unstable because
the rate of change of the function drastically enhances sharp fluctuations of the original function registered
with certain errors. For discrete data, this is manifested as an increase in the input data error. A possible
approach providing stable results is parametrization of solutions in the class of smoothing splines.

The use of a spline providing the minimum norm of the derivative allows obtaining the sought smooth
solution [4–7]. The smoothing spline S(t) is based on optimization of a special type of the functional

J(S) = λ

b∫
a

[S′′(t)]2dt +
n∑

i = 0

[S(ti) − y(ti)]2, (2)

where the first term together with the smoothing parameter λ defines the penalty of the curvature, whereas
the second term minimizes the residual sums of the squares and corresponds to the classical least squares
technique.

Derivatives can be obtained on the basis of observation results by means of interpretation of direct [8, 9]
or indirect [10] measurements. In the latter case, the sought derivative is the solution of the integral equation
of the first kind and is related to using Tikhonov’s regularization technique.

Interpretation of direct measurements is based on differentiation of the approximating function. A high-
power polynomial basis ensures calculation of the kth derivative. As the spline has a certain group of
parameters (power index, defect, and nodes), it is possible to vary the accuracy and time characteristics
of the spline. At the same time, the form of presentation and the method of obtaining the smoothing
spline largely determine possible regimes of estimating the derivative. It is reasonable to form recurrent
computational schemes for real-time estimation of the observed process parameters. The method of sequential
spline smoothing [11, 12] does not require solving systems of equations, but data processing is performed a
posteriori, and the number of sequential smoothing events is a regularization parameter.

In this work, we provide a computational scheme of a recurrent smoothing spline (RSS) with the number
of measurements of each segment being greater than the number of nodes. The recurrent smoothing spline
S(t) is found by means of optimization of the extreme functional, which was modified for the proposed spline
and has the form [13]

J(S) = (1 − ρ)(h∆t)2
tih∫

ti0

[S′′(t)]2dt + ρ
h∑

j = 0

[S(tij) − y(tij)]
2, (3)

where ρ is the weight coefficient establishing the balance between the smoothing and interpolating properties
of the spline S(t), ρ ∈ [0, 1], ∆t is the interval of sampling of the observed process, ti0 and tih are the initial
and final abscissa values of the ith segment of the spline, respectively, h = (tih − ti0)/∆t is the number of
measurements inside the ith segment of the spline (in what follows, h = const for all spline segments on the
process observation interval), and y(ti) are the measurements defined by Eq. (1).

For the ith segment, the analyzed cubic spline Si(τ) = ai
0 + ai

1τ + ai
2τ

2 + ai
3τ

3 can be calculated at any
internal point of the segment τ ∈ [1, h].

The conditions of conjugation of the spline segments define the formulas for its continuous coefficients.
The discontinuous spline coefficients are found from the condition of minimization of the extreme func-
tional (3) as a function of the spline defect d. The discontinuous coefficients are ai

2 and ai
3 for d = 2 and ai

3
for d = 1.

Several modes of RSS operation are identified depending on the relationship between the moments of
conjugation q ∈ [0, h − 1] and calculation τ ∈ [1, h] of the ith spline (Fig. 1), for example, the current mode
of estimation, where the spline segment is calculated after the next measurement becomes available, with
the use of the previously obtained h − 1 measurements. Conjugation of the continuous derivatives in this
regime is performed at the time instant ti− 1

q + 1 = tiq.
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Segment i _ 1

Segment i

Fig. 1. Current mode of RSS operation: observed process (∗), calculated values of τ (•), and instant
of conjugation of the RSS segments q (�).

The formulas for estimating the coefficients in this mode for q = 0 and d = 2 have the simplest form:

A = 6(1 − ρ)h4 + ρH5;

ai
0 = ai− 1

0 + ai− 1
1 + ai− 1

2 + ai− 1
3 ; B = 4(1 − ρ)h3 + ρH4;

ai
1 = ai− 1

1 + 2ai− 1
2 + 3ai− 1

3 ; C = 12(1 − ρ)h5 + ρH6;

ai
2 =

ρ(F i
1C − F i

2A)
BC − A2

; F i
1 =

h∑
k =0

y(tik)k2 − ai
0H2 − ai

1H3;

ai
3 =

ρ(F i
2B − F i

1A)
BC − A2

; F i
2 =

h∑
k =0

y(tik)k3 − ai
0H3 − ai

1H4;

Hn =
h∑

k = 0

kn.

(4)

The coefficients ai
0, a

i
1 are found from the condition of conjugation of the segments S(k)(ti− 1

q + 1)+ =

S(k)(tiq)−, k = 0, 1, and the coefficients ai
2 and ai

3 are obtained from the conditions of minimization of

functional (3) ∂J(S)

∂ai
2

= 0 and ∂J(S)

∂ai
3

= 0.

