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Abstract. We investigate experimentally the behavior of a thin sheet of polytetrafluoroethylene between a steel plate and 
a cylindrical steel indenter under combined action of high normal force and torsion. Under these actions, the 
polytetrafluoroethylene layer is partially squeezed out of the contact area. The thickness of the remaining layer is studied 
as function of the applied normal force, the torsion angle, and the radius of the indenter. We suggest a simple semi-
empirical material model which describes both the process of squeezing out of the layer and the force of friction 
produced by the layer. 
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INTRODUCTION 

Squeezing out of thin polymer sheets is of interest for applications of polymers in heavily loaded mechanical 
parts and for several manufacturing processes as extrusion [1], in context of the ultimate strength of bearings with 
polymer coatings [2] as well as for better understanding of wear of polymers [3, 4]. Earlier experimental studies 
show that the stress-strain curve of many polymers including PTFE starts with a linear Hook’s behavior and is 
followed by linear strain hardening [5]. The yield stress shows strong pressure dependence: for example, in 
polymehylmethacrylate (PMMA) it is approximately linear with respect to pressure [6], so that Coulombs yield 
criterion [7] of the type 0t p  can be used, where t  is shear modulus at pressure p and  is the internal 
coefficient of friction. This behavior is very similar to that of granular materials [8].  

In the present paper, we investigate the plastic and tribological behavior of PTFE under extreme pressures up to 
p = 3500 MPa. Such pressures are relevant for above mentioned applications but have not been studied so far. We 
conducted two types of experiments: (1) application of pure normal force, (2) application of a normal force with 
subsequent shear, induced by a rotation of the indenter. We come to the conclusion, that at high pressures, the 
material behavior of PTFE can be described very accurately by simple proportionality 

.t p  (1) 

In the next section we provide the theoretical framework for the analysis of these experiments. 
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FIGURE 1. Scheme of the squeeze out experiment. A layer of PTFE is placed between two steel plate and a normal force is 
applied. The resulting thickness of the layer is investigated. Furthermore, the upper plate can be rotated 

THEORY OF SQUEEZING OUT OF PLASTIC SHEETS 

Assume a rigid base plate and a circular rigid counterpart with radius R. In between the two, there is a thin sheet 
of ideally plastic material with thickness h and the shear yield stress 0  (see Fig. 1).  

Normal Loading. When a normal force f is applied, then the stress equilibrium has the form [7]  

02 .p
r h

 (2) 

Integration of this equation with the boundary condition 0( )p R p  leads to  

3
02 ,

3
Rh
F

 (3) 

where the normal force F is obtained by integrating 0p p  over the circular area. For given F, the material will be 
squeezed out [7] until the thickness achieves the minimum value Eq. (3). If the yield stress is pressure dependent, we 
can insert eq. (1) into Eq. (2). Integration then gives 

0
2exp ( ) .p p R r
h

 (4) 

For the relation of the normal force and layer thickness we get 

2 2
2

0

2 (exp(2 ) 2 1 2 ),F
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 (5) 

where .R h  The right-hand side of Eq. (5) depends very strongly on the argument . In other words,  and thus 
h depend only very weekly on the normal force. For example, for F = 10 kN and R = 5 mm, it is on the order of 
6, so that the layer thickness can be estimated as  

1 .
6

Rh R  (6) 

Normal Loading and Rotation. Now in addition to the normal loading, the indenter is rotated by an angle 
around the vertical axis, assuming stick-conditions between the layer and both steel supports. A rough estimation 
can be done using the idea of “effective viscosity” eff  of the layer [9]. We introduce formally eff ,  such that the 
flow stress t  looks as if it was a fluid layer: 

eff ,t
v
h

 (7) 

where v  is the relative velocity of the layer boundaries. In a truly fluid layer, we would have [7],  
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3
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 (8) 

Substituting here the effective viscosity (7), we get an approximation for the plastic layer 

2 2
6 6 ,t trp h h

r th v h
 (9) 

where  is the rotational angle. Again, inserting the pressure dependence of the yield stress t p  according to 
(1), we can integrate (9) with boundary condition 0( )p R p  and obtain 

0 2
6exp ( ) .hp p r R
h

 (10) 

Note that h  is negative. Integration over the circular area gives the relation between the normal force and the 
squeeze out rate h :

2
2

0
( 1 )

2
F e
p R

 with 2
6 .h R
h

 (11) 

For F = 10 kN and R = 5 mm, the argument  is approx, 12.  Integration over  gives 

1 2 .
h R

 (12) 

Eqs. (6) and (12) can be combined to an empirical equation  

1 2
1 (1 )C C
h

 with 1
6C
R

 and 2
1 ,
3

C  (13) 

describing both pure application of (high) normal force and shear due to a rotation. The torque M  needed for 
rotation, can be estimated using (10) as  

3 2
3

0
(2 2 2 ).
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M e
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 (14) 

Here we used the assumption of complete stick to the layer. For the quantity ext (3 ) (2 )M FR  which often is 
considered as the macroscopic coefficient of friction in a torsional contact, we get 

2

ext
3 3 2 2 2 .
2 2 1

M e
FR e

 (15) 

For the above used typical value of 12,  we get ext 0.3 .  Thus, in the considered model, the apparent 
coefficient of friction will be about one third of the internal coefficient of friction. 

EXPERIMENTAL INVESTIGATIONS 

The studied layer of PTFE was placed between a massive support steel stamp and a steel cylindrical indenter. 
Normal forces up to 100 kN were applied, thereby effectively reaching forces of rolling mill or extrusion processes. 
The thickness of the layer was measured with an accuracy of ~30 m. 

Pure Normal Loading. Typical results are presented in Fig. 2. There is a slight trend of decreasing of the 
thickness with normal force, but the layer is not squeezed out completely even at the highest loads. This supports 
strongly a material law with linear pressure dependence of the yield stress. 

The experimental results for R = 5.5 mm and R = 3 mm fit well the theoretical prediction. In the case of the 
largest indenter with R = 15 mm, the initial sheet thickness of 0.35 mm was already smaller than the calculated 
theoretical thickness of 0.65 mm (not shown).  
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FIGURE 2. Experimental dependence of the thickness of the 
layer on the normal for pure normal loading. The bold lines are 
according to eq. (5) with  = 0.24, which provides the best fit 
for the Eq. (6). This value is approximately 2 times smaller 
than in the torsion experiment. We found the chosen normal 
force range to allow for plastic rolling deformation only with 

small specimen 

FIGURE 3. Experimental dependence of the layer thickness 
on the rotation angle at F = 25 kN and R = 5.5 mm. The solid 
line represents the fitting curve 1 2(1 )h C C  with 1C =

0.301 mm–1 and 2C = 0.08561, see Eq. (13) 

Thickness of the layer as function of rotation angle. The indenter is pressed on the sample and the normal 
force is held constant, while the indenter is rotated and the lower support stays unmoved (see Figure ). The 
dependence coincides with Eq. (13) qualitatively, but the coefficient 2C  is about 4 times smaller than predicted. The 
reason for this may be the inapplicability of the stick boundary condition. Here, further investigations are needed.  

Coefficient of friction from measurement of torque. The apparent macroscopic coefficient of friction was 
calculated from the measured torque M using equation ext (3 ) (2 )M FR . We found a practically constant value 
of 0.13 for all normal forces and radii. According to Eq. (15), this means the internal coefficient of friction is 

0.4  which is two times bigger that the coefficient of friction determined from the squeezing out experiments.  

SUMMARY 

We come to the conclusion that the plastic behavior of PTFE, in the interval of normal pressures of about 108–
109 Pa can be described by a simple proportionality .p  This confirms many previous studies and extends them 
to the region of higher normal pressures. The only discrepancy to the theoretical model is that the coefficients of 
friction obtained from the squeezing out experiments and torque experiments differ by a factor of about 2. The 
reason for this discrepancy could be the oversimplified theoretical description used in this paper. A more detailed 
modeling may be needed in order to obtain a unified description. Note that similar dependencies of the yield 
criterion on the hydrostatic pressure have been observed also in other polymers as well as in quasibrittle and 
frictional materials [5]. The regularities of the pressing out of thin layers may be therefore applicable also to other 
types of media.  
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