The advantage of this approach is the use of explicit formulas for calculating the spline coefficients,
which prevents using numerical algorithms and reduces the computation time of real-time estimation of the
derivatives.

RESULTS OF THE COMPUTATIONAL EXPERIMENT

The quality of estimation of derivatives is largely determined by the RSS setting parameters. Such
parameters of the spline are the balance factor ρ and the number of measurements in the spline segment h.
The quality of reconstruction of the function and its derivatives in the presence of noise with a prescribed
dispersion σ2

ξ is estimated by using the mean squared error (MSE) criterion [14]. To provide a better
illustration, we express this criterion in the form of the mean squared percentage error (MSPE) as

MSE(
_
x j (t)) =

√√√√ 1
K

K∑
j = 1

1
n

n∑
i =1

(x(ti)−
_
x j (ti))2;

MSPE =
MSE

|xmax − xmin|
· 100 %,

(5)
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Fig. 2. Test functions and reconstructed derivatives.

where
_
x j(ti) is the estimate of the function (derivative) at the time instant ti in the jth experiment, x(ti) is

the true value of the function (derivative) at the time ti, K is the number of experiments, n is the number
of the function values, and |xmax − xmin| is the range of variation of the test function (derivative). For
comparisons with the results of derivative estimation [15], we use similar parameters of the computational
experiment: K = 200 and n = 100.

The optimal values of the RSS setting parameters are found through the computational experiment with
the use of the test functions

f1(t) = 10 sin
(2πi

100

)
, f2(t) = sin

(πi

20

)
e002t + 3,

which are plotted in Figs. 2a and 2c, respectively.
The figures show the useful signal (points), the reconstructed functions (red curves, see Figs. 2a and 2c),

and the reconstructed derivatives (red curves, Figs. 2b and 2d). The results are obtained for a particular
case with h = 10 and σξ = 10 % of the maximum value of the useful signal. It is visually seen from the
graphs that the derivative is adequately reconstructed. However, despite a similar error of reconstruction
(smaller than 2%), the derivative in Fig. 2b is smoother than that in Fig. 2d. The derivative reconstruction
smoothness is controlled by the parameter ρ. Excessive enhancement of smoothness gives rise to a systematic
deviation, which is another undesirable effect of reconstruction.

The present study allowed us to estimate the MSPE values of reconstruction of the function σ0 and its
derivative σ1 as functions of the noise level. Figure 3 shows the reconstruction errors in the range of noise
variation σξ ∈ 0–20%. The derivative estimation error (blue curves) is slightly higher than the function
reconstruction error (red curves); the error values completely depend on the form and properties of the
original function.
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Fig. 3. Error of reconstruction of the function σ0 and its derivative σ1 versus the noise error σξ:
(a) f1(t); (b) f2(t).

Method σξ = 3 % σξ = 7 % σξ = 10 % Comment

P-spline 0.093
0.442 %

0.204
0.972 %

0.273
1.300 %

MSE [15]
MSPE

RSS 1.09 % 1.688 % 2.218 % f1(t), h, ρopt, τ = 1

RSS 1.042 % 1.176 % 1.334 % f2(t), h, ρopt, τ = 1

The error values are given in the figure for optimal values of the setting parameters h and ρ. The error
of the initial data is seen to decrease noticeably in the entire estimated interval: the MSPE reduction factor
varies from 3 (for σξ < 10 %) to 10 (for σξ > 15 %).

As the noise error σξ increases, the optimal length h of the spline also increases: from hopt = 8–10
measurements for σξ = 1 % to hopt = 14–19 measurements for σξ = 20 %; in this case, ρopt ∈ [0, 1].

To conclude, let us compare the MSPE of derivative reconstruction by the proposed method (RSS) with
the results of using a P-spline (Parametric Penalized Spline Smoothing) reported in [15].

It is seen from the table that the P-spline ensures a smaller error, but it is the RSS that ensures real-time
reconstruction of the function and its derivative.

CONCLUSIONS

The paper describes a regression model of reconstruction of the function and its derivative, which is based
on the variational approach. The main requirement to the smoothed function is the possibility of using it in
the real time. A recurrent computational scheme containing explicit formulas was developed for this purpose.
A comparative analysis of the proposed RSS and P-spline shows that the reconstruction error ensured by the
RSS is slightly higher (by a factor of 1.5 on the average); nevertheless, it is fairly reasonable for engineering
applications. It should be noted that the RSS allows real-time implementation and the estimates provided by
such procedures only asymptotically tend to the estimates of a posteriori algorithms, which are represented
here by the P-spline.
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